Internet Engineering Task Force (IETF)                          K. Patel
Request for Comments: 8395                                        Arrcus
Updates: 4761                                                 S. Boutros
Category: Standards Track                                         VMware
ISSN: 2070-1721                                                 J. Liste
                                                                  Cisco
                                                                 B. Wen
                                                                Comcast
                                                             J. Rabadan
                                                                  Nokia
                                                              June 2018


              Extensions to BGP-Signaled Pseudowires to
                 Support Flow-Aware Transport Labels

Abstract

  This document defines protocol extensions required to synchronize
  flow label states among Provider Edges (PEs) when using the BGP-based
  signaling procedures.  These protocol extensions are equally
  applicable to point-to-point Layer 2 Virtual Private Networks
  (L2VPNs).  This document updates RFC 4761 by defining new flags in
  the Control Flags field of the Layer2 Info Extended Community.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8395.













Patel, et al.                Standards Track                    [Page 1]

RFC 8395               BGP-Signaled FAT PW Labels              June 2018


Copyright Notice

  Copyright (c) 2018 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................2
     1.1. Requirements Language ......................................3
  2. Modifications to the Layer2 Info Extended Community .............4
  3. Signaling the Presence of the Flow Label ........................5
  4. IANA Considerations .............................................6
  5. Security Considerations .........................................6
  6. References ......................................................7
     6.1. Normative References .......................................7
     6.2. Informative References .....................................7
  Acknowledgements ...................................................8
  Contributors .......................................................8
  Authors' Addresses .................................................9

1.  Introduction

  The mechanism described in [RFC6391] uses an additional label (Flow
  Label) in the MPLS label stack to allow Label Switching Routers
  (LSRs) to balance flows within Pseudowires (PWs) at a finer
  granularity than the individual PWs across the Equal Cost Multiple
  Paths (ECMPs) that exists within the Packet Switched Network (PSN).

  Furthermore, [RFC6391] defines the LDP protocol extensions required
  to synchronize the flow label states between the ingress and egress
  PEs when using the signaling procedures defined in the [RFC8077].

  A PW [RFC3985] is transported over one single network path, even if
  ECMPs exist between the ingress and egress PW provider edge (PE)
  equipment.  This is required to preserve the characteristics of the
  emulated service.





Patel, et al.                Standards Track                    [Page 2]

RFC 8395               BGP-Signaled FAT PW Labels              June 2018


  This document introduces an optional mode of operation allowing a PW
  to be transported over ECMPs, for example when the use of ECMPs is
  known to be beneficial to the operation of the PW.  This
  specification uses the principles defined in [RFC6391] and augments
  the BGP-signaling procedures of [RFC4761] and [RFC6624].  The use of
  a single path to preserve the packet delivery order remains the
  default mode of operation of a PW and is described in [RFC4385] and
  [RFC4928].

  High-bandwidth Ethernet-based services are a prime example that use
  of the optional mode benefits from the ability to load-balance flows
  in a PW over multiple PSN paths.  In general, load-balancing is
  applicable when the PW attachment circuit bandwidth and PSN core link
  bandwidth are of the same order of magnitude.

  To achieve the load-balancing goal, [RFC6391] introduces the notion
  of an additional Label Stack Entry (LSE) (flow label) located at the
  bottom of the stack (right after PW LSE).  LSRs commonly generate a
  hash of the label stack in order to discriminate and distribute flows
  over available ECMPs.  The presence of the flow label (closely
  associated to a flow determined by the ingress PE) will normally
  provide the greatest entropy.

  Furthermore, following the procedures for inter-AS scenarios
  described in Section 3.4 of [RFC4761], the flow label should never be
  handled by the ASBRs; only the terminating PEs on each AS will be
  responsible for popping or pushing this label.  This is equally
  applicable to Method B as described in Section 3.4.2 of [RFC4761],
  where ASBRs are responsible for swapping the PW label as traffic
  traverses from ASBR to PE and ASBR to ASBR.  Therefore, the flow
  label will remain untouched across AS boundaries.

1.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.












Patel, et al.                Standards Track                    [Page 3]

RFC 8395               BGP-Signaled FAT PW Labels              June 2018


2.  Modifications to the Layer2 Info Extended Community

  The Layer2 Info Extended Community is used to signal control
  information about the PWs to be set up.  The Extended Community
  format is described in [RFC4761].  The format of this Extended
  Community is described as:

           +------------------------------------+
           | Extended Community type (2 octets) |
           +------------------------------------+
           |  Encaps Type (1 octet)             |
           +------------------------------------+
           |  Control Flags (1 octet)           |
           +------------------------------------+
           |  Layer-2 MTU (2 octets)            |
           +------------------------------------+
           |  Reserved (2 octets)               |
           +------------------------------------+

           Figure 1: Layer2 Info Extended Community

  Control Flags:

  This field contains bit flags relating to the control information
  about PWs.  This field is augmented with a definition of two new
  flags fields.

            0 1 2 3 4 5 6 7
           +-+-+-+-+-+-+-+-+
           |Z|Z|Z|Z|T|R|C|S|      (Z = MUST Be Zero)
           +-+-+-+-+-+-+-+-+

           Figure 2: Control Flags Bit Vector

  With reference to the Control Flags Bit Vector, the following bits in
  the Control Flags are defined.  The remaining bits, designated "Z",
  MUST be set to zero when sending and MUST be ignored when receiving
  this Extended Community.

     T   When the bit value is 1, the PE announces the ability to send
         a PW packet that includes a flow label.  When the bit value is
         0, the PE is indicating that it will not send a PW packet
         containing a flow label.

     R   When the bit value is 1, the PE is able to receive a PW packet
         with a flow label present.  When the bit value is 0, the PE is
         unable to receive a PW packet with the flow label present.




Patel, et al.                Standards Track                    [Page 4]

RFC 8395               BGP-Signaled FAT PW Labels              June 2018


     C   Defined in [RFC4761].

     S   Defined in [RFC4761].

3.  Signaling the Presence of the Flow Label

  As part of the PW signaling procedures described in [RFC4761], a
  Layer2 Info Extended Community is advertised in the Virtual Private
  LAN Service (VPLS) BGP Network Layer Reachability Information (NLRI).

  A PE that wishes to send a flow label in a PW packet MUST include in
  its VPLS BGP NLRI a Layer2 Info Extended Community using Control
  Flags field with T = 1.

  A PE that is willing to receive a flow label in a PW packet MUST
  include in its VPLS BGP NLRI a Layer2 Info Extended Community using
  Control Flags field with R = 1.

  A PE that receives a VPLS BGP NLRI containing a Layer2 Info Extended
  Community with R = 0 MUST NOT include a flow label in the PW packet.

  Therefore, a PE sending a Control Flags field with T = 1 and
  receiving a Control Flags field with R = 1 MUST include a flow label
  in the PW packet.  With any other combination, a PE MUST NOT include
  a flow label in the PW packet.

  A PE MAY support the configuration of the flow label (T and R bits)
  on a per-service basis (e.g., a VPLS VPN Forwarding Instance (VFI)).
  Furthermore, it is also possible that on a given service, PEs may not
  share the same flow label settings.  The presence of a flow label is
  therefore determined on a per-peer basis and according to the local
  and remote T and R bit values.  For example, a PE part of a VPLS and
  with a local T = 1 must only transmit traffic with a flow label to
  those peers that signaled R = 1.  If the same PE has local R = 1, it
  must only expect to receive traffic with a flow label from peers with
  T = 1.  Any other traffic must not have a flow label.  A PE expecting
  to receive traffic from a remote peer with a flow label MAY drop
  traffic that has no flow label.  A PE expecting to receive traffic
  from a remote peer with no flow label MAY drop traffic that has a
  flow label.

  Modification of flow label settings may impact traffic over a PW, as
  these could trigger changes in the PEs data-plane programming (i.e.,
  imposition/disposition of the flow label).  This is an
  implementation-specific behavior and is outside the scope of this
  document.





Patel, et al.                Standards Track                    [Page 5]

RFC 8395               BGP-Signaled FAT PW Labels              June 2018


  The signaling procedures in [RFC4761] state that the unspecified bits
  in the Control Flags field (bits 0-5) MUST be set to zero when
  sending and MUST be ignored when receiving.  The signaling procedure
  described here is therefore backwards compatible with existing
  implementations.  A PE not supporting the extensions described in
  this document will always advertise a value of zero in the R bit;
  therefore, a flow label will never be included in a packet sent to it
  by one of its peers.  Similarly, it will always advertise a value of
  zero in the T bit; therefore, a peer will know that a flow label will
  never be included in a packet sent by it.

  Note that what is signaled is the desire to include the flow LSE in
  the label stack.  The value of the flow label is a local matter for
  the ingress PE, and the label value itself is not signaled.

4.  IANA Considerations

  Although [RFC4761] defined a Control Flags Bit Vector as part of the
  Layer2 Info Extended Community, it did not ask for the creation of a
  registry.

  Per this document, IANA has created the "Layer2 Info Extended
  Community Control Flags Bit Vector" registry
  <https://www.iana.org/assignments/bgp-extended-communities>.

  Based on [RFC4761] and this document, the initial contents of this
  registry are as follows:

  Value   Name                               Reference
  -----   --------------------------------   --------------
  T       Request to send a flow label       This document
  R       Ability to receive a flow label    This document
  C       Presence of a Control Word         RFC 4761
  S       Sequenced delivery of frames       RFC 4761

  As per [RFC4761] and this document, the remaining bits are
  unassigned, and MUST be set to zero when sending and MUST be ignored
  when receiving the Layer2 Info Extended Community.

5.  Security Considerations

  This extension to BGP does not change the underlying security issues
  inherent in [RFC4271] and [RFC4761].








Patel, et al.                Standards Track                    [Page 6]

RFC 8395               BGP-Signaled FAT PW Labels              June 2018


6.  References

6.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC4271]  Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed.,
             "A Border Gateway Protocol 4 (BGP-4)", RFC 4271,
             DOI 10.17487/RFC4271, January 2006,
             <https://www.rfc-editor.org/info/rfc4271>.

  [RFC4761]  Kompella, K., Ed., and Y. Rekhter, Ed., "Virtual Private
             LAN Service (VPLS) Using BGP for Auto-Discovery and
             Signaling", RFC 4761, DOI 10.17487/RFC4761, January 2007,
             <https://www.rfc-editor.org/info/rfc4761>.

  [RFC6391]  Bryant, S., Ed., Filsfils, C., Drafz, U., Kompella, V.,
             Regan, J., and S. Amante, "Flow-Aware Transport of
             Pseudowires over an MPLS Packet Switched Network",
             RFC 6391, DOI 10.17487/RFC6391, November 2011,
             <https://www.rfc-editor.org/info/rfc6391>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in
             RFC 2119 Key Words", BCP 14, RFC 8174,
             DOI 10.17487/RFC8174, May 2017,
             <https://www.rfc-editor.org/info/rfc8174>.

6.2.  Informative References

  [RFC3985]  Bryant, S., Ed., and P. Pate, Ed., "Pseudo Wire Emulation
             Edge-to-Edge (PWE3) Architecture", RFC 3985,
             DOI 10.17487/RFC3985, March 2005,
             <https://www.rfc-editor.org/info/rfc3985>.

  [RFC4385]  Bryant, S., Swallow, G., Martini, L., and D. McPherson,
             "Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for
             Use over an MPLS PSN", RFC 4385, DOI 10.17487/RFC4385,
             February 2006, <https://www.rfc-editor.org/info/rfc4385>.

  [RFC8077]  Martini, L., Ed., and G. Heron, Ed., "Pseudowire Setup and
             Maintenance Using the Label Distribution Protocol (LDP)",
             STD 84, RFC 8077, DOI 10.17487/RFC8077, February 2017,
             <https://www.rfc-editor.org/info/rfc8077>.





Patel, et al.                Standards Track                    [Page 7]

RFC 8395               BGP-Signaled FAT PW Labels              June 2018


  [RFC4928]  Swallow, G., Bryant, S., and L. Andersson, "Avoiding Equal
             Cost Multipath Treatment in MPLS Networks", BCP 128,
             RFC 4928, DOI 10.17487/RFC4928, June 2007,
             <https://www.rfc-editor.org/info/rfc4928>.

  [RFC6624]  Kompella, K., Kothari, B., and R. Cherukuri, "Layer 2
             Virtual Private Networks Using BGP for Auto-Discovery and
             Signaling", RFC 6624, DOI 10.17487/RFC6624, May 2012,
             <https://www.rfc-editor.org/info/rfc6624>.

Acknowledgements

  The authors would like to thank Bertrand Duvivier and John Drake for
  their review and comments.

Contributors

  In addition to the authors listed above, the following individuals
  also contributed to this document:

     Eric Lent

     John Brzozowski

     Steven Cotter


























Patel, et al.                Standards Track                    [Page 8]

RFC 8395               BGP-Signaled FAT PW Labels              June 2018


Authors' Addresses

  Keyur Patel
  Arrcus

  Email: [email protected]


  Sami Boutros
  VMware

  Email: [email protected]


  Jose Liste
  Cisco

  Email: [email protected]


  Bin Wen
  Comcast

  Email: [email protected]


  Jorge Rabadan
  Nokia

  Email: [email protected]





















Patel, et al.                Standards Track                    [Page 9]