Internet Engineering Task Force (IETF)                   S. Farrell, Ed.
Request for Comments: 8376                        Trinity College Dublin
Category: Informational                                         May 2018
ISSN: 2070-1721


             Low-Power Wide Area Network (LPWAN) Overview

Abstract

  Low-Power Wide Area Networks (LPWANs) are wireless technologies with
  characteristics such as large coverage areas, low bandwidth, possibly
  very small packet and application-layer data sizes, and long battery
  life operation.  This memo is an informational overview of the set of
  LPWAN technologies being considered in the IETF and of the gaps that
  exist between the needs of those technologies and the goal of running
  IP in LPWANs.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are candidates for any level of Internet
  Standard; see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8376.

Copyright Notice

  Copyright (c) 2018 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.



Farrell                       Informational                     [Page 1]

RFC 8376                     LPWAN Overview                     May 2018


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
  2.  LPWAN Technologies  . . . . . . . . . . . . . . . . . . . . .   3
    2.1.  LoRaWAN . . . . . . . . . . . . . . . . . . . . . . . . .   4
      2.1.1.  Provenance and Documents  . . . . . . . . . . . . . .   4
      2.1.2.  Characteristics . . . . . . . . . . . . . . . . . . .   4
    2.2.  Narrowband IoT (NB-IoT) . . . . . . . . . . . . . . . . .  10
      2.2.1.  Provenance and Documents  . . . . . . . . . . . . . .  10
      2.2.2.  Characteristics . . . . . . . . . . . . . . . . . . .  11
    2.3.  Sigfox  . . . . . . . . . . . . . . . . . . . . . . . . .  15
      2.3.1.  Provenance and Documents  . . . . . . . . . . . . . .  15
      2.3.2.  Characteristics . . . . . . . . . . . . . . . . . . .  16
    2.4.  Wi-SUN Alliance Field Area Network (FAN)  . . . . . . . .  20
      2.4.1.  Provenance and Documents  . . . . . . . . . . . . . .  20
      2.4.2.  Characteristics . . . . . . . . . . . . . . . . . . .  21
  3.  Generic Terminology . . . . . . . . . . . . . . . . . . . . .  24
  4.  Gap Analysis  . . . . . . . . . . . . . . . . . . . . . . . .  26
    4.1.  Naive Application of IPv6 . . . . . . . . . . . . . . . .  26
    4.2.  6LoWPAN . . . . . . . . . . . . . . . . . . . . . . . . .  26
      4.2.1.  Header Compression  . . . . . . . . . . . . . . . . .  27
      4.2.2.  Address Autoconfiguration . . . . . . . . . . . . . .  27
      4.2.3.  Fragmentation . . . . . . . . . . . . . . . . . . . .  27
      4.2.4.  Neighbor Discovery  . . . . . . . . . . . . . . . . .  28
    4.3.  6lo . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
    4.4.  6tisch  . . . . . . . . . . . . . . . . . . . . . . . . .  29
    4.5.  RoHC  . . . . . . . . . . . . . . . . . . . . . . . . . .  29
    4.6.  ROLL  . . . . . . . . . . . . . . . . . . . . . . . . . .  30
    4.7.  CoAP  . . . . . . . . . . . . . . . . . . . . . . . . . .  30
    4.8.  Mobility  . . . . . . . . . . . . . . . . . . . . . . . .  31
    4.9.  DNS and LPWAN . . . . . . . . . . . . . . . . . . . . . .  31
  5.  Security Considerations . . . . . . . . . . . . . . . . . . .  31
  6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  32
  7.  Informative References  . . . . . . . . . . . . . . . . . . .  32
  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  39
  Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .  40
  Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  43

1.  Introduction

  This document provides background material and an overview of the
  technologies being considered in the IETF's IPv6 over Low Power Wide-
  Area Networks (LPWAN) Working Group (WG).  It also provides a gap
  analysis between the needs of these technologies and currently
  available IETF specifications.






Farrell                       Informational                     [Page 2]

RFC 8376                     LPWAN Overview                     May 2018


  Most technologies in this space aim for a similar goal of supporting
  large numbers of very low-cost, low-throughput devices with very low
  power consumption, so that even battery-powered devices can be
  deployed for years.  LPWAN devices also tend to be constrained in
  their use of bandwidth, for example, with limited frequencies being
  allowed to be used within limited duty cycles (usually expressed as a
  percentage of time per hour that the device is allowed to transmit).
  As the name implies, coverage of large areas is also a common goal.
  So, by and large, the different technologies aim for deployment in
  very similar circumstances.

  While all constrained networks must balance power consumption /
  battery life, cost, and bandwidth, LPWANs prioritize power and cost
  benefits by accepting severe bandwidth and duty cycle constraints
  when making the required trade-offs.  This prioritization is made in
  order to get the multiple-kilometer radio links implied by "Wide
  Area" in LPWAN's name.

  Existing pilot deployments have shown huge potential and created much
  industrial interest in these technologies.  At the time of writing,
  essentially no LPWAN end devices (other than for Wi-SUN) have IP
  capabilities.  Connecting LPWANs to the Internet would provide
  significant benefits to these networks in terms of interoperability,
  application deployment, and management (among others).  The goal of
  the LPWAN WG is to, where necessary, adapt IETF-defined protocols,
  addressing schemes, and naming conventions to this particular
  constrained environment.

  This document is largely the work of the people listed in the
  Contributors section.

2.  LPWAN Technologies

  This section provides an overview of the set of LPWAN technologies
  that are being considered in the LPWAN WG.  The text for each was
  mainly contributed by proponents of each technology.

  Note that this text is not intended to be normative in any sense; it
  simply exists to help the reader in finding the relevant Layer 2 (L2)
  specifications and in understanding how those integrate with IETF-
  defined technologies.  Similarly, there is no attempt here to set out
  the pros and cons of the relevant technologies.









Farrell                       Informational                     [Page 3]

RFC 8376                     LPWAN Overview                     May 2018


2.1.  LoRaWAN

2.1.1.  Provenance and Documents

  LoRaWAN is a wireless technology based on Industrial, Scientific, and
  Medical (ISM) that is used for long-range low-power low-data-rate
  applications developed by the LoRa Alliance, a membership consortium
  <https://www.lora-alliance.org/>.  This document is based on Version
  1.0.2 of the LoRa specification [LoRaSpec].  That specification is
  publicly available and has already seen several deployments across
  the globe.

2.1.2.  Characteristics

  LoRaWAN aims to support end devices operating on a single battery for
  an extended period of time (e.g., 10 years or more), extended
  coverage through 155 dB maximum coupling loss, and reliable and
  efficient file download (as needed for remote software/firmware
  upgrade).

  LoRaWAN networks are typically organized in a star-of-stars topology
  in which Gateways relay messages between end devices and a central
  "network server" in the backend.  Gateways are connected to the
  network server via IP links while end devices use single-hop LoRaWAN
  communication that can be received at one or more Gateways.
  Communication is generally bidirectional; uplink communication from
  end devices to the network server is favored in terms of overall
  bandwidth availability.

  Figure 1 shows the entities involved in a LoRaWAN network.

  +----------+
  |End Device| * * *
  +----------+       *   +---------+
                       * | Gateway +---+
  +----------+       *   +---------+   |   +---------+
  |End Device| * * *                   +---+ Network +--- Application
  +----------+       *                 |   | Server  |
                       * +---------+   |   +---------+
  +----------+       *   | Gateway +---+
  |End Device| * * *   * +---------+
  +----------+
      Key: *      LoRaWAN Radio
           +---+  IP connectivity

                     Figure 1: LoRaWAN Architecture





Farrell                       Informational                     [Page 4]

RFC 8376                     LPWAN Overview                     May 2018


  o  End Device: a LoRa client device, sometimes called a "mote".
     Communicates with Gateways.

  o  Gateway: a radio on the infrastructure side, sometimes called a
     "concentrator" or "base station".  Communicates with end devices
     and, via IP, with a network server.

  o  Network Server: The Network Server (NS) terminates the LoRaWAN
     Medium Access Control (MAC) layer for the end devices connected to
     the network.  It is the center of the star topology.

  o  Join Server: The Join Server (JS) is a server on the Internet side
     of an NS that processes join requests from an end devices.

  o  Uplink message: refers to communications from an end device to a
     network server or application via one or more Gateways.

  o  Downlink message: refers to communications from a network server
     or application via one Gateway to a single end device or a group
     of end devices (considering multicasting).

  o  Application: refers to application-layer code both on the end
     device and running "behind" the NS.  For LoRaWAN, there will
     generally only be one application running on most end devices.
     Interfaces between the NS and the application are not further
     described here.

  In LoRaWAN networks, end device transmissions may be received at
  multiple Gateways, so, during nominal operation, a network server may
  see multiple instances of the same uplink message from an end device.

  The LoRaWAN network infrastructure manages the data rate and Radio
  Frequency (RF) output power for each end device individually by means
  of an Adaptive Data Rate (ADR) scheme.  End devices may transmit on
  any channel allowed by local regulation at any time.

  LoRaWAN radios make use of ISM bands, for example, 433 MHz and 868
  MHz within the European Union and 915 MHz in the Americas.

  The end device changes channels in a pseudorandom fashion for every
  transmission to help make the system more robust to interference and/
  or to conform to local regulations.









Farrell                       Informational                     [Page 5]

RFC 8376                     LPWAN Overview                     May 2018


  Figure 2 shows that after a transmission slot, a Class A device turns
  on its receiver for two short receive windows that are offset from
  the end of the transmission window.  End devices can only transmit a
  subsequent uplink frame after the end of the associated receive
  windows.  When a device joins a LoRaWAN network, there are similar
  timeouts on parts of that process.

  |----------------------------|         |--------|     |--------|
  |             Tx             |         |   Rx   |     |   Rx   |
  |----------------------------|         |--------|     |--------|
                               |---------|
                                Rx delay 1
                               |------------------------|
                                Rx delay 2

       Figure 2: LoRaWAN Class A Transmission and Reception Window

  Given the different regional requirements, the detailed specification
  for the LoRaWAN Physical layer (PHY) (taking up more than 30 pages of
  the specification) is not reproduced here.  Instead, and mainly to
  illustrate the kinds of issue encountered, Table 1 presents some of
  the default settings for one ISM band (without fully explaining those
  here); Table 2 describes maxima and minima for some parameters of
  interest to those defining ways to use IETF protocols over the
  LoRaWAN MAC layer.

  +-----------------------+-------------------------------------------+
  |       Parameters      |               Default Value               |
  +-----------------------+-------------------------------------------+
  |       Rx delay 1      |                    1 s                    |
  |                       |                                           |
  |       Rx delay 2      |     2 s (must be RECEIVE_DELAY1 + 1 s)    |
  |                       |                                           |
  |      join delay 1     |                    5 s                    |
  |                       |                                           |
  |      join delay 2     |                    6 s                    |
  |                       |                                           |
  |     868MHz Default    |  3 (868.1,868.2,868.3), data rate: 0.3-50 |
  |        channels       |                   kbit/s                  |
  +-----------------------+-------------------------------------------+

              Table 1: Default Settings for EU 868 MHz Band









Farrell                       Informational                     [Page 6]

RFC 8376                     LPWAN Overview                     May 2018


  +------------------------------------------------+--------+---------+
  | Parameter/Notes                                |  Min   |   Max   |
  +------------------------------------------------+--------+---------+
  | Duty Cycle: some but not all ISM bands impose  |   1%   |    no   |
  | a limit in terms of how often an end device    |        |  limit  |
  | can transmit.  In some cases, LoRaWAN is more  |        |         |
  | restrictive in an attempt to avoid congestion. |        |         |
  |                                                |        |         |
  | EU 868 MHz band data rate/frame size           |  250   |  50000  |
  |                                                | bits/s |  bits/s |
  |                                                |  : 59  |  : 250  |
  |                                                | octets |  octets |
  |                                                |        |         |
  | US 915 MHz band data rate/frame size           |  980   |  21900  |
  |                                                | bits/s |  bits/s |
  |                                                |  : 19  |  : 250  |
  |                                                | octets |  octets |
  +------------------------------------------------+--------+---------+

        Table 2: Minima and Maxima for Various LoRaWAN Parameters

  Note that, in the case of the smallest frame size (19 octets), 8
  octets are required for LoRa MAC layer headers, leaving only 11
  octets for payload (including MAC layer options).  However, those
  settings do not apply for the join procedure -- end devices are
  required to use a channel and data rate that can send the 23-byte
  Join-Request message for the join procedure.

  Uplink and downlink higher-layer data is carried in a MACPayload.
  There is a concept of "ports" (an optional 8-bit value) to handle
  different applications on an end device.  Port zero is reserved for
  LoRaWAN-specific messaging, such as the configuration of the end
  device's network parameters (available channels, data rates, ADR
  parameters, Rx Delay 1 and 2, etc.).

  In addition to carrying higher-layer PDUs, there are Join-Request and
  Join-Response (aka Join-Accept) messages for handling network access.
  And so-called "MAC commands" (see below) up to 15 bytes long can be
  piggybacked in an options field ("FOpts").

  There are a number of MAC commands for link and device status
  checking, ADR and duty cycle negotiation, and managing the RX windows
  and radio channel settings.  For example, the link check response
  message allows the NS (in response to a request from an end device)
  to inform an end device about the signal attenuation seen most
  recently at a Gateway and to tell the end device how many Gateways
  received the corresponding link request MAC command.




Farrell                       Informational                     [Page 7]

RFC 8376                     LPWAN Overview                     May 2018


  Some MAC commands are initiated by the network server.  For example,
  one command allows the network server to ask an end device to reduce
  its duty cycle to only use a proportion of the maximum allowed in a
  region.  Another allows the network server to query the end device's
  power status with the response from the end device specifying whether
  it has an external power source or is battery powered (in which case,
  a relative battery level is also sent to the network server).

  In order to operate nominally on a LoRaWAN network, a device needs a
  32-bit device address, which is assigned when the device "joins" the
  network (see below for the join procedure) or that is pre-provisioned
  into the device.  In case of roaming devices, the device address is
  assigned based on the 24-bit network identifier (NetID) that is
  allocated to the network by the LoRa Alliance.  Non-roaming devices
  can be assigned device addresses by the network without relying on a
  NetID assigned by the LoRa Alliance.

  End devices are assumed to work with one or quite a limited number of
  applications, identified by a 64-bit AppEUI, which is assumed to be a
  registered IEEE EUI64 value [EUI64].  In addition, a device needs to
  have two symmetric session keys, one for protecting network artifacts
  (port=0), the NwkSKey, and another for protecting application-layer
  traffic, the AppSKey.  Both keys are used for 128-bit AES
  cryptographic operations.  So, one option is for an end device to
  have all of the above plus channel information, somehow
  (pre-)provisioned; in that case, the end device can simply start
  transmitting.  This is achievable in many cases via out-of-band means
  given the nature of LoRaWAN networks.  Table 3 summarizes these
  values.

  +---------+---------------------------------------------------------+
  | Value   | Description                                             |
  +---------+---------------------------------------------------------+
  | DevAddr | DevAddr (32 bits) =  device-specific network address    |
  |         | generated from the NetID                                |
  |         |                                                         |
  | AppEUI  | IEEE EUI64 value corresponding to the join server for   |
  |         | an application                                          |
  |         |                                                         |
  | NwkSKey | 128-bit network session key used with AES-CMAC          |
  |         |                                                         |
  | AppSKey | 128-bit application session key used with AES-CTR       |
  |         |                                                         |
  | AppKey  | 128-bit application session key used with AES-ECB       |
  +---------+---------------------------------------------------------+

             Table 3: Values Required for Nominal Operation




Farrell                       Informational                     [Page 8]

RFC 8376                     LPWAN Overview                     May 2018


  As an alternative, end devices can use the LoRaWAN join procedure
  with a join server behind the NS in order to set up some of these
  values and dynamically gain access to the network.  To use the join
  procedure, an end device must still know the AppEUI and a different
  (long-term) symmetric key that is bound to the AppEUI (this is the
  application key (AppKey), and it is distinct from the application
  session key (AppSKey)).  The AppKey is required to be specific to the
  device; that is, each end device should have a different AppKey
  value.  Finally, the end device also needs a long-term identifier for
  itself, which is syntactically also an EUI-64 and is known as the
  device EUI or DevEUI.  Table 4 summarizes these values.

    +---------+----------------------------------------------------+
    | Value   | Description                                        |
    +---------+----------------------------------------------------+
    | DevEUI  | IEEE EUI64 naming the device                       |
    |         |                                                    |
    | AppEUI  | IEEE EUI64 naming the application                  |
    |         |                                                    |
    | AppKey  | 128-bit long-term application key for use with AES |
    +---------+----------------------------------------------------+

               Table 4: Values Required for Join Procedure

  The join procedure involves a special exchange where the end device
  asserts the AppEUI and DevEUI (integrity protected with the long-term
  AppKey, but not encrypted) in a Join-Request uplink message.  This is
  then routed to the network server, which interacts with an entity
  that knows that AppKey to verify the Join-Request.  If all is going
  well, a Join-Accept downlink message is returned from the network
  server to the end device.  That message specifies the 24-bit NetID,
  32-bit DevAddr, and channel information and from which the AppSKey
  and NwkSKey can be derived based on knowledge of the AppKey.  This
  provides the end device with all the values listed in Table 3.

  All payloads are encrypted and have data integrity.  MAC commands,
  when sent as a payload (port zero), are therefore protected.
  However, MAC commands piggybacked as frame options ("FOpts") are sent
  in clear.  Any MAC commands sent as frame options and not only as
  payload, are visible to a passive attacker, but they are not
  malleable for an active attacker due to the use of the Message
  Integrity Check (MIC) described below.

  For LoRaWAN version 1.0.x, the NwkSKey session key is used to provide
  data integrity between the end device and the network server.  The
  AppSKey is used to provide data confidentiality between the end
  device and network server, or to the application "behind" the network
  server, depending on the implementation of the network.



Farrell                       Informational                     [Page 9]

RFC 8376                     LPWAN Overview                     May 2018


  All MAC-layer messages have an outer 32-bit MIC calculated using AES-
  CMAC with the input being the ciphertext payload and other headers
  and using the NwkSkey.  Payloads are encrypted using AES-128, with a
  counter-mode derived from [IEEE.802.15.4] using the AppSKey.
  Gateways are not expected to be provided with the AppSKey or NwkSKey,
  all of the infrastructure-side cryptography happens in (or "behind")
  the network server.  When session keys are derived from the AppKey as
  a result of the join procedure, the Join-Accept message payload is
  specially handled.

  The long-term AppKey is directly used to protect the Join-Accept
  message content, but the function used is not an AES-encrypt
  operation, but rather an AES-decrypt operation.  The justification is
  that this means that the end device only needs to implement the AES-
  encrypt operation.  (The counter-mode variant used for payload
  decryption means the end device doesn't need an AES-decrypt
  primitive.)

  The Join-Accept plaintext is always less than 16 bytes long, so
  Electronic Code Book (ECB) mode is used for protecting Join-Accept
  messages.  The Join-Accept message contains an AppNonce (a 24-bit
  value) that is recovered on the end device along with the other Join-
  Accept content (e.g., DevAddr) using the AES-encrypt operation.  Once
  the Join-Accept payload is available to the end device, the session
  keys are derived from the AppKey, AppNonce, and other values, again
  using an ECB mode AES-encrypt operation, with the plaintext input
  being a maximum of 16 octets.

2.2.  Narrowband IoT (NB-IoT)

2.2.1.  Provenance and Documents

  Narrowband Internet of Things (NB-IoT) has been developed and
  standardized by 3GPP.  The standardization of NB-IoT was finalized
  with 3GPP Release 13 in June 2016, and further enhancements for
  NB-IoT are specified in 3GPP Release 14 in 2017 (for example, in the
  form of multicast support).  Further features and improvements will
  be developed in the following releases, but NB-IoT has been ready to
  be deployed since 2016; it is rather simple to deploy, especially in
  the existing LTE networks with a software upgrade in the operator's
  base stations.  For more information of what has been specified for
  NB-IoT, 3GPP specification 36.300 [TGPP36300] provides an overview
  and overall description of the Evolved Universal Terrestrial Radio
  Access Network (E-UTRAN) radio interface protocol architecture, while
  specifications 36.321 [TGPP36321], 36.322 [TGPP36322], 36.323
  [TGPP36323], and 36.331 [TGPP36331] give more detailed descriptions





Farrell                       Informational                    [Page 10]

RFC 8376                     LPWAN Overview                     May 2018


  of MAC, Radio Link Control (RLC), Packet Data Convergence Protocol
  (PDCP), and Radio Resource Control (RRC) protocol layers,
  respectively.  Note that the description below assumes familiarity
  with numerous 3GPP terms.

  For a general overview of NB-IoT, see [nbiot-ov].

2.2.2.  Characteristics

  Specific targets for NB-IoT include: module cost that is Less than US
  $5, extended coverage of 164 dB maximum coupling loss, battery life
  of over 10 years, ~55000 devices per cell, and uplink reporting
  latency of less than 10 seconds.

  NB-IoT supports Half Duplex Frequency Division Duplex (FDD) operation
  mode with 60 kbit/s peak rate in uplink and 30 kbit/s peak rate in
  downlink, and a Maximum Transmission Unit (MTU) size of 1600 bytes,
  limited by PDCP layer (see Figure 4 for the protocol structure),
  which is the highest layer in the user plane, as explained later.
  Any packet size up to the said MTU size can be passed to the NB-IoT
  stack from higher layers, segmentation of the packet is performed in
  the RLC layer, which can segment the data to transmission blocks with
  a size as small as 16 bits.  As the name suggests, NB-IoT uses
  narrowbands with bandwidth of 180 kHz in both downlink and uplink.
  The multiple access scheme used in the downlink is Orthogonal
  Frequency-Division Multiplex (OFDMA) with 15 kHz sub-carrier spacing.
  In uplink, Sub-Carrier Frequency-Division Multiplex (SC-FDMA) single
  tone with either 15kHz or 3.75 kHz tone spacing is used, or
  optionally multi-tone SC-FDMA can be used with 15 kHz tone spacing.

  NB-IoT can be deployed in three ways.  In-band deployment means that
  the narrowband is deployed inside the LTE band and radio resources
  are flexibly shared between NB-IoT and normal LTE carrier.  In Guard-
  band deployment, the narrowband uses the unused resource blocks
  between two adjacent LTE carriers.  Standalone deployment is also
  supported, where the narrowband can be located alone in dedicated
  spectrum, which makes it possible, for example, to reframe a GSM
  carrier at 850/900 MHz for NB-IoT.  All three deployment modes are
  used in licensed frequency bands.  The maximum transmission power is
  either 20 or 23 dBm for uplink transmissions, while for downlink
  transmission the eNodeB may use higher transmission power, up to 46
  dBm depending on the deployment.

  A Maximum Coupling Loss (MCL) target for NB-IoT coverage enhancements
  defined by 3GPP is 164 dB.  With this MCL, the performance of NB-IoT
  in downlink varies between 200 bps and 2-3 kbit/s, depending on the
  deployment mode.  Stand-alone operation may achieve the highest data




Farrell                       Informational                    [Page 11]

RFC 8376                     LPWAN Overview                     May 2018


  rates, up to a few kbit/s, while in-band and guard-band operations
  may reach several hundreds of bps.  NB-IoT may even operate with an
  MCL higher than 170 dB with very low bit rates.

  For signaling optimization, two options are introduced in addition to
  the legacy LTE RRC connection setup; mandatory Data-over-NAS (Control
  Plane optimization, solution 2 in [TGPP23720]) and optional RRC
  Suspend/Resume (User Plane optimization, solution 18 in [TGPP23720]).
  In the control-plane optimization, the data is sent over Non-Access
  Stratum (NAS), directly to/from the Mobile Management Entity (MME)
  (see Figure 3 for the network architecture) in the core network to
  the User Equipment (UE) without interaction from the base station.
  This means there is no Access Stratum security or header compression
  provided by the PDCP layer in the eNodeB, as the Access Stratum is
  bypassed, and only limited RRC procedures.  Header compression based
  on Robust Header Compression (RoHC) may still optionally be provided
  and terminated in the MME.

  The RRC Suspend/Resume procedures reduce the signaling overhead
  required for UE state transition from RRC Idle to RRC Connected mode
  compared to a legacy LTE operation in order to have quicker user-
  plane transaction with the network and return to RRC Idle mode
  faster.

  In order to prolong device battery life, both Power-Saving Mode (PSM)
  and extended DRX (eDRX) are available to NB-IoT.  With eDRX, the RRC
  Connected mode DRX cycle is up to 10.24 seconds; in RRC Idle, the
  eDRX cycle can be up to 3 hours.  In PSM, the device is in a deep
  sleep state and only wakes up for uplink reporting.  After the
  reporting, there is a window (configured by the network) during which
  the device receiver is open for downlink connectivity or for
  periodical "keep-alive" signaling (PSM uses periodic TAU signaling
  with additional reception windows for downlink reachability).

  Since NB-IoT operates in a licensed spectrum, it has no channel
  access restrictions allowing up to a 100% duty cycle.

  3GPP access security is specified in [TGPP33203].













Farrell                       Informational                    [Page 12]

RFC 8376                     LPWAN Overview                     May 2018


  +--+
  |UE| \                 +------+      +------+
  +--+  \                | MME  |------| HSS  |
         \             / +------+      +------+
  +--+    \+--------+ /      |
  |UE| ----| eNodeB |-       |
  +--+    /+--------+ \      |
         /             \ +--------+
        /               \|        |    +------+     Service Packet
  +--+ /                 |  S-GW  |----| P-GW |---- Data Network (PDN)
  |UE|                   |        |    +------+     e.g., Internet
  +--+                   +--------+

                   Figure 3: 3GPP Network Architecture

  Figure 3 shows the 3GPP network architecture, which applies to
  NB-IoT.  The MME is responsible for handling the mobility of the UE.
  The MME tasks include tracking and paging UEs, session management,
  choosing the Serving Gateway for the UE during initial attachment and
  authenticating the user.  At the MME, the NAS signaling from the UE
  is terminated.

  The Serving Gateway (S-GW) routes and forwards the user data packets
  through the access network and acts as a mobility anchor for UEs
  during handover between base stations known as eNodeBs and also
  during handovers between NB-IoT and other 3GPP technologies.

  The Packet Data Network Gateway (P-GW) works as an interface between
  the 3GPP network and external networks.

  The Home Subscriber Server (HSS) contains user-related and
  subscription-related information.  It is a database that performs
  mobility management, session-establishment support, user
  authentication, and access authorization.

  E-UTRAN consists of components of a single type, eNodeB. eNodeB is a
  base station that controls the UEs in one or several cells.

  The 3GPP radio protocol architecture is illustrated in Figure 4.












Farrell                       Informational                    [Page 13]

RFC 8376                     LPWAN Overview                     May 2018


  +---------+                                       +---------+
  | NAS     |----|-----------------------------|----| NAS     |
  +---------+    |    +---------+---------+    |    +---------+
  | RRC     |----|----| RRC     | S1-AP   |----|----| S1-AP   |
  +---------+    |    +---------+---------+    |    +---------+
  | PDCP    |----|----| PDCP    | SCTP    |----|----| SCTP    |
  +---------+    |    +---------+---------+    |    +---------+
  | RLC     |----|----| RLC     | IP      |----|----| IP      |
  +---------+    |    +---------+---------+    |    +---------+
  | MAC     |----|----| MAC     | L2      |----|----| L2      |
  +---------+    |    +---------+---------+    |    +---------+
  | PHY     |----|----| PHY     | PHY     |----|----| PHY     |
  +---------+         +---------+---------+         +---------+
              LTE-Uu                         S1-MME
      UE                     eNodeB                     MME

    Figure 4: 3GPP Radio Protocol Architecture for the Control Plane

  The radio protocol architecture of NB-IoT (and LTE) is separated into
  the control plane and the user plane.  The control plane consists of
  protocols that control the radio-access bearers and the connection
  between the UE and the network.  The highest layer of control plane
  is called the Non-Access Stratum (NAS), which conveys the radio
  signaling between the UE and the Evolved Packet Core (EPC), passing
  transparently through the radio network.  The NAS is responsible for
  authentication, security control, mobility management, and bearer
  management.

  The Access Stratum (AS) is the functional layer below the NAS; in the
  control plane, it consists of the Radio Resource Control (RRC)
  protocol [TGPP36331], which handles connection establishment and
  release functions, broadcast of system information, radio-bearer
  establishment, reconfiguration, and release.  The RRC configures the
  user and control planes according to the network status.  There exist
  two RRC states, RRC_Idle or RRC_Connected, and the RRC entity
  controls the switching between these states.  In RRC_Idle, the
  network knows that the UE is present in the network, and the UE can
  be reached in case of an incoming call/downlink data.  In this state,
  the UE monitors paging, performs cell measurements and cell
  selection, and acquires system information.  Also, the UE can receive
  broadcast and multicast data, but it is not expected to transmit or
  receive unicast data.  In RRC_Connected state, the UE has a
  connection to the eNodeB, the network knows the UE location on the
  cell level, and the UE may receive and transmit unicast data.  An RRC
  connection is established when the UE is expected to be active in the
  network, to transmit or receive data.  The RRC connection is
  released, switching back to RRC_Idle, when there is no more traffic;
  this is in order to preserve UE battery life and radio resources.



Farrell                       Informational                    [Page 14]

RFC 8376                     LPWAN Overview                     May 2018


  However, as mentioned earlier, a new feature was introduced for
  NB-IoT that allows data to be transmitted from the MME directly to
  the UE and then transparently to the eNodeB, thus bypassing AS
  functions.

  The PDCP's [TGPP36323] main services in the control plane are
  transfer of control-plane data, ciphering, and integrity protection.

  The RLC protocol [TGPP36322] performs transfer of upper-layer PDUs
  and, optionally, error correction with Automatic Repeat reQuest
  (ARQ), concatenation, segmentation, and reassembly of RLC Service
  Data Units (SDUs), in-sequence delivery of upper-layer PDUs,
  duplicate detection, RLC SDU discarding, RLC-re-establishment, and
  protocol error detection and recovery.

  The MAC protocol [TGPP36321] provides mapping between logical
  channels and transport channels, multiplexing of MAC SDUs, scheduling
  information reporting, error correction with Hybrid ARQ (HARQ),
  priority handling, and transport format selection.

  The PHY [TGPP36201] provides data-transport services to higher
  layers.  These include error detection and indication to higher
  layers, Forward Error Correction (FEC) encoding, HARQ soft-combining,
  rate-matching, mapping of the transport channels onto physical
  channels, power-weighting and modulation of physical channels,
  frequency and time synchronization, and radio characteristics
  measurements.

  The user plane is responsible for transferring the user data through
  the Access Stratum.  It interfaces with IP and the highest layer of
  the user plane is the PDCP, which, in the user plane, performs header
  compression using RoHC, transfer of user-plane data between eNodeB
  and the UE, ciphering, and integrity protection.  Similar to the
  control plane, lower layers in the user plane include RLC, MAC, and
  the PHY performing the same tasks as they do in the control plane.

2.3.  Sigfox

2.3.1.  Provenance and Documents

  The Sigfox LPWAN is in line with the terminology and specifications
  being defined by ETSI [etsi_unb].  As of today, Sigfox's network has
  been fully deployed in 12 countries, with ongoing deployments in 26
  other countries, giving in total a geography of 2 million square
  kilometers, containing 512 million people.






Farrell                       Informational                    [Page 15]

RFC 8376                     LPWAN Overview                     May 2018


2.3.2.  Characteristics

  Sigfox LPWAN autonomous battery-operated devices send only a few
  bytes per day, week, or month, in principle, allowing them to remain
  on a single battery for up to 10-15 years.  Hence, the system is
  designed as to allow devices to last several years, sometimes even
  buried underground.

  Since the radio protocol is connectionless and optimized for uplink
  communications, the capacity of a Sigfox base station depends on the
  number of messages generated by devices, and not on the actual number
  of devices.  Likewise, the battery life of devices depends on the
  number of messages generated by the device.  Depending on the use
  case, devices can vary from sending less than one message per device
  per day to dozens of messages per device per day.

  The coverage of the cell depends on the link budget and on the type
  of deployment (urban, rural, etc.).  The radio interface is compliant
  with the following regulations:

     Spectrum allocation in the USA [fcc_ref]

     Spectrum allocation in Europe [etsi_ref1] [etsi_ref2]

     Spectrum allocation in Japan [arib_ref]

  The Sigfox radio interface is also compliant with the local
  regulations of the following countries: Australia, Brazil, Canada,
  Kenya, Lebanon, Mauritius, Mexico, New Zealand, Oman, Peru,
  Singapore, South Africa, South Korea, and Thailand.

  The radio interface is based on Ultra Narrow Band (UNB)
  communications, which allow an increased transmission range by
  spending a limited amount of energy at the device.  Moreover, UNB
  allows a large number of devices to coexist in a given cell without
  significantly increasing the spectrum interference.

  Both uplink and downlink are supported, although the system is
  optimized for uplink communications.  Due to spectrum optimizations,
  different uplink and downlink frames and time synchronization methods
  are needed.

  The main radio characteristics of the UNB uplink transmission are:

  o  Channelization mask: 100 Hz / 600 Hz (depending on the region)

  o  Uplink baud rate: 100 baud / 600 baud (depending on the region)




Farrell                       Informational                    [Page 16]

RFC 8376                     LPWAN Overview                     May 2018


  o  Modulation scheme: DBPSK

  o  Uplink transmission power: compliant with local regulation

  o  Link budget: 155 dB (or better)

  o  Central frequency accuracy: not relevant, provided there is no
     significant frequency drift within an uplink packet transmission

  For example, in Europe, the UNB uplink frequency band is limited to
  868.00 to 868.60 MHz, with a maximum output power of 25 mW and a duty
  cycle of 1%.

  The format of the uplink frame is the following:

  +--------+--------+--------+------------------+-------------+-----+
  |Preamble|  Frame | Dev ID |     Payload      |Msg Auth Code| FCS |
  |        |  Sync  |        |                  |             |     |
  +--------+--------+--------+------------------+-------------+-----+

                      Figure 5: Uplink Frame Format

  The uplink frame is composed of the following fields:

  o  Preamble: 19 bits

  o  Frame sync and header: 29 bits

  o  Device ID: 32 bits

  o  Payload: 0-96 bits

  o  Authentication: 16-40 bits

  o  Frame check sequence: 16 bits (Cyclic Redundancy Check (CRC))

  The main radio characteristics of the UNB downlink transmission are:

  o  Channelization mask: 1.5 kHz

  o  Downlink baud rate: 600 baud

  o  Modulation scheme: GFSK

  o  Downlink transmission power: 500 mW / 4W (depending on the region)

  o  Link budget: 153 dB (or better)




Farrell                       Informational                    [Page 17]

RFC 8376                     LPWAN Overview                     May 2018


  o  Central frequency accuracy: the center frequency of downlink
     transmission is set by the network according to the corresponding
     uplink transmission.

  For example, in Europe, the UNB downlink frequency band is limited to
  869.40 to 869.65 MHz, with a maximum output power of 500 mW with 10%
  duty cycle.

  The format of the downlink frame is the following:

  +------------+-----+---------+------------------+-------------+-----+
  |  Preamble  |Frame|   ECC   |     Payload      |Msg Auth Code| FCS |
  |            |Sync |         |                  |             |     |
  +------------+-----+---------+------------------+-------------+-----+

                     Figure 6: Downlink Frame Format

  The downlink frame is composed of the following fields:

  o  Preamble: 91 bits

  o  Frame sync and header: 13 bits

  o  Error Correcting Code (ECC): 32 bits

  o  Payload: 0-64 bits

  o  Authentication: 16 bits

  o  Frame check sequence: 8 bits (CRC)

  The radio interface is optimized for uplink transmissions, which are
  asynchronous.  Downlink communications are achieved by devices
  querying the network for available data.

  A device willing to receive downlink messages opens a fixed window
  for reception after sending an uplink transmission.  The delay and
  duration of this window have fixed values.  The network transmits the
  downlink message for a given device during the reception window, and
  the network also selects the BS for transmitting the corresponding
  downlink message.

  Uplink and downlink transmissions are unbalanced due to the
  regulatory constraints on ISM bands.  Under the strictest
  regulations, the system can allow a maximum of 140 uplink messages






Farrell                       Informational                    [Page 18]

RFC 8376                     LPWAN Overview                     May 2018


  and 4 downlink messages per device per day.  These restrictions can
  be slightly relaxed depending on system conditions and the specific
  regulatory domain of operation.

               +---+
               |DEV| *                    +------+
               +---+   *                  |  RA  |
                         *                +------+
               +---+       *                 |
               |DEV| * * *   *               |
               +---+       *   +----+        |
                             * | BS | \  +--------+
               +---+       *   +----+  \ |        |
       DA -----|DEV| * * *               |   SC   |----- NA
               +---+       *           / |        |
                             * +----+ /  +--------+
               +---+       *   | BS |/
               |DEV| * * *   * +----+
               +---+         *
                           *
               +---+     *
               |DEV| * *
               +---+

                  Figure 7: Sigfox Network Architecture

  Figure 7 depicts the different elements of the Sigfox network
  architecture.

  Sigfox has a "one-contract one-network" model allowing devices to
  connect in any country, without any need or notion of either roaming
  or handover.

  The architecture consists of a single cloud-based core network, which
  allows global connectivity with minimal impact on the end device and
  radio access network.  The core network elements are the Service
  Center (SC) and the Registration Authority (RA).  The SC is in charge
  of the data connectivity between the BS and the Internet, as well as
  the control and management of the BSs and End Points (EPs).  The RA
  is in charge of the EP network access authorization.

  The radio access network is comprised of several BSs connected
  directly to the SC.  Each BS performs complex L1/L2 functions,
  leaving some L2 and L3 functionalities to the SC.

  The Devices (DEVs) or EPs are the objects that communicate
  application data between local Device Applications (DAs) and Network
  Applications (NAs).



Farrell                       Informational                    [Page 19]

RFC 8376                     LPWAN Overview                     May 2018


  Devices (or EPs) can be static or nomadic, as they associate with the
  SC and they do not attach to any specific BS.  Hence, they can
  communicate with the SC through one or multiple BSs.

  Due to constraints in the complexity of the Device, it is assumed
  that Devices host only one or very few device applications, which
  most of the time communicate each to a single network application at
  a time.

  The radio protocol authenticates and ensures the integrity of each
  message.  This is achieved by using a unique device ID and an
  AES-128-based message authentication code, ensuring that the message
  has been generated and sent by the device with the ID claimed in the
  message.  Application data can be encrypted at the application level
  or not, depending on the criticality of the use case, to provide a
  balance between cost and effort versus risk.  AES-128 in counter mode
  is used for encryption.  Cryptographic keys are independent for each
  device.  These keys are associated with the device ID and separate
  integrity and confidentiality keys are pre-provisioned.  A
  confidentiality key is only provisioned if confidentiality is to be
  used.  At the time of writing, the algorithms and keying details for
  this are not published.

2.4.  Wi-SUN Alliance Field Area Network (FAN)

  Text here is via personal communication from Bob Heile
  ([email protected]) and was authored by Bob and Sum Chin Sean.  Paul
  Duffy ([email protected]) also provided additional comments/input on
  this section.

2.4.1.  Provenance and Documents

  The Wi-SUN Alliance <https://www.wi-sun.org/> is an industry alliance
  for smart city, smart grid, smart utility, and a broad set of general
  IoT applications.  The Wi-SUN Alliance Field Area Network (FAN)
  profile is open-standards based (primarily on IETF and IEEE 802
  standards) and was developed to address applications like smart
  municipality/city infrastructure monitoring and management, Electric
  Vehicle (EV) infrastructure, Advanced Metering Infrastructure (AMI),
  Distribution Automation (DA), Supervisory Control and Data
  Acquisition (SCADA) protection/management, distributed generation
  monitoring and management, and many more IoT applications.
  Additionally, the Alliance has created a certification program to
  promote global multi-vendor interoperability.

  The FAN profile is specified within ANSI/TIA as an extension of work
  previously done on Smart Utility Networks [ANSI-4957-000].  Updates
  to those specifications intended to be published in 2017 will contain



Farrell                       Informational                    [Page 20]

RFC 8376                     LPWAN Overview                     May 2018


  details of the FAN profile.  A current snapshot of the work to
  produce that profile is presented in [wisun-pressie1] and
  [wisun-pressie2].

2.4.2.  Characteristics

  The FAN profile is an IPv6 wireless mesh network with support for
  enterprise-level security.  The frequency-hopping wireless mesh
  topology aims to offer superior network robustness, reliability due
  to high redundancy, good scalability due to the flexible mesh
  configuration, and good resilience to interference.  Very low power
  modes are in development permitting long-term battery operation of
  network nodes.

  The following list contains some overall characteristics of Wi-SUN
  that are relevant to LPWAN applications.

  o  Coverage: The range of Wi-SUN FAN is typically 2 - 3 km in line of
     sight, matching the needs of neighborhood area networks, campus
     area networks, or corporate area networks.  The range can also be
     extended via multi-hop networking.

  o  High-bandwidth, low-link latency: Wi-SUN supports relatively high
     bandwidth, i.e., up to 300 kbit/s [FANOV], enables remote update
     and upgrade of devices so that they can handle new applications,
     extending their working life.  Wi-SUN supports LPWAN IoT
     applications that require on-demand control by providing low link
     latency (0.02 s) and bidirectional communication.

  o  Low-power consumption: FAN devices draw less than 2 uA when
     resting and only 8 mA when listening.  Such devices can maintain a
     long lifetime, even if they are frequently listening.  For
     instance, suppose the device transmits data for 10 ms once every
     10 s; theoretically, a battery of 1000 mAh can last more than 10
     years.

  o  Scalability: Tens of millions of Wi-SUN FAN devices have been
     deployed in urban, suburban, and rural environments, including
     deployments with more than 1 million devices.

  A FAN contains one or more networks.  Within a network, nodes assume
  one of three operational roles.  First, each network contains a
  Border Router providing WAN connectivity to the network.  The Border
  Router maintains source-routing tables for all nodes within its
  network, provides node authentication and key management services,
  and disseminates network-wide information such as broadcast
  schedules.  Second, Router nodes, which provide upward and downward
  packet forwarding (within a network).  A Router also provides



Farrell                       Informational                    [Page 21]

RFC 8376                     LPWAN Overview                     May 2018


  services for relaying security and address management protocols.
  Finally, Leaf nodes provide minimum capabilities: discovering and
  joining a network, sending/receiving IPv6 packets, etc.  A low-power
  network may contain a mesh topology with Routers at the edges that
  construct a star topology with Leaf nodes.

  The FAN profile is based on various open standards developed by the
  IETF (including [RFC768], [RFC2460], [RFC4443], and [RFC6282]).
  Related IEEE 802 standards include [IEEE.802.15.4] and
  [IEEE.802.15.9].  For Low-Power and Lossy Networks (LLNs), see ANSI/
  TIA [ANSI-4957-210].

  The FAN profile specification provides an application-independent
  IPv6-based transport service.  There are two possible methods for
  establishing IPv6 packet routing: the Routing Protocol for Low-Power
  and Lossy Networks (RPL) at the Network layer is mandatory, and
  Multi-Hop Delivery Service (MHDS) is optional at the Data Link layer.
  Figure 8 provides an overview of the FAN network stack.

  The Transport service is based on UDP (defined in [RFC768]) or TCP
  (defined in [RFC793].

  The Network service is provided by IPv6 as defined in [RFC2460] with
  an IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN)
  adaptation as defined in [RFC4944] and [RFC6282].  ICMPv6, as defined
  in [RFC4443], is used for the control plane during information
  exchange.

  The Data Link service provides both control/management of the PHY and
  data transfer/management services to the Network layer.  These
  services are divided into MAC and Logical Link Control (LLC) sub-
  layers.  The LLC sub-layer provides a protocol dispatch service that
  supports 6LoWPAN and an optional MAC sub-layer mesh service.  The MAC
  sub-layer is constructed using data structures defined in
  [IEEE.802.15.4].  Multiple modes of frequency hopping are defined.
  The entire MAC payload is encapsulated in an [IEEE.802.15.9]
  Information Element to enable LLC protocol dispatch between upper-
  layer 6LoWPAN processing and MAC sub-layer mesh processing, etc.
  These areas will be expanded once [IEEE.802.15.12] is completed.

  The PHY service is derived from a subset of the SUN FSK specification
  in [IEEE.802.15.4].  The 2-FSK modulation schemes, with a channel-
  spacing range from 200 to 600 kHz, are defined to provide data rates
  from 50 to 300 kbit/s, with FEC as an optional feature.  Towards
  enabling ultra-low-power applications, the PHY layer design is also
  extendable to low-energy and critical infrastructure-monitoring
  networks.




Farrell                       Informational                    [Page 22]

RFC 8376                     LPWAN Overview                     May 2018


  +----------------------+--------------------------------------------+
  | Layer                | Description                                |
  +----------------------+--------------------------------------------+
  | IPv6 protocol suite  | TCP/UDP                                    |
  |                      |                                            |
  |                      | 6LoWPAN Adaptation + Header Compression    |
  |                      |                                            |
  |                      | DHCPv6 for IP address management           |
  |                      |                                            |
  |                      | Routing using RPL                          |
  |                      |                                            |
  |                      | ICMPv6                                     |
  |                      |                                            |
  |                      | Unicast and Multicast forwarding           |
  +----------------------+--------------------------------------------+
  | MAC based on         | Frequency hopping                          |
  | [IEEE.802.15.4e] +   |                                            |
  | IE extensions        | Discovery and Join                         |
  |                      |                                            |
  |                      | Protocol Dispatch ([IEEE.802.15.9])        |
  |                      |                                            |
  |                      | Several Frame Exchange patterns            |
  |                      |                                            |
  |                      | Optional Mesh Under routing                |
  |                      | ([ANSI-4957-210])                          |
  +----------------------+--------------------------------------------+
  | PHY based on         | Various data rates and regions             |
  | [IEEE.802.15.4g]     |                                            |
  +----------------------+--------------------------------------------+
  | Security             | [IEEE.802.1x]/EAP-TLS/PKI Authentication   |
  |                      | TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8         |
  |                      | required for EAP-TLS                       |
  |                      |                                            |
  |                      | 802.11i Group Key Management               |
  |                      |                                            |
  |                      | Frame security is implemented as AES-CCM*  |
  |                      | as specified in [IEEE.802.15.4]            |
  |                      |                                            |
  |                      | Optional [ETSI-TS-102-887-2] Node 2 Node   |
  |                      | Key Management                             |
  +----------------------+--------------------------------------------+

                     Figure 8: Wi-SUN Stack Overview








Farrell                       Informational                    [Page 23]

RFC 8376                     LPWAN Overview                     May 2018


  The FAN security supports Data Link layer network access control,
  mutual authentication, and establishment of a secure pairwise link
  between a FAN node and its Border Router, which is implemented with
  an adaptation of [IEEE.802.1x] and EAP-TLS as described in [RFC5216]
  using secure device identity as described in [IEEE.802.1AR].
  Certificate formats are based upon [RFC5280].  A secure group link
  between a Border Router and a set of FAN nodes is established using
  an adaptation of the [IEEE.802.11] Four-Way Handshake.  A set of four
  group keys are maintained within the network, one of which is the
  current transmit key.  Secure node-to-node links are supported
  between one-hop FAN neighbors using an adaptation of
  [ETSI-TS-102-887-2].  FAN nodes implement Frame Security as specified
  in [IEEE.802.15.4].

3.  Generic Terminology

  LPWAN technologies, such as those discussed above, have similar
  architectures but different terminology.  We can identify different
  types of entities in a typical LPWAN network:

  o  End devices are the devices or the "things" (e.g., sensors,
     actuators, etc.); they are named differently in each technology
     (End Device, User Equipment, or EP).  There can be a high density
     of end devices per Radio Gateway.

  o  The Radio Gateway, which is the EP of the constrained link.  It is
     known as: Gateway, Evolved Node B or base station.

  o  The Network Gateway or Router is the interconnection node between
     the Radio Gateway and the Internet.  It is known as the Network
     Server, Serving GW, or Service Center.

  o  LPWAN-AAA server, which controls user authentication.  It is known
     as the Join-Server, Home Subscriber Server, or Registration
     Authority.  (We use the term LPWAN-AAA server because we're not
     assuming that this entity speaks RADIUS or Diameter as many/most
     AAA servers do; but, equally, we don't want to rule that out, as
     the functionality will be similar.)

  o  At last we have the Application Server, known also as Packet Data
     Node Gateway or Network Application.










Farrell                       Informational                    [Page 24]

RFC 8376                     LPWAN Overview                     May 2018


+---------------------------------------------------------------------+
| Function/ |           |           |            |        |           |
|Technology |  LoRaWAN  |   NB-IoT  |   Sigfox   | Wi-SUN |    IETF   |
+-----------+-----------+-----------+------------+--------+-----------+
|Sensor,    |           |           |            |        |           |
|Actuator,  |    End    |    User   |     End    |  Leaf  |   Device  |
|device,    |  Device   | Equipment |    Point   |  Node  |   (DEV)   |
|object     |           |           |            |        |           |
+-----------+-----------+-----------+------------+--------+-----------+
|Transceiver|           |  Evolved  |    Base    | Router |   Radio   |
|Antenna    |  Gateway  |  Node B   |   Station  |  Node  |  Gateway  |
+-----------+-----------+-----------+------------+--------+-----------+
|Server     |  Network  |  PDN GW/  |   Service  | Border |  Network  |
|           |  Server   |   SCEF*   |   Center   | Router |  Gateway  |
|           |           |           |            |        |   (NGW)   |
+-----------+-----------+-----------+------------+--------+-----------+
|Security   |   Join    |    Home   |Registration|Authent.|  LPWAN-   |
|Server     |  Server   | Subscriber| Authority  | Server |   AAA     |
|           |           |   Server  |            |        |  Server   |
+-----------+-----------+-----------+------------+--------+-----------+
|Application|Application|Application|  Network   |Appli-  |Application|
|           |   Server  |  Server   | Application| cation |   (App)   |
+---------------------------------------------------------------------+

* SCEF = Service Capability Exposure Function

                Figure 9: LPWAN Architecture Terminology

                                                +------+
()    ()   ()         |                         |LPWAN-|
  ()  () () ()       / \         +---------+    | AAA  |
() () () () () ()    /   \========|    /\   |====|Server|  +-----------+
()  ()   ()        |             | <--|--> |    +------+  |APPLICATION|
()  ()  ()  ()     / \============|    v    |==============|    (App)  |
 ()  ()  ()      /   \           +---------+              +-----------+
DEV         Radio Gateways           NGW

                      Figure 10: LPWAN Architecture

  In addition to the names of entities, LPWANs are also subject to
  possibly regional frequency-band regulations.  Those may include
  restrictions on the duty cycle, for example, requiring that hosts
  only transmit for a certain percentage of each hour.








Farrell                       Informational                    [Page 25]

RFC 8376                     LPWAN Overview                     May 2018


4.  Gap Analysis

  This section considers some of the gaps between current LPWAN
  technologies and the goals of the LPWAN WG.  Many of the generic
  considerations described in [RFC7452] will also apply in LPWANs, as
  end devices can also be considered to be a subclass of (so-called)
  "smart objects".  In addition, LPWAN device implementers will also
  need to consider the issues relating to firmware updates described in
  [RFC8240].

4.1.  Naive Application of IPv6

  IPv6 [RFC8200] has been designed to allocate addresses to all the
  nodes connected to the Internet.  Nevertheless, the header overhead
  of at least 40 bytes introduced by the protocol is incompatible with
  LPWAN constraints.  If IPv6 with no further optimization were used,
  several LPWAN frames could be needed just to carry the IP header.
  Another problem arises from IPv6 MTU requirements, which require the
  layer below to support at least 1280 byte packets [RFC2460].

  IPv6 has a configuration protocol: Neighbor Discovery Protocol (NDP)
  [RFC4861]).  For a node to learn network parameters, NDP generates
  regular traffic with a relatively large message size that does not
  fit LPWAN constraints.

  In some LPWAN technologies, L2 multicast is not supported.  In that
  case, if the network topology is a star, the solution and
  considerations from Section 3.2.5 of [RFC7668] may be applied.

  Other key protocols (such as DHCPv6 [RFC3315], IPsec [RFC4301] and
  TLS [RFC5246]) have similarly problematic properties in this context.
  Each protocol requires relatively frequent round-trips between the
  host and some other host on the network.  In the case of
  cryptographic protocols (such as IPsec and TLS), in addition to the
  round-trips required for secure session establishment, cryptographic
  operations can require padding and addition of authenticators that
  are problematic when considering LPWAN lower layers.  Note that mains
  powered Wi-SUN mesh router nodes will typically be more resource
  capable than the other LPWAN technologies discussed.  This can enable
  use of more "chatty" protocols for some aspects of Wi-SUN.

4.2.  6LoWPAN

  Several technologies that exhibit significant constraints in various
  dimensions have exploited the 6LoWPAN suite of specifications
  ([RFC4944], [RFC6282], and [RFC6775]) to support IPv6 [USES-6LO].
  However, the constraints of LPWANs, often more extreme than those
  typical of technologies that have (re-)used 6LoWPAN, constitute a



Farrell                       Informational                    [Page 26]

RFC 8376                     LPWAN Overview                     May 2018


  challenge for the 6LoWPAN suite in order to enable IPv6 over LPWAN.
  LPWANs are characterized by device constraints (in terms of
  processing capacity, memory, and energy availability), and
  especially, link constraints, such as:

  o  tiny L2 payload size (from ~10 to ~100 bytes),

  o  very low bit rate (from ~10 bit/s to ~100 kbit/s), and

  o  in some specific technologies, further message rate constraints
     (e.g., between ~0.1 message/minute and ~1 message/minute) due to
     regional regulations that limit the duty cycle.

4.2.1.  Header Compression

  6LoWPAN header compression reduces IPv6 (and UDP) header overhead by
  eliding header fields when they can be derived from the link layer
  and by assuming that some of the header fields will frequently carry
  expected values. 6LoWPAN provides both stateless and stateful header
  compression.  In the latter, all nodes of a 6LoWPAN are assumed to
  share compression context.  In the best case, the IPv6 header for
  link-local communication can be reduced to only 2 bytes.  For global
  communication, the IPv6 header may be compressed down to 3 bytes in
  the most extreme case.  However, in more practical situations, the
  smallest IPv6 header size may be 11 bytes (one address prefix
  compressed) or 19 bytes (both source and destination prefixes
  compressed).  These headers are large considering the link-layer
  payload size of LPWAN technologies, and in some cases, are even
  bigger than the LPWAN PDUs. 6LoWPAN was initially designed for
  [IEEE.802.15.4] networks with a frame size up to 127 bytes and a
  throughput of up to 250 kbit/s, which may or may not be duty cycled.

4.2.2.  Address Autoconfiguration

  Traditionally, Interface Identifiers (IIDs) have been derived from
  link-layer identifiers [RFC4944].  This allows optimizations such as
  header compression.  Nevertheless, recent guidance has given advice
  on the fact that, due to privacy concerns, 6LoWPAN devices should not
  be configured to embed their link-layer addresses in the IID by
  default.  [RFC8065] provides guidance on better methods for
  generating IIDs.

4.2.3.  Fragmentation

  As stated above, IPv6 requires the layer below to support an MTU of
  1280 bytes [RFC8200].  Therefore, given the low maximum payload size
  of LPWAN technologies, fragmentation is needed.




Farrell                       Informational                    [Page 27]

RFC 8376                     LPWAN Overview                     May 2018


  If a layer of an LPWAN technology supports fragmentation, proper
  analysis has to be carried out to decide whether the fragmentation
  functionality provided by the lower layer or fragmentation at the
  adaptation layer should be used.  Otherwise, fragmentation
  functionality shall be used at the adaptation layer.

  6LoWPAN defined a fragmentation mechanism and a fragmentation header
  to support the transmission of IPv6 packets over IEEE.802.15.4
  networks [RFC4944].  While the 6LoWPAN fragmentation header is
  appropriate for the 2003 version of [IEEE.802.15.4] (which has a
  frame payload size of 81-102 bytes), it is not suitable for several
  LPWAN technologies, many of which have a maximum payload size that is
  one order of magnitude below that of the 2003 version of
  [IEEE.802.15.4].  The overhead of the 6LoWPAN fragmentation header is
  high, considering the reduced payload size of LPWAN technologies, and
  the limited energy availability of the devices using such
  technologies.  Furthermore, its datagram offset field is expressed in
  increments of eight octets.  In some LPWAN technologies, the 6LoWPAN
  fragmentation header plus eight octets from the original datagram
  exceeds the available space in the layer two payload.  In addition,
  the MTU in the LPWAN networks could be variable, which implies a
  variable fragmentation solution.

4.2.4.  Neighbor Discovery

  6LoWPAN Neighbor Discovery [RFC6775] defines optimizations to IPv6 ND
  [RFC4861], in order to adapt functionality of the latter for networks
  of devices using [IEEE.802.15.4] or similar technologies.  The
  optimizations comprise host-initiated interactions to allow for
  sleeping hosts, replacement of multicast-based address resolution for
  hosts by an address registration mechanism, multihop extensions for
  prefix distribution and duplicate address detection (note that these
  are not needed in a star topology network), and support for 6LoWPAN
  header compression.

  6LoWPAN ND may be used in not so severely constrained LPWAN networks.
  The relative overhead incurred will depend on the LPWAN technology
  used (and on its configuration, if appropriate).  In certain LPWAN
  setups (with a maximum payload size above ~60 bytes and duty-cycle-
  free or equivalent operation), an RS/RA/NS/NA exchange may be
  completed in a few seconds, without incurring packet fragmentation.

  In other LPWANs (with a maximum payload size of ~10 bytes and a
  message rate of ~0.1 message/minute), the same exchange may take
  hours or even days, leading to severe fragmentation and consuming a
  significant amount of the available network resources.  6LoWPAN ND
  behavior may be tuned through the use of appropriate values for the
  default Router Lifetime, the Valid Lifetime in the PIOs, and the



Farrell                       Informational                    [Page 28]

RFC 8376                     LPWAN Overview                     May 2018


  Valid Lifetime in the 6LoWPAN Context Option (6CO), as well as the
  address Registration Lifetime.  However, for the latter LPWANs
  mentioned above, 6LoWPAN ND is not suitable.

4.3.  6lo

  The 6lo WG has been reusing and adapting 6LoWPAN to enable IPv6
  support over link-layer technologies such as Bluetooth Low Energy
  (BTLE), ITU-T G.9959 [G9959], Digital Enhanced Cordless
  Telecommunications (DECT) Ultra Low Energy (ULE), MS/TP-RS485, Near
  Field Communication (NFC) IEEE 802.11ah.  (See
  <https://datatracker.ietf.org/wg/6lo/> for details on the 6lo WG.)
  These technologies are similar in several aspects to [IEEE.802.15.4],
  which was the original 6LoWPAN target technology.

  6lo has mostly used the subset of 6LoWPAN techniques best suited for
  each lower-layer technology and has provided additional optimizations
  for technologies where the star topology is used, such as BTLE or
  DECT-ULE.

  The main constraint in these networks comes from the nature of the
  devices (constrained devices); whereas, in LPWANs, it is the network
  itself that imposes the most stringent constraints.

4.4.  6tisch

  The IPv6 over the TSCH mode of IEEE 802.15.4e (6tisch) solution is
  dedicated to mesh networks that operate using [IEEE.802.15.4e] MAC
  with a deterministic slotted channel.  Time-Slotted Channel Hopping
  (TSCH) can help to reduce collisions and to enable a better balance
  over the channels.  It improves the battery life by avoiding the idle
  listening time for the return channel.

  A key element of 6tisch is the use of synchronization to enable
  determinism.  TSCH and 6tisch may provide a standard scheduling
  function.  The LPWAN networks probably will not support
  synchronization like the one used in 6tisch.

4.5.  RoHC

  RoHC is a header compression mechanism [RFC3095] developed for
  multimedia flows in a point-to-point channel.  RoHC uses three levels
  of compression, each level having its own header format.  In the
  first level, RoHC sends 52 bytes of header; in the second level, the
  header could be from 34 to 15 bytes; and in the third level, header
  size could be from 7 to 2 bytes.  The level of compression is managed
  by a Sequence Number (SN), which varies in size from 2 bytes to 4
  bits in the minimal compression.  SN compression is done with an



Farrell                       Informational                    [Page 29]

RFC 8376                     LPWAN Overview                     May 2018


  algorithm called Window-Least Significant Bits (W-LSB).  This window
  has a 4-bit size representing 15 packets, so every 15 packets, RoHC
  needs to slide the window in order to receive the correct SN, and
  sliding the window implies a reduction of the level of compression.
  When packets are lost or errored, the decompressor loses context and
  drops packets until a bigger header is sent with more complete
  information.  To estimate the performance of RoHC, an average header
  size is used.  This average depends on the transmission conditions,
  but most of the time is between 3 and 4 bytes.

  RoHC has not been adapted specifically to the constrained hosts and
  networks of LPWANs: it does not take into account energy limitations
  nor the transmission rate.  Additionally, RoHC context is
  synchronized during transmission, which does not allow better
  compression.

4.6.  ROLL

  Most technologies considered by the LPWAN WG are based on a star
  topology, which eliminates the need for routing at that layer.
  Future work may address additional use cases that may require
  adaptation of existing routing protocols or the definition of new
  ones.  As of the time of writing, work similar to that done in the
  Routing Over Low-Power and Lossy Network (ROLL) WG and other routing
  protocols are out of scope of the LPWAN WG.

4.7.  CoAP

  The Constrained Application Protocol (CoAP) [RFC7252] provides a
  RESTful framework for applications intended to run on constrained IP
  networks.  It may be necessary to adapt CoAP or related protocols to
  take into account the extreme duty cycles and the potentially
  extremely limited throughput of LPWANs.

  For example, some of the timers in CoAP may need to be redefined.
  Taking into account CoAP acknowledgments may allow the reduction of
  L2 acknowledgments.  On the other hand, the current work in progress
  in the CoRE WG where the Constrained Management Interface (COMI) /
  Constrained Objects Language (CoOL) network management interface
  which, uses Structured Identifiers (SIDs) to reduce payload size over
  CoAP may prove to be a good solution for the LPWAN technologies.  The
  overhead is reduced by adding a dictionary that matches a URI to a
  small identifier and a compact mapping of the YANG data model into
  the Concise Binary Object Representation (CBOR).







Farrell                       Informational                    [Page 30]

RFC 8376                     LPWAN Overview                     May 2018


4.8.  Mobility

  LPWAN nodes can be mobile.  However, LPWAN mobility is different from
  the one specified for Mobile IP.  LPWAN implies sporadic traffic and
  will rarely be used for high-frequency, real-time communications.
  The applications do not generate a flow; they need to save energy
  and, most of the time, the node will be down.

  In addition, LPWAN mobility may mostly apply to groups of devices
  that represent a network; in which case, mobility is more a concern
  for the Gateway than the devices.  Network Mobility (NEMO) [RFC3963]
  or other mobile Gateway solutions (such as a Gateway with an LTE
  uplink) may be used in the case where some end devices belonging to
  the same network Gateway move from one point to another such that
  they are not aware of being mobile.

4.9.  DNS and LPWAN

  The Domain Name System (DNS) [RFC1035], enables applications to name
  things with a globally resolvable name.  Many protocols use the DNS
  to identify hosts, for example, applications using CoAP.

  The DNS query/answer protocol as a precursor to other communication
  within the Time-To-Live (TTL) of a DNS answer is clearly problematic
  in an LPWAN, say where only one round-trip per hour can be used, and
  with a TTL that is less than 3600 seconds.  It is currently unclear
  whether and how DNS-like functionality might be provided in LPWANs.

5.  Security Considerations

  Most LPWAN technologies integrate some authentication or encryption
  mechanisms that were defined outside the IETF.  The LPWAN WG may need
  to do work to integrate these mechanisms to unify management.  A
  standardized Authentication, Authorization, and Accounting (AAA)
  infrastructure [RFC2904] may offer a scalable solution for some of
  the security and management issues for LPWANs.  AAA offers
  centralized management that may be of use in LPWANs, for example
  [LoRaWAN-AUTH] and [LoRaWAN-RADIUS] suggest possible security
  processes for a LoRaWAN network.  Similar mechanisms may be useful to
  explore for other LPWAN technologies.

  Some applications using LPWANs may raise few or no privacy
  considerations.  For example, temperature sensors in a large office
  building may not raise privacy issues.  However, the same sensors, if
  deployed in a home environment, and especially if triggered due to
  human presence, can raise significant privacy issues: if an end
  device emits a (encrypted) packet every time someone enters a room in
  a home, then that traffic is privacy sensitive.  And the more that



Farrell                       Informational                    [Page 31]

RFC 8376                     LPWAN Overview                     May 2018


  the existence of that traffic is visible to network entities, the
  more privacy sensitivities arise.  At this point, it is not clear
  whether there are workable mitigations for problems like this.  In a
  more typical network, one would consider defining padding mechanisms
  and allowing for cover traffic.  In some LPWANs, those mechanisms may
  not be feasible.  Nonetheless, the privacy challenges do exist and
  can be real; therefore, some solutions will be needed.  Note that
  many aspects of solutions in this space may not be visible in IETF
  specifications but can be, e.g., implementation or deployment
  specific.

  Another challenge for LPWANs will be how to handle key management and
  associated protocols.  In a more traditional network (e.g., the Web),
  servers can "staple" Online Certificate Status Protocol (OCSP)
  responses in order to allow browsers to check revocation status for
  presented certificates [RFC6961].  While the stapling approach is
  likely something that would help in an LPWAN, as it avoids an RTT,
  certificates and OCSP responses are bulky items and will prove
  challenging to handle in LPWANs with bounded bandwidth.

6.  IANA Considerations

  This document has no IANA actions.

7.  Informative References

  [ANSI-4957-000]
             ANSI/TIA, "Architecture Overview for the Smart Utility
             Network", ANSI/TIA-4957.0000 , May 2013.

  [ANSI-4957-210]
             ANSI/TIA, "Multi-Hop Delivery Specification of a Data Link
             Sub-Layer", ANSI/TIA-4957.210 , May 2013.

  [arib_ref] ARIB, "920MHz-Band Telemeter, Telecontrol and Data
             Transmission Radio Equipment", ARIB STD-T108 Version 1.0,
             February 2012.

  [ETSI-TS-102-887-2]
             ETSI, "Electromagnetic compatibility and Radio spectrum
             Matters (ERM); Short Range Devices; Smart Metering
             Wireless Access Protocol; Part 2: Data Link Layer (MAC
             Sub-layer)", ETSI TS 102 887-2, Version V1.1.1, September
             2013.







Farrell                       Informational                    [Page 32]

RFC 8376                     LPWAN Overview                     May 2018


  [etsi_ref1]
             ETSI, "Short Range Devices (SRD) operating in the
             frequency range 25 MHz to 1 000 MHz; Part 1: Technical
             characteristics and methods of measurement", Draft ETSI
             EN 300-220-1, Version V3.1.0, May 2016.

  [etsi_ref2]
             ETSI, "Short Range Devices (SRD) operating in the
             frequency range 25 MHz to 1 000 MHz; Part 2: Harmonised
             Standard covering the essential requirements of article
             3.2 of Directive 2014/53/EU for non specific radio
             equipment", Final draft ETSI EN 300-220-2 P300-220-2,
             Version V3.1.1, November 2016.

  [etsi_unb] ETSI ERM, "System Reference document (SRdoc); Short Range
             Devices (SRD); Technical characteristics for Ultra Narrow
             Band (UNB) SRDs operating in the UHF spectrum below 1
             GHz", ETSI TR 103 435, Version V1.1.1, February 2017.

  [EUI64]    IEEE, "Guidelines for 64-bit Global Identifier
             (EUI),Organizationally Unique Identifier (OUI), and
             Company ID (CID)", August 2017,
             <http://standards.ieee.org/develop/regauth/tut/eui.pdf>.

  [FANOV]    IETF, "Wi-SUN Alliance Field Area Network (FAN) Overview",
             IETF 97, November 2016,
             <https://www.ietf.org/proceedings/97/slides/
             slides-97-lpwan-35-wi-sun-presentation-00.pdf>.

  [fcc_ref]  "Telecommunication Radio Frequency Devices - Operation
             within the bands 902-928 MHz, 2400-2483.5 MHz, and
             5725-5850 MHz.", FCC CFR 47 15.247, June 2016.

  [G9959]    ITU-T, "Short range narrow-band digital radiocommunication
             transceivers - PHY, MAC, SAR and LLC layer
             specifications", ITU-T Recommendation G.9959, January
             2015, <http://www.itu.int/rec/T-REC-G.9959>.

  [IEEE.802.11]
             IEEE, "IEEE Standard for Information technology--
             Telecommunications and information exchange between
             systems Local and metropolitan area networks--Specific
             requirements Part 11: Wireless LAN Medium Access Control
             (MAC) and Physical Layer (PHY) Specifications",
             IEEE 802.11.






Farrell                       Informational                    [Page 33]

RFC 8376                     LPWAN Overview                     May 2018


  [IEEE.802.15.12]
             IEEE, "Upper Layer Interface (ULI) for IEEE 802.15.4 Low-
             Rate Wireless Networks", IEEE 802.15.12.

  [IEEE.802.15.4]
             IEEE, "IEEE Standard for Low-Rate Wireless Networks",
             IEEE 802.15.4, <https://standards.ieee.org/findstds/
             standard/802.15.4-2015.html>.

  [IEEE.802.15.4e]
             IEEE, "IEEE Standard for Local and metropolitan area
             networks--Part 15.4: Low-Rate Wireless Personal Area
             Networks (LR-WPANs) Amendment 1: MAC sublayer",
             IEEE 802.15.4e.

  [IEEE.802.15.4g]
             IEEE, "IEEE Standard for Local and metropolitan area
             networks--Part 15.4: Low-Rate Wireless Personal Area
             Networks (LR-WPANs) Amendment 3: Physical Layer (PHY)
             Specifications for Low-Data-Rate, Wireless, Smart Metering
             Utility Networks", IEEE 802.15.4g.

  [IEEE.802.15.9]
             IEEE, "IEEE Recommended Practice for Transport of Key
             Management Protocol (KMP) Datagrams", IEEE Standard
             802.15.9, 2016, <https://standards.ieee.org/findstds/
             standard/802.15.9-2016.html>.

  [IEEE.802.1AR]
             ANSI/IEEE, "IEEE Standard for Local and metropolitan area
             networks - Secure Device Identity", IEEE 802.1AR.

  [IEEE.802.1x]
             IEEE, "Port Based Network Access Control", IEEE 802.1x.

  [LoRaSpec] LoRa Alliance, "LoRaWAN Specification Version V1.0.2",
             July 2016, <https://lora-alliance.org/sites/default/
             files/2018-05/lorawan1_0_2-20161012_1398_1.pdf>.

  [LoRaWAN]  Farrell, S. and A. Yegin, "LoRaWAN Overview", Work in
             Progress, draft-farrell-lpwan-lora-overview-01, October
             2016.

  [LoRaWAN-AUTH]
             Garcia, D., Marin, R., Kandasamy, A., and A. Pelov,
             "LoRaWAN Authentication in Diameter", Work in Progress,
             draft-garcia-dime-diameter-lorawan-00, May 2016.




Farrell                       Informational                    [Page 34]

RFC 8376                     LPWAN Overview                     May 2018


  [LoRaWAN-RADIUS]
             Garcia, D., Lopez, R., Kandasamy, A., and A. Pelov,
             "LoRaWAN Authentication in RADIUS", Work in Progress,
             draft-garcia-radext-radius-lorawan-03, May 2017.

  [LPWAN-GAP]
             Minaburo, A., Ed., Gomez, C., Ed., Toutain, L., Paradells,
             J., and J. Crowcroft, "LPWAN Survey and GAP Analysis",
             Work in Progress, draft-minaburo-lpwan-gap-analysis-02,
             October 2016.

  [NB-IoT]   Ratilainen, A., "NB-IoT characteristics", Work in
             Progress, draft-ratilainen-lpwan-nb-iot-00, July 2016.

  [nbiot-ov] IEEE, "NB-IoT Technology Overview and Experience from
             Cloud-RAN Implementation", Volume 24, Issue 3 Pages 26-32,
             DOI 10.1109/MWC.2017.1600418, June 2017.

  [RFC768]   Postel, J., "User Datagram Protocol", STD 6, RFC 768,
             DOI 10.17487/RFC0768, August 1980,
             <https://www.rfc-editor.org/info/rfc768>.

  [RFC793]   Postel, J., "Transmission Control Protocol", STD 7,
             RFC 793, DOI 10.17487/RFC0793, September 1981,
             <https://www.rfc-editor.org/info/rfc793>.

  [RFC1035]  Mockapetris, P., "Domain names - implementation and
             specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
             November 1987, <https://www.rfc-editor.org/info/rfc1035>.

  [RFC2460]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
             (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
             December 1998, <https://www.rfc-editor.org/info/rfc2460>.

  [RFC2904]  Vollbrecht, J., Calhoun, P., Farrell, S., Gommans, L.,
             Gross, G., de Bruijn, B., de Laat, C., Holdrege, M., and
             D. Spence, "AAA Authorization Framework", RFC 2904,
             DOI 10.17487/RFC2904, August 2000,
             <https://www.rfc-editor.org/info/rfc2904>.

  [RFC3095]  Bormann, C., Burmeister, C., Degermark, M., Fukushima, H.,
             Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T., Le,
             K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K.,
             Wiebke, T., Yoshimura, T., and H. Zheng, "RObust Header
             Compression (ROHC): Framework and four profiles: RTP, UDP,
             ESP, and uncompressed", RFC 3095, DOI 10.17487/RFC3095,
             July 2001, <https://www.rfc-editor.org/info/rfc3095>.




Farrell                       Informational                    [Page 35]

RFC 8376                     LPWAN Overview                     May 2018


  [RFC3315]  Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
             C., and M. Carney, "Dynamic Host Configuration Protocol
             for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July
             2003, <https://www.rfc-editor.org/info/rfc3315>.

  [RFC3963]  Devarapalli, V., Wakikawa, R., Petrescu, A., and P.
             Thubert, "Network Mobility (NEMO) Basic Support Protocol",
             RFC 3963, DOI 10.17487/RFC3963, January 2005,
             <https://www.rfc-editor.org/info/rfc3963>.

  [RFC4301]  Kent, S. and K. Seo, "Security Architecture for the
             Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
             December 2005, <https://www.rfc-editor.org/info/rfc4301>.

  [RFC4443]  Conta, A., Deering, S., and M. Gupta, Ed., "Internet
             Control Message Protocol (ICMPv6) for the Internet
             Protocol Version 6 (IPv6) Specification", STD 89,
             RFC 4443, DOI 10.17487/RFC4443, March 2006,
             <https://www.rfc-editor.org/info/rfc4443>.

  [RFC4861]  Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
             "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
             DOI 10.17487/RFC4861, September 2007,
             <https://www.rfc-editor.org/info/rfc4861>.

  [RFC4944]  Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
             "Transmission of IPv6 Packets over IEEE 802.15.4
             Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
             <https://www.rfc-editor.org/info/rfc4944>.

  [RFC5216]  Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS
             Authentication Protocol", RFC 5216, DOI 10.17487/RFC5216,
             March 2008, <https://www.rfc-editor.org/info/rfc5216>.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246,
             DOI 10.17487/RFC5246, August 2008,
             <https://www.rfc-editor.org/info/rfc5246>.

  [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
             Housley, R., and W. Polk, "Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
             <https://www.rfc-editor.org/info/rfc5280>.







Farrell                       Informational                    [Page 36]

RFC 8376                     LPWAN Overview                     May 2018


  [RFC6282]  Hui, J., Ed. and P. Thubert, "Compression Format for IPv6
             Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
             DOI 10.17487/RFC6282, September 2011,
             <https://www.rfc-editor.org/info/rfc6282>.

  [RFC6775]  Shelby, Z., Ed., Chakrabarti, S., Nordmark, E., and C.
             Bormann, "Neighbor Discovery Optimization for IPv6 over
             Low-Power Wireless Personal Area Networks (6LoWPANs)",
             RFC 6775, DOI 10.17487/RFC6775, November 2012,
             <https://www.rfc-editor.org/info/rfc6775>.

  [RFC6961]  Pettersen, Y., "The Transport Layer Security (TLS)
             Multiple Certificate Status Request Extension", RFC 6961,
             DOI 10.17487/RFC6961, June 2013,
             <https://www.rfc-editor.org/info/rfc6961>.

  [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
             Application Protocol (CoAP)", RFC 7252,
             DOI 10.17487/RFC7252, June 2014,
             <https://www.rfc-editor.org/info/rfc7252>.

  [RFC7452]  Tschofenig, H., Arkko, J., Thaler, D., and D. McPherson,
             "Architectural Considerations in Smart Object Networking",
             RFC 7452, DOI 10.17487/RFC7452, March 2015,
             <https://www.rfc-editor.org/info/rfc7452>.

  [RFC7668]  Nieminen, J., Savolainen, T., Isomaki, M., Patil, B.,
             Shelby, Z., and C. Gomez, "IPv6 over BLUETOOTH(R) Low
             Energy", RFC 7668, DOI 10.17487/RFC7668, October 2015,
             <https://www.rfc-editor.org/info/rfc7668>.

  [RFC8065]  Thaler, D., "Privacy Considerations for IPv6 Adaptation-
             Layer Mechanisms", RFC 8065, DOI 10.17487/RFC8065,
             February 2017, <https://www.rfc-editor.org/info/rfc8065>.

  [RFC8200]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
             (IPv6) Specification", STD 86, RFC 8200,
             DOI 10.17487/RFC8200, July 2017,
             <https://www.rfc-editor.org/info/rfc8200>.

  [RFC8240]  Tschofenig, H. and S. Farrell, "Report from the Internet
             of Things Software Update (IoTSU) Workshop 2016",
             RFC 8240, DOI 10.17487/RFC8240, September 2017,
             <https://www.rfc-editor.org/info/rfc8240>.







Farrell                       Informational                    [Page 37]

RFC 8376                     LPWAN Overview                     May 2018


  [Sigfox]   Zuniga, J. and B. PONSARD, "Sigfox System Description",
             Work in Progress,
             draft-zuniga-lpwan-sigfox-system-description-04, December
             2017.

  [TGPP23720]
             3GPP, "Study on architecture enhancements for Cellular
             Internet of Things", 3GPP TS 23.720 13.0.0, 2016.

  [TGPP33203]
             3GPP, "3G security; Access security for IP-based
             services", 3GPP TS 23.203 13.1.0, 2016.

  [TGPP36201]
             3GPP, "Evolved Universal Terrestrial Radio Access
             (E-UTRA); LTE physical layer; General description", 3GPP
             TS 36.201 13.2.0, 2016.

  [TGPP36300]
             3GPP, "Evolved Universal Terrestrial Radio Access (E-UTRA)
             and Evolved Universal Terrestrial Radio Access Network
             (E-UTRAN); Overall description; Stage 2", 3GPP TS 36.300
             13.4.0, 2016,
             <http://www.3gpp.org/ftp/Specs/2016-09/Rel-14/36_series/>.

  [TGPP36321]
             3GPP, "Evolved Universal Terrestrial Radio Access
             (E-UTRA); Medium Access Control (MAC) protocol
             specification", 3GPP TS 36.321 13.2.0, 2016.

  [TGPP36322]
             3GPP, "Evolved Universal Terrestrial Radio Access
             (E-UTRA); Radio Link Control (RLC) protocol
             specification", 3GPP TS 36.322 13.2.0, 2016.

  [TGPP36323]
             3GPP, "Evolved Universal Terrestrial Radio Access
             (E-UTRA); Packet Data Convergence Protocol (PDCP)
             specification (Not yet available)", 3GPP TS 36.323 13.2.0,
             2016.

  [TGPP36331]
             3GPP, "Evolved Universal Terrestrial Radio Access
             (E-UTRA); Radio Resource Control (RRC); Protocol
             specification", 3GPP TS 36.331 13.2.0, 2016.






Farrell                       Informational                    [Page 38]

RFC 8376                     LPWAN Overview                     May 2018


  [USES-6LO] Hong, Y., Gomez, C., Choi, Y-H., and D-Y. Ko, "IPv6 over
             Constrained Node Networks(6lo) Applicability & Use cases",
             Work in Progress, draft-hong-6lo-use-cases-03, October
             2016.

  [wisun-pressie1]
             Beecher, P., "Wi-SUN Alliance", March 2017,
             <http://indiasmartgrid.org/event2017/10-03-2017/4.%20Round
             table%20on%20Communication%20and%20Cyber%20Security/1.%20P
             hil%20Beecher.pdf>.

  [wisun-pressie2]
             Heile, B., "Wi-SUN Alliance Field Area Network
             (FAN)Overview", As presented at IETF 97, November 2016,
             <https://www.ietf.org/proceedings/97/slides/
             slides-97-lpwan-35-wi-sun-presentation-00.pdf>.

Acknowledgments

  Thanks to all those listed in the Contributors section for the
  excellent text.  Errors in the handling of that are solely the
  editor's fault.

  In addition to those in the Contributors section, thanks are due to
  (in alphabetical order) the following for comments:

  Abdussalam Baryun
  Andy Malis
  Arun ([email protected])
  Behcet SariKaya
  Dan Garcia Carrillo
  Jiazi Yi
  Mirja Kuhlewind
  Paul Duffy
  Russ Housley
  Samita Chakrabarti
  Thad Guidry
  Warren Kumari

  Alexander Pelov and Pascal Thubert were the LPWAN WG Chairs while
  this document was developed.

  Stephen Farrell's work on this memo was supported by Pervasive
  Nation, the Science Foundation Ireland's CONNECT centre national IoT
  network <https://connectcentre.ie/pervasive-nation/>.






Farrell                       Informational                    [Page 39]

RFC 8376                     LPWAN Overview                     May 2018


Contributors

  As stated above, this document is mainly a collection of content
  developed by the full set of contributors listed below.  The main
  input documents and their authors were:

  o  Text for Section 2.1 was provided by Alper Yegin and Stephen
     Farrell in [LoRaWAN].

  o  Text for Section 2.2 was provided by Antti Ratilainen in [NB-IoT].

  o  Text for Section 2.3 was provided by Juan Carlos Zuniga and Benoit
     Ponsard in [Sigfox].

  o  Text for Section 2.4 was provided via personal communication from
     Bob Heile and was authored by Bob and Sum Chin Sean.  There is no
     Internet-Draft for that at the time of writing.

  o  Text for Section 4 was provided by Ana Minabiru, Carles Gomez,
     Laurent Toutain, Josep Paradells, and Jon Crowcroft in
     [LPWAN-GAP].  Additional text from that document is also used
     elsewhere above.

  The full list of contributors is as follows:

     Jon Crowcroft
     University of Cambridge
     JJ Thomson Avenue
     Cambridge, CB3 0FD
     United Kingdom

     Email: [email protected]


     Carles Gomez
     UPC/i2CAT
     C/Esteve Terradas, 7
     Castelldefels 08860
     Spain

     Email: [email protected]










Farrell                       Informational                    [Page 40]

RFC 8376                     LPWAN Overview                     May 2018


     Bob Heile
     Wi-Sun Alliance
     11 Robert Toner Blvd, Suite 5-301
     North Attleboro, MA  02763
     United States of America

     Phone: +1-781-929-4832
     Email: [email protected]


     Ana Minaburo
     Acklio
     2bis rue de la Chataigneraie
     35510 Cesson-Sevigne Cedex
     France

     Email: [email protected]


     Josep PAradells
     UPC/i2CAT
     C/Jordi Girona, 1-3
     Barcelona 08034
     Spain

     Email: [email protected]


     Charles E. Perkins
     Futurewei
     2330 Central Expressway
     Santa Clara, CA 95050
     United States of America

     Email: [email protected]


     Benoit Ponsard
     Sigfox
     425 rue Jean Rostand
     Labege  31670
     France

     Email: [email protected]
     URI:   http://www.sigfox.com/






Farrell                       Informational                    [Page 41]

RFC 8376                     LPWAN Overview                     May 2018


     Antti Ratilainen
     Ericsson
     Hirsalantie 11
     Jorvas  02420
     Finland

     Email: [email protected]


     Chin-Sean SUM
     Wi-Sun Alliance
     20, Science Park Rd 117674
     Singapore

     Phone: +65 6771 1011
     Email: [email protected]


     Laurent Toutain
     Institut MINES TELECOM ; TELECOM Bretagne
     2 rue de la Chataigneraie
     CS 17607
     35576 Cesson-Sevigne Cedex
     France

     Email: [email protected]


     Alper Yegin
     Actility
     Paris
     France

     Email: [email protected]


     Juan Carlos Zuniga
     Sigfox
     425 rue Jean Rostand
     Labege  31670
     France

     Email: [email protected]
     URI:   http://www.sigfox.com/







Farrell                       Informational                    [Page 42]

RFC 8376                     LPWAN Overview                     May 2018


Author's Address

  Stephen Farrell (editor)
  Trinity College Dublin
  Dublin  2
  Ireland

  Phone: +353-1-896-2354
  Email: [email protected]










































Farrell                       Informational                    [Page 43]