Internet Engineering Task Force (IETF)                          D. Lopez
Request for Comments: 8329                                Telefonica I+D
Category: Informational                                         E. Lopez
ISSN: 2070-1721                                       Curveball Networks
                                                              L. Dunbar
                                                           J. Strassner
                                                                 Huawei
                                                               R. Kumar
                                                       Juniper Networks
                                                          February 2018


        Framework for Interface to Network Security Functions

Abstract

  This document describes the framework for Interface to Network
  Security Functions (I2NSF) and defines a reference model (including
  major functional components) for I2NSF.  Network Security Functions
  (NSFs) are packet-processing engines that inspect and optionally
  modify packets traversing networks, either directly or in the context
  of sessions to which the packet is associated.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are candidates for any level of Internet
  Standard; see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8329.













Lopez, et al.                 Informational                     [Page 1]

RFC 8329                     I2NSF Framework               February 2018


Copyright Notice

  Copyright (c) 2018 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
  2.  Conventions Used in This Document . . . . . . . . . . . . . .   3
    2.1.  Acronyms  . . . . . . . . . . . . . . . . . . . . . . . .   3
    2.2.  Definitions . . . . . . . . . . . . . . . . . . . . . . .   4
  3.  I2NSF Reference Model . . . . . . . . . . . . . . . . . . . .   5
    3.1.  I2NSF Consumer-Facing Interface . . . . . . . . . . . . .   6
    3.2.  I2NSF NSF-Facing Interface  . . . . . . . . . . . . . . .   6
    3.3.  I2NSF Registration Interface  . . . . . . . . . . . . . .   7
  4.  Threats Associated with Externally Provided NSFs  . . . . . .   8
  5.  Avoiding NSF Ossification . . . . . . . . . . . . . . . . . .   9
  6.  The Network Connecting I2NSF Components . . . . . . . . . . .  10
    6.1.  Network Connecting I2NSF Users and the I2NSF Controller .  10
    6.2.  Network Connecting the I2NSF Controller and NSFs  . . . .  10
    6.3.  Interface to vNSFs  . . . . . . . . . . . . . . . . . . .  11
    6.4.  Consistency . . . . . . . . . . . . . . . . . . . . . . .  12
  7.  I2NSF Flow Security Policy Structure  . . . . . . . . . . . .  13
    7.1.  Customer-Facing Flow Security Policy Structure  . . . . .  13
    7.2.  NSF-Facing Flow Security Policy Structure . . . . . . . .  14
    7.3.  Differences from ACL Data Models  . . . . . . . . . . . .  16
  8.  Capability Negotiation  . . . . . . . . . . . . . . . . . . .  16
  9.  Registration Considerations . . . . . . . . . . . . . . . . .  17
    9.1.  Flow-Based NSF Capability Characterization  . . . . . . .  17
    9.2.  Registration Categories . . . . . . . . . . . . . . . . .  18
  10. Manageability Considerations  . . . . . . . . . . . . . . . .  21
  11. Security Considerations . . . . . . . . . . . . . . . . . . .  22
  12. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  22
  13. References  . . . . . . . . . . . . . . . . . . . . . . . . .  22
    13.1.  Normative References . . . . . . . . . . . . . . . . . .  22
    13.2.  Informative References . . . . . . . . . . . . . . . . .  23
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  24
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  25



Lopez, et al.                 Informational                     [Page 2]

RFC 8329                     I2NSF Framework               February 2018


1.  Introduction

  This document describes the framework for Interface to Network
  Security Functions (I2NSF) and defines a reference model (including
  major functional components) for I2NSF.  This includes an analysis of
  the threats implied by the deployment of Network Security Functions
  (NSFs) that are externally provided.  It also describes how I2NSF
  facilitates implementing security functions in a technology- and
  vendor-independent manner in Software-Defined Networking (SDN) and
  Network Function Virtualization (NFV) environments, while avoiding
  potential constraints that could limit the capabilities of NSFs.

  I2NSF use cases [RFC8192] call for standard interfaces for users of
  an I2NSF system (e.g., applications, overlay or cloud network
  management system, or enterprise network administrator or management
  system) to inform the I2NSF system which I2NSF functions should be
  applied to which traffic (or traffic patterns).  The I2NSF system
  realizes this as a set of security rules for monitoring and
  controlling the behavior of different traffic.  It also provides
  standard interfaces for users to monitor flow-based security
  functions hosted and managed by different administrative domains.

  [RFC8192] also describes the motivation and the problem space for an
  Interface to Network Security Functions system.

2.  Conventions Used in This Document

  This memo does not propose a protocol standard, and the use of words
  such as "should" follow their ordinary English meaning and not that
  for normative languages defined in [RFC2119] [RFC8174].

2.1.  Acronyms

  The following acronyms are used in this document:

     DOTS: Distributed Denial-of-Service Open Threat Signaling
     IDS: Intrusion Detection System
     IoT: Internet of Things
     IPS: Intrusion Protection System
     NSF: Network Security Function











Lopez, et al.                 Informational                     [Page 3]

RFC 8329                     I2NSF Framework               February 2018


2.2.  Definitions

  The following terms, which are used in this document, are defined in
  the I2NSF terminology document [I2NSF-TERMS]:

     Capability
     Controller
     Firewall
     I2NSF Consumer
     I2NSF NSF-Facing Interface
     I2NSF Policy Rule
     I2NSF Producer
     I2NSF Registration Interface
     I2NSF Registry
     Interface
     Interface Group
     Intrusion Detection System
     Intrusion Protection System
     Network Security Function
     Role































Lopez, et al.                 Informational                     [Page 4]

RFC 8329                     I2NSF Framework               February 2018


3.  I2NSF Reference Model

  Figure 1 shows a reference model (including major functional
  components and interfaces) for an I2NSF system.  This figure is drawn
  from the point of view of the Network Operator Management System;
  hence, this view does not assume any particular management
  architecture for either the NSFs or how the NSFs are managed (on the
  developer's side).  In particular, the Network Operator Management
  System does not participate in NSF data-plane activities.

      +-------------------------------------------------------+
      |  I2NSF User (e.g., Overlay Network Mgmt, Enterprise   |
      |  Network Mgmt, another network domain's mgmt, etc.)   |
      +--------------------+----------------------------------+
                           |
                           |  I2NSF Consumer-Facing Interface
                           |
                           |              I2NSF
              +------------+---------+ Registration  +-------------+
              | Network Operator Mgmt|  Interface    | Developer's |
              |        System        | < --------- > | Mgmt System |
              +----------------+-----+               +-------------+
                               |
                               | I2NSF NSF-Facing Interface
                               |
          +---------------+----+------------+---------------+
          |               |                 |               |
      +---+---+       +---+---+         +---+---+       +---+---+
      | NSF-1 |  ...  | NSF-m |         | NSF-1 |  ...  | NSF-m |  ...
      +-------+       +-------+         +-------+       +-------+

       Developer Mgmt System A           Developer Mgmt System B

                     Figure 1: I2NSF Reference Model

  When defining I2NSF Interfaces, this framework adheres to the
  following principles:

  o  It is agnostic of network topology and NSF location in the network

  o  It is agnostic of provider of the NSF (i.e., independent of the
     way that the provider makes an NSF available, as well as how the
     provider allows the NSF to be managed)

  o  It is agnostic of any vendor-specific operational, administrative,
     and management implementation; hosting environment; and form
     factor (physical or virtual)




Lopez, et al.                 Informational                     [Page 5]

RFC 8329                     I2NSF Framework               February 2018


  o  It is agnostic to NSF control-plane implementation (e.g.,
     signaling capabilities)

  o  It is agnostic to NSF data-plane implementation (e.g.,
     encapsulation capabilities)

  In general, all I2NSF Interfaces should require at least mutual
  authentication and authorization for their use.  Other security and
  privacy considerations are specified in Section 11.

3.1.  I2NSF Consumer-Facing Interface

  The I2NSF Consumer-Facing Interface is used to enable different users
  of a given I2NSF system to define, manage, and monitor security
  policies for specific flows within an administrative domain.  The
  location and implementation of I2NSF policies are irrelevant to the
  consumer of I2NSF policies.

  Some examples of I2NSF Consumers include:

  o  A video-conference network manager that needs to dynamically
     inform the underlay network to allow, rate-limit, or deny flows
     (some of which are encrypted) based on specific fields in the
     packets for a certain time span.

  o  Enterprise network administrators and management systems that need
     to request their provider network to enforce specific I2NSF
     policies for particular flows.

  o  An IoT management system sending requests to the underlay network
     to block flows that match a set of specific conditions.

3.2.  I2NSF NSF-Facing Interface

  The I2NSF NSF-Facing Interface (NSF-Facing Interface for short) is
  used to specify and monitor flow-based security policies enforced by
  one or more NSFs.  Note that the I2NSF Management System does not
  need to use all features of a given NSF, nor does it need to use all
  available NSFs.  Hence, this abstraction enables NSF features to be
  treated as building blocks by an NSF system; thus, developers are
  free to use the security functions defined by NSFs independent of
  vendor and technology.









Lopez, et al.                 Informational                     [Page 6]

RFC 8329                     I2NSF Framework               February 2018


  Flow-based NSFs [RFC8192] inspect packets in the order that they are
  received.  Note that all Interface Groups require the NSF to be
  registered using the Registration Interface.  The interface to flow-
  based NSFs can be categorized as follows:

  1.  NSF Operational and Administrative Interface: an Interface Group
      used by the I2NSF Management System to program the operational
      state of the NSF; this also includes administrative control
      functions.  I2NSF Policy Rules represent one way to change this
      Interface Group in a consistent manner.  Since applications and
      I2NSF Components need to dynamically control the behavior of
      traffic that they send and receive, much of the I2NSF effort is
      focused on this Interface Group.

  2.  Monitoring Interface: an Interface Group used by the I2NSF
      Management System to obtain monitoring information from one or
      more selected NSFs.  Each interface in this Interface Group could
      be a query- or a report-based interface.  The difference is that
      a query-based interface is used by the I2NSF Management System to
      obtain information, whereas a report-based interface is used by
      the NSF to provide information.  The functionality of this
      Interface Group may also be defined by other protocols, such as
      SYSLOG and DOTS.  The I2NSF Management System may take one or
      more actions based on the receipt of information; this should be
      specified by an I2NSF Policy Rule.  This Interface Group does NOT
      change the operational state of the NSF.

  This document uses the flow-based paradigm to develop the NSF-Facing
  Interface.  A common trait of flow-based NSFs is in the processing of
  packets based on the content (e.g., header/payload) and/or context
  (e.g., session state and authentication state) of the received
  packets.  This feature is one of the requirements for defining the
  behavior of I2NSF.

3.3.  I2NSF Registration Interface

  NSFs provided by different vendors may have different capabilities.
  In order to automate the process of utilizing multiple types of
  security functions provided by different vendors, it is necessary to
  have a dedicated interface for vendors to define the capabilities of
  (i.e., register) their NSFs.  This interface is called the I2NSF
  Registration Interface.

  An NSF's capabilities can be either pre-configured or retrieved
  dynamically through the I2NSF Registration Interface.  If a new
  function that is exposed to the consumer is added to an NSF, then the
  capabilities of that new function should be registered in the I2NSF




Lopez, et al.                 Informational                     [Page 7]

RFC 8329                     I2NSF Framework               February 2018


  Registry via the I2NSF Registration Interface, so that interested
  management and control entities may be made aware of them.

4.  Threats Associated with Externally Provided NSFs

  While associated with a much higher flexibility, and in many cases a
  necessary approach given the deployment conditions, the usage of
  externally provided NSFs implies several additional concerns in
  security.  The most relevant threats associated with a security
  platform of this nature are:

  o  An unknown/unauthorized user can try to impersonate another user
     that can legitimately access external NSF services.  This attack
     may lead to accessing the I2NSF Policy Rules and applications of
     the attacked user and/or generating network traffic outside the
     security functions with a falsified identity.

  o  An authorized user may misuse assigned privileges to alter the
     network traffic processing of other users in the NSF underlay or
     platform.

  o  A user may try to install malformed elements (e.g., I2NSF Policy
     Rules or configuration files) to directly take control of an NSF
     or the whole provider platform.  For example, a user may exploit a
     vulnerability on one of the functions or may try to intercept or
     modify the traffic of other users in the same provider platform.

  o  A malicious provider can modify the software (e.g., the operating
     system or the specific NSF implementation) to alter the behavior
     of one or more NSFs.  This event has a high impact on all users
     accessing NSFs, since the provider has the highest level of
     privileges controlling the operation of the software.

  o  A user that has physical access to the provider platform can
     modify the behavior of the hardware/software components or the
     components themselves.  For example, the user can access a serial
     console (most devices offer this interface for maintenance
     reasons) to access the NSF software with the same level of
     privilege of the provider.

  The use of authentication, authorization, accounting, and audit
  mechanisms is recommended for all users and applications to access
  the I2NSF environment.  This can be further enhanced by requiring
  attestation to be used to detect changes to the I2NSF environment by
  authorized parties.  The characteristics of these procedures will
  define the level of assurance of the I2NSF environment.





Lopez, et al.                 Informational                     [Page 8]

RFC 8329                     I2NSF Framework               February 2018


5.  Avoiding NSF Ossification

  A basic tenet in the introduction of I2NSF standards is that the
  standards should not make it easier for attackers to compromise the
  network.  Therefore, in constructing standards for I2NSF Interfaces
  as well as I2NSF Policy Rules, it is equally important to allow
  support for specific functions, as this enables the introduction of
  NSFs that evolve to meet new threats.  Proposed standards for I2NSF
  Interfaces to communicate with NSFs, as well as I2NSF Policy Rules to
  control NSF functionality, should not:

  o  Narrowly define NSF categories, or their roles, when implemented
     within a network.  Security is a constantly evolving discipline.
     The I2NSF framework relies on an object-oriented information
     model, which provides an extensible definition of NSF information
     elements and categories; it is recommended that implementations
     follow this model.

  o  Attempt to impose functional requirements or constraints, either
     directly or indirectly, upon NSF developers.  Implementations
     should be free to realize and apply NSFs in a way that best suits
     the needs of the applications and environment using them.

  o  Be a limited lowest common denominator approach, where interfaces
     can only support a limited set of standardized functions, without
     allowing for developer-specific functions.  NSFs, interfaces, and
     the data communicated should be extensible, so that they can
     evolve to protect against new threats.

  o  Be seen as endorsing a best common practice for the implementation
     of NSFs; rather, this document describes the conceptual structure
     and reference model of I2NSF.  The purpose of this reference model
     is to define a common set of concepts in order to facilitate the
     flexible implementation of an I2NSF system.

  To prevent constraints on NSF developers' creativity and innovation,
  this document recommends flow-based NSF interfaces to be designed
  from the paradigm of processing packets in the network.  Flow-based
  NSFs are ultimately packet-processing engines that inspect packets
  traversing networks, either directly or in the context of sessions in
  which the packet is associated.  The goal is to create a workable
  interface to NSFs that aids in their integration within legacy, SDN,
  and/or NFV environments, while avoiding potential constraints that
  could limit their functional capabilities.







Lopez, et al.                 Informational                     [Page 9]

RFC 8329                     I2NSF Framework               February 2018


6.  The Network Connecting I2NSF Components

6.1.  Network Connecting I2NSF Users and the I2NSF Controller

  As a general principle, in the I2NSF environment, users directly
  interact with the I2NSF Controller.  Given the role of the I2NSF
  Controller, a mutual authentication of users and the I2NSF Controller
  is required.  I2NSF does not mandate a specific authentication
  scheme; it is up to the users to choose available authentication
  schemes based on their needs.

  Upon successful authentication, a trusted connection between the user
  and the I2NSF Controller (or an endpoint designated by it) will be
  established.  This means that a direct, physical point-to-point
  connection, with physical access restricted according to access
  control, must be used.  All traffic to and from the NSF environment
  will flow through this connection.  The connection is intended not
  only to be secure but trusted in the sense that it should be bound to
  the mutual authentication between the user and the I2NSF Controller,
  as described in [I2NSF-ATTESTATION].  The only possible exception is
  when the required level of assurance is lower (see Section 4.1 of
  [I2NSF-ATTESTATION]), in which case the user must be made aware of
  this circumstance.

6.2.  Network Connecting the I2NSF Controller and NSFs

  Most likely, the NSFs are not directly attached to the I2NSF
  Controller; for example, NSFs can be distributed across the network.
  The network that connects the I2NSF Controller with the NSFs can be
  the same network that carries the data traffic, or it can be a
  dedicated network for management purposes only.  In either case,
  packet loss could happen due to failure, congestion, or other
  reasons.

  Therefore, the transport mechanism used to carry management data and
  information must be secure.  It does not have to be a reliable
  transport; rather, a transport-independent reliable messaging
  mechanism is required, where communication can be performed reliably
  (e.g., by establishing end-to-end communication sessions and by
  introducing explicit acknowledgement of messages into the
  communication flow).  Latency requirements for control message
  delivery must also be evaluated.  Note that monitoring does not
  require reliable transport.








Lopez, et al.                 Informational                    [Page 10]

RFC 8329                     I2NSF Framework               February 2018


  The network connection between the I2NSF Controller and NSFs can rely
  on either:

  o  Open environments, where one or more NSFs can be hosted in one or
     more external administrative domains that are reached via secure
     external network connections.  This requires more restrictive
     security control to be placed over the I2NSF Interface.  The
     information over the I2NSF Interfaces shall be exchanged by using
     the trusted connection described in Section 6.1, or

  o  Closed environments, where there is only one administrative
     domain.  Such environments provide a more **isolated** environment
     but still communicate over the same set of I2NSF Interfaces
     present in open environments (see above).  Hence, the security
     control and access requirements for closed environments are the
     same as those for open environments.

  The network connection between the I2NSF Controller and NSFs will use
  the trusted connection mechanisms described in Section 6.1.
  Following these mechanisms, the connections need to rely on the use
  of properly verified peer identities (e.g., through an
  Authentication, Authorization, and Accounting (AAA) framework).  The
  implementations of identity management functions, as well as the AAA
  framework, are out of scope for I2NSF.

6.3.  Interface to vNSFs

  There are some unique characteristics in interfacing to virtual NSFs
  (vNSFs):

  o  There could be multiple instantiations of one single NSF that has
     been distributed across a network.  When different instantiations
     are visible to the I2NSF Controller, different policies may be
     applied to different instantiations of an individual NSF (e.g., to
     reflect the different roles that each vNSF is designated for).
     Therefore, it is recommended that Roles, in addition to the use of
     robust identities, be used to distinguish between different
     instantiations of the same vNSF.  Note that this also applies to
     physical NSFs.

  o  When multiple instantiations of one single NSF appear as one
     single entity to the I2NSF Controller, the I2NSF Controller may
     need to get assistance from other entities in the I2NSF Management
     System and/or delegate the provisioning of the multiple
     instantiations of the (single) NSF to other entities in the I2NSF
     Management System.  This is shown in Figure 2 below.





Lopez, et al.                 Informational                    [Page 11]

RFC 8329                     I2NSF Framework               February 2018


  o  Policies enforced by one vNSF instance may need to be retrieved
     and moved to another vNSF of the same type when user flows are
     moved from one vNSF to another.

  o  Multiple vNSFs may share the same physical platform.

  o  There may be scenarios where multiple vNSFs collectively perform
     the security policies needed.

                         +------------------------+
                         |    I2NSF Controller    |
                         +------------------------+
                                  ^        ^
                                  |        |
                      +-----------+        +------------+
                      |                                 |
                      v                                 v
   + - - - - - - - - - - - - - - - +  + - - - - - - - - - - - - - - - +
   |  NSF-A  +--------------+      |  |  NSF-B  +--------------+      |
   |         | NSF Manager  |      |  |         | NSF Manager  |      |
   |         +--------------+      |  |         +--------------+      |
   | + - - - - - - - - - - - - - + |  | + - - - - - - - - - - - - - + |
   | |+---------+     +---------+| |  | |+---------+     +---------+| |
   | || NSF-A#1 | ... | NSF-A#n || |  | || NSF-B#1 | ... | NSF-B#m || |
   | |+---------+     +---------+| |  | |+---------+     +---------+| |
   | |         NSF-A cluster     | |  | |          NSF-B cluster    | |
   | + - - - - - - - - - - - - - + |  | + - - - - - - - - - - - - - + |
   + - - - - - - - - - - - - - - - +  + - - - - - - - - - - - - - - - +

           Figure 2: Cluster of NSF Instantiations Management

6.4.  Consistency

  There are three basic models of consistency:

  o  centralized, which uses a single manager to impose behavior

  o  decentralized, in which managers make decisions without being
     aware of each other (i.e., managers do not exchange information)

  o  distributed, in which managers make explicit use of information
     exchange to arrive at a decision

  This document does NOT make a recommendation on which of the above
  three models to use.  I2NSF Policy Rules, coupled with an appropriate
  management strategy, is applicable to the design and integration of
  any of the above three consistency models.




Lopez, et al.                 Informational                    [Page 12]

RFC 8329                     I2NSF Framework               February 2018


7.  I2NSF Flow Security Policy Structure

  Even though security functions come in a variety of form factors and
  have different features, provisioning to flow-based NSFs can be
  standardized by using policy rules.

  In this version of I2NSF, policy rules are limited to imperative
  paradigms.  I2NSF is using an Event-Condition-Action (ECA) policy,
  where:

  o  An Event clause is used to trigger the evaluation of the Condition
     clause of the I2NSF Policy Rule.

  o  A Condition clause is used to determine whether or not the set of
     Actions in the I2NSF Policy Rule can be executed or not.

  o  An Action clause defines the type of operations that may be
     performed on this packet or flow.

  Each of the above three clauses are defined to be Boolean clauses.
  This means that each is a logical statement that evaluates to either
  TRUE or FALSE.

  The above concepts are described in detail in [I2NSF-CAPABILITIES].

7.1.  Customer-Facing Flow Security Policy Structure

  This layer is for the user's network management system to express and
  monitor the needed flow security policies for their specific flows.

  Some customers may not have the requisite security skills to express
  security requirements or policies that are precise enough to
  implement in an NSF.  These customers may instead express
  expectations (e.g., goals or intent) of the functionality desired by
  their security policies.  Customers may also express guidelines, such
  as which types of destinations are (or are not) allowed for certain
  users.  As a result, there could be different levels of content and
  abstractions used in Service Layer policies.  Here are some examples
  of more abstract security policies that can be developed based on the
  I2NSF-defined Customer-Facing Interface:

  o  Enable Internet access for authenticated users

  o  Any operation on a HighValueAsset must use the corporate network

  o  The use of FTP from any user except the CxOGroup must be audited





Lopez, et al.                 Informational                    [Page 13]

RFC 8329                     I2NSF Framework               February 2018


  o  Streaming media applications are prohibited on the corporate
     network during business hours

  o  Scan email for malware detection; protect traffic to corporate
     network with integrity and confidentiality

  o  Remove tracking data from Facebook [website = *.facebook.com]

  One flow policy over the Customer-Facing Interface may need multiple
  NSFs at various locations to achieve the desired enforcement.  Some
  flow security policies from users may not be granted because of
  resource constraints.  [I2NSF-DEMO] describes an implementation of
  translating a set of 1) user policies to flow policies and 2) flow
  policies to individual NSFs.

  I2NSF will first focus on user policies that can be modeled as
  closely as possible to the flow security policies used by individual
  NSFs.  An I2NSF user flow policy should be similar in structure to
  the structure of an I2NSF Policy Rule, but with more of a user-
  oriented expression for the packet content, the context, and other
  parts of an ECA policy rule.  This enables the user to construct an
  I2NSF Policy Rule without having to know the exact syntax of the
  desired content (e.g., actual tags or addresses) to match in the
  packets.  For example, when used in the context of policy rules over
  the Client-Facing Interface:

  o  An Event can be "the client has passed the AAA process"

  o  A Condition can be matching the user identifier or from specific
     ingress or egress points

  o  An Action can be establishing an IPsec tunnel

7.2.  NSF-Facing Flow Security Policy Structure

  The NSF-Facing Interface is to pass explicit rules to individual NSFs
  to treat packets, as well as methods to monitor the execution status
  of those functions.

  Here are some examples of Events over the NSF-Facing Interface:

  o  time == 08:00

  o  notification that a NSF state changes from standby to active

  o  user logon or logoff





Lopez, et al.                 Informational                    [Page 14]

RFC 8329                     I2NSF Framework               February 2018


  Here are some examples of Conditions over the NSF-Facing Interface:

  o  Packet content values that look for one or more packet headers,
     data from the packet payload, bits in the packet, or data that are
     derived from the packet.

  o  Context values that are based on measured and/or inferred
     knowledge, which can be used to define the state and environment
     in which a managed entity exists or has existed.  In addition to
     state data, this includes data from sessions, direction of the
     traffic, time, and geo-location information.  State refers to the
     behavior of a managed entity at a particular point in time.
     Hence, it may refer to situations in which multiple pieces of
     information that are not available at the same time must be
     analyzed.  For example, tracking established TCP connections
     (connections that have gone through the initial three-way
     handshake).

  Actions to individual flow-based NSFs include:

  o  Actions performed on ingress packets, such as pass, drop, rate
     limiting, and mirroring.

  o  Actions performed on egress packets, such as invoke signaling,
     tunnel encapsulation, packet forwarding, and/or transformation.

  o  Applying a specific functional profile or signature -- e.g., an
     IPS Profile, a signature file, an anti-virus file, or a URL
     filtering file.  Many flow-based NSFs utilize profile and/or
     signature files to achieve more effective threat detection and
     prevention.  It is not uncommon for an NSF to apply different
     profiles and/or signatures for different flows.  Some profiles/
     signatures do not require any knowledge of past or future
     activities, while others are stateful and may need to maintain
     state for a specific length of time.

  The functional profile or signature file is one of the key properties
  that determine the effectiveness of the NSF and is mostly NSF
  specific today.  The rulesets and software interfaces of I2NSF aim to
  specify the format to pass profile and signature files while
  supporting specific functionalities of each.

  Policy consistency among multiple security function instances is very
  critical because security policies are no longer maintained by one
  central security device; instead, they are enforced by multiple
  security functions instantiated at various locations.





Lopez, et al.                 Informational                    [Page 15]

RFC 8329                     I2NSF Framework               February 2018


7.3.  Differences from ACL Data Models

  Policy rules are very different from Access Control Lists (ACLs).  An
  ACL is NOT a policy.  Rather, policies are used to manage the
  construction and life cycle of an ACL.

  [ACL-YANG] has defined rules for ACLs supported by most routers/
  switches that forward packets based on their L2, L3, or sometimes L4
  headers.  The actions for ACLs include Pass, Drop, or Redirect.

  The functional profiles (or signatures) for NSFs are not present in
  [ACL-YANG] because the functional profiles are unique to specific
  NSFs.  For example, most IPS/IDS implementations have their
  proprietary functions/profiles.  One of the goals of I2NSF is to
  define a common envelope format for exchanging or sharing profiles
  among different organizations to achieve more effective protection
  against threats.

  The "packet content matching" of the I2NSF policies should not only
  include the matching criteria specified by [ACL-YANG] but also the
  L4-L7 fields depending on the NSFs selected.

  Some flow-based NSFs need matching criteria that include the context
  associated with the packets.  This may also include metadata.

  The I2NSF "actions" should extend the actions specified by [ACL-YANG]
  to include applying statistics functions, threat profiles, or
  signature files that clients provide.

8.  Capability Negotiation

  It is very possible that the underlay network (or provider network)
  does not have the capability or resources to enforce the flow
  security policies requested by the overlay network (or enterprise
  network).  Therefore, it is required that the I2NSF system support
  dynamic discovery capabilities, as well as a query mechanism, so that
  the I2NSF system can expose appropriate security services using I2NSF
  capabilities.  This may also be used to support negotiation between a
  user and the I2NSF system.  Such dynamic negotiation facilitates the
  delivery of the required security service(s).  The outcome of the
  negotiation would feed the I2NSF Management System, which would then
  dynamically allocate appropriate NSFs (along with any resources
  needed by the allocated NSFs) and configure the set of security
  services that meet the requirements of the user.

  When an NSF cannot perform the desired provisioning (e.g., due to
  resource constraints), it must inform the I2NSF Management System.
  The protocol needed for this security function/capability negotiation



Lopez, et al.                 Informational                    [Page 16]

RFC 8329                     I2NSF Framework               February 2018


  may be somewhat correlated to the dynamic service parameter
  negotiation procedure described in [RFC7297].  The Connectivity
  Provisioning Profile (CPP) template, even though currently covering
  only connectivity requirements, includes security clauses such as
  isolation requirements and non-via nodes.  Hence, it could be
  extended as a basis for the negotiation procedure.  Likewise, the
  companion Connectivity Provisioning Negotiation Protocol (CPNP) could
  be a candidate for the negotiation procedure.

  "Security-as-a-Service" would be a typical example of the kind of
  (CPP-based) negotiation procedures that could take place between a
  corporate customer and a service provider.  However, more security-
  specific parameters have to be considered.

  [I2NSF-CAPABILITIES] describes the concepts of capabilities in
  detail.

9.  Registration Considerations

9.1.  Flow-Based NSF Capability Characterization

  There are many types of flow-based NSFs.  Firewall, IPS, and IDS are
  the commonly deployed flow-based NSFs.  However, the differences
  among them are definitely blurring, due to more powerful technology,
  integration of platforms, and new threats.  Basic types of flow-based
  NSFs include:

  o  Firewall -- A device or a function that analyzes packet headers
     and enforces policy based on protocol type, source address,
     destination address, source port, destination port, and/or other
     attributes of the packet header.  Packets that do not match policy
     are rejected.  Note that additional functions, such as logging and
     notification of a system administrator, could optionally be
     enforced as well.

  o  IDS (Intrusion Detection System) -- A device or function that
     analyzes packets, both header and payload, looking for known
     events.  When a known event is detected, a log message is
     generated detailing the event.  Note that additional functions,
     such as notification of a system administrator, could optionally
     be enforced as well.

  o  IPS (Intrusion Prevention System) -- A device or function that
     analyzes packets, both header and payload, looking for known
     events.  When a known event is detected, the packet is rejected.
     Note that additional functions, such as logging and notification
     of a system administrator, could optionally be enforced as well.




Lopez, et al.                 Informational                    [Page 17]

RFC 8329                     I2NSF Framework               February 2018


  Flow-based NSFs differ in the depth of packet header or payload they
  can inspect, the various session/context states they can maintain,
  and the specific profiles and the actions they can apply.  An example
  of a session is as follows: allowing outbound connection requests and
  only allowing return traffic from the external network.

9.2.  Registration Categories

  Developers can register their NSFs using packet content matching
  categories.  The Inter-Domain Routing (IDR) Flow Specification
  [RFC5575] has specified 12 different packet header matching types.

  IP Flow Information Export (IPFIX) data [IPFIX-D] defines IP flow
  information and mechanisms to transmit such information.  This
  includes flow attributes as well as information about the metering
  and exporting processes.  Such information may be stored in an IPFIX
  registry [IPFIX-R].  As such, IPFIX information should be considered
  when defining categories of registration information.

  More packet content matching types have been proposed in the IDR WG.
  I2NSF should reuse the packet matching types being specified as much
  as possible.  More matching types might be added for flow-based NSFs.

  Figures 3-6 below list the applicable packet content categories that
  can be potentially used as packet matching types by flow-based NSFs:

       +-----------------------------------------------------------+
       |         Packet Content Matching Capability Index          |
       +---------------+-------------------------------------------+
       | Layer 2       | Layer 2 header fields:                    |
       | Header        |            Source                         |
       |               |            Destination                    |
       |               |            s-VID                          |
       |               |            c-VID                          |
       |               |            Ethertype                      |
       |---------------+-------------------------------------------+
       | Layer 3       | Layer 3 header fields:                    |
       |               |            protocol                       |
       | IPv4 Header   |            dest port                      |
       |               |            src port                       |
       |               |            src address                    |
       |               |            dest address                   |
       |               |            dscp                           |
       |               |            length                         |
       |               |            flags                          |
       |               |            ttl                            |





Lopez, et al.                 Informational                    [Page 18]

RFC 8329                     I2NSF Framework               February 2018


       | IPv6 Header   |                                           |
       |               |            protocol/nh                    |
       |               |            src port                       |
       |               |            dest port                      |
       |               |            src address                    |
       |               |            dest address                   |
       |               |            length                         |
       |               |            traffic class                  |
       |               |            hop limit                      |
       |               |            flow label                     |
       |               |            dscp                           |
       |---------------+-------------------------------------------+
       | Layer 4       | Layer 4 header fields:                    |
       | TCP           |            Port                           |
       | SCTP          |            syn                            |
       | DCCP          |            ack                            |
       |               |            fin                            |
       |               |            rst                            |
       |               |          ? psh                            |
       |               |          ? urg                            |
       |               |          ? window                         |
       |               |            sockstress                     |
       |               | Note: bitmap could be used to             |
       |               |   represent all the fields                |
       | UDP           |                                           |
       |               |            flood abuse                    |
       |               |            fragment abuse                 |
       |               |            Port                           |
       |---------------+-------------------------------------------+
       | HTTP layer    |                                           |
       |               |          | hash collision                 |
       |               |          | http - get flood               |
       |               |          | http - post flood              |
       |               |          | http - random/invalid url      |
       |               |          | http - slowloris               |
       |               |          | http - slow read               |
       |               |          | http - r-u-dead-yet (rudy)     |
       |               |          | http - malformed request       |
       |               |          | http - xss                     |
       |               |          | https - ssl session exhaustion |











Lopez, et al.                 Informational                    [Page 19]

RFC 8329                     I2NSF Framework               February 2018


       +---------------+----------+--------------------------------+
       | IETF PCP      | Configurable                              |
       |               | Ports                                     |
       +---------------+-------------------------------------------+
       | IETF TRAM     | profile                                   |
       +---------------+-------------------------------------------+

       Notes:
          DCCP:  Datagram Congestion Control Protocol
          PCP:   Port Control Protocol
          TRAM:  TURN Revised and Modernized, where TURN stands for
                 Traversal Using Relays around NAT

           Figure 3: Packet Content Matching Capability Index

       +-----------------------------------------------------------+
       |             Context Matching Capability Index             |
       +---------------+-------------------------------------------+
       | Session       |   Session State,                          |
       |               |   Bidirectional State                     |
       +---------------+-------------------------------------------+
       | Time          |   Time span                               |
       |               |   Time occurrence                         |
       +---------------+-------------------------------------------+
       | Events        |   Event URL, variables                    |
       +---------------+-------------------------------------------+
       | Location      |   Text string, GPS coords, URL            |
       +---------------+-------------------------------------------+
       | Connection    |   Internet (unsecured), Internet          |
       |   Type        |   (secured by VPN, etc.), Intranet, ...   |
       +---------------+-------------------------------------------+
       | Direction     |   Inbound, Outbound                       |
       +---------------+-------------------------------------------+
       | State         |   Authentication State                    |
       |               |   Authorization State                     |
       |               |   Accounting State                        |
       |               |   Session State                           |
       +---------------+-------------------------------------------+

       Note:
         These fields are used to provide context information for
         I2NSF Policy Rules to make decisions on how to handle
         traffic.  For example, GPS coordinates define the location
         of the traffic that is entering and exiting an I2NSF
         system; this enables the developer to apply different
         rules for ingress and egress traffic handling.

               Figure 4: Context Matching Capability Index



Lopez, et al.                 Informational                    [Page 20]

RFC 8329                     I2NSF Framework               February 2018


       +-----------------------------------------------------------+
       |                  Action Capability Index                  |
       +---------------+-------------------------------------------+
       | Ingress port  |   SFC header termination,                 |
       |               |   VxLAN header termination                |
       +---------------+-------------------------------------------+
       |               |   Pass                                    |
       | Actions       |   Deny                                    |
       |               |   Mirror                                  |
       |               |   Simple Statistics: Count (X min; Day;..)|
       |               |   Client-Specified Functions: URL         |
       +---------------+-------------------------------------------+
       | Egress        |   Encap SFC, VxLAN, or other header       |
       +---------------+-------------------------------------------+

       Note:
         SFC:  Service Function Chaining

                    Figure 5: Action Capability Index

       +-----------------------------------------------------------+
       |                 Functional Profile Index                  |
       +---------------+-------------------------------------------+
       | Profile types |   name, type, or flexible                 |
       |               |                                           |
       | Signature     |   Profile/signature URL command for the   |
       |               |   I2NSF Controller to enable/disable      |
       +---------------+-------------------------------------------+

                   Figure 6: Functional Profile Index

10.  Manageability Considerations

  Management of NSFs include:

  o  Life-cycle management and resource management of NSFs

  o  Configuration of devices, such as address configuration, device
     internal attributes configuration, etc.

  o  Signaling

  o  Policy rules provisioning

  Currently, I2NSF only focuses on the policy rule provisioning part.






Lopez, et al.                 Informational                    [Page 21]

RFC 8329                     I2NSF Framework               February 2018


11.  Security Considerations

  The configuration, control, and monitoring of NSFs provide access to
  and information about security functions that are critical for
  delivering network security and for protecting end-to-end traffic.
  Therefore, it is important that the messages that are exchanged
  within this architecture utilize a trustworthy, robust, and fully
  secure communication channel.  The mechanisms adopted within the
  solution space must include proper secure communication channels that
  are carefully specified for carrying the controlling and monitoring
  information between the NSFs and their management entity or entities.
  The threats associated with remotely managed NSFs are discussed in
  Section 4, and solutions must address those concerns.

  This framework is intended for enterprise users, with or without
  cloud service offerings.  Privacy of users must be provided by using
  existing standard mechanisms, such as encryption; anonymization of
  data should also be done if possible (depending on the transport
  used).  Such mechanisms require confidentiality and integrity.

12.  IANA Considerations

  This document has no IANA actions.

13.  References

13.1.  Normative References

  [IPFIX-D]  "IP Flow Information Export (ipfix)",
             <https://datatracker.ietf.org/wg/ipfix/documents/>.

  [IPFIX-R]  IANA, "IP Flow Information Export (IPFIX) Entities",
             <https://www.iana.org/assignments/ipfix>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC5575]  Marques, P., Sheth, N., Raszuk, R., Greene, B., Mauch, J.,
             and D. McPherson, "Dissemination of Flow Specification
             Rules", RFC 5575, DOI 10.17487/RFC5575, August 2009,
             <https://www.rfc-editor.org/info/rfc5575>.

  [RFC7297]  Boucadair, M., Jacquenet, C., and N. Wang, "IP
             Connectivity Provisioning Profile (CPP)", RFC 7297,
             DOI 10.17487/RFC7297, July 2014,
             <https://www.rfc-editor.org/info/rfc7297>.



Lopez, et al.                 Informational                    [Page 22]

RFC 8329                     I2NSF Framework               February 2018


  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

13.2.  Informative References

  [ACL-YANG]
             Jethanandani, M., Huang, L., Agarwal, S., and D. Blair,
             "Network Access Control List (ACL) YANG Data Model", Work
             in Progress, draft-ietf-netmod-acl-model-15, January 2018.

  [I2NSF-ATTESTATION]
             Pastor, A., Lopez, D., and A. Shaw, "Remote Attestation
             Procedures for Network Security Functions (NSFs) through
             the I2NSF Security Controller", Work in Progress,
             draft-pastor-i2nsf-nsf-remote-attestation-02, September
             2017.

  [I2NSF-CAPABILITIES]
             Xia, L., Strassner, J., Basile, C., and D. Lopez,
             "Information Model of NSFs Capabilities", Work in
             Progress, draft-i2nsf-capability-00, September 2017.

  [I2NSF-DEMO]
             Xie, Y., Xia, L., and J. Wu, "Interface to Network
             Security Functions Demo Outline Design", Work in
             Progress, draft-xie-i2nsf-demo-outline-design-00, April
             2015.

  [I2NSF-TERMS]
             Hares, S., Strassner, J., Lopez, D., Xia, L., and H.
             Birkholz, "Interface to Network Security Functions (I2NSF)
             Terminology", Work in Progress, draft-ietf-i2nsf-
             terminology-05, January 2018.

  [RFC8192]  Hares, S., Lopez, D., Zarny, M., Jacquenet, C., Kumar, R.,
             and J. Jeong, "Interface to Network Security Functions
             (I2NSF): Problem Statement and Use Cases", RFC 8192,
             DOI 10.17487/RFC8192, July 2017,
             <https://www.rfc-editor.org/info/rfc8192>.











Lopez, et al.                 Informational                    [Page 23]

RFC 8329                     I2NSF Framework               February 2018


Acknowledgements

  This document includes significant contributions from Christian
  Jacquenet (Orange), Seetharama Rao Durbha (Cablelabs), Mohamed
  Boucadair (Orange), Ramki Krishnan (Dell), Anil Lohiya (Juniper
  Networks), Joe Parrott (BT), Frank Xialing (Huawei), and XiaoJun
  Zhuang (China Mobile).

  Some of the results leading to this work have received funding from
  the European Union Seventh Framework Programme (FP7/2007-2013) under
  grant agreement no. 611458.








































Lopez, et al.                 Informational                    [Page 24]

RFC 8329                     I2NSF Framework               February 2018


Authors' Addresses

  Diego R. Lopez
  Telefonica I+D
  Editor Jose Manuel Lara, 9
  Seville,   41013
  Spain

  Email: [email protected]


  Edward Lopez
  Curveball Networks
  Chantilly, Virginia
  United States of America

  Email: [email protected]


  Linda Dunbar
  Huawei Technologies
  United States of America

  Email: [email protected]


  John Strassner
  Huawei Technologies
  Santa Clara, CA
  United States of America

  Email: [email protected]


  Rakesh Kumar
  Juniper Networks
  United States of America

  Email: [email protected]












Lopez, et al.                 Informational                    [Page 25]