Internet Engineering Task Force (IETF)                        C. Bormann
Request for Comments: 8323                       Universitaet Bremen TZI
Updates: 7641, 7959                                             S. Lemay
Category: Standards Track                             Zebra Technologies
ISSN: 2070-1721                                            H. Tschofenig
                                                               ARM Ltd.
                                                              K. Hartke
                                                Universitaet Bremen TZI
                                                          B. Silverajan
                                       Tampere University of Technology
                                                         B. Raymor, Ed.
                                                          February 2018


CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets

Abstract

  The Constrained Application Protocol (CoAP), although inspired by
  HTTP, was designed to use UDP instead of TCP.  The message layer of
  CoAP over UDP includes support for reliable delivery, simple
  congestion control, and flow control.

  Some environments benefit from the availability of CoAP carried over
  reliable transports such as TCP or Transport Layer Security (TLS).
  This document outlines the changes required to use CoAP over TCP,
  TLS, and WebSockets transports.  It also formally updates RFC 7641
  for use with these transports and RFC 7959 to enable the use of
  larger messages over a reliable transport.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8323.








Bormann, et al.              Standards Track                    [Page 1]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


Copyright Notice

  Copyright (c) 2018 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
  2. Conventions and Terminology .....................................6
  3. CoAP over TCP ...................................................7
     3.1. Messaging Model ............................................7
     3.2. Message Format .............................................9
     3.3. Message Transmission ......................................11
     3.4. Connection Health .........................................12
  4. CoAP over WebSockets ...........................................13
     4.1. Opening Handshake .........................................15
     4.2. Message Format ............................................15
     4.3. Message Transmission ......................................16
     4.4. Connection Health .........................................17
  5. Signaling ......................................................17
     5.1. Signaling Codes ...........................................17
     5.2. Signaling Option Numbers ..................................18
     5.3. Capabilities and Settings Messages (CSMs) .................18
     5.4. Ping and Pong Messages ....................................20
     5.5. Release Messages ..........................................21
     5.6. Abort Messages ............................................23
     5.7. Signaling Examples ........................................24
  6. Block-Wise Transfer and Reliable Transports ....................25
     6.1. Example: GET with BERT Blocks .............................27
     6.2. Example: PUT with BERT Blocks .............................27
  7. Observing Resources over Reliable Transports ...................28
     7.1. Notifications and Reordering ..............................28
     7.2. Transmission and Acknowledgments ..........................28
     7.3. Freshness .................................................28
     7.4. Cancellation ..............................................29






Bormann, et al.              Standards Track                    [Page 2]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  8. CoAP over Reliable Transport URIs ..............................29
     8.1. coap+tcp URI Scheme .......................................30
     8.2. coaps+tcp URI Scheme ......................................31
     8.3. coap+ws URI Scheme ........................................32
     8.4. coaps+ws URI Scheme .......................................33
     8.5. Uri-Host and Uri-Port Options .............................33
     8.6. Decomposing URIs into Options .............................34
     8.7. Composing URIs from Options ...............................35
  9. Securing CoAP ..................................................35
     9.1. TLS Binding for CoAP over TCP .............................36
     9.2. TLS Usage for CoAP over WebSockets ........................37
  10. Security Considerations .......................................37
     10.1. Signaling Messages .......................................37
  11. IANA Considerations ...........................................38
     11.1. Signaling Codes ..........................................38
     11.2. CoAP Signaling Option Numbers Registry ...................38
     11.3. Service Name and Port Number Registration ................40
     11.4. Secure Service Name and Port Number Registration .........40
     11.5. URI Scheme Registration ..................................41
     11.6. Well-Known URI Suffix Registration .......................43
     11.7. ALPN Protocol Identifier .................................44
     11.8. WebSocket Subprotocol Registration .......................44
     11.9. CoAP Option Numbers Registry .............................44
  12. References ....................................................45
     12.1. Normative References .....................................45
     12.2. Informative References ...................................47
  Appendix A. Examples of CoAP over WebSockets ......................49
  Acknowledgments ...................................................52
  Contributors ......................................................52
  Authors' Addresses ................................................53

1.  Introduction

  The Constrained Application Protocol (CoAP) [RFC7252] was designed
  for Internet of Things (IoT) deployments, assuming that UDP [RFC768]
  can be used unimpeded as can the Datagram Transport Layer Security
  (DTLS) protocol [RFC6347] over UDP.  The use of CoAP over UDP is
  focused on simplicity, has a low code footprint, and has a small
  over-the-wire message size.

  The primary reason for introducing CoAP over TCP [RFC793] and TLS
  [RFC5246] is that some networks do not forward UDP packets.  Complete
  blocking of UDP happens in between about 2% and 4% of terrestrial
  access networks, according to [EK2016].  UDP impairment is especially
  concentrated in enterprise networks and networks in geographic
  regions with otherwise challenged connectivity.  Some networks also





Bormann, et al.              Standards Track                    [Page 3]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  rate-limit UDP traffic, as reported in [BK2015], and deployment
  investigations related to the standardization of Quick UDP Internet
  Connections (QUIC) revealed numbers around 0.3% [SW2016].

  The introduction of CoAP over TCP also leads to some additional
  effects that may be desirable in a specific deployment:

  o  Where NATs are present along the communication path, CoAP over TCP
     leads to different NAT traversal behavior than CoAP over UDP.
     NATs often calculate expiration timers based on the
     transport-layer protocol being used by application protocols.
     Many NATs maintain TCP-based NAT bindings for longer periods based
     on the assumption that a transport-layer protocol, such as TCP,
     offers additional information about the session lifecycle.  UDP,
     on the other hand, does not provide such information to a NAT and
     timeouts tend to be much shorter [HomeGateway].  According to
     [HomeGateway], the mean for TCP and UDP NAT binding timeouts is
     386 minutes (TCP) and 160 seconds (UDP).  Shorter timeout values
     require keepalive messages to be sent more frequently.  Hence, the
     use of CoAP over TCP requires less-frequent transmission of
     keepalive messages.

  o  TCP utilizes mechanisms for congestion control and flow control
     that are more sophisticated than the default mechanisms provided
     by CoAP over UDP; these TCP mechanisms are useful for the transfer
     of larger payloads.  (However, work is ongoing to add advanced
     congestion control to CoAP over UDP as well; see [CoCoA].)

  Note that the use of CoAP over UDP (and CoAP over DTLS over UDP) is
  still the recommended transport for use in constrained node networks,
  particularly when used in concert with block-wise transfer.  CoAP
  over TCP is applicable for those cases where the networking
  infrastructure leaves no other choice.  The use of CoAP over TCP
  leads to a larger code size, more round trips, increased RAM
  requirements, and larger packet sizes.  Developers implementing CoAP
  over TCP are encouraged to consult [TCP-in-IoT] for guidance on
  low-footprint TCP implementations for IoT devices.

  Standards based on CoAP, such as Lightweight Machine to Machine
  [LWM2M], currently use CoAP over UDP as a transport; adding support
  for CoAP over TCP enables them to address the issues above for
  specific deployments and to protect investments in existing CoAP
  implementations and deployments.

  Although HTTP/2 could also potentially address the need for
  enterprise firewall traversal, there would be additional costs and
  delays introduced by such a transition from CoAP to HTTP/2.
  Currently, there are also fewer HTTP/2 implementations available for



Bormann, et al.              Standards Track                    [Page 4]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  constrained devices in comparison to CoAP.  Since CoAP also supports
  group communication using IP-layer multicast and unreliable
  communication, IoT devices would have to support HTTP/2 in addition
  to CoAP.

  Furthermore, CoAP may be integrated into a web environment where the
  front end uses CoAP over UDP from IoT devices to a cloud
  infrastructure and then CoAP over TCP between the back-end services.
  A TCP-to-UDP gateway can be used at the cloud boundary to communicate
  with the UDP-based IoT device.

  Finally, CoAP applications running inside a web browser may be
  without access to connectivity other than HTTP.  In this case, the
  WebSocket Protocol [RFC6455] may be used to transport CoAP requests
  and responses, as opposed to cross-proxying them via HTTP to an
  HTTP-to-CoAP cross-proxy.  This preserves the functionality of CoAP
  without translation -- in particular, the Observe Option [RFC7641].

  To address the above-mentioned deployment requirements, this document
  defines how to transport CoAP over TCP, CoAP over TLS, and CoAP over
  WebSockets.  For these cases, the reliability offered by the
  transport protocol subsumes the reliability functions of the message
  layer used for CoAP over UDP.  (Note that for both a reliable
  transport and the message layer for CoAP over UDP, the reliability
  offered is per transport hop: where proxies -- see Sections 5.7 and
  10 of [RFC7252] -- are involved, that layer's reliability function
  does not extend end to end.)  Figure 1 illustrates the layering:

    +--------------------------------+
    |          Application           |
    +--------------------------------+
    +--------------------------------+
    |  Requests/Responses/Signaling  |  CoAP (RFC 7252) / This Document
    |--------------------------------|
    |        Message Framing         |  This Document
    +--------------------------------+
    |      Reliable Transport        |
    +--------------------------------+

           Figure 1: Layering of CoAP over Reliable Transports

  This document specifies how to access resources using CoAP requests
  and responses over the TCP, TLS, and WebSocket protocols.  This
  allows connectivity-limited applications to obtain end-to-end CoAP
  connectivity either (1) by communicating CoAP directly with a CoAP
  server accessible over a TCP, TLS, or WebSocket connection or (2) via
  a CoAP intermediary that proxies CoAP requests and responses between
  different transports, such as between WebSockets and UDP.



Bormann, et al.              Standards Track                    [Page 5]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  Section 7 updates [RFC7641] ("Observing Resources in the Constrained
  Application Protocol (CoAP)") for use with CoAP over reliable
  transports.  [RFC7641] is an extension to CoAP that enables CoAP
  clients to "observe" a resource on a CoAP server.  (The CoAP client
  retrieves a representation of a resource and registers to be notified
  by the CoAP server when the representation is updated.)

2.  Conventions and Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

  This document assumes that readers are familiar with the terms and
  concepts that are used in [RFC6455], [RFC7252], [RFC7641], and
  [RFC7959].

  The term "reliable transport" is used only to refer to transport
  protocols, such as TCP, that provide reliable and ordered delivery of
  a byte stream.

  Block-wise Extension for Reliable Transport (BERT):
     Extends [RFC7959] to enable the use of larger messages over a
     reliable transport.

  BERT Option:
     A Block1 or Block2 option that includes an SZX (block size)
     value of 7.

  BERT Block:
     The payload of a CoAP message that is affected by a BERT Option in
     descriptive usage (see Section 2.1 of [RFC7959]).

  Transport Connection:
     Underlying reliable byte-stream connection, as directly provided
     by TCP or indirectly provided via TLS or WebSockets.

  Connection:
     Transport Connection, unless explicitly qualified otherwise.










Bormann, et al.              Standards Track                    [Page 6]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  Connection Initiator:
     The peer that opens a Transport Connection, i.e., the TCP active
     opener, TLS client, or WebSocket client.

  Connection Acceptor:
     The peer that accepts the Transport Connection opened by the other
     peer, i.e., the TCP passive opener, TLS server, or WebSocket
     server.

3.  CoAP over TCP

  The request/response interaction model of CoAP over TCP is the same
  as CoAP over UDP.  The primary differences are in the message layer.
  The message layer of CoAP over UDP supports optional reliability by
  defining four types of messages: Confirmable, Non-confirmable,
  Acknowledgment, and Reset.  In addition, messages include a
  Message ID to relate Acknowledgments to Confirmable messages and to
  detect duplicate messages.

  Management of the transport connections is left to the application,
  i.e., the present specification does not describe how an application
  decides to open a connection or to reopen another one in the presence
  of failures (or what it would deem to be a failure; see also
  Section 5.4).  In particular, the Connection Initiator need not be
  the client of the first request placed on the connection.  Some
  implementations will want to implement dynamic connection management
  similar to the technique described in Section 6 of [RFC7230] for
  HTTP: opening a connection when the first client request is ready to
  be sent, reusing that connection for subsequent messages until no
  more messages are sent for a certain time period and no requests are
  outstanding (possibly with a configurable idle time), and then
  starting a release process (orderly shutdown) (see Section 5.5).  In
  implementations of this kind, connection releases or aborts may not
  be indicated as errors to the application but may simply be handled
  by automatic reconnection once the need arises again.  Other
  implementations may be based on configured connections that are kept
  open continuously and lead to management system notifications on
  release or abort.  The protocol defined in the present specification
  is intended to work with either model (or other, application-specific
  connection management models).

3.1.  Messaging Model

  Conceptually, CoAP over TCP replaces most of the message layer of
  CoAP over UDP with a framing mechanism on top of the byte stream
  provided by TCP/TLS, conveying the length information for each
  message that, on datagram transports, is provided by the UDP/DTLS
  datagram layer.



Bormann, et al.              Standards Track                    [Page 7]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  TCP ensures reliable message transmission, so the message layer of
  CoAP over TCP is not required to support Acknowledgment messages or
  to detect duplicate messages.  As a result, both the Type and
  Message ID fields are no longer required and are removed from the
  message format for CoAP over TCP.

  Figure 2 illustrates the difference between CoAP over UDP and CoAP
  over reliable transports.  The removed Type and Message ID fields are
  indicated by dashes.

     CoAP Client       CoAP Server     CoAP Client       CoAP Server
         |                    |            |                    |
         |   CON [0xbc90]     |            | (-------) [------] |
         | GET /temperature   |            | GET /temperature   |
         |   (Token 0x71)     |            |   (Token 0x71)     |
         +------------------->|            +------------------->|
         |                    |            |                    |
         |   ACK [0xbc90]     |            | (-------) [------] |
         |   2.05 Content     |            |   2.05 Content     |
         |   (Token 0x71)     |            |   (Token 0x71)     |
         |     "22.5 C"       |            |     "22.5 C"       |
         |<-------------------+            |<-------------------+
         |                    |            |                    |

             CoAP over UDP                   CoAP over reliable
                                                 transports

    Figure 2: Comparison between CoAP over Unreliable Transports and
                      CoAP over Reliable Transports






















Bormann, et al.              Standards Track                    [Page 8]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


3.2.  Message Format

  The CoAP message format defined in [RFC7252], as shown in Figure 3,
  relies on the datagram transport (UDP, or DTLS over UDP) for keeping
  the individual messages separate and for providing length
  information.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Ver| T |  TKL  |      Code     |          Message ID           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Token (if any, TKL bytes) ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Options (if any) ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |1 1 1 1 1 1 1 1|    Payload (if any) ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

          Figure 3: CoAP Message Format as Defined in RFC 7252

  The message format for CoAP over TCP is very similar to the format
  specified for CoAP over UDP.  The differences are as follows:

  o  Since the underlying TCP connection provides retransmissions and
     deduplication, there is no need for the reliability mechanisms
     provided by CoAP over UDP.  The Type (T) and Message ID fields in
     the CoAP message header are elided.

  o  The Version (Vers) field is elided as well.  In contrast to the
     message format of CoAP over UDP, the message format for CoAP over
     TCP does not include a version number.  CoAP is defined in
     [RFC7252] with a version number of 1.  At this time, there is no
     known reason to support version numbers different from 1.  If
     version negotiation needs to be addressed in the future,
     Capabilities and Settings Messages (CSMs) (see Section 5.3) have
     been specifically designed to enable such a potential feature.














Bormann, et al.              Standards Track                    [Page 9]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  o  In a stream-oriented transport protocol such as TCP, a form of
     message delimitation is needed.  For this purpose, CoAP over TCP
     introduces a length field with variable size.  Figure 4 shows the
     adjusted CoAP message format with a modified structure for the
     fixed header (first 4 bytes of the header for CoAP over UDP),
     which includes the length information of variable size.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Len  |  TKL  | Extended Length (if any, as chosen by Len) ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      Code     | Token (if any, TKL bytes) ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Options (if any) ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |1 1 1 1 1 1 1 1|    Payload (if any) ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 4: CoAP Frame for Reliable Transports

  Length (Len):  4-bit unsigned integer.  A value between 0 and 12
     inclusive indicates the length of the message in bytes, starting
     with the first bit of the Options field.  Three values are
     reserved for special constructs:

     13:  An 8-bit unsigned integer (Extended Length) follows the
        initial byte and indicates the length of options/payload
        minus 13.

     14:  A 16-bit unsigned integer (Extended Length) in network byte
        order follows the initial byte and indicates the length of
        options/payload minus 269.

     15:  A 32-bit unsigned integer (Extended Length) in network byte
        order follows the initial byte and indicates the length of
        options/payload minus 65805.

  The encoding of the Length field is modeled after the Option Length
  field of the CoAP Options (see Section 3.1 of [RFC7252]).

  For simplicity, a Payload Marker (0xFF) is shown in Figure 4; the
  Payload Marker indicates the start of the optional payload and is
  absent for zero-length payloads (see Section 3 of [RFC7252]).  (If
  present, the Payload Marker is included in the message length, which
  counts from the start of the Options field to the end of the Payload
  field.)




Bormann, et al.              Standards Track                   [Page 10]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  For example, a CoAP message just containing a 2.03 code with the
  Token 7f and no options or payload is encoded as shown in Figure 5.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      0x01     |      0x43     |      0x7f     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Len   =    0 ------>  0x01
   TKL   =    1 ___/
   Code  =  2.03     --> 0x43
   Token =               0x7f

            Figure 5: CoAP Message with No Options or Payload

  The semantics of the other CoAP header fields are left unchanged.

3.3.  Message Transmission

  Once a Transport Connection is established, each endpoint MUST send a
  CSM (see Section 5.3) as its first message on the connection.  This
  message establishes the initial settings and capabilities for the
  endpoint, such as maximum message size or support for block-wise
  transfers.  The absence of options in the CSM indicates that base
  values are assumed.

  To avoid a deadlock, the Connection Initiator MUST NOT wait for the
  Connection Acceptor to send its initial CSM before sending its own
  initial CSM.  Conversely, the Connection Acceptor MAY wait for the
  Connection Initiator to send its initial CSM before sending its own
  initial CSM.

  To avoid unnecessary latency, a Connection Initiator MAY send
  additional messages after its initial CSM without waiting to receive
  the Connection Acceptor's CSM; however, it is important to note that
  the Connection Acceptor's CSM might indicate capabilities that impact
  how the Connection Initiator is expected to communicate with the
  Connection Acceptor.  For example, the Connection Acceptor's CSM
  could indicate a Max-Message-Size Option (see Section 5.3.1) that is
  smaller than the base value (1152) in order to limit both buffering
  requirements and head-of-line blocking.









Bormann, et al.              Standards Track                   [Page 11]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  Endpoints MUST treat a missing or invalid CSM as a connection error
  and abort the connection (see Section 5.6).

  CoAP requests and responses are exchanged asynchronously over the
  Transport Connection.  A CoAP client can send multiple requests
  without waiting for a response, and the CoAP server can return
  responses in any order.  Responses MUST be returned over the same
  connection as the originating request.  Each concurrent request is
  differentiated by its Token, which is scoped locally to the
  connection.

  The Transport Connection is bidirectional, so requests can be sent by
  both the entity that established the connection (Connection
  Initiator) and the remote host (Connection Acceptor).  If one side
  does not implement a CoAP server, an error response MUST be returned
  for all CoAP requests from the other side.  The simplest approach is
  to always return 5.01 (Not Implemented).  A more elaborate mock
  server could also return 4.xx responses such as 4.04 (Not Found) or
  4.02 (Bad Option) where appropriate.

  Retransmission and deduplication of messages are provided by TCP.

3.4.  Connection Health

  Empty messages (Code 0.00) can always be sent and MUST be ignored by
  the recipient.  This provides a basic keepalive function that can
  refresh NAT bindings.

  If a CoAP client does not receive any response for some time after
  sending a CoAP request (or, similarly, when a client observes a
  resource and it does not receive any notification for some time), it
  can send a CoAP Ping Signaling message (see Section 5.4) to test the
  Transport Connection and verify that the CoAP server is responsive.

  When the underlying Transport Connection is closed or reset, the
  signaling state and any observation state (see Section 7.4)
  associated with the connection are removed.  Messages that are
  in flight may or may not be lost.













Bormann, et al.              Standards Track                   [Page 12]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


4.  CoAP over WebSockets

  CoAP over WebSockets is intentionally similar to CoAP over TCP;
  therefore, this section only specifies the differences between the
  transports.

  CoAP over WebSockets can be used in a number of configurations.  The
  most basic configuration is a CoAP client retrieving or updating a
  CoAP resource located on a CoAP server that exposes a WebSocket
  endpoint (see Figure 6).  The CoAP client acts as the WebSocket
  client, establishes a WebSocket connection, and sends a CoAP request,
  to which the CoAP server returns a CoAP response.  The WebSocket
  connection can be used for any number of requests.

           ___________                            ___________
          |           |                          |           |
          |          _|___      requests      ___|_          |
          |   CoAP  /  \  \  ------------->  /  /  \  CoAP   |
          |  Client \__/__/  <-------------  \__\__/ Server  |
          |           |         responses        |           |
          |___________|                          |___________|
                  WebSocket  =============>  WebSocket
                    Client     Connection     Server

      Figure 6: CoAP Client (WebSocket Client) Accesses CoAP Server
                           (WebSocket Server)

  The challenge with this configuration is how to identify a resource
  in the namespace of the CoAP server.  When the WebSocket Protocol is
  used by a dedicated client directly (i.e., not from a web page
  through a web browser), the client can connect to any WebSocket
  endpoint.  Sections 8.3 and 8.4 define new URI schemes that enable
  the client to identify both a WebSocket endpoint and the path and
  query of the CoAP resource within that endpoint.

















Bormann, et al.              Standards Track                   [Page 13]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  Another possible configuration is to set up a CoAP forward proxy at
  the WebSocket endpoint.  Depending on what transports are available
  to the proxy, it could forward the request to a CoAP server with a
  CoAP UDP endpoint (Figure 7), an SMS endpoint (a.k.a. mobile phone),
  or even another WebSocket endpoint.  The CoAP client specifies the
  resource to be updated or retrieved in the Proxy-Uri Option.

    ___________                ___________                ___________
   |           |              |           |              |           |
   |          _|___        ___|_         _|___        ___|_          |
   |   CoAP  /  \  \ ---> /  /  \ CoAP  /  \  \ ---> /  /  \  CoAP   |
   |  Client \__/__/ <--- \__\__/ Proxy \__/__/ <--- \__\__/ Server  |
   |           |              |           |              |           |
   |___________|              |___________|              |___________|
           WebSocket ===> WebSocket      UDP            UDP
             Client        Server      Client          Server

      Figure 7: CoAP Client (WebSocket Client) Accesses CoAP Server
      (UDP Server) via a CoAP Proxy (WebSocket Server / UDP Client)

  A third possible configuration is a CoAP server running inside a web
  browser (Figure 8).  The web browser initially connects to a
  WebSocket endpoint and is then reachable through the WebSocket
  server.  When no connection exists, the CoAP server is unreachable.
  Because the WebSocket server is the only way to reach the CoAP
  server, the CoAP proxy should be a reverse-proxy.

    ___________                ___________                ___________
   |           |              |           |              |           |
   |          _|___        ___|_         _|___        ___|_          |
   |   CoAP  /  \  \ ---> /  /  \ CoAP  /  /  \ ---> /  \  \  CoAP   |
   |  Client \__/__/ <--- \__\__/ Proxy \__\__/ <--- \__/__/ Server  |
   |           |              |           |              |           |
   |___________|              |___________|              |___________|
              UDP            UDP      WebSocket <=== WebSocket
            Client          Server      Server        Client

   Figure 8: CoAP Client (UDP Client) Accesses CoAP Server (WebSocket
        Client) via a CoAP Proxy (UDP Server / WebSocket Server)

  Further configurations are possible, including those where a
  WebSocket connection is established through an HTTP proxy.









Bormann, et al.              Standards Track                   [Page 14]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


4.1.  Opening Handshake

  Before CoAP requests and responses are exchanged, a WebSocket
  connection is established as defined in Section 4 of [RFC6455].
  Figure 9 shows an example.

  The WebSocket client MUST include the subprotocol name "coap" in the
  list of protocols; this indicates support for the protocol defined in
  this document.

  The WebSocket client includes the hostname of the WebSocket server in
  the Host header field of its handshake as per [RFC6455].  The Host
  header field also indicates the default value of the Uri-Host Option
  in requests from the WebSocket client to the WebSocket server.

           GET /.well-known/coap HTTP/1.1
           Host: example.org
           Upgrade: websocket
           Connection: Upgrade
           Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
           Sec-WebSocket-Protocol: coap
           Sec-WebSocket-Version: 13

           HTTP/1.1 101 Switching Protocols
           Upgrade: websocket
           Connection: Upgrade
           Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
           Sec-WebSocket-Protocol: coap

                Figure 9: Example of an Opening Handshake

4.2.  Message Format

  Once a WebSocket connection is established, CoAP requests and
  responses can be exchanged as WebSocket messages.  Since CoAP uses a
  binary message format, the messages are transmitted in binary data
  frames as specified in Sections 5 and 6 of [RFC6455].














Bormann, et al.              Standards Track                   [Page 15]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  The message format shown in Figure 10 is the same as the message
  format for CoAP over TCP (see Section 3.2), with one change: the
  Length (Len) field MUST be set to zero, because the WebSocket frame
  contains the length.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Len=0 |  TKL  |      Code     |    Token (TKL bytes) ...
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Options (if any) ...
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |1 1 1 1 1 1 1 1|    Payload (if any) ...
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 10: CoAP Message Format over WebSockets

  As with CoAP over TCP, the message format for CoAP over WebSockets
  eliminates the Version field defined in CoAP over UDP.  If CoAP
  version negotiation is required in the future, CoAP over WebSockets
  can address the requirement by defining a new subprotocol identifier
  that is negotiated during the opening handshake.

  Requests and responses can be fragmented as specified in Section 5.4
  of [RFC6455], though typically they are sent unfragmented, as they
  tend to be small and fully buffered before transmission.  The
  WebSocket Protocol does not provide means for multiplexing.  If it is
  not desirable for a large message to monopolize the connection,
  requests and responses can be transferred in a block-wise fashion as
  defined in [RFC7959].

4.3.  Message Transmission

  As with CoAP over TCP, each endpoint MUST send a CSM (see
  Section 5.3) as its first message on the WebSocket connection.

  CoAP requests and responses are exchanged asynchronously over the
  WebSocket connection.  A CoAP client can send multiple requests
  without waiting for a response, and the CoAP server can return
  responses in any order.  Responses MUST be returned over the same
  connection as the originating request.  Each concurrent request is
  differentiated by its Token, which is scoped locally to the
  connection.

  The connection is bidirectional, so requests can be sent by both the
  entity that established the connection and the remote host.





Bormann, et al.              Standards Track                   [Page 16]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  As with CoAP over TCP, retransmission and deduplication of messages
  are provided by the WebSocket Protocol.  CoAP over WebSockets
  therefore does not make a distinction between Confirmable messages
  and Non-confirmable messages and does not provide Acknowledgment or
  Reset messages.

4.4.  Connection Health

  As with CoAP over TCP, a CoAP client can test the health of the
  connection for CoAP over WebSockets by sending a CoAP Ping Signaling
  message (Section 5.4).  To ensure that redundant maintenance traffic
  is not transmitted, WebSocket Ping and unsolicited Pong frames
  (Section 5.5 of [RFC6455]) SHOULD NOT be used.

5.  Signaling

  Signaling messages are specifically introduced only for CoAP over
  reliable transports to allow peers to:

  o  Learn related characteristics, such as maximum message size for
     the connection.

  o  Shut down the connection in an orderly fashion.

  o  Provide diagnostic information when terminating a connection in
     response to a serious error condition.

  Signaling is a third basic kind of message in CoAP, after requests
  and responses.  Signaling messages share a common structure with the
  existing CoAP messages.  There are a code, a Token, options, and an
  optional payload.

  (See Section 3 of [RFC7252] for the overall structure of the message
  format, option format, and option value formats.)

5.1.  Signaling Codes

  A code in the 7.00-7.31 range indicates a Signaling message.  Values
  in this range are assigned by the "CoAP Signaling Codes" subregistry
  (see Section 11.1).

  For each message, there are a sender and a peer receiving the
  message.

  Payloads in Signaling messages are diagnostic payloads as defined in
  Section 5.5.2 of [RFC7252], unless otherwise defined by a Signaling
  message option.




Bormann, et al.              Standards Track                   [Page 17]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


5.2.  Signaling Option Numbers

  Option Numbers for Signaling messages are specific to the message
  code.  They do not share the number space with CoAP options for
  request/response messages or with Signaling messages using other
  codes.

  Option Numbers are assigned by the "CoAP Signaling Option Numbers"
  subregistry (see Section 11.2).

  Signaling Options are elective or critical as defined in
  Section 5.4.1 of [RFC7252].  If a Signaling Option is critical and
  not understood by the receiver, it MUST abort the connection (see
  Section 5.6).  If the option is understood but cannot be processed,
  the option documents the behavior.

5.3.  Capabilities and Settings Messages (CSMs)

  CSMs are used for two purposes:

  o  Each capability option indicates one capability of the sender to
     the recipient.

  o  Each setting option indicates a setting that will be applied by
     the sender.

  One CSM MUST be sent by each endpoint at the start of the Transport
  Connection.  Additional CSMs MAY be sent at any other time by either
  endpoint over the lifetime of the connection.

  Both capability options and setting options are cumulative.  A CSM
  does not invalidate a previously sent capability indication or
  setting even if it is not repeated.  A capability message without any
  option is a no-operation (and can be used as such).  An option that
  is sent might override a previous value for the same option.  The
  option defines how to handle this case if needed.

  Base values are listed below for CSM options.  These are the values
  for the capability and settings before any CSMs send a modified
  value.

  These are not default values (as defined in Section 5.4.4 in
  [RFC7252]) for the option.  Default values apply on a per-message
  basis and are thus reset when the value is not present in a
  given CSM.

  CSMs are indicated by the 7.01 (CSM) code; see Table 1
  (Section 11.1).



Bormann, et al.              Standards Track                   [Page 18]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


5.3.1.  Max-Message-Size Capability Option

  The sender can use the elective Max-Message-Size Option to indicate
  the maximum size of a message in bytes that it can receive.  The
  message size indicated includes the entire message, starting from the
  first byte of the message header and ending at the end of the message
  payload.

  (Note that there is no relationship of the message size to the
  overall request or response body size that may be achievable in
  block-wise transfer.  For example, the exchange depicted in Figure 13
  (Section 6.1) can be performed if the CoAP client indicates a value
  of around 6000 bytes for the Max-Message-Size Option, even though the
  total body size transferred to the client is 3072 + 5120 + 4711 =
  12903 bytes.)

  +---+---+---+---------+------------------+--------+--------+--------+
  | # | C | R | Applies | Name             | Format | Length | Base   |
  |   |   |   | to      |                  |        |        | Value  |
  +---+---+---+---------+------------------+--------+--------+--------+
  | 2 |   |   | CSM     | Max-Message-Size |   uint |    0-4 | 1152   |
  +---+---+---+---------+------------------+--------+--------+--------+

                        C=Critical, R=Repeatable

  As per Section 4.6 of [RFC7252], the base value (and the value used
  when this option is not implemented) is 1152.

  The active value of the Max-Message-Size Option is replaced each time
  the option is sent with a modified value.  Its starting value is its
  base value.

5.3.2.  Block-Wise-Transfer Capability Option

  +---+---+---+---------+------------------+--------+--------+--------+
  | # | C | R | Applies | Name             | Format | Length | Base   |
  |   |   |   | to      |                  |        |        | Value  |
  +---+---+---+---------+------------------+--------+--------+--------+
  | 4 |   |   | CSM     | Block-Wise-      |  empty |      0 | (none) |
  |   |   |   |         | Transfer         |        |        |        |
  +---+---+---+---------+------------------+--------+--------+--------+

                        C=Critical, R=Repeatable

  A sender can use the elective Block-Wise-Transfer Option to indicate
  that it supports the block-wise transfer protocol [RFC7959].





Bormann, et al.              Standards Track                   [Page 19]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  If the option is not given, the peer has no information about whether
  block-wise transfers are supported by the sender or not.  An
  implementation wishing to offer block-wise transfers to its peer
  therefore needs to indicate so via the Block-Wise-Transfer Option.

  If a Max-Message-Size Option is indicated with a value that is
  greater than 1152 (in the same CSM or a different CSM), the
  Block-Wise-Transfer Option also indicates support for BERT (see
  Section 6).  Subsequently, if the Max-Message-Size Option is
  indicated with a value equal to or less than 1152, BERT support is no
  longer indicated.  (Note that the indication of BERT support does not
  oblige either peer to actually choose to make use of BERT.)

  Implementation note: When indicating a value of the Max-Message-Size
  Option with an intention to enable BERT, the indicating
  implementation may want to (1) choose a particular BERT block size it
  wants to encourage and (2) add a delta for the header and any options
  that may also need to be included in the message with a BERT block of
  that size.  Section 4.6 of [RFC7252] adds 128 bytes to a maximum
  block size of 1024 to arrive at a default message size of 1152.  A
  BERT-enabled implementation may want to indicate a BERT block size of
  2048 or a higher multiple of 1024 and at the same time be more
  generous with the size of the header and options added (say, 256 or
  512).  However, adding 1024 or more to the base BERT block size may
  encourage the peer implementation to vary the BERT block size based
  on the size of the options included; this type of scenario might make
  it harder to establish interoperability.

5.4.  Ping and Pong Messages

  In CoAP over reliable transports, Empty messages (Code 0.00) can
  always be sent and MUST be ignored by the recipient.  This provides a
  basic keepalive function.  In contrast, Ping and Pong messages are a
  bidirectional exchange.

  Upon receipt of a Ping message, the receiver MUST return a Pong
  message with an identical Token in response.  Unless the Ping carries
  an option with delaying semantics such as the Custody Option, it
  SHOULD respond as soon as practical.  As with all Signaling messages,
  the recipient of a Ping or Pong message MUST ignore elective options
  it does not understand.

  Ping and Pong messages are indicated by the 7.02 code (Ping) and
  the 7.03 code (Pong).







Bormann, et al.              Standards Track                   [Page 20]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  Note that, as with similar mechanisms defined in [RFC6455] and
  [RFC7540], the present specification does not define any specific
  maximum time that the sender of a Ping message has to allow when
  waiting for a Pong reply.  Any limitations on patience for this reply
  are a matter of the application making use of these messages, as is
  any approach to recover from a failure to respond in time.

5.4.1.  Custody Option

  +---+---+---+----------+----------------+--------+--------+---------+
  | # | C | R | Applies  | Name           | Format | Length | Base    |
  |   |   |   | to       |                |        |        | Value   |
  +---+---+---+----------+----------------+--------+--------+---------+
  | 2 |   |   | Ping,    | Custody        |  empty |      0 | (none)  |
  |   |   |   | Pong     |                |        |        |         |
  +---+---+---+----------+----------------+--------+--------+---------+

                        C=Critical, R=Repeatable

  When responding to a Ping message, the receiver can include an
  elective Custody Option in the Pong message.  This option indicates
  that the application has processed all the request/response messages
  received prior to the Ping message on the current connection.  (Note
  that there is no definition of specific application semantics for
  "processed", but there is an expectation that the receiver of a Pong
  message with a Custody Option should be able to free buffers based on
  this indication.)

  A sender can also include an elective Custody Option in a Ping
  message to explicitly request the inclusion of an elective Custody
  Option in the corresponding Pong message.  In that case, the receiver
  SHOULD delay its Pong message until it finishes processing all the
  request/response messages received prior to the Ping message on the
  current connection.

5.5.  Release Messages

  A Release message indicates that the sender does not want to continue
  maintaining the Transport Connection and opts for an orderly
  shutdown, but wants to leave it to the peer to actually start closing
  the connection.  The details are in the options.  A diagnostic
  payload (see Section 5.5.2 of [RFC7252]) MAY be included.

  A peer will normally respond to a Release message by closing the
  Transport Connection.  (In case that does not happen, the sender of
  the release may want to implement a timeout mechanism if getting rid
  of the connection is actually important to it.)




Bormann, et al.              Standards Track                   [Page 21]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  Messages may be in flight or responses outstanding when the sender
  decides to send a Release message (which is one reason the sender had
  decided to wait before closing the connection).  The peer responding
  to the Release message SHOULD delay the closing of the connection
  until it has responded to all requests received by it before the
  Release message.  It also MAY wait for the responses to its own
  requests.

  It is NOT RECOMMENDED for the sender of a Release message to continue
  sending requests on the connection it already indicated to be
  released: the peer might close the connection at any time and miss
  those requests.  The peer is not obligated to check for this
  condition, though.

  Release messages are indicated by the 7.04 code (Release).

  Release messages can indicate one or more reasons using elective
  options.  The following options are defined:

  +---+---+---+---------+------------------+--------+--------+--------+
  | # | C | R | Applies | Name             | Format | Length | Base   |
  |   |   |   | to      |                  |        |        | Value  |
  +---+---+---+---------+------------------+--------+--------+--------+
  | 2 |   | x | Release | Alternative-     | string |  1-255 | (none) |
  |   |   |   |         | Address          |        |        |        |
  +---+---+---+---------+------------------+--------+--------+--------+

                        C=Critical, R=Repeatable

  The elective Alternative-Address Option requests the peer to instead
  open a connection of the same scheme as the present connection to the
  alternative transport address given.  Its value is in the form
  "authority" as defined in Section 3.2 of [RFC3986].  (Existing state
  related to the connection is not transferred from the present
  connection to the new connection.)
















Bormann, et al.              Standards Track                   [Page 22]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  The Alternative-Address Option is a repeatable option as defined in
  Section 5.4.5 of [RFC7252].  When multiple occurrences of the option
  are included, the peer can choose any of the alternative transport
  addresses.

  +---+---+---+---------+-----------------+--------+--------+---------+
  | # | C | R | Applies | Name            | Format | Length | Base    |
  |   |   |   | to      |                 |        |        | Value   |
  +---+---+---+---------+-----------------+--------+--------+---------+
  | 4 |   |   | Release | Hold-Off        |   uint |    0-3 | (none)  |
  +---+---+---+---------+-----------------+--------+--------+---------+

                        C=Critical, R=Repeatable

  The elective Hold-Off Option indicates that the server is requesting
  that the peer not reconnect to it for the number of seconds given in
  the value.

5.6.  Abort Messages

  An Abort message indicates that the sender is unable to continue
  maintaining the Transport Connection and cannot even wait for an
  orderly release.  The sender shuts down the connection immediately
  after the Abort message (and may or may not wait for a Release
  message, Abort message, or connection shutdown in the inverse
  direction).  A diagnostic payload (see Section 5.5.2 of [RFC7252])
  SHOULD be included in the Abort message.  Messages may be in flight
  or responses outstanding when the sender decides to send an Abort
  message.  The general expectation is that these will NOT be
  processed.

  Abort messages are indicated by the 7.05 code (Abort).

  Abort messages can indicate one or more reasons using elective
  options.  The following option is defined:

  +---+---+---+---------+-----------------+--------+--------+---------+
  | # | C | R | Applies | Name            | Format | Length | Base    |
  |   |   |   | to      |                 |        |        | Value   |
  +---+---+---+---------+-----------------+--------+--------+---------+
  | 2 |   |   | Abort   | Bad-CSM-Option  |   uint |    0-2 | (none)  |
  +---+---+---+---------+-----------------+--------+--------+---------+

                        C=Critical, R=Repeatable







Bormann, et al.              Standards Track                   [Page 23]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  Bad-CSM-Option, which is elective, indicates that the sender is
  unable to process the CSM option identified by its Option Number,
  e.g., when it is critical and the Option Number is unknown by the
  sender, or when there is a parameter problem with the value of an
  elective option.  More detailed information SHOULD be included as a
  diagnostic payload.

  For CoAP over UDP, messages that contain syntax violations are
  processed as message format errors.  As described in Sections 4.2 and
  4.3 of [RFC7252], such messages are rejected by sending a matching
  Reset message and otherwise ignoring the message.

  For CoAP over reliable transports, the recipient rejects such
  messages by sending an Abort message and otherwise ignoring (not
  processing) the message.  No specific Option has been defined for the
  Abort message in this case, as the details are best left to a
  diagnostic payload.

5.7.  Signaling Examples

  An encoded example of a Ping message with a non-empty Token is shown
  in Figure 11.

      0                   1                   2
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |      0x01     |      0xe2     |      0x42     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Len   =    0 -------> 0x01
      TKL   =    1 ___/
      Code  = 7.02 Ping --> 0xe2
      Token =               0x42

                     Figure 11: Ping Message Example
















Bormann, et al.              Standards Track                   [Page 24]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  An encoded example of the corresponding Pong message is shown in
  Figure 12.

      0                   1                   2
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |      0x01     |      0xe3     |      0x42     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Len   =    0 -------> 0x01
      TKL   =    1 ___/
      Code  = 7.03 Pong --> 0xe3
      Token =               0x42

                     Figure 12: Pong Message Example

6.  Block-Wise Transfer and Reliable Transports

  The message size restrictions defined in Section 4.6 of [RFC7252] to
  avoid IP fragmentation are not necessary when CoAP is used over a
  reliable transport.  While this suggests that the block-wise transfer
  protocol [RFC7959] is also no longer needed, it remains applicable
  for a number of cases:

  o  Large messages, such as firmware downloads, may cause undesired
     head-of-line blocking when a single transport connection is used.

  o  A UDP-to-TCP gateway may simply not have the context to convert a
     message with a Block Option into the equivalent exchange without
     any use of a Block Option (it would need to convert the entire
     block-wise exchange from start to end into a single exchange).

  BERT extends the block-wise transfer protocol to enable the use of
  larger messages over a reliable transport.

  The use of this new extension is signaled by sending Block1 or Block2
  Options with SZX == 7 (a "BERT Option").  SZX == 7 is a reserved
  value in [RFC7959].

  In control usage, a BERT Option is interpreted in the same way as the
  equivalent Option with SZX == 6, except that it also indicates the
  capability to process BERT blocks.  As with the basic block-wise
  transfer protocol, the recipient of a CoAP request with a BERT Option
  in control usage is allowed to respond with a different SZX value,
  e.g., to send a non-BERT block instead.






Bormann, et al.              Standards Track                   [Page 25]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  In descriptive usage, a BERT Option is interpreted in the same way as
  the equivalent Option with SZX == 6, except that the payload is also
  allowed to contain multiple blocks.  For non-final BERT blocks, the
  payload is always a multiple of 1024 bytes.  For final BERT blocks,
  the payload is a multiple (possibly 0) of 1024 bytes plus a partial
  block of less than 1024 bytes.

  The recipient of a non-final BERT block (M=1) conceptually partitions
  the payload into a sequence of 1024-byte blocks and acts exactly as
  if it had received this sequence in conjunction with block numbers
  starting at, and sequentially increasing from, the block number given
  in the Block Option.  In other words, the entire BERT block is
  positioned at the byte position that results from multiplying the
  block number by 1024.  The position of further blocks to be
  transferred is indicated by incrementing the block number by the
  number of elements in this sequence (i.e., the size of the payload
  divided by 1024 bytes).

  As with SZX == 6, the recipient of a final BERT block (M=0) simply
  appends the payload at the byte position that is indicated by the
  block number multiplied by 1024.

  The following examples illustrate BERT Options.  A value of SZX == 7
  is labeled as "BERT" or as "BERT(nnn)" to indicate a payload of
  size nnn.

  In all these examples, a Block Option is decomposed to indicate the
  kind of Block Option (1 or 2) followed by a colon, the block number
  (NUM), the more bit (M), and the block size (2**(SZX + 4)) separated
  by slashes.  For example, a Block2 Option value of 33 would be shown
  as 2:2/0/32), or a Block1 Option value of 59 would be shown as
  1:3/1/128.



















Bormann, et al.              Standards Track                   [Page 26]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


6.1.  Example: GET with BERT Blocks

  Figure 13 shows a GET request with a response that is split into
  three BERT blocks.  The first response contains 3072 bytes of
  payload; the second, 5120; and the third, 4711.  Note how the block
  number increments to move the position inside the response body
  forward.

  CoAP Client                             CoAP Server
    |                                            |
    | GET, /status                       ------> |
    |                                            |
    | <------   2.05 Content, 2:0/1/BERT(3072)   |
    |                                            |
    | GET, /status, 2:3/0/BERT           ------> |
    |                                            |
    | <------   2.05 Content, 2:3/1/BERT(5120)   |
    |                                            |
    | GET, /status, 2:8/0/BERT          ------>  |
    |                                            |
    | <------   2.05 Content, 2:8/0/BERT(4711)   |

                     Figure 13: GET with BERT Blocks

6.2.  Example: PUT with BERT Blocks

  Figure 14 demonstrates a PUT exchange with BERT blocks.

  CoAP Client                             CoAP Server
    |                                             |
    | PUT, /options, 1:0/1/BERT(8192)     ------> |
    |                                             |
    | <------   2.31 Continue, 1:0/1/BERT         |
    |                                             |
    | PUT, /options, 1:8/1/BERT(16384)    ------> |
    |                                             |
    | <------   2.31 Continue, 1:8/1/BERT         |
    |                                             |
    | PUT, /options, 1:24/0/BERT(5683)    ------> |
    |                                             |
    | <------   2.04 Changed, 1:24/0/BERT         |
    |                                             |

                     Figure 14: PUT with BERT Blocks







Bormann, et al.              Standards Track                   [Page 27]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


7.  Observing Resources over Reliable Transports

  This section describes how the procedures defined in [RFC7641] for
  observing resources over CoAP are applied (and modified, as needed)
  for reliable transports.  In this section, "client" and "server"
  refer to the CoAP client and CoAP server.

7.1.  Notifications and Reordering

  When using the Observe Option [RFC7641] with CoAP over UDP,
  notifications from the server set the option value to an increasing
  sequence number for reordering detection on the client, since
  messages can arrive in a different order than they were sent.  This
  sequence number is not required for CoAP over reliable transports,
  since TCP ensures reliable and ordered delivery of messages.  The
  value of the Observe Option in 2.xx notifications MAY be empty on
  transmission and MUST be ignored on reception.

  Implementation note: This means that a proxy from a reordering
  transport to a reliable (in-order) transport (such as a UDP-to-TCP
  proxy) needs to process the Observe Option in notifications according
  to the rules in Section 3.4 of [RFC7641].

7.2.  Transmission and Acknowledgments

  For CoAP over UDP, server notifications to the client can be
  Confirmable or Non-confirmable.  A Confirmable message requires the
  client to respond with either an Acknowledgment message or a Reset
  message.  An Acknowledgment message indicates that the client is
  alive and wishes to receive further notifications.  A Reset message
  indicates that the client does not recognize the Token; this causes
  the server to remove the associated entry from the list of observers.

  Since TCP eliminates the need for the message layer to support
  reliability, CoAP over reliable transports does not support
  Confirmable or Non-confirmable message types.  All notifications are
  delivered reliably to the client with positive acknowledgment of
  receipt occurring at the TCP level.  If the client does not recognize
  the Token in a notification, it MAY immediately abort the connection
  (see Section 5.6).

7.3.  Freshness

  For CoAP over UDP, if a client does not receive a notification for
  some time, it can send a new GET request with the same Token as the
  original request to re-register its interest in a resource and verify
  that the server is still responsive.  For CoAP over reliable
  transports, it is more efficient to check the health of the



Bormann, et al.              Standards Track                   [Page 28]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  connection (and all its active observations) by sending a single CoAP
  Ping Signaling message (Section 5.4) rather than individual requests
  to confirm each active observation.  (Note that such a Ping/Pong only
  confirms a single hop: a proxy is not obligated or expected to react
  to a Ping by checking all its own registered interests or all the
  connections, if any, underlying them.  A proxy MAY maintain its own
  schedule for confirming the interests that it relies on being
  registered toward the origin server; however, it is generally
  inadvisable for a proxy to generate a large number of outgoing checks
  based on a single incoming check.)

7.4.  Cancellation

  For CoAP over UDP, a client that is no longer interested in receiving
  notifications can "forget" the observation and respond to the next
  notification from the server with a Reset message to cancel the
  observation.

  For CoAP over reliable transports, a client MUST explicitly
  deregister by issuing a GET request that has the Token field set to
  the Token of the observation to be canceled and includes an Observe
  Option with the value set to 1 (deregister).

  If the client observes one or more resources over a reliable
  transport, then the CoAP server (or intermediary in the role of the
  CoAP server) MUST remove all entries associated with the client
  endpoint from the lists of observers when the connection either
  times out or is closed.

8.  CoAP over Reliable Transport URIs

  CoAP over UDP [RFC7252] defines the "coap" and "coaps" URI schemes.
  This document introduces four additional URI schemes for identifying
  CoAP resources and providing a means of locating the resource:

  o  The "coap+tcp" URI scheme for CoAP over TCP.

  o  The "coaps+tcp" URI scheme for CoAP over TCP secured by TLS.

  o  The "coap+ws" URI scheme for CoAP over WebSockets.

  o  The "coaps+ws" URI scheme for CoAP over WebSockets secured by TLS.

  Resources made available via these schemes have no shared identity
  even if their resource identifiers indicate the same authority (the
  same host listening to the same TCP port).  They are hosted in
  distinct namespaces because each URI scheme implies a distinct origin
  server.



Bormann, et al.              Standards Track                   [Page 29]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  In this section, the syntax for the URI schemes is specified using
  the Augmented Backus-Naur Form (ABNF) [RFC5234].  The definitions of
  "host", "port", "path-abempty", and "query" are adopted from
  [RFC3986].

  Section 8 ("Multicast CoAP") in [RFC7252] is not applicable to these
  schemes.

  As with the "coap" and "coaps" schemes defined in [RFC7252], all URI
  schemes defined in this section also support the path prefix
  "/.well-known/" as defined by [RFC5785] for "well-known locations" in
  the namespace of a host.  This enables discovery as per Section 7 of
  [RFC7252].

8.1.  coap+tcp URI Scheme

  The "coap+tcp" URI scheme identifies CoAP resources that are intended
  to be accessible using CoAP over TCP.

    coap-tcp-URI = "coap+tcp:" "//" host [ ":" port ]
      path-abempty [ "?" query ]

  The syntax defined in Section 6.1 of [RFC7252] applies to this URI
  scheme, with the following change:

  o  The port subcomponent indicates the TCP port at which the CoAP
     Connection Acceptor is located.  (If it is empty or not given,
     then the default port 5683 is assumed, as with UDP.)

  Encoding considerations:  The scheme encoding conforms to the
     encoding rules established for URIs in [RFC3986].

  Interoperability considerations:  None.

  Security considerations:  See Section 11.1 of [RFC7252].
















Bormann, et al.              Standards Track                   [Page 30]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


8.2.  coaps+tcp URI Scheme

  The "coaps+tcp" URI scheme identifies CoAP resources that are
  intended to be accessible using CoAP over TCP secured with TLS.

    coaps-tcp-URI = "coaps+tcp:" "//" host [ ":" port ]
      path-abempty [ "?" query ]

  The syntax defined in Section 6.2 of [RFC7252] applies to this URI
  scheme, with the following changes:

  o  The port subcomponent indicates the TCP port at which the TLS
     server for the CoAP Connection Acceptor is located.  If it is
     empty or not given, then the default port 5684 is assumed.

  o  If a TLS server does not support the Application-Layer Protocol
     Negotiation (ALPN) extension [RFC7301] or wishes to accommodate
     TLS clients that do not support ALPN, it MAY offer a coaps+tcp
     endpoint on TCP port 5684.  This endpoint MAY also be ALPN
     enabled.  A TLS server MAY offer coaps+tcp endpoints on ports
     other than TCP port 5684, which MUST be ALPN enabled.

  o  For TCP ports other than port 5684, the TLS client MUST use the
     ALPN extension to advertise the "coap" protocol identifier (see
     Section 11.7) in the list of protocols in its ClientHello.  If the
     TCP server selects and returns the "coap" protocol identifier
     using the ALPN extension in its ServerHello, then the connection
     succeeds.  If the TLS server either does not negotiate the ALPN
     extension or returns a no_application_protocol alert, the TLS
     client MUST close the connection.

  o  For TCP port 5684, a TLS client MAY use the ALPN extension to
     advertise the "coap" protocol identifier in the list of protocols
     in its ClientHello.  If the TLS server selects and returns the
     "coap" protocol identifier using the ALPN extension in its
     ServerHello, then the connection succeeds.  If the TLS server
     returns a no_application_protocol alert, then the TLS client MUST
     close the connection.  If the TLS server does not negotiate the
     ALPN extension, then coaps+tcp is implicitly selected.

  o  For TCP port 5684, if the TLS client does not use the ALPN
     extension to negotiate the protocol, then coaps+tcp is implicitly
     selected.








Bormann, et al.              Standards Track                   [Page 31]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  Encoding considerations:  The scheme encoding conforms to the
     encoding rules established for URIs in [RFC3986].

  Interoperability considerations:  None.

  Security considerations:  See Section 11.1 of [RFC7252].

8.3.  coap+ws URI Scheme

  The "coap+ws" URI scheme identifies CoAP resources that are intended
  to be accessible using CoAP over WebSockets.

    coap-ws-URI = "coap+ws:" "//" host [ ":" port ]
      path-abempty [ "?" query ]

  The port subcomponent is OPTIONAL.  The default is port 80.

  The WebSocket endpoint is identified by a "ws" URI that is composed
  of the authority part of the "coap+ws" URI and the well-known path
  "/.well-known/coap" [RFC5785] [RFC8307].  Within the endpoint
  specified in a "coap+ws" URI, the path and query parts of the URI
  identify a resource that can be operated on by the methods defined
  by CoAP:

            coap+ws://example.org/sensors/temperature?u=Cel
                 \______  ______/\___________  ___________/
                        \/                   \/
                                           Uri-Path: "sensors"
      ws://example.org/.well-known/coap    Uri-Path: "temperature"
                                           Uri-Query: "u=Cel"

                   Figure 15: The "coap+ws" URI Scheme

  Encoding considerations:  The scheme encoding conforms to the
     encoding rules established for URIs in [RFC3986].

  Interoperability considerations:  None.

  Security considerations:  See Section 11.1 of [RFC7252].












Bormann, et al.              Standards Track                   [Page 32]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


8.4.  coaps+ws URI Scheme

  The "coaps+ws" URI scheme identifies CoAP resources that are intended
  to be accessible using CoAP over WebSockets secured by TLS.

    coaps-ws-URI = "coaps+ws:" "//" host [ ":" port ]
      path-abempty [ "?" query ]

  The port subcomponent is OPTIONAL.  The default is port 443.

  The WebSocket endpoint is identified by a "wss" URI that is composed
  of the authority part of the "coaps+ws" URI and the well-known path
  "/.well-known/coap" [RFC5785] [RFC8307].  Within the endpoint
  specified in a "coaps+ws" URI, the path and query parts of the URI
  identify a resource that can be operated on by the methods defined
  by CoAP:

            coaps+ws://example.org/sensors/temperature?u=Cel
                  \______  ______/\___________  ___________/
                         \/                   \/
                                           Uri-Path: "sensors"
      wss://example.org/.well-known/coap   Uri-Path: "temperature"
                                           Uri-Query: "u=Cel"

                  Figure 16: The "coaps+ws" URI Scheme

  Encoding considerations:  The scheme encoding conforms to the
     encoding rules established for URIs in [RFC3986].

  Interoperability considerations:  None.

  Security considerations:  See Section 11.1 of [RFC7252].

8.5.  Uri-Host and Uri-Port Options

  CoAP over reliable transports maintains the property from
  Section 5.10.1 of [RFC7252]:

     The default values for the Uri-Host and Uri-Port Options are
     sufficient for requests to most servers.

  Unless otherwise noted, the default value of the Uri-Host Option is
  the IP literal representing the destination IP address of the request
  message.  The default value of the Uri-Port Option is the destination
  TCP port.






Bormann, et al.              Standards Track                   [Page 33]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  For CoAP over TLS, these default values are the same, unless Server
  Name Indication (SNI) [RFC6066] is negotiated.  In this case, the
  default value of the Uri-Host Option in requests from the TLS client
  to the TLS server is the SNI host.

  For CoAP over WebSockets, the default value of the Uri-Host Option in
  requests from the WebSocket client to the WebSocket server is
  indicated by the Host header field from the WebSocket handshake.

8.6.  Decomposing URIs into Options

  The steps are the same as those specified in Section 6.4 of
  [RFC7252], with minor changes:

  This step from [RFC7252]:

  3.  If |url| does not have a <scheme> component whose value, when
      converted to ASCII lowercase, is "coap" or "coaps", then fail
      this algorithm.

  is updated to:

  3.  If |url| does not have a <scheme> component whose value, when
      converted to ASCII lowercase, is "coap+tcp", "coaps+tcp",
      "coap+ws", or "coaps+ws", then fail this algorithm.

  This step from [RFC7252]:

  7.  If |port| does not equal the request's destination UDP port,
      include a Uri-Port Option and let that option's value be |port|.

  is updated to:

  7.  If |port| does not equal the request's destination TCP port,
      include a Uri-Port Option and let that option's value be |port|.
















Bormann, et al.              Standards Track                   [Page 34]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


8.7.  Composing URIs from Options

  The steps are the same as those specified in Section 6.5 of
  [RFC7252], with minor changes:

  This step from [RFC7252]:

  1.  If the request is secured using DTLS, let |url| be the string
      "coaps://".  Otherwise, let |url| be the string "coap://".

  is updated to:

  1.  For CoAP over TCP, if the request is secured using TLS, let |url|
      be the string "coaps+tcp://".  Otherwise, let |url| be the string
      "coap+tcp://".  For CoAP over WebSockets, if the request is
      secured using TLS, let |url| be the string "coaps+ws://".
      Otherwise, let |url| be the string "coap+ws://".

  This step from [RFC7252]:

  4.  If the request includes a Uri-Port Option, let |port| be that
      option's value.  Otherwise, let |port| be the request's
      destination UDP port.

  is updated to:

  4.  If the request includes a Uri-Port Option, let |port| be that
      option's value.  Otherwise, let |port| be the request's
      destination TCP port.

9.  Securing CoAP

  "Security Challenges For the Internet Of Things" [SecurityChallenges]
  recommends the following:

     ... it is essential that IoT protocol suites specify a mandatory
     to implement but optional to use security solution.  This will
     ensure security is available in all implementations, but
     configurable to use when not necessary (e.g., in closed
     environment). ... even if those features stretch the capabilities
     of such devices.

  A security solution MUST be implemented to protect CoAP over reliable
  transports and MUST be enabled by default.  This document defines the
  TLS binding, but alternative solutions at different layers in the
  protocol stack MAY be used to protect CoAP over reliable transports





Bormann, et al.              Standards Track                   [Page 35]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  when appropriate.  Note that there is ongoing work to support a data-
  object-based security model for CoAP that is independent of transport
  (see [OSCORE]).

9.1.  TLS Binding for CoAP over TCP

  The TLS usage guidance in [RFC7925] applies, including the guidance
  about cipher suites in that document that are derived from the
  mandatory-to-implement cipher suites defined in [RFC7252].

  This guidance assumes implementation in a constrained device or for
  communication with a constrained device.  However, CoAP over TCP/TLS
  has a wider applicability.  It may, for example, be implemented on a
  gateway or on a device that is less constrained (such as a smart
  phone or a tablet), for communication with a peer that is likewise
  less constrained, or within a back-end environment that only
  communicates with constrained devices via proxies.  As an exception
  to the previous paragraph, in this case, the recommendations in
  [RFC7525] are more appropriate.

  Since the guidance offered in [RFC7925] differs from the guidance
  offered in [RFC7525] in terms of algorithms and credential types, it
  is assumed that an implementation of CoAP over TCP/TLS that needs to
  support both cases implements the recommendations offered by both
  specifications.

  During the provisioning phase, a CoAP device is provided with the
  security information that it needs, including keying materials,
  access control lists, and authorization servers.  At the end of the
  provisioning phase, the device will be in one of four security modes:

  NoSec:  TLS is disabled.

  PreSharedKey:  TLS is enabled.  The guidance in Section 4.2 of
     [RFC7925] applies.

  RawPublicKey:  TLS is enabled.  The guidance in Section 4.3 of
     [RFC7925] applies.

  Certificate:  TLS is enabled.  The guidance in Section 4.4 of
     [RFC7925] applies.

  The "NoSec" mode is optional to implement.  The system simply sends
  the packets over normal TCP; this is indicated by the "coap+tcp"
  scheme and the TCP CoAP default port.  The system is secured only by
  keeping attackers from being able to send or receive packets from the
  network with the CoAP nodes.




Bormann, et al.              Standards Track                   [Page 36]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  "PreSharedKey", "RawPublicKey", or "Certificate" is mandatory to
  implement for the TLS binding, depending on the credential type used
  with the device.  These security modes are achieved using TLS and
  are indicated by the "coaps+tcp" scheme and TLS-secured CoAP
  default port.

9.2.  TLS Usage for CoAP over WebSockets

  A CoAP client requesting a resource identified by a "coaps+ws" URI
  negotiates a secure WebSocket connection to a WebSocket server
  endpoint with a "wss" URI.  This is described in Section 8.4.

  The client MUST perform a TLS handshake after opening the connection
  to the server.  The guidance in Section 4.1 of [RFC6455] applies.
  When a CoAP server exposes resources identified by a "coaps+ws" URI,
  the guidance in Section 4.4 of [RFC7925] applies towards mandatory-
  to-implement TLS functionality for certificates.  For the server-side
  requirements for accepting incoming connections over an HTTPS
  (HTTP over TLS) port, the guidance in Section 4.2 of [RFC6455]
  applies.

  Note that the guidance above formally inherits the mandatory-to-
  implement cipher suites defined in [RFC5246].  However, modern
  browsers usually implement cipher suites that are more recent; these
  cipher suites are then automatically picked up via the JavaScript
  WebSocket API.  WebSocket servers that provide secure CoAP over
  WebSockets for the browser use case will need to follow the browser
  preferences and MUST follow [RFC7525].

10.  Security Considerations

  The security considerations of [RFC7252] apply.  For CoAP over
  WebSockets and CoAP over TLS-secured WebSockets, the security
  considerations of [RFC6455] also apply.

10.1.  Signaling Messages

  The guidance given by an Alternative-Address Option cannot be
  followed blindly.  In particular, a peer MUST NOT assume that a
  successful connection to the Alternative-Address inherits all the
  security properties of the current connection.










Bormann, et al.              Standards Track                   [Page 37]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


11.  IANA Considerations

11.1.  Signaling Codes

  IANA has created a third subregistry for values of the Code field in
  the CoAP header (Section 12.1 of [RFC7252]).  The name of this
  subregistry is "CoAP Signaling Codes".

  Each entry in the subregistry must include the Signaling Code in the
  range 7.00-7.31, its name, and a reference to its documentation.

  Initial entries in this subregistry are as follows:

                     +------+---------+-----------+
                     | Code | Name    | Reference |
                     +------+---------+-----------+
                     | 7.01 | CSM     | RFC 8323  |
                     |      |         |           |
                     | 7.02 | Ping    | RFC 8323  |
                     |      |         |           |
                     | 7.03 | Pong    | RFC 8323  |
                     |      |         |           |
                     | 7.04 | Release | RFC 8323  |
                     |      |         |           |
                     | 7.05 | Abort   | RFC 8323  |
                     +------+---------+-----------+

                      Table 1: CoAP Signaling Codes

  All other Signaling Codes are Unassigned.

  The IANA policy for future additions to this subregistry is
  "IETF Review" or "IESG Approval" as described in [RFC8126].

11.2.  CoAP Signaling Option Numbers Registry

  IANA has created a subregistry for Option Numbers used in CoAP
  Signaling Options within the "Constrained RESTful Environments (CoRE)
  Parameters" registry.  The name of this subregistry is "CoAP
  Signaling Option Numbers".

  Each entry in the subregistry must include one or more of the codes
  in the "CoAP Signaling Codes" subregistry (Section 11.1), the number
  for the Option, the name of the Option, and a reference to the
  Option's documentation.






Bormann, et al.              Standards Track                   [Page 38]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  Initial entries in this subregistry are as follows:

        +------------+--------+---------------------+-----------+
        | Applies to | Number | Name                | Reference |
        +------------+--------+---------------------+-----------+
        | 7.01       |      2 | Max-Message-Size    |  RFC 8323 |
        |            |        |                     |           |
        | 7.01       |      4 | Block-Wise-Transfer |  RFC 8323 |
        |            |        |                     |           |
        | 7.02, 7.03 |      2 | Custody             |  RFC 8323 |
        |            |        |                     |           |
        | 7.04       |      2 | Alternative-Address |  RFC 8323 |
        |            |        |                     |           |
        | 7.04       |      4 | Hold-Off            |  RFC 8323 |
        |            |        |                     |           |
        | 7.05       |      2 | Bad-CSM-Option      |  RFC 8323 |
        +------------+--------+---------------------+-----------+

                  Table 2: CoAP Signaling Option Codes

  The IANA policy for future additions to this subregistry is based on
  number ranges for the option numbers, analogous to the policy defined
  in Section 12.2 of [RFC7252].  (The policy is analogous rather than
  identical because the structure of this subregistry includes an
  additional column ("Applies to"); however, the value of this column
  has no influence on the policy.)

  The documentation for a Signaling Option Number should specify the
  semantics of an option with that number, including the following
  properties:

  o  Whether the option is critical or elective, as determined by the
     Option Number.

  o  Whether the option is repeatable.

  o  The format and length of the option's value.

  o  The base value for the option, if any.












Bormann, et al.              Standards Track                   [Page 39]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


11.3.  Service Name and Port Number Registration

  IANA has assigned the port number 5683 and the service name "coap",
  in accordance with [RFC6335].

  Service Name:
     coap

  Transport Protocol:
     tcp

  Assignee:
     IESG <[email protected]>

  Contact:
     IETF Chair <[email protected]>

  Description:
     Constrained Application Protocol (CoAP)

  Reference:
     RFC 8323

  Port Number:
     5683

11.4.  Secure Service Name and Port Number Registration

  IANA has assigned the port number 5684 and the service name "coaps",
  in accordance with [RFC6335].  The port number is to address the
  exceptional case of TLS implementations that do not support the ALPN
  extension [RFC7301].

  Service Name:
     coaps

  Transport Protocol:
     tcp

  Assignee:
     IESG <[email protected]>

  Contact:
     IETF Chair <[email protected]>

  Description:
     Constrained Application Protocol (CoAP)




Bormann, et al.              Standards Track                   [Page 40]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  Reference:
     [RFC7301], RFC 8323

  Port Number:
     5684

11.5.  URI Scheme Registration

  URI schemes are registered within the "Uniform Resource Identifier
  (URI) Schemes" registry maintained at [IANA.uri-schemes].

  Note: The following has been added as a note for each of the URI
  schemes defined in this document:

     CoAP registers different URI schemes for accessing CoAP resources
     via different protocols.  This approach runs counter to the WWW
     principle that a URI identifies a resource and that multiple URIs
     for identifying the same resource should be avoided
     <https://www.w3.org/TR/webarch/#avoid-uri-aliases>.

  This is not a problem for many of the usage scenarios envisioned for
  CoAP over reliable transports; additional URI schemes can be
  introduced to address additional usage scenarios (as being prepared,
  for example, in [Multi-Transport-URIs] and [CoAP-Alt-Transports]).

11.5.1.  coap+tcp

  IANA has registered the URI scheme "coap+tcp".  This registration
  request complies with [RFC7595].

  Scheme name:
     coap+tcp

  Status:
     Permanent

  Applications/protocols that use this scheme name:
     The scheme is used by CoAP endpoints to access CoAP resources
     using TCP.

  Contact:
     IETF Chair <[email protected]>

  Change controller:
     IESG <[email protected]>

  Reference:
     Section 8.1 in RFC 8323



Bormann, et al.              Standards Track                   [Page 41]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


11.5.2.  coaps+tcp

  IANA has registered the URI scheme "coaps+tcp".  This registration
  request complies with [RFC7595].

  Scheme name:
     coaps+tcp

  Status:
     Permanent

  Applications/protocols that use this scheme name:
     The scheme is used by CoAP endpoints to access CoAP resources
     using TLS.

  Contact:
     IETF Chair <[email protected]>

  Change controller:
     IESG <[email protected]>

  Reference:
     Section 8.2 in RFC 8323

11.5.3.  coap+ws

  IANA has registered the URI scheme "coap+ws".  This registration
  request complies with [RFC7595].

  Scheme name:
     coap+ws

  Status:
     Permanent

  Applications/protocols that use this scheme name:
     The scheme is used by CoAP endpoints to access CoAP resources
     using the WebSocket Protocol.

  Contact:
     IETF Chair <[email protected]>

  Change controller:
     IESG <[email protected]>

  Reference:
     Section 8.3 in RFC 8323




Bormann, et al.              Standards Track                   [Page 42]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


11.5.4.  coaps+ws

  IANA has registered the URI scheme "coaps+ws".  This registration
  request complies with [RFC7595].

  Scheme name:
     coaps+ws

  Status:
     Permanent

  Applications/protocols that use this scheme name:
     The scheme is used by CoAP endpoints to access CoAP resources
     using the WebSocket Protocol secured with TLS.

  Contact:
     IETF Chair <[email protected]>

  Change controller:
     IESG <[email protected]>

  References:
     Section 8.4 in RFC 8323

11.6.  Well-Known URI Suffix Registration

  IANA has registered "coap" in the "Well-Known URIs" registry.  This
  registration request complies with [RFC5785].

  URI suffix:
     coap

  Change controller:
     IETF

  Specification document(s):
     RFC 8323

  Related information:
     None.











Bormann, et al.              Standards Track                   [Page 43]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


11.7.  ALPN Protocol Identifier

  IANA has assigned the following value in the "Application-Layer
  Protocol Negotiation (ALPN) Protocol IDs" registry created by
  [RFC7301].  The "coap" string identifies CoAP when used over TLS.

  Protocol:
     CoAP

  Identification Sequence:
     0x63 0x6f 0x61 0x70 ("coap")

  Reference:
     RFC 8323

11.8.  WebSocket Subprotocol Registration

  IANA has registered the WebSocket CoAP subprotocol in the "WebSocket
  Subprotocol Name Registry":

  Subprotocol Identifier:
     coap

  Subprotocol Common Name:
     Constrained Application Protocol (CoAP)

  Subprotocol Definition:
     RFC 8323

11.9.  CoAP Option Numbers Registry

  IANA has added this document as a reference for the following entries
  registered by [RFC7959] in the "CoAP Option Numbers" subregistry
  defined by [RFC7252]:

                +--------+--------+--------------------+
                | Number | Name   | Reference          |
                +--------+--------+--------------------+
                | 23     | Block2 | RFC 7959, RFC 8323 |
                |        |        |                    |
                | 27     | Block1 | RFC 7959, RFC 8323 |
                +--------+--------+--------------------+

                      Table 3: CoAP Option Numbers







Bormann, et al.              Standards Track                   [Page 44]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


12.  References

12.1.  Normative References

  [RFC793]   Postel, J., "Transmission Control Protocol", STD 7,
             RFC 793, DOI 10.17487/RFC0793, September 1981,
             <https://www.rfc-editor.org/info/rfc793>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
             Resource Identifier (URI): Generic Syntax", STD 66,
             RFC 3986, DOI 10.17487/RFC3986, January 2005,
             <https://www.rfc-editor.org/info/rfc3986>.

  [RFC5234]  Crocker, D., Ed., and P. Overell, "Augmented BNF for
             Syntax Specifications: ABNF", STD 68, RFC 5234,
             DOI 10.17487/RFC5234, January 2008,
             <https://www.rfc-editor.org/info/rfc5234>.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246,
             DOI 10.17487/RFC5246, August 2008,
             <https://www.rfc-editor.org/info/rfc5246>.

  [RFC5785]  Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
             Uniform Resource Identifiers (URIs)", RFC 5785,
             DOI 10.17487/RFC5785, April 2010,
             <https://www.rfc-editor.org/info/rfc5785>.

  [RFC6066]  Eastlake 3rd, D., "Transport Layer Security (TLS)
             Extensions: Extension Definitions", RFC 6066,
             DOI 10.17487/RFC6066, January 2011,
             <https://www.rfc-editor.org/info/rfc6066>.

  [RFC6455]  Fette, I. and A. Melnikov, "The WebSocket Protocol",
             RFC 6455, DOI 10.17487/RFC6455, December 2011,
             <https://www.rfc-editor.org/info/rfc6455>.

  [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
             Application Protocol (CoAP)", RFC 7252,
             DOI 10.17487/RFC7252, June 2014,
             <https://www.rfc-editor.org/info/rfc7252>.





Bormann, et al.              Standards Track                   [Page 45]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  [RFC7301]  Friedl, S., Popov, A., Langley, A., and E. Stephan,
             "Transport Layer Security (TLS) Application-Layer Protocol
             Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
             July 2014, <https://www.rfc-editor.org/info/rfc7301>.

  [RFC7525]  Sheffer, Y., Holz, R., and P. Saint-Andre,
             "Recommendations for Secure Use of Transport Layer
             Security (TLS) and Datagram Transport Layer Security
             (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525,
             May 2015, <https://www.rfc-editor.org/info/rfc7525>.

  [RFC7595]  Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines
             and Registration Procedures for URI Schemes", BCP 35,
             RFC 7595, DOI 10.17487/RFC7595, June 2015,
             <https://www.rfc-editor.org/info/rfc7595>.

  [RFC7641]  Hartke, K., "Observing Resources in the Constrained
             Application Protocol (CoAP)", RFC 7641,
             DOI 10.17487/RFC7641, September 2015,
             <https://www.rfc-editor.org/info/rfc7641>.

  [RFC7925]  Tschofenig, H., Ed., and T. Fossati, "Transport Layer
             Security (TLS) / Datagram Transport Layer Security (DTLS)
             Profiles for the Internet of Things", RFC 7925,
             DOI 10.17487/RFC7925, July 2016,
             <https://www.rfc-editor.org/info/rfc7925>.

  [RFC7959]  Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
             the Constrained Application Protocol (CoAP)", RFC 7959,
             DOI 10.17487/RFC7959, August 2016,
             <https://www.rfc-editor.org/info/rfc7959>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in
             RFC 2119 Key Words", BCP 14, RFC 8174,
             DOI 10.17487/RFC8174, May 2017,
             <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8307]  Bormann, C., "Well-Known URIs for the WebSocket Protocol",
             RFC 8307, DOI 10.17487/RFC8307, January 2018,
             <https://www.rfc-editor.org/info/rfc8307>.






Bormann, et al.              Standards Track                   [Page 46]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


12.2.  Informative References

  [BK2015]   Byrne, C. and J. Kleberg, "Advisory Guidelines for UDP
             Deployment", Work in Progress, draft-byrne-opsec-udp-
             advisory-00, July 2015.

  [CoAP-Alt-Transports]
             Silverajan, B. and T. Savolainen, "CoAP Communication with
             Alternative Transports", Work in Progress,
             draft-silverajan-core-coap-alternative-transports-10,
             July 2017.

  [CoCoA]    Bormann, C., Betzler, A., Gomez, C., and I. Demirkol,
             "CoAP Simple Congestion Control/Advanced", Work in
             Progress, draft-ietf-core-cocoa-02, October 2017.

  [EK2016]   Edeline, K., Kuehlewind, M., Trammell, B., Aben, E., and
             B. Donnet, "Using UDP for Internet Transport Evolution",
             arXiv preprint 1612.07816, December 2016,
             <https://arxiv.org/abs/1612.07816>.

  [HomeGateway]
             Haetoenen, S., Nyrhinen, A., Eggert, L., Strowes, S.,
             Sarolahti, P., and N. Kojo, "An experimental study of home
             gateway characteristics", Proceedings of the 10th ACM
             SIGCOMM conference on Internet measurement,
             DOI 10.1145/1879141.1879174, November 2010.

  [IANA.uri-schemes]
             IANA, "Uniform Resource Identifier (URI) Schemes",
             <https://www.iana.org/assignments/uri-schemes>.

  [LWM2M]    Open Mobile Alliance, "Lightweight Machine to Machine
             Technical Specification Version 1.0", February 2017,
             <http://www.openmobilealliance.org/release/LightweightM2M/
             V1_0-20170208-A/
             OMA-TS-LightweightM2M-V1_0-20170208-A.pdf>.

  [Multi-Transport-URIs]
             Thaler, D., "Using URIs With Multiple Transport Stacks",
             Work in Progress, draft-thaler-appsawg-multi-transport-
             uris-01, July 2017.

  [OSCORE]   Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
             "Object Security for Constrained RESTful Environments
             (OSCORE)", Work in Progress, draft-ietf-core-object-
             security-08, January 2018.




Bormann, et al.              Standards Track                   [Page 47]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  [RFC768]   Postel, J., "User Datagram Protocol", STD 6, RFC 768,
             DOI 10.17487/RFC0768, August 1980,
             <https://www.rfc-editor.org/info/rfc768>.

  [RFC6335]  Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
             Cheshire, "Internet Assigned Numbers Authority (IANA)
             Procedures for the Management of the Service Name and
             Transport Protocol Port Number Registry", BCP 165,
             RFC 6335, DOI 10.17487/RFC6335, August 2011,
             <https://www.rfc-editor.org/info/rfc6335>.

  [RFC6347]  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
             Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
             January 2012, <https://www.rfc-editor.org/info/rfc6347>.

  [RFC7230]  Fielding, R., Ed., and J. Reschke, Ed., "Hypertext
             Transfer Protocol (HTTP/1.1): Message Syntax and Routing",
             RFC 7230, DOI 10.17487/RFC7230, June 2014,
             <https://www.rfc-editor.org/info/rfc7230>.

  [RFC7540]  Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
             Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
             DOI 10.17487/RFC7540, May 2015,
             <https://www.rfc-editor.org/info/rfc7540>.

  [SecurityChallenges]
             Polk, T. and S. Turner, "Security Challenges For the
             Internet Of Things", Interconnecting Smart Objects with
             the Internet / IAB Workshop, February 2011,
             <https://www.iab.org/wp-content/IAB-uploads/2011/03/
             Turner.pdf>.

  [SW2016]   Swett, I., "QUIC Deployment Experience @Google", IETF 96
             Proceedings, Berlin, Germany, July 2016,
             <https://www.ietf.org/proceedings/96/slides/
             slides-96-quic-3.pdf>.

  [TCP-in-IoT]
             Gomez, C., Crowcroft, J., and M. Scharf, "TCP Usage
             Guidance in the Internet of Things (IoT)", Work in
             Progress, draft-ietf-lwig-tcp-constrained-node-
             networks-01, October 2017.









Bormann, et al.              Standards Track                   [Page 48]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


Appendix A.  Examples of CoAP over WebSockets

  This appendix gives examples for the first two configurations
  discussed in Section 4.

  An example of the process followed by a CoAP client to retrieve the
  representation of a resource identified by a "coap+ws" URI might be
  as follows.  Figure 17 below illustrates the WebSocket and CoAP
  messages exchanged in detail.

  1.  The CoAP client obtains the URI
      <coap+ws://example.org/sensors/temperature?u=Cel>, for example,
      from a resource representation that it retrieved previously.

  2.  The CoAP client establishes a WebSocket connection to the
      endpoint URI composed of the authority "example.org" and the
      well-known path "/.well-known/coap",
      <ws://example.org/.well-known/coap>.

  3.  CSMs (Section 5.3) are exchanged (not shown).

  4.  The CoAP client sends a single-frame, masked, binary message
      containing a CoAP request.  The request indicates the target
      resource with the Uri-Path ("sensors", "temperature") and
      Uri-Query ("u=Cel") Options.

  5.  The CoAP client waits for the server to return a response.

  6.  The CoAP client uses the connection for further requests, or the
      connection is closed.





















Bormann, et al.              Standards Track                   [Page 49]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


     CoAP        CoAP
    Client      Server
  (WebSocket  (WebSocket
    Client)     Server)

       |          |
       |          |
       +=========>|  GET /.well-known/coap HTTP/1.1
       |          |  Host: example.org
       |          |  Upgrade: websocket
       |          |  Connection: Upgrade
       |          |  Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
       |          |  Sec-WebSocket-Protocol: coap
       |          |  Sec-WebSocket-Version: 13
       |          |
       |<=========+  HTTP/1.1 101 Switching Protocols
       |          |  Upgrade: websocket
       |          |  Connection: Upgrade
       |          |  Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
       |          |  Sec-WebSocket-Protocol: coap
       :          :
       :<-------->:  Exchange of CSMs (not shown)
       |          |
       +--------->|  Binary frame (opcode=%x2, FIN=1, MASK=1)
       |          |    +-------------------------+
       |          |    | GET                     |
       |          |    | Token: 0x53             |
       |          |    | Uri-Path: "sensors"     |
       |          |    | Uri-Path: "temperature" |
       |          |    | Uri-Query: "u=Cel"      |
       |          |    +-------------------------+
       |          |
       |<---------+  Binary frame (opcode=%x2, FIN=1, MASK=0)
       |          |    +-------------------------+
       |          |    | 2.05 Content            |
       |          |    | Token: 0x53             |
       |          |    | Payload: "22.3 Cel"     |
       |          |    +-------------------------+
       :          :
       :          :
       +--------->|  Close frame (opcode=%x8, FIN=1, MASK=1)
       |          |
       |<---------+  Close frame (opcode=%x8, FIN=1, MASK=0)
       |          |

   Figure 17: A CoAP Client Retrieves the Representation of a Resource
                      Identified by a "coap+ws" URI




Bormann, et al.              Standards Track                   [Page 50]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  Figure 18 shows how a CoAP client uses a CoAP forward proxy with a
  WebSocket endpoint to retrieve the representation of the resource
  "coap://[2001:db8::1]/".  The use of the forward proxy and the
  address of the WebSocket endpoint are determined by the client from
  local configuration rules.  The request URI is specified in the
  Proxy-Uri Option.  Since the request URI uses the "coap" URI scheme,
  the proxy fulfills the request by issuing a Confirmable GET request
  over UDP to the CoAP server and returning the response over the
  WebSocket connection to the client.

    CoAP        CoAP       CoAP
   Client      Proxy      Server
 (WebSocket  (WebSocket    (UDP
   Client)     Server)   Endpoint)

      |          |          |
      +--------->|          |  Binary frame (opcode=%x2, FIN=1, MASK=1)
      |          |          |    +------------------------------------+
      |          |          |    | GET                                |
      |          |          |    | Token: 0x7d                        |
      |          |          |    | Proxy-Uri: "coap://[2001:db8::1]/" |
      |          |          |    +------------------------------------+
      |          |          |
      |          +--------->|  CoAP message (Ver=1, T=Con, MID=0x8f54)
      |          |          |    +------------------------------------+
      |          |          |    | GET                                |
      |          |          |    | Token: 0x0a15                      |
      |          |          |    +------------------------------------+
      |          |          |
      |          |<---------+  CoAP message (Ver=1, T=Ack, MID=0x8f54)
      |          |          |    +------------------------------------+
      |          |          |    | 2.05 Content                       |
      |          |          |    | Token: 0x0a15                      |
      |          |          |    | Payload: "ready"                   |
      |          |          |    +------------------------------------+
      |          |          |
      |<---------+          |  Binary frame (opcode=%x2, FIN=1, MASK=0)
      |          |          |    +------------------------------------+
      |          |          |    | 2.05 Content                       |
      |          |          |    | Token: 0x7d                        |
      |          |          |    | Payload: "ready"                   |
      |          |          |    +------------------------------------+
      |          |          |

   Figure 18: A CoAP Client Retrieves the Representation of a Resource
      Identified by a "coap" URI via a WebSocket-Enabled CoAP Proxy





Bormann, et al.              Standards Track                   [Page 51]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


Acknowledgments

  We would like to thank Stephen Berard, Geoffrey Cristallo, Olivier
  Delaby, Esko Dijk, Christian Groves, Nadir Javed, Michael Koster,
  Achim Kraus, David Navarro, Szymon Sasin, Goeran Selander, Zach
  Shelby, Andrew Summers, Julien Vermillard, and Gengyu Wei for their
  feedback.

  Last Call reviews from Yoshifumi Nishida, Mark Nottingham, and Meral
  Shirazipour as well as several IESG reviewers provided extensive
  comments; from the IESG, we would like to specifically call out Ben
  Campbell, Mirja Kuehlewind, Eric Rescorla, Adam Roach, and the
  responsible AD Alexey Melnikov.

Contributors

  Matthias Kovatsch
  Siemens AG
  Otto-Hahn-Ring 6
  Munich  D-81739
  Germany

  Phone: +49-173-5288856
  Email: [email protected]


  Teemu Savolainen
  Nokia Technologies
  Hatanpaan valtatie 30
  Tampere  FI-33100
  Finland

  Email: [email protected]


  Valik Solorzano Barboza
  Zebra Technologies
  820 W. Jackson Blvd. Suite 700
  Chicago, IL  60607
  United States of America

  Phone: +1-847-634-6700
  Email: [email protected]








Bormann, et al.              Standards Track                   [Page 52]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


Authors' Addresses

  Carsten Bormann
  Universitaet Bremen TZI
  Postfach 330440
  Bremen  D-28359
  Germany

  Phone: +49-421-218-63921
  Email: [email protected]


  Simon Lemay
  Zebra Technologies
  820 W. Jackson Blvd. Suite 700
  Chicago, IL  60607
  United States of America

  Phone: +1-847-634-6700
  Email: [email protected]


  Hannes Tschofenig
  ARM Ltd.
  110 Fulbourn Road
  Cambridge  CB1 9NJ
  United Kingdom

  Email: [email protected]
  URI:   http://www.tschofenig.priv.at


  Klaus Hartke
  Universitaet Bremen TZI
  Postfach 330440
  Bremen  D-28359
  Germany

  Phone: +49-421-218-63905
  Email: [email protected]











Bormann, et al.              Standards Track                   [Page 53]

RFC 8323         TCP/TLS/WebSockets Transports for CoAP    February 2018


  Bilhanan Silverajan
  Tampere University of Technology
  Korkeakoulunkatu 10
  Tampere  FI-33720
  Finland

  Email: [email protected]


  Brian Raymor (editor)

  Email: [email protected]







































Bormann, et al.              Standards Track                   [Page 54]