Internet Engineering Task Force (IETF)                     P. Quinn, Ed.
Request for Comments: 8300                                         Cisco
Category: Standards Track                                  U. Elzur, Ed.
ISSN: 2070-1721                                                    Intel
                                                      C. Pignataro, Ed.
                                                                  Cisco
                                                           January 2018


                     Network Service Header (NSH)

Abstract

  This document describes a Network Service Header (NSH) imposed on
  packets or frames to realize Service Function Paths (SFPs).  The NSH
  also provides a mechanism for metadata exchange along the
  instantiated service paths.  The NSH is the Service Function Chaining
  (SFC) encapsulation required to support the SFC architecture (defined
  in RFC 7665).

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8300.

Copyright Notice

  Copyright (c) 2018 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.



Quinn, et al.                Standards Track                    [Page 1]

RFC 8300              Network Service Header (NSH)          January 2018


Table of Contents

  1. Introduction ....................................................3
     1.1. Applicability ..............................................4
     1.2. Requirements Language ......................................4
     1.3. Definition of Terms ........................................4
     1.4. Problem Space ..............................................6
     1.5. NSH-Based Service Chaining .................................6
  2. Network Service Header ..........................................7
     2.1. Network Service Header Format ..............................7
     2.2. NSH Base Header ............................................8
     2.3. Service Path Header .......................................11
     2.4. NSH MD Type 1 .............................................12
     2.5. NSH MD Type 2 .............................................13
          2.5.1. Optional Variable-Length Metadata ..................13
  3. NSH Actions ....................................................15
  4. NSH Transport Encapsulation ....................................16
  5. Fragmentation Considerations ...................................17
  6. Service Path Forwarding with NSH ...............................18
     6.1. SFFs and Overlay Selection ................................18
     6.2. Mapping the NSH to Network Topology .......................21
     6.3. Service Plane Visibility ..................................21
     6.4. Service Graphs ............................................22
  7. Policy Enforcement with NSH ....................................22
     7.1. NSH Metadata and Policy Enforcement .......................22
     7.2. Updating/Augmenting Metadata ..............................24
     7.3. Service Path Identifier and Metadata ......................25
  8. Security Considerations ........................................26
     8.1. NSH Security Considerations from Operators' Environments ..27
     8.2. NSH Security Considerations from the SFC Architecture .....28
          8.2.1. Integrity ..........................................29
          8.2.2. Confidentiality ....................................31
  9. IANA Considerations ............................................32
     9.1. NSH Parameters ............................................32
          9.1.1. NSH Base Header Bits ...............................32
          9.1.2. NSH Version ........................................32
          9.1.3. NSH MD Types .......................................33
          9.1.4. NSH MD Class .......................................33
          9.1.5. NSH IETF-Assigned Optional Variable-Length
                 Metadata Types .....................................34
          9.1.6. NSH Next Protocol ..................................35
  10. NSH-Related Codepoints ........................................35
     10.1. NSH Ethertype ............................................35
  11. References ....................................................36
  Acknowledgments ...................................................38
  Contributors ......................................................39
  Authors' Addresses ................................................40




Quinn, et al.                Standards Track                    [Page 2]

RFC 8300              Network Service Header (NSH)          January 2018


1.  Introduction

  Service Functions are widely deployed and essential in many networks.
  These Service Functions provide a range of features such as security,
  WAN acceleration, and server load balancing.  Service Functions may
  be instantiated at different points in the network infrastructure
  such as the WAN, data center, and so forth.

  Prior to development of the SFC architecture [RFC7665] and the
  protocol specified in this document, current Service Function
  deployment models have been relatively static and bound to topology
  for insertion and policy selection.  Furthermore, they do not adapt
  well to elastic service environments enabled by virtualization.

  New data-center network and cloud architectures require more flexible
  Service Function deployment models.  Additionally, the transition to
  virtual platforms demands an agile service insertion model that
  supports dynamic and elastic service delivery.  Specifically, the
  following functions are necessary:

  1.  The movement of Service Functions and application workloads in
      the network.

  2.  The ability to easily bind service policy to granular
      information, such as per-subscriber state.

  3.  The capability to steer traffic to the requisite Service
      Function(s).

  This document, the Network Service Header (NSH) specification,
  defines a new data-plane protocol, which is an encapsulation for
  SFCs.  The NSH is designed to encapsulate an original packet or frame
  and, in turn, be encapsulated by an outer transport encapsulation
  (which is used to deliver the NSH to NSH-aware network elements), as
  shown in Figure 1:

                    +------------------------------+
                    |    Transport Encapsulation   |
                    +------------------------------+
                    | Network Service Header (NSH) |
                    +------------------------------+
                    |    Original Packet / Frame   |
                    +------------------------------+

             Figure 1: Network Service Header Encapsulation






Quinn, et al.                Standards Track                    [Page 3]

RFC 8300              Network Service Header (NSH)          January 2018


  The NSH is composed of the following elements:

  1.  Service Function Path identification.

  2.  Indication of location within a Service Function Path.

  3.  Optional, per-packet metadata (fixed-length or variable).

  [RFC7665] provides an overview of a service chaining architecture
  that clearly defines the roles of the various elements and the scope
  of a SFC encapsulation.  Figure 3 of [RFC7665] depicts the SFC
  architectural components after classification.  The NSH is the SFC
  encapsulation referenced in [RFC7665].

1.1.  Applicability

  The NSH is designed to be easy to implement across a range of
  devices, both physical and virtual, including hardware platforms.

  The intended scope of the NSH is for use within a single provider's
  operational domain.  This deployment scope is deliberately
  constrained, as explained also in [RFC7665], and limited to a single
  network administrative domain.  In this context, a "domain" is a set
  of network entities within a single administration.  For example, a
  network administrative domain can include a single data center, or an
  overlay domain using virtual connections and tunnels.  A corollary is
  that a network administrative domain has a well-defined perimeter.

  An NSH-aware control plane is outside the scope of this document.

1.2.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

1.3.  Definition of Terms

  Byte:  All references to "bytes" in this document refer to 8-bit
     bytes, or octets.

  Classification:  Defined in [RFC7665].

  Classifier:  Defined in [RFC7665].





Quinn, et al.                Standards Track                    [Page 4]

RFC 8300              Network Service Header (NSH)          January 2018


  Metadata (MD):  Defined in [RFC7665].  The metadata, or context
     information shared between Classifiers and SFs, and among SFs, is
     carried on the NSH's Context Headers.  It allows summarizing a
     classification result in the packet itself, avoiding subsequent
     re-classifications.  Examples of metadata include classification
     information used for policy enforcement and network context for
     forwarding after service delivery.

  Network Locator:  Data-plane address, typically IPv4 or IPv6, used to
     send and receive network traffic.

  Network Node/Element:  Device that forwards packets or frames based
     on an outer header (i.e., transport encapsulation) information.

  Network Overlay:  Logical network built on top of an existing network
     (the underlay).  Packets are encapsulated or tunneled to create
     the overlay network topology.

  NSH-aware:  NSH-aware means SFC-encapsulation-aware, where the NSH
     provides the SFC encapsulation.  This specification uses NSH-aware
     as a more specific term from the more generic term "SFC-aware"
     [RFC7665].

  Service Classifier:  Logical entity providing classification
     function.  Since they are logical, Classifiers may be co-resident
     with SFC elements such as SFs or SFFs.  Service Classifiers
     perform classification and impose the NSH.  The initial Classifier
     imposes the initial NSH and sends the NSH packet to the first SFF
     in the path.  Non-initial (i.e., subsequent) classification can
     occur as needed and can alter, or create a new service path.

  Service Function (SF):  Defined in [RFC7665].

  Service Function Chain (SFC):  Defined in [RFC7665].

  Service Function Forwarder (SFF):  Defined in [RFC7665].

  Service Function Path (SFP):  Defined in [RFC7665].

  Service Plane:  The collection of SFFs and associated SFs creates a
     service-plane overlay in which all SFs and SFC Proxies reside
     [RFC7665].

  SFC Proxy:  Defined in [RFC7665].







Quinn, et al.                Standards Track                    [Page 5]

RFC 8300              Network Service Header (NSH)          January 2018


1.4.  Problem Space

  The NSH addresses several limitations associated with Service
  Function deployments.  [RFC7498] provides a comprehensive review of
  those issues.

1.5.  NSH-Based Service Chaining

  The NSH creates a dedicated service plane; more specifically, the NSH
  enables:

  1.  Topological Independence: Service forwarding occurs within the
      service plane, so the underlying network topology does not
      require modification.  The NSH provides an identifier used to
      select the network overlay for network forwarding.

  2.  Service Chaining: The NSH enables service chaining per [RFC7665].
      The NSH contains path identification information needed to
      realize a service path.  Furthermore, the NSH provides the
      ability to monitor and troubleshoot a service chain, end-to-end
      via service-specific Operations, Administration, and Maintenance
      (OAM) messages.  The NSH fields can be used by administrators
      (for example, via a traffic analyzer) to verify the path
      specifics (e.g., accounting, ensuring correct chaining, providing
      reports, etc.) of packets being forwarded along a service path.

  3.  The NSH provides a mechanism to carry shared metadata between
      participating entities and Service Functions.  The semantics of
      the shared metadata are communicated via a control plane (which
      is outside the scope of this document) to participating nodes.
      Section 3.3 of [SFC-CONTROL-PLANE] provides an example of this.
      Examples of metadata include classification information used for
      policy enforcement and network context for forwarding post
      service delivery.  Sharing the metadata allows Service Functions
      to share initial and intermediate classification results with
      downstream Service Functions saving re-classification, where
      enough information was enclosed.

  4.  The NSH offers a common and standards-based header for service
      chaining to all network and service nodes.

  5.  Transport Encapsulation Agnostic: The NSH is transport
      encapsulation independent: meaning it can be transported by a
      variety of encapsulation protocols.  An appropriate (for a given
      deployment) encapsulation protocol can be used to carry NSH-
      encapsulated traffic.  This transport encapsulation may form an





Quinn, et al.                Standards Track                    [Page 6]

RFC 8300              Network Service Header (NSH)          January 2018


      overlay network; and if an existing overlay topology provides the
      required service path connectivity, that existing overlay may be
      used.

2.  Network Service Header

  An NSH is imposed on the original packet/frame.  This NSH contains
  service path information and, optionally, metadata that are added to
  a packet or frame and used to create a service plane.  Subsequently,
  an outer transport encapsulation is imposed on the NSH, which is used
  for network forwarding.

  A Service Classifier adds the NSH.  The NSH is removed by the last
  SFF in the service chain or by an SF that consumes the packet.

2.1.  Network Service Header Format

  The NSH is composed of a 4-byte Base Header, a 4-byte Service Path
  Header, and optional Context Headers, as shown in Figure 2.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Base Header                                    |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                Service Path Header                            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    ~                Context Header(s)                              ~
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 2: Network Service Header

  Base Header:  Provides information about the service header and the
     payload protocol.

  Service Path Header:  Provides path identification and location
     within a service path.

  Context Header:  Carries metadata (i.e., context data) along a
     service path.









Quinn, et al.                Standards Track                    [Page 7]

RFC 8300              Network Service Header (NSH)          January 2018


2.2.  NSH Base Header

  Figure 3 depicts the NSH Base Header:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |Ver|O|U|    TTL    |   Length  |U|U|U|U|MD Type| Next Protocol |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                        Figure 3: NSH Base Header

  The field descriptions are as follows:

  Version:  The Version field is used to ensure backward compatibility
     going forward with future NSH specification updates.  It MUST be
     set to 0x0 by the sender, in this first revision of the NSH.  If a
     packet presumed to carry an NSH header is received at an SFF, and
     the SFF does not understand the version of the protocol as
     indicated in the base header, the packet MUST be discarded, and
     the event SHOULD be logged.  Given the widespread implementation
     of existing hardware that uses the first nibble after an MPLS
     label stack for Equal-Cost Multipath (ECMP) decision processing,
     this document reserves version 01b.  This value MUST NOT be used
     in future versions of the protocol.  Please see [RFC7325] for
     further discussion of MPLS-related forwarding requirements.

  O bit:  Setting this bit indicates an OAM packet (see [RFC6291]).
     The actual format and processing of SFC OAM packets is outside the
     scope of this specification (for example, see [SFC-OAM-FRAMEWORK]
     for one approach).

     The O bit MUST be set for OAM packets and MUST NOT be set for
     non-OAM packets.  The O bit MUST NOT be modified along the SFP.

     SF/SFF/SFC Proxy/Classifier implementations that do not support
     SFC OAM procedures SHOULD discard packets with O bit set, but MAY
     support a configurable parameter to enable forwarding received SFC
     OAM packets unmodified to the next element in the chain.
     Forwarding OAM packets unmodified by SFC elements that do not
     support SFC OAM procedures may be acceptable for a subset of OAM
     functions, but it can result in unexpected outcomes for others;
     thus, it is recommended to analyze the impact of forwarding an OAM
     packet for all OAM functions prior to enabling this behavior.  The
     configurable parameter MUST be disabled by default.






Quinn, et al.                Standards Track                    [Page 8]

RFC 8300              Network Service Header (NSH)          January 2018


  TTL:  Indicates the maximum SFF hops for an SFP.  This field is used
     for service-plane loop detection.  The initial TTL value SHOULD be
     configurable via the control plane; the configured initial value
     can be specific to one or more SFPs.  If no initial value is
     explicitly provided, the default initial TTL value of 63 MUST be
     used.  Each SFF involved in forwarding an NSH packet MUST
     decrement the TTL value by 1 prior to NSH forwarding lookup.
     Decrementing by 1 from an incoming value of 0 shall result in a
     TTL value of 63.  The packet MUST NOT be forwarded if TTL is,
     after decrement, 0.

     This TTL field is the primary loop-prevention mechanism.  This TTL
     mechanism represents a robust complement to the Service Index (see
     Section 2.3), as the TTL is decremented by each SFF.  The handling
     of an incoming 0 TTL allows for better, although not perfect,
     interoperation with pre-standard implementations that do not
     support this TTL field.

  Length:  The total length, in 4-byte words, of the NSH including the
     Base Header, the Service Path Header, the Fixed-Length Context
     Header, or Variable-Length Context Header(s).  The length MUST be
     0x6 for MD Type 0x1, and it MUST be 0x2 or greater for MD Type
     0x2.  The length of the Network Service Header MUST be an integer
     multiple of 4 bytes; thus, variable-length metadata is always
     padded out to a multiple of 4 bytes.

  Unassigned bits:  All other flag fields, marked U, are unassigned and
     available for future use; see Section 9.1.1.  Unassigned bits MUST
     be set to zero upon origination, and they MUST be ignored and
     preserved unmodified by other NSH supporting elements.  At
     reception, all elements MUST NOT modify their actions based on
     these unknown bits.

  Metadata (MD) Type:  Indicates the format of the NSH beyond the
     mandatory NSH Base Header and the Service Path Header.  MD Type
     defines the format of the metadata being carried.  Please see the
     IANA Considerations in Section 9.1.3.

     This document specifies the following four MD Type values:

     0x0:  This is a reserved value.  Implementations SHOULD silently
           discard packets with MD Type 0x0.

     0x1:  This indicates that the format of the header includes a
           Fixed-Length Context Header (see Figure 5 below).






Quinn, et al.                Standards Track                    [Page 9]

RFC 8300              Network Service Header (NSH)          January 2018


     0x2:  This does not mandate any headers beyond the Base Header and
           Service Path Header, but may contain optional Variable-
           Length Context Header(s).  With MD Type 0x2, a length of 0x2
           implies there are no Context Headers.  The semantics of the
           Variable-Length Context Header(s) are not defined in this
           document.  The format of the optional Variable-Length
           Context Headers is provided in Section 2.5.1.

     0xF:  This value is reserved for experimentation and testing, as
           per [RFC3692].  Implementations not explicitly configured to
           be part of an experiment SHOULD silently discard packets
           with MD Type 0xF.

     The format of the Base Header and the Service Path Header is
     invariant and not affected by MD Type.

     The NSH MD Type 1 and MD Type 2 are described in detail in
     Sections 2.4 and 2.5, respectively.  NSH implementations MUST
     support MD Types 0x1 and 0x2 (where the length is 0x2).  NSH
     implementations SHOULD support MD Type 0x2 with length greater
     than 0x2.  Devices that do not support MD Type 0x2 with a length
     greater than 0x2 MUST ignore any optional Context Headers and
     process the packet without them; the Base Header Length field can
     be used to determine the original payload offset if access to the
     original packet/frame is required.  This specification does not
     disallow the MD Type value from changing along an SFP; however,
     the specification of the necessary mechanism to allow the MD Type
     to change along an SFP are outside the scope of this document and
     would need to be defined for that functionality to be available.
     Packets with MD Type values not supported by an implementation
     MUST be silently dropped.

  Next Protocol:  Indicates the protocol type of the encapsulated data.
     The NSH does not alter the inner payload, and the semantics on the
     inner protocol remain unchanged due to NSH SFC.  Please see the
     IANA Considerations in Section 9.1.6.

     This document defines the following Next Protocol values:

     0x1: IPv4
     0x2: IPv6
     0x3: Ethernet
     0x4: NSH
     0x5: MPLS
     0xFE: Experiment 1
     0xFF: Experiment 2





Quinn, et al.                Standards Track                   [Page 10]

RFC 8300              Network Service Header (NSH)          January 2018


     The functionality of hierarchical NSH using a Next Protocol value
     of 0x4 (NSH) is outside the scope of this specification.  Packets
     with Next Protocol values not supported SHOULD be silently dropped
     by default, although an implementation MAY provide a configuration
     parameter to forward them.  Additionally, an implementation not
     explicitly configured for a specific experiment [RFC3692] SHOULD
     silently drop packets with Next Protocol values 0xFE and 0xFF.

2.3.  Service Path Header

  Figure 4 shows the format of the Service Path Header:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Service Path Identifier (SPI)        | Service Index |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Service Path Identifier (SPI): 24 bits
    Service Index (SI): 8 bits

                    Figure 4: NSH Service Path Header

  The meaning of these fields is as follows:

  Service Path Identifier (SPI): Uniquely identifies a Service Function
  Path (SFP).  Participating nodes MUST use this identifier for SFP
  selection.  The initial Classifier MUST set the appropriate SPI for a
  given classification result.

  Service Index (SI): Provides location within the SFP.  The initial
  Classifier for a given SFP SHOULD set the SI to 255; however, the
  control plane MAY configure the initial value of the SI as
  appropriate (i.e., taking into account the length of the SFP).  The
  Service Index MUST be decremented by a value of 1 by Service
  Functions or by SFC Proxy nodes after performing required services;
  the new decremented SI value MUST be used in the egress packet's NSH.
  The initial Classifier MUST send the packet to the first SFF in the
  identified SFP for forwarding along an SFP.  If re-classification
  occurs, and that re-classification results in a new SPI, the
  (re-)Classifier is, in effect, the initial Classifier for the
  resultant SPI.

  The SI is used in conjunction with the Service Path Identifier for
  SFP selection and for determining the next SFF/SF in the path.  The
  SI is also valuable when troubleshooting or reporting service paths.
  While the TTL provides the primary SFF-based loop prevention for this
  mechanism, SI decrement by SF serves as a limited loop-prevention



Quinn, et al.                Standards Track                   [Page 11]

RFC 8300              Network Service Header (NSH)          January 2018


  mechanism.  NSH packets, as described above, are discarded when an
  SFF decrements the TTL to 0.  In addition, an SFF that is not the
  terminal SFF for an SFP will discard any NSH packet with an SI of 0,
  as there will be no valid next SF information.

2.4.  NSH MD Type 1

  When the Base Header specifies MD Type 0x1, a Fixed-Length Context
  Header (16-bytes) MUST be present immediately following the Service
  Path Header, as per Figure 5.  The value of a Fixed-Length Context
  Header that carries no metadata MUST be set to zero.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |Ver|O|U|    TTL    |   Length  |U|U|U|U|MD Type| Next Protocol |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Service Path Identifier              | Service Index |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                 Fixed-Length Context Header                   |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                        Figure 5: NSH MD Type 0x1

  This specification does not make any assumptions about the content of
  the 16-byte Context Header that must be present when the MD Type
  field is set to 1, and it does not describe the structure or meaning
  of the included metadata.

  An SFC-aware SF or SFC Proxy needs to receive the data structure and
  semantics first in order to process the data placed in the mandatory
  context field.  The data structure and semantics include both the
  allocation schema and order as well as the meaning of the included
  data.  How an SFC-aware SF or SFC Proxy gets the data structure and
  semantics is outside the scope of this specification.

  An SF or SFC Proxy that does not know the format or semantics of the
  Context Header for an NSH with MD Type 1 MUST discard any packet with
  such an NSH (i.e., MUST NOT ignore the metadata that it cannot
  process), and MUST log the event at least once per the SPI for which
  the event occurs (subject to thresholding).

  [NSH-DC-ALLOCATION] and [NSH-BROADBAND-ALLOCATION] provide specific
  examples of how metadata can be allocated.





Quinn, et al.                Standards Track                   [Page 12]

RFC 8300              Network Service Header (NSH)          January 2018


2.5.  NSH MD Type 2

  When the Base Header specifies MD Type 0x2, zero or more Variable-
  Length Context Headers MAY be added, immediately following the
  Service Path Header (see Figure 6).  Therefore, Length = 0x2,
  indicates that only the Base Header and Service Path Header are
  present (and in that order).  The optional Variable-Length Context
  Headers MUST be of an integer number of 4-bytes.  The Base Header
  Length field MUST be used to determine the offset to locate the
  original packet or frame for SFC nodes that require access to that
  information.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |Ver|O|U|    TTL    |   Length  |U|U|U|U|MD Type| Next Protocol |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Service Path Identifier              | Service Index |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    ~              Variable-Length Context Headers  (opt.)          ~
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                        Figure 6: NSH MD Type 0x2

2.5.1.  Optional Variable-Length Metadata

  The format of the optional Variable-Length Context Headers, is as
  depicted in Figure 7.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Metadata Class       |      Type     |U|    Length   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                   Variable-Length Metadata                    |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 7: Variable-Length Context Headers

  Metadata Class (MD Class):  Defines the scope of the Type field to
     provide a hierarchical namespace.  Section 9.1.4 defines how the
     MD Class values can be allocated to standards bodies, vendors, and
     others.






Quinn, et al.                Standards Track                   [Page 13]

RFC 8300              Network Service Header (NSH)          January 2018


  Type:  Indicates the explicit type of metadata being carried.  The
     definition of the Type is the responsibility of the MD Class
     owner.

  Unassigned bit:  One unassigned bit is available for future use.
     This bit MUST NOT be set, and it MUST be ignored on receipt.

  Length:  Indicates the length of the variable-length metadata, in
     bytes.  In case the metadata length is not an integer number of
     4-byte words, the sender MUST add pad bytes immediately following
     the last metadata byte to extend the metadata to an integer number
     of 4-byte words.  The receiver MUST round the Length field up to
     the nearest 4-byte-word boundary, to locate and process the next
     field in the packet.  The receiver MUST access only those bytes in
     the metadata indicated by the Length field (i.e., actual number of
     bytes) and MUST ignore the remaining bytes up to the nearest
     4-byte-word boundary.  The length may be 0 or greater.

     A value of 0 denotes a Context Header without a Variable-Length
     Metadata field.

  This specification does not make any assumption about Context Headers
  that are mandatory to implement or those that are mandatory to
  process.  These considerations are deployment specific.  However, the
  control plane is entitled to instruct SFC-aware SFs with the data
  structure of the Context Header together with its scoping (see e.g.,
  Section 3.3.3 of [SFC-CONTROL-PLANE]).

  Upon receipt of a packet that belongs to a given SFP, if a mandatory-
  to-process Context Header is missing in that packet, the SFC-aware SF
  MUST NOT process the packet and MUST log an error at least once per
  the SPI for which the mandatory metadata is missing.

  If multiple mandatory-to-process Context Headers are required for a
  given SFP, the control plane MAY instruct the SFC-aware SF with the
  order to consume these Context Headers.  If no instructions are
  provided and the SFC-aware SF will make use of or modify the specific
  Context Header, then the SFC-aware SF MUST process these Context
  Headers in the order they appear in an NSH packet.

  If multiple instances of the same metadata are included in an NSH
  packet, but the definition of that Context Header does not allow for
  it, the SFC-aware SF MUST process the first instance and ignore
  subsequent instances.  The SFC-aware SF MAY log or increase a counter
  for this event.






Quinn, et al.                Standards Track                   [Page 14]

RFC 8300              Network Service Header (NSH)          January 2018


3.  NSH Actions

  NSH-aware nodes (which include Service Classifiers, SFFs, SFs, and
  SFC Proxies) may alter the contents of the NSH headers.  These nodes
  have several possible NSH-related actions:

  1.  Insert or remove the NSH: These actions can occur respectively at
      the start and end of a service path.  Packets are classified, and
      if determined to require servicing, an NSH will be imposed.  A

      Service Classifier MUST insert an NSH at the start of an SFP.  An
      imposed NSH MUST contain both a valid Base Header and Service
      Path Header.  At the end of an SFP, an SFF MUST remove the NSH
      before forwarding or delivering the un-encapsulated packet.
      Therefore, it is the last node operating on the service header.

      Multiple logical Classifiers may exist within a given service
      path.  Non-initial Classifiers may re-classify data, and that
      re-classification MAY result in the selection of a different SFP.
      When the logical Classifier performs re-classification that
      results in a change of service path, it MUST replace the existing
      NSH with a new NSH with the Base Header and Service Path Header
      reflecting the new service path information and MUST set the
      initial SI.  The O bit, the TTL field, and unassigned flags MUST
      be copied transparently from the old NSH to a new NSH.  Metadata
      MAY be preserved in the new NSH.

  2.  Select service path: The Service Path Header provides service
      path information and is used by SFFs to determine correct service
      path selection.  SFFs MUST use the Service Path Header for
      selecting the next SF or SFF in the service path.

  3.  Update the NSH: SFs MUST decrement the service index by one.  If
      an SFF receives a packet with an SPI and SI that do not
      correspond to a valid next hop in a valid SFP, that packet MUST
      be dropped by the SFF.

      Classifiers MAY update Context Headers if new/updated context is
      available.

      If an SFC proxy is in use (acting on behalf of an NSH-unaware
      Service Function for NSH actions), then the proxy MUST update the
      Service Index and MAY update contexts.  When an SFC Proxy
      receives an NSH-encapsulated packet, it MUST remove the NSH
      before forwarding it to an NSH-unaware SF.  When the SFC Proxy
      receives a packet back from an NSH-unaware SF, it MUST
      re-encapsulate it with the correct NSH, and it MUST decrement the
      Service Index by one.



Quinn, et al.                Standards Track                   [Page 15]

RFC 8300              Network Service Header (NSH)          January 2018


  4.  Service policy selection: Service Functions derive policy (i.e.,
      service actions such as permit or deny) selection and enforcement
      from the NSH.  Metadata shared in the NSH can provide a range of
      service-relevant information such as traffic classification.

  Figure 8 maps each of the four actions above to the components in the
  SFC architecture that can perform it.

  +-----------+-----------------------+-------+---------------+-------+
  |           | Insert, remove, or    |Forward| Update        |Service|
  |           | replace the NSH       |the NSH| the NSH       |policy |
  |           |                       |packets|               |sel.   |
  |Component  +-------+-------+-------+       +-------+-------+       |
  |           |       |       |       |       |Dec.   |Update |       |
  |           |Insert |Remove |Replace|       |Service|Context|       |
  |           |       |       |       |       |Index  |Header |       |
  +-----------+-------+-------+-------+-------+-------+-------+-------+
  |           |  +    |       |   +   |       |       |   +   |       |
  |Classifier |       |       |       |       |       |       |       |
  +-----------+-------+-------+-------+-------+-------+-------+-------+
  |Service    |       |   +   |       |   +   |       |       |       |
  |Function   |       |       |       |       |       |       |       |
  |Forwarder  |       |       |       |       |       |       |       |
  |(SFF)      |       |       |       |       |       |       |       |
  +-----------+-------+-------+-------+-------+-------+-------+-------+
  |Service    |       |       |       |       |   +   |   +   |   +   |
  |Function   |       |       |       |       |       |       |       |
  |(SF)       |       |       |       |       |       |       |       |
  +-----------+-------+-------+-------+-------+-------+-------+-------+
  |           |  +    |   +   |       |       |   +   |   +   |       |
  |SFC Proxy  |       |       |       |       |       |       |       |
  +-----------+-------+-------+-------+-------+-------+-------+-------+

                  Figure 8: NSH Action and Role Mapping

4.  NSH Transport Encapsulation

  Once the NSH is added to a packet, an outer transport encapsulation
  is used to forward the original packet and the associated metadata to
  the start of a service chain.  The encapsulation serves two purposes:

  1.  Creates a topologically independent services plane.  Packets are
      forwarded to the required services without changing the
      underlying network topology.







Quinn, et al.                Standards Track                   [Page 16]

RFC 8300              Network Service Header (NSH)          January 2018


  2.  Transit network nodes simply forward the encapsulated packets
      without modification.

  The service header is independent of the transport encapsulation
  used.  Existing transport encapsulations can be used.  The presence
  of an NSH is indicated via a protocol type or another indicator in
  the outer transport encapsulation.

5.  Fragmentation Considerations

  The NSH and the associated transport encapsulation header are "added"
  to the encapsulated packet/frame.  This additional information
  increases the size of the packet.

  Within a managed administrative domain, an operator can ensure that
  the underlay MTU is sufficient to carry SFC traffic without requiring
  fragmentation.  Given that the intended scope of the NSH is within a
  single provider's operational domain, that approach is sufficient.

  However, although explicitly outside the scope of this specification,
  there might be cases where the underlay MTU is not large enough to
  carry the NSH traffic.  Since the NSH does not provide fragmentation
  support at the service plane, the transport encapsulation protocol
  ought to provide the requisite fragmentation handling.  For instance,
  Section 9 of [RTG-ENCAP] provides exemplary approaches and guidance
  for those scenarios.

  When the transport encapsulation protocol supports fragmentation, and
  fragmentation procedures needs to be used, such fragmentation is part
  of the transport encapsulation logic.  If, as it is common,
  fragmentation is performed by the endpoints of the transport
  encapsulation, then fragmentation procedures are performed at the
  sending NSH entity as part of the transport encapsulation, and
  reassembly procedures are performed at the receiving NSH entity
  during transport de-encapsulation handling logic.  In no case would
  such fragmentation result in duplication of the NSH header.

  For example, when the NSH is encapsulated in IP, IP-level
  fragmentation coupled with Path MTU Discovery (PMTUD) (e.g.,
  [RFC8201]) is used.  Since PMTUD relies on ICMP messages, an operator
  should ensure ICMP packets are not blocked.  When, on the other hand,
  the underlay does not support fragmentation procedures, an error
  message SHOULD be logged when dropping a packet too big.  Lastly,
  NSH-specific fragmentation and reassembly methods may be defined as
  well, but these methods are outside the scope of this document and
  subject for future work.





Quinn, et al.                Standards Track                   [Page 17]

RFC 8300              Network Service Header (NSH)          January 2018


6.  Service Path Forwarding with NSH

6.1.  SFFs and Overlay Selection

  As described above, the NSH contains a Service Path Identifier (SPI)
  and a Service Index (SI).  The SPI is, as per its name, an
  identifier.  The SPI alone cannot be used to forward packets along a
  service path.  Rather, the SPI provides a level of indirection
  between the service path / topology and the network transport
  encapsulation.  Furthermore, there is no requirement for, or
  expectation of, an SPI being bound to a predetermined or static
  network path.

  The Service Index provides an indication of location within a service
  path.  The combination of SPI and SI provides the identification of a
  logical SF and its order within the service plane.  This combination
  is used to select the appropriate network locator(s) for overlay
  forwarding.  The logical SF may be a single SF or a set of eligible
  SFs that are equivalent.  In the latter case, the SFF provides load
  distribution amongst the collection of SFs as needed.

  SI serves as a mechanism for detecting invalid SFPs.  In particular,
  an SI value of zero indicates that forwarding is incorrect and the
  packet must be discarded.

  This indirection -- SPI to overlay -- creates a true service plane.
  That is, the SFF/SF topology is constructed without impacting the
  network topology, but, more importantly, service-plane-only
  participants (i.e., most SFs) need not be part of the network overlay
  topology and its associated infrastructure (e.g., control plane,
  routing tables, etc.).  SFs need to be able to return a packet to an
  appropriate SFF (i.e., has the requisite NSH information) when
  service processing is complete.  This can be via the overlay or
  underlay and, in some cases, can require additional configuration on
  the SF.  As mentioned above, an existing overlay topology may be
  used, provided it offers the requisite connectivity.

  The mapping of SPI to transport encapsulation occurs on an SFF (as
  discussed above, the first SFF in the path gets an NSH encapsulated
  packet from the Classifier).  The SFF consults the SPI/ID values to
  determine the appropriate overlay transport encapsulation protocol
  (several may be used within a given network) and next hop for the
  requisite SF.  Table 1 depicts an example of a single next-hop SPI/
  SI-to-network overlay network locator mapping.







Quinn, et al.                Standards Track                   [Page 18]

RFC 8300              Network Service Header (NSH)          January 2018


     +------+------+---------------------+-------------------------+
     | SPI  | SI   | Next Hop(s)         | Transport Encapsulation |
     +------+------+---------------------+-------------------------+
     | 10   | 255  | 192.0.2.1           | VXLAN-gpe               |
     |      |      |                     |                         |
     | 10   | 254  | 198.51.100.10       | GRE                     |
     |      |      |                     |                         |
     | 10   | 251  | 198.51.100.15       | GRE                     |
     |      |      |                     |                         |
     | 40   | 251  | 198.51.100.15       | GRE                     |
     |      |      |                     |                         |
     | 50   | 200  | 01:23:45:67:89:ab   | Ethernet                |
     |      |      |                     |                         |
     | 15   | 212  | Null (end of path)  | None                    |
     +------+------+---------------------+-------------------------+

                    Table 1: SFF NSH Mapping Example

  Additionally, further indirection is possible: the resolution of the
  required SF network locator may be a localized resolution on an SFF,
  rather than an SFC control plane responsibility, as per Tables 2 and
  3.

  Please note: VXLAN-gpe and GRE in the above table refer to
  [VXLAN-GPE] and [RFC2784] [RFC7676], respectively.

                     +------+-----+----------------+
                     | SPI  | SI  | Next Hop(s)    |
                     +------+-----+----------------+
                     | 10   | 3   | SF2            |
                     |      |     |                |
                     | 245  | 12  | SF34           |
                     |      |     |                |
                     | 40   | 9   | SF9            |
                     +------+-----+----------------+

                   Table 2: NSH-to-SF Mapping Example














Quinn, et al.                Standards Track                   [Page 19]

RFC 8300              Network Service Header (NSH)          January 2018


         +------+-------------------+-------------------------+
         | SF   | Next Hop(s)       | Transport Encapsulation |
         +------+-------------------+-------------------------+
         | SF2  | 192.0.2.2         | VXLAN-gpe               |
         |      |                   |                         |
         | SF34 | 198.51.100.34     | UDP                     |
         |      |                   |                         |
         | SF9  | 2001:db8::1       | GRE                     |
         +------+-------------------+-------------------------+

                   Table 3: SF Locator Mapping Example

  Since the SPI is a representation of the service path, the lookup may
  return more than one possible next hop within a service path for a
  given SF, essentially a series of weighted (equally or otherwise)
  paths to be used (for load distribution, redundancy, or policy); see
  Table 4.  The metric depicted in Table 4 is an example to help
  illustrate weighing SFs.  In a real network, the metric will range
  from a simple preference (similar to routing next-hop) to a true
  dynamic composite metric based on the state of a Service Function
  (including load, session state, capacity, etc.).

                 +------+-----+--------------+---------+
                 | SPI  | SI  | NH           | Metric  |
                 +------+-----+--------------+---------+
                 | 10   | 3   | 203.0.113.1  | 1       |
                 |      |     |              |         |
                 |      |     | 203.0.113.2  | 1       |
                 |      |     |              |         |
                 | 20   | 12  | 192.0.2.1    | 1       |
                 |      |     |              |         |
                 |      |     | 203.0.113.4  | 1       |
                 |      |     |              |         |
                 | 30   | 7   | 192.0.2.10   | 10      |
                 |      |     |              |         |
                 |      |     | 198.51.100.1 | 5       |
                 +------+-----+--------------+---------+

               (encapsulation type omitted for formatting)

                   Table 4: NSH Weighted Service Path

  The information contained in Tables 1-4 may be received from the
  control plane, but the exact mechanism is outside the scope of this
  document.






Quinn, et al.                Standards Track                   [Page 20]

RFC 8300              Network Service Header (NSH)          January 2018


6.2.  Mapping the NSH to Network Topology

  As described above, the mapping of the SPI to network topology may
  result in a single path, or it might result in a more complex
  topology.  Furthermore, the SPI-to-overlay mapping occurs at each SFF
  independently.  Any combination of topology selection is possible.
  Please note, there is no requirement to create a new overlay topology
  if a suitable one already exists.  NSH packets can use any (new or
  existing) overlay, provided the requisite connectivity requirements
  are satisfied.

  Examples of mapping for a topology:

  1.  Next SF is located at SFFb with locator 2001:db8::1
      SFFa mapping: SPI=10 --> VXLAN-gpe, dst-ip: 2001:db8::1

  2.  Next SF is located at SFFc with multiple network locators for
      load-distribution purposes:
      SFFb mapping: SPI=10 --> VXLAN-gpe, dst_ip:203.0.113.1,
      203.0.113.2, 203.0.113.3, equal cost

  3.  Next SF is located at SFFd with two paths from SFFc, one for
      redundancy:
      SFFc mapping: SPI=10 --> VXLAN-gpe, dst_ip:192.0.2.10 cost=10,
      203.0.113.10, cost=20

  In the above example, each SFF makes an independent decision about
  the network overlay path and policy for that path.  In other words,
  there is no a priori mandate about how to forward packets in the
  network (only the order of services that must be traversed).

  The network operator retains the ability to engineer the network
  paths as required.  For example, the overlay path between SFFs may
  utilize traffic engineering, QoS marking, or ECMP, without requiring
  complex configuration and network protocol support to be extended to
  the service path explicitly.  In other words, the network operates as
  expected, and evolves as required, as does the service plane.

6.3.  Service Plane Visibility

  The SPI and SI serve an important function for visibility into the
  service topology.  An operator can determine what service path a
  packet is "on" and its location within that path simply by viewing
  NSH information (packet capture, IP Flow Information Export (IPFIX),
  etc.).  The information can be used for service scheduling and
  placement decisions, troubleshooting, and compliance verification.





Quinn, et al.                Standards Track                   [Page 21]

RFC 8300              Network Service Header (NSH)          January 2018


6.4.  Service Graphs

  While a given realized SFP is a specific sequence of Service
  Functions, the service, as seen by a user, can actually be a
  collection of SFPs, with the interconnection provided by Classifiers
  (in-service path, non-initial re-classification).  These internal re-
  Classifiers examine the packet at relevant points in the network,
  and, if needed, SPI and SI are updated (whether this update is a re-
  write, or the imposition of a new NSH with new values is
  implementation specific) to reflect the "result" of the
  classification.  These Classifiers may, of course, also modify the
  metadata associated with the packet.
  Section 2.1 of [RFC7665] describes Service Graphs in detail.

7.  Policy Enforcement with NSH

7.1.  NSH Metadata and Policy Enforcement

  As described in Section 2, NSH provides the ability to carry metadata
  along a service path.  This metadata may be derived from several
  sources.  Common examples include:

     Network nodes/devices: Information provided by network nodes can
     indicate network-centric information (such as VPN Routing and
     Forwarding (VRF) or tenant) that may be used by Service Functions
     or conveyed to another network node post service path egress.

     External (to the network) systems: External systems, such as
     orchestration systems, often contain information that is valuable
     for Service Function policy decisions.  In most cases, this
     information cannot be deduced by network nodes.  For example, a
     cloud orchestration platform placing workloads "knows" what
     application is being instantiated and can communicate this
     information to all NSH nodes via metadata carried in the Context
     Header(s).

     Service Functions: A Classifier co-resident with Service Functions
     often performs very detailed and valuable classification.

  Regardless of the source, metadata reflects the "result" of
  classification.  The granularity of classification may vary.  For
  example, a network switch, acting as a Classifier, might only be able
  to classify based on a 2-tuple, or based on a 5-tuple, while a
  Service Function may be able to inspect application information.
  Regardless of granularity, the classification information can be
  represented in the NSH.





Quinn, et al.                Standards Track                   [Page 22]

RFC 8300              Network Service Header (NSH)          January 2018


  Once the data is added to the NSH, it is carried along the service
  path.  NSH-aware SFs receive the metadata, and can use that metadata
  for local decisions and policy enforcement.  Figures 9 and 10
  highlight the relationship between metadata and policy.

               +-------+        +-------+        +-------+
               |  SFF  )------->(  SFF  |------->|  SFF  |
               +---+---+        +---+---+        +---+---+
                   ^                |                |
                 ,-|-.            ,-|-.            ,-|-.
                /     \          /     \          /     \
               ( Class )        (  SF1  )        (  SF2  )
                \ ify /          \     /          \     /
                 `---'            `---'            `---'
                5-tuple:        Permit             Inspect
                Tenant A        Tenant A           AppY
                AppY

                      Figure 9: Metadata and Policy

              +-----+           +-----+            +-----+
              | SFF |---------> | SFF |----------> | SFF |
              +--+--+           +--+--+            +--+--+
                 ^                 |                  |
               ,-+-.             ,-+-.              ,-+-.
              /     \           /     \            /     \
             ( Class )         (  SF1  )          (  SF2  )
              \ ify /           \     /            \     /
               `-+-'             `---'              `---'
                 |              Permit            Deny AppZ
             +---+---+          employees
             |       |
             +-------+
             External
             system:
             Employee
             AppZ

                 Figure 10: External Metadata and Policy

  In both of the examples above, the Service Functions perform policy
  decisions based on the result of the initial classification: the SFs
  did not need to perform re-classification; instead, they rely on an
  antecedent classification for local policy enforcement.

  Depending on the information carried in the metadata, data privacy
  impact needs to be considered.  For example, if the metadata conveys
  tenant information, that information may need to be authenticated



Quinn, et al.                Standards Track                   [Page 23]

RFC 8300              Network Service Header (NSH)          January 2018


  and/or encrypted between the originator and the intended recipients
  (which may include intended SFs only); one approach to an optional
  capability to do this is explored in [NSH-ENCRYPT].  The NSH itself
  does not provide privacy functions, rather it relies on the transport
  encapsulation/overlay.  An operator can select the appropriate set of
  transport encapsulation protocols to ensure confidentiality (and
  other security) considerations are met.  Metadata privacy and
  security considerations are a matter for the documents that define
  metadata format.

7.2.  Updating/Augmenting Metadata

  Post-initial metadata imposition (typically, performed during initial
  service path determination), the metadata may be augmented or
  updated:

  1.  Metadata Augmentation: Information may be added to the NSH's
      existing metadata, as depicted in Figure 11.  For example, if the
      initial classification returns the tenant information, a
      secondary classification (perhaps co-resident with deep packet
      inspection (DPI) or server load balancing (SLB)) may augment the
      tenant classification with application information, and impose
      that new information in NSH metadata.  The tenant classification
      is still valid and present, but additional information has been
      added to it.

  2.  Metadata Update: Subsequent Classifiers may update the initial
      classification if it is determined to be incorrect or not
      descriptive enough.  For example, the initial Classifier adds
      metadata that describes the traffic as "Internet", but a security
      Service Function determines that the traffic is really "attack".
      Figure 12 illustrates an example of updating metadata.



















Quinn, et al.                Standards Track                   [Page 24]

RFC 8300              Network Service Header (NSH)          January 2018


              +-----+           +-----+            +-----+
              | SFF |---------> | SFF |----------> | SFF |
              +--+--+           +--+--+            +--+--+
                 ^                 |                  |
               ,---.             ,---.              ,---.
              /     \           /     \            /     \
             ( Class )         (  SF1  )          (  SF2  )
              \     /           \     /            \     /
               `-+-'             `---'              `---'
                 |              Inspect           Deny
             +---+---+          employees         employee+
             |       |          Class=AppZ        appZ
             +-------+
             External
             system:
             Employee

                    Figure 11: Metadata Augmentation

               +-----+           +-----+            +-----+
               | SFF |---------> | SFF |----------> | SFF |
               +--+--+           +--+--+            +--+--+
                  ^                 |                  |
                ,---.             ,---.              ,---.
               /     \           /     \            /     \
              ( Class )         (  SF1  )          (  SF2  )
               \     /           \     /            \     /
                `---'             `---'              `---'
             5-tuple:            Inspect             Deny
             Tenant A            Tenant A            attack
                                  --> attack

                       Figure 12: Metadata Update

7.3.  Service Path Identifier and Metadata

  Metadata information may influence the service path selection since
  the Service Path Identifier values can represent the result of
  classification.  A given SPI can be defined based on classification
  results (including metadata classification).  The imposition of the
  SPI and SI results in the packet being placed on the newly specified
  SFP at the position indicated by the imposed SPI and SI.

  This relationship provides the ability to create a dynamic service
  plane based on complex classification, without requiring each node to
  be capable of such classification or requiring a coupling to the
  network topology.  This yields Service Graph functionality as




Quinn, et al.                Standards Track                   [Page 25]

RFC 8300              Network Service Header (NSH)          January 2018


  described in Section 6.4.  Figure 13 illustrates an example of this
  behavior.

              +-----+           +-----+            +-----+
              | SFF |---------> | SFF |------+---> | SFF |
              +--+--+           +--+--+      |     +--+--+
                 |                 |         |        |
               ,---.             ,---.       |      ,---.
              /     \           / SF1 \      |     /     \
             (  SCL  )         (   +   )     |    (  SF2  )
              \     /           \SCL2 /      |     \     /
               `---'             `---'    +-----+   `---'
            5-tuple:            Inspect   | SFF |    Original
            Tenant A            Tenant A  +--+--+    next SF
                                 --> DoS     |
                                             V
                                           ,-+-.
                                          /     \
                                         (  SF10 )
                                          \     /
                                           `---'
                                            DoS
                                         "Scrubber"

            Legend:
            SCL = Service Classifier

                     Figure 13: Path ID and Metadata

  Specific algorithms for mapping metadata to an SPI are outside the
  scope of this document.

8.  Security Considerations

  NSH security must be considered in the contexts of the SFC
  architecture and operators' environments.  One important
  characteristic of NSH is that it is not an end-to-end protocol.  As
  opposed to a protocol that "starts" on a host and "ends" on a server
  or another host, NSH is typically imposed by a network device on
  ingress to the SFC domain and removed at the egress of the SFC
  domain.  As such, and as with any other network-centric protocols
  (e.g., IP Tunneling, Traffic Engineering, MPLS, or Provider-
  Provisioned Virtual Private Networks), there is an underlying trust
  in the network devices responsible for imposing, removing, and acting
  on NSH information.

  The following sections detail an analysis and present a set of
  requirements and recommendations in those two areas.



Quinn, et al.                Standards Track                   [Page 26]

RFC 8300              Network Service Header (NSH)          January 2018


8.1.  NSH Security Considerations from Operators' Environments

  Trusted Devices

     All Classifiers, SFFs and SFs (hereinafter referred to as "SFC
     devices") within an operator's environment are assumed to have
     been selected, vetted, and actively maintained; therefore, they
     are trusted by that operator.  This assumption differs from the
     oft held view that devices are untrusted, often referred to as the
     "zero-trust model".  Operators SHOULD regularly monitor (i.e.,
     continuously audit) these devices to help ensure compliant
     behavior.  This trust, therefore, extends into NSH operations: SFC
     devices are not, themselves, considered to be attack vectors.
     This assumption, and the resultant conclusion is reasonable since
     this is the very basis of an operator posture; the operator
     depends on this reality to function.  If these devices are not
     trusted, and indeed are compromised, almost the entirety of the
     operator's standard-based IP and MPLS protocol suites are
     vulnerable; therefore, the operation of the entire network is
     compromised.  Although there are well-documented monitoring-based
     methods for detecting compromise (such as included continuous
     monitoring and audit and log review), these may not be sufficient
     to contain damage by a completely compromised element.

     Methods and best practices to secure devices are also widely
     documented and outside the scope of this document.

  Single Domain Boundary

     As per [RFC7665], NSH is designed for use within a single
     administrative domain.  This scoping provides two important
     characteristics:

     i) Clear NSH boundaries

     NSH egress devices MUST strip the NSH headers before they send the
     users' packets or frames out of the NSH domain.

     Means to prevent leaking privacy-related information outside an
     administrative domain are natively supported by the NSH given that
     the last SFF of a service path will systematically remove the NSH
     encapsulation before forwarding a packet exiting the service path.

     The second step in such prevention is to filter the transport
     encapsulation protocol used by NSH at the domain edge.  The
     transport encapsulation protocol MUST be filtered and MUST NOT
     leave the domain edge.




Quinn, et al.                Standards Track                   [Page 27]

RFC 8300              Network Service Header (NSH)          January 2018


     Depending upon the transport encapsulation protocol used for NSH,
     this can be done either by completely blocking the transport
     encapsulation (e.g., if MPLS is the chosen NSH transport
     encapsulation protocol, it is therefore never allowed to leave the
     domain) or by examining the carried protocol with the transport
     encapsulation (e.g., if VXLAN-gpe is used as the NSH transport
     encapsulation protocol, all domain edges need to filter based on
     the carried protocol in the VXLAN-gpe.)

     The other consequence of this bounding is that ingress packets
     MUST also be filtered to prevent attackers from sending in NSH
     packets with service path identification and metadata of their own
     selection.  The same filters as described above for both the NSH
     at SFC devices and for the transport encapsulation protocol as
     general edge protections MUST be applied on ingress.

     In summary, packets originating outside the SFC-enabled domain
     MUST be dropped if they contain an NSH.  Similarly, packets
     exiting the SFC-enabled domain MUST be dropped if they contain an
     NSH.

     ii) Mitigation of external threats

     As per the trusted SFC device points raised above, given that NSH
     is scoped within an operator's domain, that operator can ensure
     that the environment and its transitive properties comply with
     that operator's required security posture.  Continuous audits for
     assurance are recommended with this reliance on a fully trusted
     environment.  The term "continuous audits" describes a method
     (automated or manual) of checking security-control compliance on a
     regular basis, at some set period of time.

8.2.  NSH Security Considerations from the SFC Architecture

  The SFC architecture defines functional roles (e.g., SFF), as well as
  protocol elements (e.g., Metadata).  This section considers each role
  and element in the context of threats posed in the areas of integrity
  and confidentiality.  As with routing, the distributed computation
  model assumes a distributed trust model.

  An important consideration is that NSH contains mandatory-to-mute
  fields, and further, the SFC architecture describes cases where other
  fields in NSH change, all on a possible SFP hop-by-hop basis.  This
  means that any cryptographic solution requires complex key
  distribution and life-cycle operations.






Quinn, et al.                Standards Track                   [Page 28]

RFC 8300              Network Service Header (NSH)          January 2018


8.2.1.  Integrity

  SFC devices

     SFC devices MAY perform various forms of verification on received
     NSH packets such as only accepting NSH packets from expected
     devices, checking that NSH SPI and SI values received from
     expected devices conform to expected values and so on.
     Implementation of these additional checks are a local matter and,
     thus, out of scope of this document.

  NSH Base and Service Path Headers

     Attackers who can modify packets within the operator's network may
     be able to modify the SFP, path position, and/or the metadata
     associated with a packet.

     One specific concern is an attack in which a malicious
     modification of the SPI/SI results in an alteration of the path to
     avoid security devices.  The options discussed in this section
     help thwart that attack, and so does the use of the optional
     "Proof of Transit" method [PROOF-OF-TRANSIT].

     As stated above, SFC devices are trusted; in the case where an SFC
     device is compromised, NSH integrity protection would be subject
     to forging (in many cases) as well.

     NSH itself does not mandate protocol-specific integrity
     protection.  However, if an operator deems protection is required,
     several options are viable:

     1.  SFF/SF NSH verification

         Although, strictly speaking, not integrity protection, some of
         the techniques mentioned above, such as checking expected NSH
         values are received from expected SFC device(s), can provide a
         form of verification without incurring the burden of a full-
         fledged integrity-protection deployment.

     2.  Transport Security

         NSH is always encapsulated by an outer transport encapsulation
         as detailed in Section 4 of this specification, and as
         depicted in Figure 1.  If an operator deems cryptographic
         integrity protection necessary due to their risk analysis,
         then an outer transport encapsulation that provides such
         protection [RFC6071], such as IPsec, MUST be used.




Quinn, et al.                Standards Track                   [Page 29]

RFC 8300              Network Service Header (NSH)          January 2018


         Although the threat model and recommendations of Section 5 of
         BCP 72 [RFC3552] would normally require cryptographic data
         origin authentication for the header, this document does not
         mandate such mechanisms in order to reflect the operational
         and technical realities of deployment.

         Given that NSH is transport independent, as mentioned above, a
         secure transport, such as IPsec can be used for carry NSH.
         IPsec can be used either alone or in conjunction with other
         transport encapsulation protocols, in turn, encapsulating NSH.

         Operators MUST ensure the selected transport encapsulation
         protocol can be supported by the transport encapsulation/
         underlay of all relevant network segments as well as SFFs,
         SFs, and SFC Proxies in the service path.

         If connectivity between SFC-enabled devices traverses the
         public Internet, then such connectivity MUST be secured at the
         transport encapsulation layer.  IPsec is an example of such a
         transport.

     3.  NSH Variable Header-Based Integrity

         Lastly, NSH MD Type 2 provides, via variable-length headers,
         the ability to append cryptographic integrity protection to
         the NSH packet.  The implementation of such a scheme is
         outside the scope of this document.

  NSH metadata

     As with the Base and Service Path Headers, if an operator deems
     cryptographic integrity protection needed, then an existing,
     standard transport protocol MUST be used since the integrity
     protection applies to entire encapsulated NSH packets.  As
     mentioned above, a risk assessment that deems data-plane traffic
     subject to tampering will apply not only to NSH but to the
     transport information; therefore, the use of a secure transport is
     likely needed already to protect the entire stack.

     If an MD Type 2 variable header integrity scheme is in place, then
     the integrity of the metadata can be ensured via that mechanism as
     well.









Quinn, et al.                Standards Track                   [Page 30]

RFC 8300              Network Service Header (NSH)          January 2018


8.2.2.  Confidentiality

  SFC devices

     SFC devices can "see" (and need to use) NSH information.

  NSH Base and Service Path Headers

     SPI and other base / service path information does not typically
     require confidentiality; however, if an operator does deem
     confidentiality to be required, then, as with integrity, an
     existing transport encapsulation that provides encryption MUST be
     utilized.

  NSH metadata

     An attacker with access to the traffic in an operator's network
     can potentially observe the metadata NSH carries with packets,
     potentially discovering privacy-sensitive information.

     Much of the metadata carried by NSH is not sensitive.  It often
     reflects information that can be derived from the underlying
     packet or frame.  Direct protection of such information is not
     necessary, as the risks are simply those of carrying the
     underlying packet or frame.

     Implementers and operators MUST be aware that metadata can have
     privacy implications, and those implications are sometimes hard to
     predict.  Therefore, attached metadata should be limited to that
     necessary for correct operation of the SFP.  Further, [RFC8165]
     defines metadata considerations that operators can take into
     account when using NSH.

     Protecting NSH metadata information between SFC components can be
     done using transport encapsulation protocols with suitable
     security capabilities, along the lines discussed above.  If a
     security analysis deems these protections necessary, then security
     features in the transport encapsulation protocol (such as IPsec)
     MUST be used.

     One useful element of providing privacy protection for sensitive
     metadata is described under the "SFC Encapsulation" area of the
     Security Considerations of [RFC7665].  Operators can and should
     use indirect identification for metadata deemed to be sensitive
     (such as personally identifying information), significantly
     mitigating the risk of a privacy violation.  In particular,
     subscriber-identifying information should be handled carefully,
     and, in general, SHOULD be obfuscated.



Quinn, et al.                Standards Track                   [Page 31]

RFC 8300              Network Service Header (NSH)          January 2018


     For those situations where obfuscation is either inapplicable or
     judged to be insufficient, an operator can also encrypt the
     metadata.  An approach to an optional capability to do this was
     explored in [NSH-ENCRYPT].  For other situations where greater
     assurance is desired, optional mechanisms such as
     [PROOF-OF-TRANSIT] can be used.

9.  IANA Considerations

9.1.  NSH Parameters

  IANA has created a new "Network Service Header (NSH) Parameters"
  registry.  The following subsections detail new registries within the
  "Network Service Header (NSH) Parameters" registry.

9.1.1.  NSH Base Header Bits

  There are five unassigned bits (U bits) in the NSH Base Header, and
  one assigned bit (O bit).  New bits are assigned via Standards Action
  [RFC8126].

  Bit 2 - O (OAM) bit
  Bit 3 - Unassigned
  Bits 16-19 - Unassigned

9.1.2.  NSH Version

  IANA has set up the "NSH Version" registry.  New values are assigned
  via Standards Action [RFC8126].

      +-------------+---------------------------------+-----------+
      | Version     | Description                     | Reference |
      +-------------+---------------------------------+-----------+
      | Version 00b | Protocol as defined by RFC 8300 | RFC 8300  |
      | Version 01b | Reserved                        | RFC 8300  |
      | Version 10b | Unassigned                      |           |
      | Version 11b | Unassigned                      |           |
      +-------------+---------------------------------+-----------+

                          Table 5: NSH Version











Quinn, et al.                Standards Track                   [Page 32]

RFC 8300              Network Service Header (NSH)          January 2018


9.1.3.  NSH MD Types

  IANA has set up the "NSH MD Types" registry, which contains 4-bit
  values.  MD Type values 0x0, 0x1, 0x2, and 0xF are specified in this
  document; see Table 6.  Registry entries are assigned via the "IETF
  Review" policy defined in RFC 8126 [RFC8126].

               +-----------+-----------------+-----------+
               | MD Type   | Description     | Reference |
               +-----------+-----------------+-----------+
               | 0x0       | Reserved        | RFC 8300  |
               |           |                 |           |
               | 0x1       | NSH MD Type 1   | RFC 8300  |
               |           |                 |           |
               | 0x2       | NSH MD Type 2   | RFC 8300  |
               |           |                 |           |
               | 0x3 - 0xE | Unassigned      |           |
               |           |                 |           |
               | 0xF       | Experimentation | RFC 8300  |
               +-----------+-----------------+-----------+

                         Table 6: MD Type Values

9.1.4.  NSH MD Class

  IANA has set up the "NSH MD Class" registry, which contains 16-bit
  values.  New allocations are to be made according to the following
  policies:

  0x0000 to 0x01ff: IETF Review
  0x0200 to 0xfff5: Expert Review

  IANA has assigned the values as follows:

       +------------------+------------------------+------------+
       | Value            | Meaning                | Reference  |
       +------------------+------------------------+------------+
       | 0x0000           | IETF Base NSH MD Class | RFC 8300   |
       |                  |                        |            |
       | 0xfff6 to 0xfffe | Experimental           | RFC 8300   |
       |                  |                        |            |
       | 0xffff           | Reserved               | RFC 8300   |
       +------------------+------------------------+------------+

                          Table 7: NSH MD Class

  A registry for Types for the MD Class of 0x0000 is defined in
  Section 9.1.5.



Quinn, et al.                Standards Track                   [Page 33]

RFC 8300              Network Service Header (NSH)          January 2018


  Designated Experts evaluating new allocation requests from the
  "Expert Review" range should principally consider whether a new MD
  class is needed compared to adding MD Types to an existing class.
  The Designated Experts should also encourage the existence of an
  associated and publicly visible registry of MD Types although this
  registry need not be maintained by IANA.

  When evaluating a request for an allocation, the Expert should verify
  that the allocation plan includes considerations to handle privacy
  and security issues associated with the anticipated individual MD
  Types allocated within this class.  These plans should consider, when
  appropriate, alternatives such as indirection, encryption, and
  limited-deployment scenarios.  Information that can't be directly
  derived from viewing the packet contents should be examined for
  privacy and security implications.

9.1.5.  NSH IETF-Assigned Optional Variable-Length Metadata Types

  The Type values within the IETF Base NSH MD Class, i.e., when the MD
  Class is set to 0x0000 (see Section 9.1.4), are the Types owned by
  the IETF.  Per this document, IANA has created a registry for the
  Type values for the IETF Base NSH MD Class called the "NSH IETF-
  Assigned Optional Variable-Length Metadata Types" registry, as
  specified in Section 2.5.1.

  The type values are assigned via Standards Action [RFC8126].

  No initial values are assigned at the creation of the registry.























Quinn, et al.                Standards Track                   [Page 34]

RFC 8300              Network Service Header (NSH)          January 2018


9.1.6.  NSH Next Protocol

  IANA has set up the "NSH Next Protocol" registry, which contains
  8-bit values.  Next Protocol values 0, 1, 2, 3, 4, and 5 are defined
  in this document (see Table 8).  New values are assigned via "Expert
  Review" as per [RFC8126].

              +---------------+--------------+-----------+
              | Next Protocol | Description  | Reference |
              +---------------+--------------+-----------+
              | 0x00          | Unassigned   |           |
              |               |              |           |
              | 0x01          | IPv4         | RFC 8300  |
              |               |              |           |
              | 0x02          | IPv6         | RFC 8300  |
              |               |              |           |
              | 0x03          | Ethernet     | RFC 8300  |
              |               |              |           |
              | 0x04          | NSH          | RFC 8300  |
              |               |              |           |
              | 0x05          | MPLS         | RFC 8300  |
              |               |              |           |
              | 0x06 - 0xFD   | Unassigned   |           |
              |               |              |           |
              | 0xFE          | Experiment 1 | RFC 8300  |
              |               |              |           |
              | 0xFF          | Experiment 2 | RFC 8300  |
              +---------------+--------------+-----------+

              Table 8: NSH Base Header Next Protocol Values

  Expert Review requests MUST include a single codepoint per request.
  Designated Experts evaluating new allocation requests from this
  registry should consider the potential scarcity of codepoints for an
  8-bit value, and check both for duplications and availability of
  documentation.  If the actual assignment of the Next Protocol field
  allocation reaches half of the range (that is, when there are 128
  unassigned values), IANA needs to alert the IESG.  At that point, a
  new more strict allocation policy SHOULD be considered.

10.  NSH-Related Codepoints

10.1.  NSH Ethertype

  An IEEE Ethertype, 0x894F, has been allocated for NSH.






Quinn, et al.                Standards Track                   [Page 35]

RFC 8300              Network Service Header (NSH)          January 2018


11.  References

11.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC7665]  Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
             Chaining (SFC) Architecture", RFC 7665,
             DOI 10.17487/RFC7665, October 2015,
             <https://www.rfc-editor.org/info/rfc7665>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2.  Informative References

  [NSH-BROADBAND-ALLOCATION]
             Napper, J., Kumar, S., Muley, P., Henderickx, W., and M.
             Boucadair, "NSH Context Header Allocation -- Broadband",
             Work in Progress, draft-napper-sfc-nsh-broadband-
             allocation-04, November 2017.

  [NSH-DC-ALLOCATION]
             Guichard, J., Smith, M., Kumar, S., Majee, S., Agarwal,
             P., Glavin, K., Laribi, Y., and T. Mizrahi, "Network
             Service Header (NSH) MD Type 1: Context Header Allocation
             (Data Center)", Work in Progress,
             draft-guichard-sfc-nsh-dc-allocation-07, August 2017.

  [NSH-ENCRYPT]
             Reddy, T., Patil, P., Fluhrer, S., and P. Quinn,
             "Authenticated and encrypted NSH service chains", Work in
             Progress, draft-reddy-sfc-nsh-encrypt-00, April 2015.









Quinn, et al.                Standards Track                   [Page 36]

RFC 8300              Network Service Header (NSH)          January 2018


  [PROOF-OF-TRANSIT]
             Brockners, F., Bhandari, S., Dara, S., Pignataro, C.,
             Leddy, J., Youell, S., Mozes, D., and T. Mizrahi, "Proof
             of Transit", Work in Progress, draft-brockners-proof-
             of-transit-04, October 2017.

  [RFC2784]  Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
             Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
             DOI 10.17487/RFC2784, March 2000,
             <https://www.rfc-editor.org/info/rfc2784>.

  [RFC3552]  Rescorla, E. and B. Korver, "Guidelines for Writing RFC
             Text on Security Considerations", BCP 72, RFC 3552,
             DOI 10.17487/RFC3552, July 2003,
             <https://www.rfc-editor.org/info/rfc3552>.

  [RFC3692]  Narten, T., "Assigning Experimental and Testing Numbers
             Considered Useful", BCP 82, RFC 3692,
             DOI 10.17487/RFC3692, January 2004,
             <https://www.rfc-editor.org/info/rfc3692>.

  [RFC6071]  Frankel, S. and S. Krishnan, "IP Security (IPsec) and
             Internet Key Exchange (IKE) Document Roadmap", RFC 6071,
             DOI 10.17487/RFC6071, February 2011,
             <https://www.rfc-editor.org/info/rfc6071>.

  [RFC6291]  Andersson, L., van Helvoort, H., Bonica, R., Romascanu,
             D., and S. Mansfield, "Guidelines for the Use of the "OAM"
             Acronym in the IETF", BCP 161, RFC 6291,
             DOI 10.17487/RFC6291, June 2011,
             <https://www.rfc-editor.org/info/rfc6291>.

  [RFC7325]  Villamizar, C., Ed., Kompella, K., Amante, S., Malis, A.,
             and C. Pignataro, "MPLS Forwarding Compliance and
             Performance Requirements", RFC 7325, DOI 10.17487/RFC7325,
             August 2014, <https://www.rfc-editor.org/info/rfc7325>.

  [RFC7498]  Quinn, P., Ed. and T. Nadeau, Ed., "Problem Statement for
             Service Function Chaining", RFC 7498,
             DOI 10.17487/RFC7498, April 2015,
             <https://www.rfc-editor.org/info/rfc7498>.

  [RFC7676]  Pignataro, C., Bonica, R., and S. Krishnan, "IPv6 Support
             for Generic Routing Encapsulation (GRE)", RFC 7676,
             DOI 10.17487/RFC7676, October 2015,
             <https://www.rfc-editor.org/info/rfc7676>.





Quinn, et al.                Standards Track                   [Page 37]

RFC 8300              Network Service Header (NSH)          January 2018


  [RFC8165]  Hardie, T., "Design Considerations for Metadata
             Insertion", RFC 8165, DOI 10.17487/RFC8165, May 2017,
             <https://www.rfc-editor.org/info/rfc8165>.

  [RFC8201]  McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed.,
             "Path MTU Discovery for IP version 6", STD 87, RFC 8201,
             DOI 10.17487/RFC8201, July 2017,
             <https://www.rfc-editor.org/info/rfc8201>.

  [RTG-ENCAP]
             Nordmark, E., Tian, A., Gross, J., Hudson, J., Kreeger,
             L., Garg, P., Thaler, P., and T. Herbert, "Encapsulation
             Considerations", Work in Progress,
             draft-ietf-rtgwg-dt-encap-02, October 2016.

  [SFC-CONTROL-PLANE]
             Boucadair, M., "Service Function Chaining (SFC) Control
             Plane Components & Requirements", Work in Progress,
             draft-ietf-sfc-control-plane-08, October 2016.

  [SFC-OAM-FRAMEWORK]
             Aldrin, S., Pignataro, C., Kumar, N., Akiya, N., Krishnan,
             R., and A. Ghanwani, "Service Function Chaining (SFC)
             Operation, Administration and Maintenance (OAM)
             Framework", Work in Progress,
             draft-ietf-sfc-oam-framework-03, September 2017.

  [VXLAN-GPE]
             Maino, F., Kreeger, L., and U. Elzur, "Generic Protocol
             Extension for VXLAN", Work in Progress,
             draft-ietf-nvo3-vxlan-gpe-05, October 2017.

Acknowledgments

  The authors would like to thank Sunil Vallamkonda, Nagaraj Bagepalli,
  Abhijit Patra, Peter Bosch, Darrel Lewis, Pritesh Kothari, Tal
  Mizrahi, and Ken Gray for their detailed reviews, comments, and
  contributions.

  A special thank you goes to David Ward and Tom Edsall for their
  guidance and feedback.

  Additionally, the authors would like to thank Larry Kreeger for his
  invaluable ideas and contributions, which are reflected throughout
  this document.

  Loa Andersson provided a thorough review and valuable comments; we
  thank him for that.



Quinn, et al.                Standards Track                   [Page 38]

RFC 8300              Network Service Header (NSH)          January 2018


  Reinaldo Penno deserves a particular thank you for his architecture
  and implementation work that helped guide the protocol concepts and
  design.

  The editors also acknowledge comprehensive reviews and respective
  useful suggestions by Med Boucadair, Adrian Farrel, Juergen
  Schoenwaelder, Acee Lindem, and Kathleen Moriarty.

  Lastly, David Dolson has provided significant review, feedback, and
  suggestions throughout the evolution of this document.  His
  contributions are very much appreciated.

Contributors

  This WG document originated as draft-quinn-sfc-nsh; the following are
  its coauthors and contributors along with their respective
  affiliations at the time of WG adoption.  The editors of this
  document would like to thank and recognize them and their
  contributions.  These coauthors and contributors provided invaluable
  concepts and content for this document's creation.

  o  Jim Guichard, Cisco Systems, Inc.
  o  Surendra Kumar, Cisco Systems, Inc.
  o  Michael Smith, Cisco Systems, Inc.
  o  Wim Henderickx, Alcatel-Lucent
  o  Tom Nadeau, Brocade
  o  Puneet Agarwal
  o  Rajeev Manur, Broadcom
  o  Abhishek Chauhan, Citrix
  o  Joel Halpern, Ericsson
  o  Sumandra Majee, F5
  o  David Melman, Marvell
  o  Pankaj Garg, Microsoft
  o  Brad McConnell, Rackspace
  o  Chris Wright, Red Hat, Inc.
  o  Kevin Glavin, Riverbed
  o  Hong (Cathy) Zhang, Huawei US R&D
  o  Louis Fourie, Huawei US R&D
  o  Ron Parker, Affirmed Networks
  o  Myo Zarny, Goldman Sachs
  o  Andrew Dolganow, Alcatel-Lucent
  o  Rex Fernando, Cisco Systems, Inc.
  o  Praveen Muley, Alcatel-Lucent
  o  Navindra Yadav, Cisco Systems, Inc.







Quinn, et al.                Standards Track                   [Page 39]

RFC 8300              Network Service Header (NSH)          January 2018


Authors' Addresses

  Paul Quinn (editor)
  Cisco Systems, Inc.

  Email: [email protected]


  Uri Elzur (editor)
  Intel

  Email: [email protected]


  Carlos Pignataro (editor)
  Cisco Systems, Inc.

  Email: [email protected]

































Quinn, et al.                Standards Track                   [Page 40]