Internet Engineering Task Force (IETF)                     N. Kumar, Ed.
Request for Comments: 8287                             C. Pignataro, Ed.
Category: Standards Track                                          Cisco
ISSN: 2070-1721                                               G. Swallow
                                              Southend Technical Center
                                                               N. Akiya
                                                    Big Switch Networks
                                                                S. Kini
                                                             Individual
                                                                M. Chen
                                                                 Huawei
                                                          December 2017


  Label Switched Path (LSP) Ping/Traceroute for Segment Routing (SR)
       IGP-Prefix and IGP-Adjacency Segment Identifiers (SIDs)
                        with MPLS Data Planes

Abstract

  A Segment Routing (SR) architecture leverages source routing and
  tunneling paradigms and can be directly applied to the use of a
  Multiprotocol Label Switching (MPLS) data plane.  A node steers a
  packet through a controlled set of instructions called "segments" by
  prepending the packet with an SR header.

  The segment assignment and forwarding semantic nature of SR raises
  additional considerations for connectivity verification and fault
  isolation for a Label Switched Path (LSP) within an SR architecture.
  This document illustrates the problem and defines extensions to
  perform LSP Ping and Traceroute for Segment Routing IGP-Prefix and
  IGP-Adjacency Segment Identifiers (SIDs) with an MPLS data plane.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8287.





Kumar, et al.                Standards Track                    [Page 1]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


Copyright Notice

  Copyright (c) 2017 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.





































Kumar, et al.                Standards Track                    [Page 2]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
    1.1.  Coexistence of SR-Capable and Non-SR-Capable Node
          Scenarios . . . . . . . . . . . . . . . . . . . . . . . .   5
  2.  Requirements Notation . . . . . . . . . . . . . . . . . . . .   5
  3.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   5
  4.  Challenges with Existing Mechanisms . . . . . . . . . . . . .   5
    4.1.  Path Validation in Segment Routing Networks . . . . . . .   5
  5.  Segment ID Sub-TLV  . . . . . . . . . . . . . . . . . . . . .   7
    5.1.  IPv4 IGP-Prefix Segment ID  . . . . . . . . . . . . . . .   7
    5.2.  IPv6 IGP-Prefix Segment ID  . . . . . . . . . . . . . . .   8
    5.3.  IGP-Adjacency Segment ID  . . . . . . . . . . . . . . . .   9
  6.  Extension to Downstream Detailed Mapping TLV  . . . . . . . .  11
  7.  Procedures  . . . . . . . . . . . . . . . . . . . . . . . . .  11
    7.1.  FECs in Target FEC Stack TLV  . . . . . . . . . . . . . .  11
    7.2.  FEC Stack Change Sub-TLV  . . . . . . . . . . . . . . . .  12
    7.3.  Segment ID POP Operation  . . . . . . . . . . . . . . . .  13
    7.4.  Segment ID Check  . . . . . . . . . . . . . . . . . . . .  13
    7.5.  TTL Consideration for Traceroute  . . . . . . . . . . . .  19
  8.  Backward Compatibility with Non-SR Devices  . . . . . . . . .  19
  9.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  20
    9.1.  New Target FEC Stack Sub-TLVs . . . . . . . . . . . . . .  20
    9.2.  Protocol in the Segment ID Sub-TLV  . . . . . . . . . . .  20
    9.3.  Adjacency Type in the IGP-Adjacency Segment ID  . . . . .  20
    9.4.  Protocol in the Label Stack Sub-TLV of the Downstream
          Detailed Mapping TLV  . . . . . . . . . . . . . . . . . .  21
    9.5.  Return Code . . . . . . . . . . . . . . . . . . . . . . .  21
  10. Security Considerations . . . . . . . . . . . . . . . . . . .  21
  11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  22
    11.1.  Normative References . . . . . . . . . . . . . . . . . .  22
    11.2.  Informative References . . . . . . . . . . . . . . . . .  22
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  24
  Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .  24
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  25
















Kumar, et al.                Standards Track                    [Page 3]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


1.  Introduction

  "Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"
  [RFC8029] defines a simple and efficient mechanism to detect data-
  plane failures in Label Switched Paths (LSPs) by specifying
  information to be carried in an MPLS "echo request" and "echo reply"
  for the purposes of fault detection and isolation.  Mechanisms for
  reliably sending the echo reply are defined.  The functionality
  defined in [RFC8029] is modeled after the Ping/Traceroute paradigm
  (ICMP echo request [RFC792]) and is typically referred to as "LSP
  Ping" and "LSP Traceroute".  [RFC8029] supports hierarchical and
  stitching LSPs.

  [SR] introduces and describes an SR architecture that leverages the
  source routing and tunneling paradigms.  A node steers a packet
  through a controlled set of instructions called "segments" by
  prepending the packet with an SR header.  A detailed definition of
  the SR architecture is available in [SR].

  As described in [SR] and [SR-MPLS], the SR architecture can be
  directly applied to an MPLS data plane, the SID will be 20 bits, and
  the SR header is the label stack.  Consequently, the mechanics of
  data-plane validation of [RFC8029] can be directly applied to SR
  MPLS.

  Unlike LDP or RSVP, which are the other well-known MPLS control plane
  protocols, the basis of Segment ID assignment in SR architecture is
  not always on a hop-by-hop basis.  Depending on the type of Segment
  ID, the assignment can be unique to the node or within a domain.

  This nature of SR raises additional considerations for validation of
  fault detection and isolation in an SR network.  This document
  illustrates the problem and describes a mechanism to perform LSP Ping
  and Traceroute for Segment Routing IGP-Prefix and IGP-Adjacency SIDs
  within an MPLS data plane.
















Kumar, et al.                Standards Track                    [Page 4]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


1.1.  Coexistence of SR-Capable and Non-SR-Capable Node Scenarios

  [INTEROP] describes how SR operates in a network where SR-capable and
  non-SR-capable nodes coexist.  In such a network, one or more
  SR-based LSPs and non-SR-based LSPs are stitched together to achieve
  an end-to-end LSP.  This is similar to a network where LDP and RSVP
  nodes coexist and the mechanism defined in Section 4.5.2 of [RFC8029]
  is applicable for LSP Ping and Trace.

  Section 8 of this document explains one of the potential gaps that is
  specific to SR-Capable and non-SR-capable node scenarios and explains
  how the existing mechanism defined in [RFC8029] handles it.

2.  Requirements Notation

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

3.  Terminology

  This document uses the terminology defined in [SR] and [RFC8029];
  readers are expected to be familiar with those terms.

4.  Challenges with Existing Mechanisms

  The following example describes the challenges with using the current
  MPLS Operations, Administration, and Maintenance (OAM) mechanisms on
  an SR network.

4.1.  Path Validation in Segment Routing Networks

  [RFC8029] defines the MPLS OAM mechanisms that help with fault
  detection and isolation for an MPLS data-plane path by the use of
  various Target Forwarding Equivalence Class (FEC) Stack sub-TLVs that
  are carried in MPLS echo request packets and used by the responder
  for FEC validation.  While it is obvious that new sub-TLVs need to be
  assigned for SR, the unique nature of the SR architecture raises the
  need for additional operational considerations for path validation.
  This section discusses the challenges.









Kumar, et al.                Standards Track                    [Page 5]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


                       L1
                   +--------+
                   |   L2   |
                   R3-------R6
                  /           \
                 /             \
         R1----R2               R7----R8
                 \             /
                  \           /
                   R4-------R5

           Figure 1: Segment Routing Network

  The Node Segment IDs for R1, R2, R3, R4, R5, R6, R7, and R8 are 5001,
  5002, 5003, 5004, 5005, 5006, 5007, and 5008, respectively.

     9136 --> Adjacency Segment ID from R3 to R6 over link L1.
     9236 --> Adjacency Segment ID from R3 to R6 over link L2.
     9124 --> Adjacency segment ID from R2 to R4.
     9123 --> Adjacency Segment ID from R2 to R3.

  The forwarding semantic of the Adjacency Segment ID is to pop the
  Segment ID and send the packet to a specific neighbor over a specific
  link.  A malfunctioning node may forward packets using the Adjacency
  Segment ID to an incorrect neighbor or over an incorrect link.  The
  exposed Segment ID (of an incorrectly forwarded Adjacency Segment ID)
  might still allow such a packet to reach the intended destination,
  even though the intended strict traversal was broken.

  In the topology above, assume that R1 sends traffic with a segment
  stack as {9124, 5008} so that the path taken will be
  R1-R2-R4-R5-R7-R8.  If the Adjacency Segment ID 9124 is misprogrammed
  in R2 to send the packet to R1 or R3, the packet may still be
  delivered to R8 (if the nodes are configured with the same SR Global
  Block (SRGB)) [SR] but not via the expected path.

  MPLS traceroute may help with detecting such a deviation in the
  above-mentioned scenario.  However, in a different example, it may
  not be helpful, for example, if R3 forwards a packet with Adjacency
  Segment ID 9236 via link L1 (due to misprogramming) when it was
  expected to be forwarded over link L2.










Kumar, et al.                Standards Track                    [Page 6]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


5.  Segment ID Sub-TLV

  The format of the following Segment ID sub-TLVs follows the
  philosophy of the Target FEC Stack TLV carrying FECs corresponding to
  each label in the label stack.  When operated with the procedures
  defined in [RFC8029], this allows LSP Ping/Traceroute operations to
  function when the Target FEC Stack TLV contains more FECs than
  received label stacks at the responder nodes.

  Three new sub-TLVs are defined for the Target FEC Stack TLV (Type 1),
  the Reverse-Path Target FEC Stack TLV (Type 16), and the Reply Path
  TLV (Type 21).

          Sub-Type    Sub-TLV Name
          --------  ---------------
            34      IPv4 IGP-Prefix Segment ID
            35      IPv6 IGP-Prefix Segment ID
            36      IGP-Adjacency Segment ID

  See Section 9.2 for the registry for the Protocol field specified
  within these sub-TLVs.

5.1.  IPv4 IGP-Prefix Segment ID

  The IPv4 IGP-Prefix Segment ID is defined in [SR].  The format is as
  specified below:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                         IPv4 Prefix                           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |Prefix Length  |    Protocol   |         Reserved              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  IPv4 Prefix

     This field carries the IPv4 Prefix to which the Segment ID is
     assigned.  In case of an Anycast Segment ID, this field will carry
     the IPv4 Anycast address.  If the prefix is shorter than 32 bits,
     trailing bits SHOULD be set to zero.

  Prefix Length

     The Prefix Length field is one octet.  It gives the length of the
     prefix in bits (values can be 1-32).





Kumar, et al.                Standards Track                    [Page 7]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


  Protocol

     This field is set to 1, if the responder MUST perform FEC
     validation using OSPF as the IGP protocol.  Set to 2, if the
     responder MUST perform Egress FEC validation using the
     Intermediate System to Intermediate System (IS-IS) as the IGP
     protocol.  Set to 0, if the responder can use any IGP protocol for
     Egress FEC validation.

  Reserved

     The Reserved field MUST be set to 0 when sent and MUST be ignored
     on receipt.

5.2.  IPv6 IGP-Prefix Segment ID

  The IPv6 IGP-Prefix Segment ID is defined in [SR].  The format is as
  specified below:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                         IPv6 Prefix                           |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |Prefix Length  |    Protocol   |              Reserved         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  IPv6 Prefix

     This field carries the IPv6 prefix to which the Segment ID is
     assigned.  In case of an Anycast Segment ID, this field will carry
     the IPv4 Anycast address.  If the prefix is shorter than 128 bits,
     trailing bits SHOULD be set to zero.

  Prefix Length

     The Prefix Length field is one octet, it gives the length of the
     prefix in bits (values can be 1-128).










Kumar, et al.                Standards Track                    [Page 8]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


  Protocol

     Set to 1 if the responder MUST perform FEC validation using OSPF
     as the IGP protocol.  Set to 2 if the responder MUST perform
     Egress FEC validation using IS-IS as the IGP protocol.  Set to 0
     if the responder can use any IGP protocol for Egress FEC
     validation.

  Reserved

     MUST be set to 0 on send and MUST be ignored on receipt.

5.3.  IGP-Adjacency Segment ID

  This sub-TLV is applicable for any IGP-Adjacency defined in [SR].
  The format is as specified below:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Adj. Type   |    Protocol   |          Reserved             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~                                                               ~
    |               Local Interface ID (4 or 16 octets)             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~                                                               ~
    |              Remote Interface ID (4 or 16 octets)             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~                                                               ~
    |          Advertising Node Identifier (4 or 6 octets)          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~                                                               ~
    |           Receiving Node Identifier (4 or 6 octets)           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Adj. Type (Adjacency Type)

     Set to 1 when the Adjacency Segment is a Parallel Adjacency as
     defined in [SR].  Set to 4 when the Adjacency Segment is IPv4
     based and is not a Parallel Adjacency.  Set to 6 when the
     Adjacency Segment is IPv6 based and is not a Parallel Adjacency.
     Set to 0 when the Adjacency Segment is over an unnumbered
     interface.








Kumar, et al.                Standards Track                    [Page 9]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


  Protocol

     Set to 1 if the responder MUST perform FEC validation using OSPF
     as the IGP protocol.  Set to 2 if the responder MUST perform
     Egress FEC validation using IS-IS as the IGP protocol.  Set to 0
     if the responder can use any IGP protocol for Egress FEC
     validation.

  Reserved

     MUST be set to 0 on send and MUST be ignored on receipt.

  Local Interface ID

     An identifier that is assigned by the local Label Switching Router
     (LSR) for a link to which the Adjacency Segment ID is bound.  This
     field is set to a local link address (IPv4 or IPv6).  For IPv4,
     this field is 4 octets; for IPv6, this field is 16 octets.  If
     unnumbered, this field is 4 octets and includes a 32-bit link
     identifier as defined in [RFC4203] and [RFC5307].  If the
     Adjacency Segment ID represents Parallel Adjacencies [SR], this
     field is 4 octets and MUST be set to 4 octets of zeroes.

  Remote Interface ID

     An identifier that is assigned by the remote LSR for a link on
     which the Adjacency Segment ID is bound.  This field is set to the
     remote (downstream neighbor) link address (IPv4 or IPv6).  For
     IPv4, this field is 4 octets; for IPv6, this field is 16 octets.
     If unnumbered, this field is 4 octets and includes a 32-bit link
     identifier as defined in [RFC4203] and [RFC5307].  If the
     Adjacency Segment ID represents Parallel Adjacencies [SR], this
     field is 4 octets and MUST be set to 4 octets of zeroes.

  Advertising Node Identifier

     This specifies the Advertising Node Identifier.  When the Protocol
     field is set to 1, then this field is 4 octets and carries the
     32-bit OSPF Router ID.  If the Protocol field is set to 2, then
     this field is 6 octets and carries the 48-bit IS-IS System ID.  If
     the Protocol field is set to 0, then this field is 4 octets and
     MUST be set to zero.









Kumar, et al.                Standards Track                   [Page 10]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


  Receiving Node Identifier

     This specifies the downstream node identifier.  When the Protocol
     field is set to 1, then this field is 4 octets and carries the
     32-bit OSPF Router ID.  If the Protocol field is set to 2, then
     this field is 6 octets and carries the 48-bit IS-IS System ID.  If
     the Protocol field is set to 0, then this field is 4 octets and
     MUST be set to zero.

6.  Extension to Downstream Detailed Mapping TLV

  In an echo reply, the Downstream Detailed Mapping TLV [RFC8029] is
  used to report for each interface over which a FEC could be
  forwarded.  For a FEC, there are multiple protocols that may be used
  to distribute label mapping.  The Protocol field of the Downstream
  Detailed Mapping TLV is used to return the protocol that is used to
  distribute the label carried in the Downstream Label field.  The
  following protocols are defined in [RFC8029]:

     Protocol #        Signaling Protocol
     ----------        ------------------
       0               Unknown
       1               Static
       2               BGP
       3               LDP
       4               RSVP-TE

  With SR, OSPF or IS-IS can be used for label distribution.  This
  document adds two new protocols as follows:

     Protocol #        Signaling Protocol
     ----------        ------------------
       5               OSPF
       6               IS-IS

  See Section 9.4.

7.  Procedures

  This section describes aspects of LSP Ping and Traceroute operations
  that require further considerations beyond [RFC8029].

7.1.  FECs in Target FEC Stack TLV

  When LSP echo request packets are generated by an initiator, FECs
  carried in the Target FEC Stack TLV may need to differ to support an
  SR architecture.  The following defines the Target FEC Stack TLV
  construction mechanics by an initiator for SR scenarios.



Kumar, et al.                Standards Track                   [Page 11]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


     Ping

        The initiator MUST include FEC(s) corresponding to the
        destination segment.

        The initiator MAY include FECs corresponding to some or all of
        the segments imposed in the label stack by the initiator to
        communicate the segments traversed.

     Traceroute

        The initiator MUST initially include FECs corresponding to all
        segments imposed in the label stack.

        When a received echo reply contains the FEC Stack Change TLV
        with one or more of the original segments being popped, the
        initiator MAY remove a corresponding FEC(s) from the Target FEC
        Stack TLV in the next (TTL+1) traceroute request, as defined in
        Section 4.6 of [RFC8029].

        When a received echo reply does not contain the FEC Stack
        Change TLV, the initiator MUST NOT attempt to remove any FECs
        from the Target FEC Stack TLV in the next (TTL+1) traceroute
        request.

  As defined in [SR-OSPF] and [SR-IS-IS], the Prefix SID can be
  advertised as an absolute value, an index, or as a range.  In any of
  these cases, the initiator MUST derive the Prefix mapped to the
  Prefix SID and use it in the IGP-Prefix Segment ID defined in
  Sections 5.1 and 5.2.  How the responder uses the details in the
  SR-FEC sub-TLV to perform the validation is a local implementation
  matter.

7.2.  FEC Stack Change Sub-TLV

  [RFC8029] defines a FEC Stack Change sub-TLV that a router must
  include when the FEC stack changes.

  The network node that advertised the Node Segment ID is responsible
  for generating a FEC Stack Change sub-TLV with the Post Office
  Protocol (POP) operation type for the Node Segment ID, regardless of
  whether or not Penultimate Hop Popping (PHP) is enabled.

  The network node that is immediately downstream of the node that
  advertised the Adjacency Segment ID is responsible for generating the
  FEC Stack Change sub-TLV for POP operation for the Adjacency Segment
  ID.




Kumar, et al.                Standards Track                   [Page 12]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


7.3.  Segment ID POP Operation

  The forwarding semantic of the Node Segment ID with the PHP flag is
  equivalent to usage of Implicit Null in MPLS protocols.  The
  Adjacency Segment ID is also similar in a sense that it can be
  thought of as a locally allocated segment that has PHP enabled when
  destined for the next-hop IGP Adjacency Node.  Procedures described
  in Section 4.4 of [RFC8029] rely on the Stack-D and Stack-R
  explicitly having the Implicit Null value.  Implementations SHOULD
  use the Implicit Null for the Node Segment ID PHP and Adjacency
  Segment ID PHP cases.

7.4.  Segment ID Check

  This section modifies the procedure defined in Section 4.4.1 of
  [RFC8029].  Step 4 defined in Section 4.4.1 of [RFC8029] is modified
  as below:

       4. If the label mapping for FEC is Implicit Null, set the
          FEC-status to 2 and proceed to step 4a.  Otherwise,
          if the label mapping for FEC is Label-L, proceed to step 4a.
          Otherwise, set the FEC-return-code to 10 ("Mapping for this
          FEC is not the given label at stack-depth"), set the
          FEC-status to 1, and return.

      4a. Segment Routing IGP-Prefix and IGP-Adjacency SID Validation:

        If the Label-stack-depth is 0 and the Target FEC Stack sub-TLV
        at FEC-stack-depth is 34 (IPv4 IGP-Prefix Segment ID), {

           Set the Best-return-code to 10, "Mapping for this FEC is not
           the given label at stack-depth <RSC>" if any below
           conditions fail:

           /* The responder LSR is to check if it is the egress of the
           IPv4 IGP-Prefix Segment ID described in the Target FEC Stack
           sub-TLV, and if the FEC was advertised with the PHP bit
           set.*/

           -  Validate that the Node Segment ID is advertised for the
              IPv4 Prefix by IGP Protocol {

              o  When the Protocol field in the received IPv4 IGP-
                 Prefix Segment ID sub-TLV is 0, use any locally
                 enabled IGP protocol.






Kumar, et al.                Standards Track                   [Page 13]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


              o  When the Protocol field in the received IPv4 IGP-
                 Prefix Segment ID sub-TLV is 1, use OSPF as the IGP
                 protocol.

              o  When the Protocol field in the received IPv4 IGP-
                 Prefix Segment ID sub-TLV is 2, use IS-IS as the IGP
                 protocol.

              o  When the Protocol field in the received IPv4 IGP-
                 Prefix Segment ID sub-TLV is an unrecognized value, it
                 MUST be treated as a Protocol value of 0.

              }

           -  Validate that the Node Segment ID is advertised with the
              No-PHP flag. {

              o  When the Protocol is OSPF, the NP-Flag defined in
                 Section 5 of [SR-OSPF] MUST be set to 0.

              o  When the Protocol is IS-IS, the P-Flag defined in
                 Section 6.1 of [SR-IS-IS] MUST be set to 0.

              }

           If it can be determined that no protocol associated with the
           Interface-I would have advertised the FEC-Type at FEC-stack-
           depth, set the Best-return-code to 12, "Protocol not
           associated with interface at FEC-stack-depth" and return.

           Set FEC-Status to 1 and return.

        }

        Else, if the Label-stack-depth is greater than 0 and the Target
        FEC Stack sub-TLV at FEC-stack-depth is 34 (IPv4 IGP-Prefix
        Segment ID), {

           Set the Best-return-code to 10 if any below conditions fail:

           -  Validate that the Node Segment ID is advertised for the
              IPv4 Prefix by the IGP protocol {

              o  When the Protocol field in the received IPv4 IGP-
                 Prefix Segment ID sub-TLV is 0, use any locally
                 enabled IGP protocol.





Kumar, et al.                Standards Track                   [Page 14]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


              o  When the Protocol field in the received IPv4 IGP-
                 Prefix Segment ID sub-TLV is 1, use OSPF as the IGP
                 protocol.

              o  When the Protocol field in the received IPv4 IGP-
                 Prefix Segment ID sub-TLV is 2, use IS-IS as the IGP
                 protocol.

              o  When the Protocol field in the received IPv4 IGP-
                 Prefix Segment ID sub-TLV is an unrecognized value, it
                 MUST be treated as a Protocol value of 0.

              }

           If it can be determined that no protocol associated with
           Interface-I would have advertised the FEC-Type at FEC-stack-
           depth, set the Best-return-code to 12, "Protocol not
           associated with interface at FEC stack-depth" and return.

           Set FEC-Status to 1 and return.

        }

        Else, if the Label-stack-depth is 0 and the Target FEC sub-TLV
        at FEC-stack-depth is 35 (IPv6 IGP-Prefix Segment ID), {

           Set the Best-return-code to 10 if any of the below
           conditions fail:

           /* The LSR needs to check if it is being a tail-end for the
           LSP and have the prefix advertised with the PHP bit set*/

           -  Validate that the Node Segment ID is advertised for the
              IPv6 Prefix by the IGP protocol {

              o  When the Protocol field in the received IPv6 IGP-
                 Prefix Segment ID sub-TLV is 0, use any locally
                 enabled IGP protocol.

              o  When the Protocol field in the received IPv6 IGP-
                 Prefix Segment ID sub-TLV is 1, use OSPF as the IGP
                 protocol.

              o  When the Protocol field in the received IPv6 IGP-
                 Prefix Segment ID sub-TLV is 2, use IS-IS as the IGP
                 protocol.





Kumar, et al.                Standards Track                   [Page 15]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


              o  When the Protocol field in the received IPv6 IGP-
                 Prefix Segment ID sub-TLV is an unrecognized value, it
                 MUST be treated as a Protocol value of 0.

              }

           -  Validate that the Node Segment ID is advertised with the
              No-PHP flag. {

              o  When the Protocol is OSPF, the NP-flag defined in
                 Section 5 of [SR-OSPFV3] MUST be set to 0.

              o  When the Protocol is IS-IS, the P-Flag defined in
                 Section 6.1 of [SR-IS-IS] MUST be set to 0.

              }

           If it can be determined that no protocol associated with
           Interface-I would have advertised the FEC-Type at FEC-stack-
           depth, set the Best-return-code to 12, "Protocol not
           associated with interface at FEC stack-depth" and return.

           Set the FEC-Status to 1 and return.

        }

        Else, if the Label-stack-depth is greater than 0 and the Target
        FEC sub-TLV at FEC-stack-depth is 35 (IPv6 IGP-Prefix Segment
        ID), {

           Set the Best-return-code to 10 if any below conditions fail:

           -  Validate that the Node Segment ID is advertised for the
              IPv4 Prefix by the IGP protocol {

              o  When the Protocol field in the received IPv6 IGP-
                 Prefix Segment ID sub-TLV is 0, use any locally
                 enabled IGP protocol.

              o  When the Protocol field in the received IPv6 IGP-
                 Prefix Segment ID sub-TLV is 1, use OSPF as the IGP
                 protocol.

              o  When the Protocol field in the received IPv6 IGP-
                 Prefix Segment ID sub-TLV is 2, use IS-IS as the IGP
                 protocol.





Kumar, et al.                Standards Track                   [Page 16]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


              o  When the Protocol field in the received IPv6 IGP-
                 Prefix Segment ID sub-TLV is an unrecognized value, it
                 MUST be treated as a Protocol value of 0.

              }

           If it can be determined that no protocol associated with
           Interface-I would have advertised the FEC-Type at FEC-stack-
           depth, set the Best-return-code to 12, "Protocol not
           associated with interface at FEC stack-depth" and return.

           Set the FEC-Status to 1 and return.

        }

        Else, if the Target FEC sub-TLV at FEC-stack-depth is 36
        (IGP-Adjacency Segment ID), {

           Set the Best-return-code to 35 (Section 9.5) if any below
           conditions fail:

              When the Adj. Type is 1 (Parallel Adjacency):

              o  Validate that the Receiving Node Identifier is the
                 local IGP identifier.

              o  Validate that the IGP-Adjacency Segment ID is
                 advertised by the Advertising Node Identifier of the
                 Protocol in the local IGP database {

                 *  When the Protocol field in the received IGP-
                    Adjacency Segment ID sub-TLV is 0, use any locally
                    enabled IGP protocol.

                 *  When the Protocol field in the received IGP-
                    Adjacency Segment ID sub-TLV is 1, use OSPF as the
                    IGP protocol.

                 *  When the Protocol field in the received IGP-
                    Adjacency Segment ID sub-TLV is 2, use IS-IS as the
                    IGP protocol.

                 *  When the Protocol field in the received IGP-
                    Adjacency Segment ID sub-TLV is an unrecognized
                    value, it MUST be treated as a Protocol value of 0.

                 }




Kumar, et al.                Standards Track                   [Page 17]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


              When the Adj. Type is 4 or 6 (IGP Adjacency or LAN
              Adjacency):

              o  Validate that the Remote Interface ID matches the
                 local identifier of the interface (Interface-I) on
                 which the packet was received.

              o  Validate that the Receiving Node Identifier is the
                 local IGP identifier.

              o  Validate that the IGP-Adjacency Segment ID is
                 advertised by the Advertising Node Identifier of
                 Protocol in the local IGP database {

                 *  When the Protocol field in the received IGP-
                    Adjacency Segment ID sub-TLV is 0, use any locally
                    enabled IGP protocol.

                 *  When the Protocol field in the received IGP-
                    Adjacency Segment ID sub-TLV is 1, use OSPF as the
                    IGP protocol.

                 *  When the Protocol field in the received IGP-
                    Adjacency Segment ID sub-TLV is 2, use IS-IS as the
                    IGP protocol.

                 *  When the Protocol field in the received IGP-
                    Adjacency Segment ID sub-TLV is an unrecognized
                    value, it MUST be treated as a Protocol value of 0.

                 }

           Set the FEC-Status to 1 and return.

        }
















Kumar, et al.                Standards Track                   [Page 18]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


7.5.  TTL Consideration for Traceroute

  The LSP Traceroute operation can properly traverse every hop of the
  SR network for the Uniform Model as described in [RFC3443].  If one
  or more LSRs employ a Short Pipe Model, as described in [RFC3443],
  then the LSP Traceroute may not be able to properly traverse every
  hop of the SR network due to the absence of TTL copy operation when
  the outer label is popped.  The Short Pipe is one of the most
  commonly used models.  The following TTL manipulation technique MAY
  be used when the Short Pipe Model is used.

  When tracing an LSP according to the procedures in [RFC8029], the TTL
  is incremented by one in order to trace the path sequentially along
  the LSP.  However, when a source-routed LSP has to be traced, there
  are as many TTLs as there are labels in the stack.  The LSR that
  initiates the traceroute SHOULD start by setting the TTL to 1 for the
  tunnel in the LSP's label stack it wants to start the tracing from,
  the TTL of all outer labels in the stack to the max value, and the
  TTL of all the inner labels in the stack to zero.  Thus, a typical
  start to the traceroute would have a TTL of 1 for the outermost label
  and all the inner labels would have a TTL of 0.  If the FEC Stack TLV
  is included, it should contain only those for the inner-stacked
  tunnels.  The Return Code/Subcode and FEC Stack Change TLV should be
  used to diagnose the tunnel as described in [RFC8029].  When the
  tracing of a tunnel in the stack is complete, then the next tunnel in
  the stack should be traced.  The end of a tunnel can be detected from
  the Return Code when it indicates that the responding LSR is an
  egress for the stack at depth 1.  Thus, the traceroute procedures in
  [RFC8029] can be recursively applied to traceroute a source-routed
  LSP.

8.  Backward Compatibility with Non-SR Devices

  [INTEROP] describes how SR operates in a network where SR-capable and
  non-SR-capable nodes coexist.  In such networks, there may not be any
  FEC mapping in the responder when the initiator is SR-capable, while
  the responder is not (or vice-versa).  But this is not different from
  RSVP and LDP interoperation scenarios.  When LSP Ping is triggered,
  the responder will set the FEC-return-code to Return 4, "Replying
  router has no mapping for the FEC at stack-depth".

  Similarly, when an SR-capable node assigns Adj-SID for a non-SR-
  capable node, the LSP traceroute may fail as the non-SR-capable node
  is not aware of the "IGP Adjacency Segment ID" sub-TLV and may not
  reply with the FEC Stack Change sub-TLVs.  This may result in any
  further downstream nodes replying back with a Return Code of 4,
  "Replying router has no mapping for the FEC at stack-depth".




Kumar, et al.                Standards Track                   [Page 19]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


9.  IANA Considerations

9.1.  New Target FEC Stack Sub-TLVs

  IANA has assigned three new sub-TLVs from the "sub-TLVs for TLV Types
  1, 16, and 21" subregistry of the "Multi-Protocol Label Switching
  (MPLS) Label Switched Paths (LSPs) Ping Parameters" registry [IANA].

  Sub-Type    Sub-TLV Name                 Reference
  --------    -----------------            ------------
    34        IPv4 IGP-Prefix Segment ID   Section 5.1
    35        IPv6 IGP-Prefix Segment ID   Section 5.2
    36        IGP-Adjacency Segment ID     Section 5.3

9.2.  Protocol in the Segment ID Sub-TLV

  IANA has created a new "Protocol in the Segment ID sub-TLV" (see
  Section 5) registry under the "Multi-Protocol Label Switching (MPLS)
  Label Switched Paths (LSPs) Ping Parameters" registry.  Code points
  in the range of 0-250 will be assigned by Standards Action [RFC8126].
  The range of 251-254 is reserved for experimental use and will not be
  assigned.  The value of 255 is marked "Reserved".  The initial
  entries into the registry are:

    Value           Meaning              Reference
  ----------        ----------------     ------------
    0               Any IGP protocol     This document
    1               OSPF                 This document
    2               IS-IS                This document

9.3.  Adjacency Type in the IGP-Adjacency Segment ID

  IANA has created a new "Adjacency Type in the IGP-Adjacency Segment
  ID" registry (see Section 5.3) under the "Multi-Protocol Label
  Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters"
  registry.  Code points in the range of 0-250 will be assigned by
  Standards Action.  The range of 251-254 is reserved for experimental
  use and will not be assigned.  The value of 255 is marked "Reserved".
  The initial entries into the registry are:

    Value           Meaning
  ----------        ----------------
    0               Unnumbered Interface Adjacency
    1               Parallel Adjacency
    4               IPv4, Non-parallel Adjacency
    6               IPv6, Non-parallel Adjacency





Kumar, et al.                Standards Track                   [Page 20]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


9.4.  Protocol in the Label Stack Sub-TLV of the Downstream Detailed
     Mapping TLV

  IANA has created a new "Protocol in the Label Stack sub-TLV of the
  Downstream Detailed Mapping TLV" registry under the "Multi-Protocol
  Label Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters"
  registry.  Code points in the range of 0-250 will be assigned by
  Standards Action.  The range of 251-254 is reserved for experimental
  use and will not be assigned.  The value of 255 is marked "Reserved".
  The initial entries into the registry are:

    Value        Meaning              Reference
  ----------     ----------------     ------------
    0            Unknown              Section 3.4.1.2 of RFC 8029
    1            Static               Section 3.4.1.2 of RFC 8029
    2            BGP                  Section 3.4.1.2 of RFC 8029
    3            LDP                  Section 3.4.1.2 of RFC 8029
    4            RSVP-TE              Section 3.4.1.2 of RFC 8029
    5            OSPF                 Section 6 of this document
    6            IS-IS                Section 6 of this document
    7-250        Unassigned
    251-254      Reserved for
                 Experimental Use     This document
    255          Reserved             This document

9.5.  Return Code

  IANA has assigned a new Return Code from the "Multi-Protocol Label
  Switching (MPLS) Label Switched Paths (LSPs) Ping Parameters" in the
  0-191 (Standards Action) range from the "Return Codes" subregistry.

    Value     Meaning                                  Reference
  ----------  -----------------                        ------------
    35        Mapping for this FEC is not associated   Section 7.4 of
              with the incoming interface              this document

10.  Security Considerations

  This document defines additional MPLS LSP Ping sub-TLVs and follows
  the mechanisms defined in [RFC8029].  All the security considerations
  defined in [RFC8029] will be applicable for this document and, in
  addition, they do not impose any additional security challenges to be
  considered.








Kumar, et al.                Standards Track                   [Page 21]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


11.  References

11.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC3443]  Agarwal, P. and B. Akyol, "Time To Live (TTL) Processing
             in Multi-Protocol Label Switching (MPLS) Networks",
             RFC 3443, DOI 10.17487/RFC3443, January 2003,
             <https://www.rfc-editor.org/info/rfc3443>.

  [RFC4203]  Kompella, K., Ed. and Y. Rekhter, Ed., "OSPF Extensions in
             Support of Generalized Multi-Protocol Label Switching
             (GMPLS)", RFC 4203, DOI 10.17487/RFC4203, October 2005,
             <https://www.rfc-editor.org/info/rfc4203>.

  [RFC5307]  Kompella, K., Ed. and Y. Rekhter, Ed., "IS-IS Extensions
             in Support of Generalized Multi-Protocol Label Switching
             (GMPLS)", RFC 5307, DOI 10.17487/RFC5307, October 2008,
             <https://www.rfc-editor.org/info/rfc5307>.

  [RFC8029]  Kompella, K., Swallow, G., Pignataro, C., Ed., Kumar, N.,
             Aldrin, S., and M. Chen, "Detecting Multiprotocol Label
             Switched (MPLS) Data-Plane Failures", RFC 8029,
             DOI 10.17487/RFC8029, March 2017,
             <https://www.rfc-editor.org/info/rfc8029>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2.  Informative References

  [IANA]     IANA, "Multi-Protocol Label Switching (MPLS) Label
             Switched Paths (LSPs) Ping Parameters",
             <http://www.iana.org/assignments/
             mpls-lsp-ping-parameters>.

  [INTEROP]  Filsfils, C., Previdi, S., Bashandy, A., Decraene, B., and
             S. Litkowski, "Segment Routing interworking with LDP",
             Work in Progress, draft-ietf-spring-segment-routing-ldp-
             interop-09, September 2017.






Kumar, et al.                Standards Track                   [Page 22]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


  [RFC792]   Postel, J., "Internet Control Message Protocol", STD 5,
             RFC 792, DOI 10.17487/RFC0792, September 1981,
             <https://www.rfc-editor.org/info/rfc792>.

  [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
             Writing an IANA Considerations Section in RFCs", BCP 26,
             RFC 8126, DOI 10.17487/RFC8126, June 2017,
             <https://www.rfc-editor.org/info/rfc8126>.

  [SR]       Filsfils, C., Previdi, S., Ginsberg, L., Decraene, B.,
             Litkowski, S., and R. Shakir, "Segment Routing
             Architecture", Work in Progress, draft-ietf-spring-
             segment-routing-14, December 2017.

  [SR-IS-IS] Previdi, S., Ginsberg, L., Filsfils, C., Bashandy, A.,
             Gredler, H., Litkowski, S., Decraene, B., and J. Tantsura,
             "IS-IS Extensions for Segment Routing", Work in Progress,
             draft-ietf-isis-segment-routing-extensions-15, December
             2017.

  [SR-MPLS]  Filsfils, C., Previdi, S., Bashandy, A., Decraene, B.,
             Litkowski, S., and R. Shakir, "Segment Routing with MPLS
             data plane", Work in Progress, draft-ietf-spring-segment-
             routing-mpls-11, October 2017.

  [SR-OSPF]  Psenak, P., Previdi, S., Filsfils, C., Gredler, H.,
             Shakir, R., Henderickx, W., and J. Tantsura, "OSPF
             Extensions for Segment Routing", Work in Progress,
             draft-ietf-ospf-segment-routing-extensions-24, December
             2017.

  [SR-OSPFV3]
             Psenak, P., Previdi, S., Filsfils, C., Gredler, H.,
             Shakir, R., Henderickx, W., and J. Tantsura, "OSPFv3
             Extensions for Segment Routing", Work in Progress,
             draft-ietf-ospf-ospfv3-segment-routing-extensions-10,
             September 2017.














Kumar, et al.                Standards Track                   [Page 23]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


Acknowledgements

  The authors would like to thank Stefano Previdi, Les Ginsberg, Balaji
  Rajagopalan, Harish Sitaraman, Curtis Villamizar, Pranjal Dutta,
  Lizhong Jin, Tom Petch, Victor Ji, Mustapha Aissaoui, Tony
  Przygienda, Alexander Vainshtein, and Deborah Brungard for their
  review and comments.

  The authors would like to thank Loa Andersson for his comments and
  recommendation to merge documents.

Contributors

  The following are key contributors to this document:

     Hannes Gredler, RtBrick, Inc.
     Tarek Saad, Cisco Systems, Inc.
     Siva Sivabalan, Cisco Systems, Inc.
     Balaji Rajagopalan, Juniper Networks
     Faisal Iqbal, Cisco Systems, Inc.































Kumar, et al.                Standards Track                   [Page 24]

RFC 8287               LSP Ping/Trace for SR-MPLS          December 2017


Authors' Addresses

  Nagendra Kumar (editor)
  Cisco Systems, Inc.
  7200-12 Kit Creek Road
  Research Triangle Park, NC  27709-4987
  United States of America

  Email: [email protected]


  Carlos Pignataro (editor)
  Cisco Systems, Inc.
  7200-11 Kit Creek Road
  Research Triangle Park, NC  27709-4987
  United States of America

  Email: [email protected]


  George Swallow
  Southend Technical Center

  Email: [email protected]


  Nobo Akiya
  Big Switch Networks

  Email: [email protected]


  Sriganesh Kini
  Individual

  Email: [email protected]


  Mach(Guoyi) Chen
  Huawei

  Email: [email protected]









Kumar, et al.                Standards Track                   [Page 25]