Internet Engineering Task Force (IETF)                    A. Farrel, Ed.
Request for Comments: 8283                              Juniper Networks
Category: Informational                                     Q. Zhao, Ed.
ISSN: 2070-1721                                                    R. Li
                                                    Huawei Technologies
                                                                C. Zhou
                                                          Cisco Systems
                                                          December 2017


An Architecture for Use of PCE and the PCE Communication Protocol (PCEP)
                  in a Network with Central Control

Abstract

  The Path Computation Element (PCE) is a core component of Software-
  Defined Networking (SDN) systems.  It can compute optimal paths for
  traffic across a network and can also update the paths to reflect
  changes in the network or traffic demands.

  PCE was developed to derive paths for MPLS Label Switched Paths
  (LSPs), which are supplied to the head end of the LSP using the Path
  Computation Element Communication Protocol (PCEP).

  SDN has a broader applicability than signaled MPLS traffic-engineered
  (TE) networks, and the PCE may be used to determine paths in a range
  of use cases including static LSPs, segment routing, Service Function
  Chaining (SFC), and most forms of a routed or switched network.  It
  is, therefore, reasonable to consider PCEP as a control protocol for
  use in these environments to allow the PCE to be fully enabled as a
  central controller.

  This document briefly introduces the architecture for PCE as a
  central controller, examines the motivations and applicability for
  PCEP as a control protocol in this environment, and introduces the
  implications for the protocol.  A PCE-based central controller can
  simplify the processing of a distributed control plane by blending it
  with elements of SDN and without necessarily completely replacing it.

  This document does not describe use cases in detail and does not
  define protocol extensions: that work is left for other documents.










Farrel, et al.                Informational                     [Page 1]

RFC 8283                   PCE-CC Architecture             December 2017


Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8283.

Copyright Notice

  Copyright (c) 2017 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.





















Farrel, et al.                Informational                     [Page 2]

RFC 8283                   PCE-CC Architecture             December 2017


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
  2.  Architecture  . . . . . . . . . . . . . . . . . . . . . . . .   5
    2.1.  Resilience and Scaling  . . . . . . . . . . . . . . . . .   8
      2.1.1.  Partitioned Network . . . . . . . . . . . . . . . . .   9
      2.1.2.  Multiple Parallel Controllers . . . . . . . . . . . .  10
      2.1.3.  Hierarchical Controllers  . . . . . . . . . . . . . .  12
  3.  Applicability . . . . . . . . . . . . . . . . . . . . . . . .  13
    3.1.  Technology-Oriented Applicability . . . . . . . . . . . .  14
      3.1.1.  Applicability to Control-Plane Operated Networks  . .  14
      3.1.2.  Static LSPs in MPLS . . . . . . . . . . . . . . . . .  14
      3.1.3.  MPLS Multicast  . . . . . . . . . . . . . . . . . . .  15
      3.1.4.  Transport SDN . . . . . . . . . . . . . . . . . . . .  15
      3.1.5.  Segment Routing . . . . . . . . . . . . . . . . . . .  15
      3.1.6.  Service Function Chaining . . . . . . . . . . . . . .  16
    3.2.  High-Level Applicability  . . . . . . . . . . . . . . . .  16
      3.2.1.  Traffic Engineering . . . . . . . . . . . . . . . . .  16
      3.2.2.  Traffic Classification  . . . . . . . . . . . . . . .  17
      3.2.3.  Service Delivery  . . . . . . . . . . . . . . . . . .  17
  4.  Protocol Implications / Guidance for Solution Developers  . .  18
  5.  Security Considerations . . . . . . . . . . . . . . . . . . .  19
  6.  Manageability Considerations  . . . . . . . . . . . . . . . .  19
  7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  20
  8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  20
    8.1.  Normative References  . . . . . . . . . . . . . . . . . .  20
    8.2.  Informative References  . . . . . . . . . . . . . . . . .  21
  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  23
  Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .  24
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  25

1.  Introduction

  The Path Computation Element (PCE) [RFC4655] was developed to offload
  path computation function from routers in an MPLS traffic-engineered
  network.  Since then, the role and function of the PCE has grown to
  cover a number of other uses (such as GMPLS [RFC7025]) and to allow
  delegated control [RFC8231] and PCE-initiated use of network
  resources [RFC8281].

  According to [RFC7399], Software-Defined Networking (SDN) refers to a
  separation between the control elements and the forwarding components
  so that software running in a centralized system, called a
  controller, can act to program the devices in the network to behave
  in specific ways.  A required element in an SDN architecture is a
  component that plans how the network resources will be used and how
  the devices will be programmed.  It is possible to view this
  component as performing specific computations to place traffic flows



Farrel, et al.                Informational                     [Page 3]

RFC 8283                   PCE-CC Architecture             December 2017


  within the network given knowledge of the availability of network
  resources, how other forwarding devices are programmed, and the way
  that other flows are routed.  This is the function and purpose of a
  PCE, and the way that a PCE integrates into a wider network control
  system (including an SDN system) is presented in [RFC7491].

  In early PCE implementations, where the PCE was used to derive paths
  for MPLS Label Switched Paths (LSPs), paths were requested by network
  elements (known as Path Computation Clients (PCCs)), and the results
  of the path computations were supplied to network elements using the
  Path Computation Element Communication Protocol (PCEP) [RFC5440].
  This protocol was later extended to allow a PCE to send unsolicited
  requests to the network for LSP establishment [RFC8281].

  SDN has a far broader applicability than just signaled MPLS or GMPLS
  traffic-engineered networks.  The PCE component in an SDN system may
  be used to determine paths in a wide range of use cases including
  static LSPs, segment routing [SR-ARCH], SFC [RFC7665], and indeed any
  form of routed or switched network.  It is, therefore, reasonable to
  consider PCEP as a general southbound control protocol (i.e., a
  control protocol for communicating from the central controller to
  network elements) for use in these environments to allow the PCE to
  be fully enabled as a central controller.

  This document introduces the architecture for PCE as a central
  controller as an extension of the architecture described in [RFC4655]
  and assumes the continued use of PCEP as the protocol used between
  PCE and PCC.  This document also examines the motivations and
  applicability for PCEP as a Southbound Interface (SBI) and introduces
  the implications for the protocol used in this way.  A PCE-based
  central controller can simplify the processing of a distributed
  control plane by blending it with elements of SDN and without
  necessarily completely replacing it.

  This document does not describe use cases in detail and does not
  define protocol extensions: that work is left for other documents.















Farrel, et al.                Informational                     [Page 4]

RFC 8283                   PCE-CC Architecture             December 2017


2.  Architecture

  The architecture for the use of PCE within centralized control of a
  network is based on the understanding that a PCE can determine how
  connections should be placed and how resources should be used within
  the network, and that the PCE can then cause those connections to be
  established.  Figure 1 shows how this control relationship works in a
  network with an active control plane.  This is a familiar view for
  those who have read and understood [RFC4655] and [RFC8281].

  In this mode of operation, the central controller is asked to create
  connectivity by a network orchestrator, a service manager, an
  Operations Support System (OSS), a Network Management Station (NMS),
  or some other application.  The PCE-based controller computes paths
  with awareness of the network topology, the available resources, and
  the other services supported in the network.  This information is
  held in the Traffic Engineering Database (TED) and other databases
  available to the PCE.  Then the PCE sends a request using PCEP to one
  of the Network Elements (NEs), and that NE uses a control plane to
  establish the requested connections and reserve the network
  resources.

  Note that other databases (such as an LSP Database (LSP-DB)) might
  also be used, but for simplicity of illustration, just the TED is
  shown.

             --------------------------------------------
            | Orchestrator / Service Manager / OSS / NMS |
             --------------------------------------------
                     ^
                     |
                     v
                 ------------
                |            |     -----
                | PCE-Based  |<---| TED |
                | Controller |     -----
                |            |
                 ------------
                   ^
               PCEP|
                   v
                  ----             ----       ----       ----
                 | NE |<--------->| NE |<--->| NE |<--->| NE |
                  ----  Signaling  ----       ----       ----
                        Protocol

         Figure 1: Architecture for the Central Controller with
                             a Control Plane



Farrel, et al.                Informational                     [Page 5]

RFC 8283                   PCE-CC Architecture             December 2017


  Although the architecture shown in Figure 1 represents a form of SDN,
  one objective of SDN in some environments is to remove the dependency
  on a control plane.  A transition architecture toward this goal is
  presented in [RFC7491] and is shown in Figure 2.  In this case,
  services are still requested in the same way, and the PCE-based
  controller still requests use of the network using PCEP.  The main
  difference is that the consumer of the PCEP messages is a network
  controller that provisions the resources and instructs the data plane
  using an SBI that provides an interface to each NE.

               --------------------------------------------
              | Orchestrator / Service Manager / OSS / NMS |
               --------------------------------------------
                                  ^
                                  |
                                  v
                             ------------
                            |            |     -----
                            | PCE-Based  |<---| TED |
                            | Controller |     -----
                            |            |
                             ------------
                                  ^
                                  | PCEP
                                  v
                             ------------
                            |  Network   |
                            | Controller |
                            /------------\
                       SBI /   ^       ^  \
                          /    |       |   \
                         /     v       v    \
                    ----/    ----     ----   \----
                   | NE |   | NE |   | NE |  | NE |
                    ----     ----     ----    ----

          Figure 2: Architecture Including a Network Controller

  The approach in Figure 2 delivers the SDN functionality but is overly
  complicated and insufficiently flexible.

  o  The complication is created by the use of two controllers in a
     hierarchical organization and the resultant use of two protocols
     in a southbound direction.

  o  The lack of flexibility arises from the assumed or required lack
     of a control plane.




Farrel, et al.                Informational                     [Page 6]

RFC 8283                   PCE-CC Architecture             December 2017


  This document describes an architecture that reduces the number of
  components and is flexible to a number of deployment models and use
  cases.  In this hybrid approach (shown in Figure 3), the network
  controller is PCE enabled and can also speak PCEP as the SBI (i.e.,
  it can communicate with each node along the path using PCEP).  That
  means that the controller can communicate with a conventional
  control-plane-enabled NE using PCEP and can also use the same
  protocol to program individual NEs.  In this way, the PCE-based
  controller can control a wider range of networks and deliver many
  different functions as described in Section 3.

  There will be a trade-off in different application scenarios.  In
  some cases, the use of a control plane will simplify deployment (for
  example, by distributing recovery actions), and in other cases, a
  control plane may add operational complexity.

  PCEP is essentially already capable of acting as an SBI and only
  small, use-case-specific modifications to the protocol are needed to
  support this architecture.  The implications for the protocol are
  discussed further in Section 4.

                 --------------------------------------------
                | Orchestrator / Service Manager / OSS / NMS |
                 --------------------------------------------
                                     ^
                                     |
                                     v
                               ------------
                              |            |     -----
                              | PCE-Based  |<---| TED |
                              | Controller |     -----
                              |            |
                              /------------\
                        PCEP /   ^       ^  \
                            /    |       |   \
                           /     v       v    \
                          /    ----     ----   \
                         /    | NE |   | NE |   \
                    ----/      ----     ----     \----
                   | NE |                        | NE |
                    ----                          ----
                      ^        ----     ----      ^
                      :......>| NE |...| NE |<....:
            Signaling Protocol ----     ----

         Figure 3: Architecture for Node-by-Node Central Control





Farrel, et al.                Informational                     [Page 7]

RFC 8283                   PCE-CC Architecture             December 2017


2.1.  Resilience and Scaling

  Systems with central controllers are vulnerable to two problems:
  failure of the controller or overload of the controller.  These
  concerns are not unique to the use of a PCE-based controller, but
  they need to be addressed in this document before the PCE-based
  controller architecture can be considered for use in all but the
  smallest networks.

  There are three architectural mechanisms that can be applied to
  address these issues.  The mechanisms are described separately for
  clarity, but a deployment may use any combination of the approaches.

  For simplicity of illustration, these three approaches are shown in
  the sections that follow without a control plane.  However, the
  general, hybrid approach of Figure 3 is applicable in each case.



































Farrel, et al.                Informational                     [Page 8]

RFC 8283                   PCE-CC Architecture             December 2017


2.1.1.  Partitioned Network

  The first and simplest approach to handling controller overload or
  scalability is to use multiple controllers, each responsible for a
  part of the network.  We can call the resultant areas of control
  "domains" [RFC4655].

  This approach is shown in Figure 4.  It can clearly address some of
  the scaling and overload concerns since each controller now only has
  responsibility for a subset of the network elements.  But this comes
  at a cost because end-to-end connections require coordination between
  the controllers.  Furthermore, this technique does not remove the
  concern about a single point-of-failure even if it does reduce the
  impact on the network of the failure of a single controller.

  Note that PCEP is designed to work as a PCE-to-PCE protocol as well
  as a PCE-to-PCC protocol, so it should be possible to use it to
  coordinate between PCE-based controllers in this model.

                   --------------------------------------------
                  | Orchestrator / Service Manager / OSS / NMS |
                   --------------------------------------------
                               ^                 ^
                               |                 |
                               v                 v
                       ------------  Coordi-   ------------
            -----     |            |  nation  |            |     -----
           | TED |--->| PCE-Based  |<-------->| PCE-Based  |<---| TED |
            -----     | Controller |          | Controller |     -----
                      |            |    ::    |            |
                      /------------     ::     ------------\
                     /    ^       ^     ::    ^        ^    \
                    /     |       |     ::    |        |     \
                   |      |       |     ::    |        |      |
                   v      v       v     ::    v        v      v
                 ----    ----    ----   ::   ----    ----    ----
                | NE |  | NE |  | NE |  ::  | NE |  | NE |  | NE |
                 ----    ----    ----   ::   ----    ----    ----
                                        ::
                               Domain 1 :: Domain 2
                                        ::

         Figure 4: Multiple Controllers on a Partitioned Network








Farrel, et al.                Informational                     [Page 9]

RFC 8283                   PCE-CC Architecture             December 2017


2.1.2.  Multiple Parallel Controllers

  Multiple controllers may be deployed where each controller is capable
  of controlling all of the network elements.  Thus, the failure of any
  one controller will not leave the network unmanageable and, in normal
  circumstances, the load can be distributed across the controllers.

  Multiple parallel controllers may be deployed as shown in Figure 5.
  Each controller is capable of controlling all of the network
  elements; thus, the failure of any one controller will not leave the
  network unmanageable, and in normal circumstances, the load can be
  distributed across the controllers.  In this model, the orchestrator
  (or any requester) must select a controller to consume its request.

                        --------------------------------------------
                       | Orchestrator / Service Manager / OSS / NMS |
                        --------------------------------------------
                               ^                            ^
                               |    ___________________     |
                               |   |  Synchronization  |    |
                               v   v                   v    v
                         ------------                 ------------
                        |            |     -----     |            |
                        | PCE-Based  |<---| TED |--->| PCE-Based  |
                        | Controller |     -----     | Controller |
                        |            |__  ...........|            |
                         ------------\  \_:__        :------------
                               ^  ^   \___:  \  .....:  ^   ^
                               |  |  .....:\  \_:___  ..:   :
                               |  |__:___   \___:_  \_:___  :
                               | ....:   | .....: | ..:   | :
                               | :       | :      | :     | :
                               v v       v v      v v     v v
                              ----      ----     ----     ----
                             | NE |    | NE |   | NE |   | NE |
                              ----      ----     ----     ----

                Figure 5: Multiple Redundant Controllers













Farrel, et al.                Informational                    [Page 10]

RFC 8283                   PCE-CC Architecture             December 2017


  An alternate approach is to present the controllers as a "cluster"
  that represents itself externally as a single controller as in
  Figure 3 but that is actually comprised of multiple controllers.  The
  size of the cluster may be varied according to the load in the manner
  of Network Functions Virtualization (NFV), and the cluster is
  responsible for sharing load among the members of the cluster.  This
  approach is shown in Figure 6.

                      --------------------------------------------
                     | Orchestrator / Service Manager / OSS / NMS |
                      --------------------------------------------
                                            ^
                                            |
                  --------------------------+-------------------------
                 | Controller ______________|_____________            |
                 | Cluster   |                            |           |
                 |           |    ___________________     |           |
                 |           |   |  Synchronization  |    |           |
                 |           v   v                   v    v           |
                 |     ------------      -----      ------------      |
                 |    | PCE-Based  |<---| TED |--->| PCE-Based  |     |
                 |    | Controller |     -----     | Controller |     |
                 |    | Instance   |               | Instance   |     |
                 |     ------------                 ------------      |
                 |           ^                            ^           |
                 |           |____________________________|           |
                 |                          |                         |
                  --------------------------+-------------------------
                               _____________|_____________
                              |         |        |        |
                              v         v        v        v
                            ----      ----     ----     ----
                           | NE |    | NE |   | NE |   | NE |
                            ----      ----     ----     ----

          Figure 6: Multiple Controllers Presented as a Cluster

  To achieve full redundancy and to be able to continue to provide full
  function in the event of a controller failure, the controllers must
  synchronize with each other.  This is nominally a simple task if
  there are just two controllers but can actually be quite complex if
  state changes in the network are not to be lost.  Furthermore, if
  there are more than two controllers, the synchronization between
  controllers can become a hard problem.







Farrel, et al.                Informational                    [Page 11]

RFC 8283                   PCE-CC Architecture             December 2017


  Synchronization issues are often off-loaded as "database
  synchronization" problems, because distributed database packages have
  already had to address these challenges, or by using a shared
  database.  In networking, the problem may also be addressed by
  collecting the state from the network (effectively using the network
  as a database) using normal routing protocols such as OSPF, IS-IS,
  and BGP.  It should be noted that addressing the synchronization
  problem through a shared database may be hiding the issues of
  congestion and of a single point of failure: while the controllers
  may have been made resilient by allowing redundancy, the shared
  database is still a problem, so the whole system is still vulnerable.

2.1.3.  Hierarchical Controllers

  Figure 7 shows an approach with hierarchical controllers.  This
  approach was developed for PCEs in [RFC6805] and appears in various
  SDN architectures where a "parent PCE", an "orchestrator", or a
  "super controller" takes responsibility for a high-level view of the
  network before distributing tasks to lower-level PCEs or controllers.

  On its own, this approach does little to protect against the failure
  of a controller, but it can make significant improvements in loading
  and scaling of the individual controllers.  It also offers a good way
  to support end-to-end connectivity across multiple administrative or
  technology-specific domains.

  Note that this model can be arbitrarily recursive with a PCE-based
  controller being the child of one parent PCE-based controller while
  acting as the parent of another set of PCE-based controllers.






















Farrel, et al.                Informational                    [Page 12]

RFC 8283                   PCE-CC Architecture             December 2017


                     --------------------------------------------
                    | Orchestrator / Service Manager / OSS / NMS |
                     --------------------------------------------
                                          ^
                                          |
                                          v
                                     ------------
                                    |   Parent   |     -----
                                    | PCE-Based  |<---| TED |
                                    | Controller |     -----
                                    |            |
                                     ------------
                                      ^        ^
                                      |        |
                                      v   ::   v
                            ------------  ::  ------------
                 -----     |            | :: |            |     -----
                | TED |--->| PCE-Based  | :: | PCE-Based  |<---| TED |
                 -----     | Controller | :: | Controller |     -----
                          /|            | :: |            |\
                         /  ------------  ::  ------------  \
                        /   ^       ^     ::    ^        ^   \
                       /    |       |     ::    |        |    \
                      /     |       |     ::    |        |     \
                     |      |       |     ::    |        |      |
                     v      v       v     ::    v        v      v
                   ----    ----    ----   ::   ----    ----    ----
                  | NE |  | NE |  | NE |  ::  | NE |  | NE |  | NE |
                   ----    ----    ----   ::   ----    ----    ----
                                          ::
                                 Domain 1 :: Domain 2
                                          ::

                   Figure 7: Hierarchical Controllers

3.  Applicability

  This section gives a very high-level introduction to the
  applicability of a PCE-based centralized controller.  There is no
  attempt to explain each use case in detail, and the inclusion of a
  use case is not intended to suggest that deploying a PCE-based
  controller is a mandatory or recommended approach.  The sections
  below are provided as a stimulus to the discussion of the
  applicability of a PCE-based controller, and it is expected that
  separate documents will be written to develop the use cases in which
  there is interest for implementation and deployment.  As described in





Farrel, et al.                Informational                    [Page 13]

RFC 8283                   PCE-CC Architecture             December 2017


  Section 4, specific enhancements to PCEP may be needed for some of
  these use cases, and it is expected that the documents that develop
  each use case will also address any extensions to PCEP.

  The rest of this section is divided into two sub-sections.  The first
  approaches the question of applicability from a consideration of the
  network technology.  The second looks at the high-level functions
  that can be delivered by using a PCE-based controller.

  As previously mentioned, this section is intended to just make
  suggestions.  Thus, the material supplied is very brief.  The
  omission of a use case is in no way meant to imply some limit on the
  applicability of PCE-based control.

3.1.  Technology-Oriented Applicability

  This section provides a list of use cases based on network
  technology.

3.1.1.  Applicability to Control-Plane Operated Networks

  This mode of operation is the common approach for an active, stateful
  PCE to control a traffic-engineered MPLS or GMPLS network [RFC8231].
  Note that the PCE-based controller determines what LSPs are needed
  and where to place them.  PCEP is used to instruct the head end of
  each LSP, and the head end signals in the control plane to set up the
  LSP.

  In this mode of operation, the PCE may construct its TED in a number
  of ways as described in [RFC4655], including (but not limited to)
  participating in the IGP or receiving information from a network
  element via BGP-LS [RFC7752].

3.1.2.  Static LSPs in MPLS

  Static LSPs are provisioned without the use of a control plane.  This
  means that they are established using a management plane or "manual"
  configuration.

  Static LSPs can be provisioned as explicit label instructions at each
  hop on the end-to-end path LSP.  Each router along the path must be
  told what label-forwarding instructions to program and what resources
  to reserve.  The PCE-based controller keeps a view of the network and
  determines the paths of the end-to-end LSPs just as it does for the
  use case described in Section 3.1.1, but the controller uses PCEP to
  communicate with each router along the path of the end-to-end LSP.
  In this case, the PCE-based controller will take responsibility for
  managing some part of the MPLS label space for each of the routers



Farrel, et al.                Informational                    [Page 14]

RFC 8283                   PCE-CC Architecture             December 2017


  that it controls, and it may taker wider responsibility for
  partitioning the label space for each router and allocating different
  parts for different uses, communicating the ranges to the router
  using PCEP.

3.1.3.  MPLS Multicast

  Multicast LSPs may be provisioned with a control plane or as static
  LSPs.  No extra considerations apply above those described in
  Sections 3.1.1 and 3.1.2 except, of course, to note that the PCE must
  also include the instructions about where the LSP branches, i.e.,
  where packets must be copied.

3.1.4.  Transport SDN

  Transport SDN (T-SDN) is the application of SDN techniques to
  transport networks.  In this respect, a transport network is a
  network built from any technology below the IP layer and designed to
  carry traffic transparently in a connection-oriented way.  Thus, an
  MPLS traffic-engineered network is a transport network, although it
  is more common to consider technologies such as Time Division
  Multiplexing (TDM) and Optical Transport Networks (OTNs) to be
  transport networks.

  Transport networks may be operated with or without a control plane
  and may have point-to-point or point-to-multipoint connections.
  Thus, all of the considerations in Sections 3.1.1, 3.1.2, and 3.1.3
  apply so that the normal PCEP message allows a PCE-based central
  controller to provision a transport network.  It is usually the case
  that additional technology-specific parameters are needed to
  configure the NEs or LSPs in transport networks, such as optical
  characteristic.  Such parameters will need to be carried in the PCEP
  messages: new protocol extensions may be needed, as described, for
  example, in [PCEP-WSON-RWA].

3.1.5.  Segment Routing

  Segment routing is described in [SR-ARCH].  It relies on a series of
  forwarding instructions being placed in the header of a packet.  At
  each hop in the network, a router looks at the first instruction and
  may: continue to forward the packet unchanged; strip the top
  instruction and forward the packet; or strip the top instruction,
  insert some additional instructions, and forward the packet.

  The segment routing architecture supports operations that can be used
  to steer packet flows in a network, thus providing a form of traffic
  engineering.  A PCE-based controller can be responsible for computing
  the paths for packet flows in a segment routing network, configuring



Farrel, et al.                Informational                    [Page 15]

RFC 8283                   PCE-CC Architecture             December 2017


  the forwarding actions on the routers, and telling the edge routers
  what instructions to attach to packets as they enter the network.
  These last two operations can be achieved using PCEP, and the
  PCE-based controller will assume responsibility for managing the
  space of labels or path identifiers used to determine how packets are
  forwarded.

3.1.6.  Service Function Chaining

  SFC is described in [RFC7665].  It is the process of directing
  traffic in a network such that it passes through specific hardware
  devices or virtual machines (known as service function nodes) that
  can perform particular desired functions on the traffic.  The set of
  functions to be performed and the order in which they are to be
  performed is known as a service function chain.  The chain is
  enhanced with the locations at which the service functions are to be
  performed to derive a Service Function Path (SFP).  Each packet is
  marked as belonging to a specific SFP, and that marking lets each
  successive service function node know which functions to perform and
  to which service function node to send the packet next.

  To operate an SFC network, the service function nodes must be
  configured to understand the packet markings, and the edge nodes must
  be told how to mark packets entering the network.  Additionally, it
  may be necessary to establish tunnels between service function nodes
  to carry the traffic.

  Planning an SFC network requires load balancing between service
  function nodes and traffic engineering across the network that
  connects them.  These are operations that can be performed by a
  PCE-based controller, and that controller can use PCEP to program the
  network and install the service function chains and any required
  tunnels.

3.2.  High-Level Applicability

  This section provides a list of the high-level functions that can be
  delivered by using a PCE-based controller.

3.2.1.  Traffic Engineering

  According to [RFC2702], TE is concerned with performance optimization
  of operational networks.  In general, it encompasses the application
  of technology and scientific principles to the measurement, modeling,
  characterization, control of Internet traffic, and application of
  such knowledge and techniques to achieve specific performance
  objectives.




Farrel, et al.                Informational                    [Page 16]

RFC 8283                   PCE-CC Architecture             December 2017


  From a practical point of view, this involves having an understanding
  of the topology of the network, the characteristics of the nodes and
  links in the network, and the traffic demands and flows across the
  network.  It also requires that actions can be taken to ensure that
  traffic follows specific paths through the network.

  PCE was specifically developed to address TE in an MPLS network, so a
  PCE-based controller is well suited to analyze TE problems and supply
  answers that can be installed in the network using PCEP.  PCEP can be
  responsible for initiating paths across the network through a control
  plane or for installing state in the network node by node such as in
  a segment-routed network (see Section 3.1.5) or by configuring IGP
  metrics.

3.2.2.  Traffic Classification

  Traffic classification is an important part of traffic engineering.
  It is the process of looking at a packet to determine how it should
  be treated as it is forwarded through the network.  It applies in
  many scenarios including MPLS traffic engineering (where it
  determines what traffic is forwarded onto which LSPs); segment
  routing (where it is used to select which set of forwarding
  instructions to add to a packet); and SFC (where it indicates along
  which service function path a packet should be forwarded).  In
  conjunction with traffic engineering, traffic classification is an
  important enabler for load balancing.

  Traffic classification is closely linked to the computational
  elements of planning for the network functions just listed because it
  determines how traffic load is balanced and distributed through the
  network.  Therefore, selecting what traffic classification should be
  performed by a router is an important part of the work done by a
  PCE-based controller.

  Instructions can be passed from the controller to the routers using
  PCEP.  These instructions tell the routers how to map traffic to
  paths or connections.

3.2.3.  Service Delivery

  Various network services may be offered over a network.  These
  include protection services (including end-to-end protection
  [RFC4427], restoration after failure, and fast reroute [RFC4090]);
  Virtual Private Network (VPN) services (such as Layer 3 VPNs
  [RFC4364] or Ethernet VPNs [RFC7432]); or Pseudowires [RFC3985].






Farrel, et al.                Informational                    [Page 17]

RFC 8283                   PCE-CC Architecture             December 2017


  Delivering services over a network in an optimal way requires
  coordination in the way that network resources are allocated to
  support the services.  A PCE-based central controller can consider
  the whole network and all components of a service at once when
  planning how to deliver the service.  It can then use PCEP to manage
  the network resources and to install the necessary associations
  between those resources.

4.  Protocol Implications / Guidance for Solution Developers

  PCEP is a push-pull protocol that is designed to move requests and
  responses between a server (the PCE) and clients (the PCCs, i.e., the
  network elements).  In particular, it has a message (the LSP Initiate
  Request (PCInitiate); see [RFC8281]) that can be sent by the PCE to
  install state or cause actions at the PCC and a response message
  (Path Computation State Report (PCRpt)) that is used to confirm the
  request.

  As such, there is an expectation that only relatively minor changes
  to PCEP are required to support the concept of a PCE-based
  controller.  The only work expected to be needed is extensions to
  existing PCEP messages to carry additional or specific information
  elements for the individual use cases, which maintain backward
  compatibility and do not impact existing PCEP deployments.  [RFC5440]
  already describes how legacy implementations handle unknown protocol
  extensions and how to use the PCEP Open message to indicate support
  for PCEP features.  Where possible, consistent with the general
  principles of how protocols are extended, any additions to the
  protocol should be made in a generic way such that they are open to
  use in a range of applications.

  It is anticipated that new documents (such as [PCEP-CONTROLLER]) will
  be produced for each use case dependent on support and demand.  Such
  documents will explain the use case and define the necessary protocol
  extensions.

  Protocol extensions could have impact on existing PCEP deployments
  and the interoperability between different implementations.  It is
  anticipated that changes of the PCEP protocol or addition of
  information elements could require additional testing to ensure
  interoperability between different PCEP implementations.

  It is reasonable to expect that implementations are able to select a
  subset or profile of the protocol extensions and PCEP features that
  are relevant for the application scenario in which they will be
  deployed.  Identification of these profiles should form part of the
  protocol itself so that interoperability can be easily determined and
  testing can be limited to the specific profiles.



Farrel, et al.                Informational                    [Page 18]

RFC 8283                   PCE-CC Architecture             December 2017


  Note that protocol mechanisms to handle synchronization of state in
  parallel PCE-based controllers will also be required if parallel
  controllers are used as described in Section 2.1.2.  In [RFC8231],
  there is a discussion of mechanisms to achieve PCE state
  synchronization.

5.  Security Considerations

  Security considerations for a PCE-based controller are little
  different from those for any other PCE system.  That is, the
  operation relies heavily on the use and security of PCEP, so
  consideration should be given to the security features discussed in
  [RFC5440] and the additional mechanisms described in [RFC8253].

  It should be observed that the trust model of a network that operates
  without a control plane is different from one with a control plane.
  The conventional "chain of trust" used with a control plane is
  replaced by individual trust relationships between the controller and
  each individual NE.  This model may be considerably easier to manage,
  so it is more likely to be operated with a high level of security.

  However, an architecture with a central controller has a central
  point of failure, and this is also a security weakness since the
  network can be vulnerable to denial-of-service attacks on the
  controller.  Similarly, the central controller provides a focus for
  interception and modification of messages sent to individual NEs.  In
  short, while the interactions with a PCE-based controller are not
  substantially different to those in any other SDN architecture, the
  security implications of SDN have not been fully discussed or
  described.  Therefore, protocol and applicability work-around
  solutions for this architecture must take proper account of these
  concerns.

  It is expected that each new document that is produced for a specific
  use case will also include considerations of the security impacts of
  the use of a PCE-based central controller on the network type and
  services being managed.

6.  Manageability Considerations

  The architecture described in this document is a management
  architecture: the PCE-based controller is a management component that
  controls the network through a southbound control protocol (PCEP).

  An implementation of a PCE-based controller will require access to
  information about the state of the network, its nodes, and its links.
  Some of this will be the TED as is normal for a PCE and can be
  collected using the mechanisms already in place (such as listening to



Farrel, et al.                Informational                    [Page 19]

RFC 8283                   PCE-CC Architecture             December 2017


  the IGPs, using BGP-LS [RFC7752], or northbound export of
  YANG-encoded data [YANG-TE] from the network elements to the
  controller).  More information may be collected in the LSP database
  for stateful PCEs as described in [RFC7399] and [RFC8231].
  Additional information may be needed for other specific use cases and
  will need to be collected and passed to the controller.  This may
  require protocol extensions for the mechanisms listed in this
  paragraph.

  The use of different PCEP options and protocol extensions may have an
  impact on interoperability, which is a management issue.  As noted in
  Section 4, protocol extensions should be done in a way that makes it
  possible to identify profiles of PCEP to aid interoperability, and
  this will aid deployment and manageability.

  [RFC5440] contains a substantive Manageability Considerations section
  that examines how a PCE-based system and a PCE-enabled system may be
  managed.  A MIB module for PCEP was published as [RFC7420], and a
  YANG module for PCEP has also been proposed [YANG-PCEP].

7.  IANA Considerations

  This document does not require any IANA actions.

8.  References

8.1.  Normative References

  [RFC4655]  Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
             Element (PCE)-Based Architecture", RFC 4655,
             DOI 10.17487/RFC4655, August 2006,
             <https://www.rfc-editor.org/info/rfc4655>.

  [RFC5440]  Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
             Element (PCE) Communication Protocol (PCEP)", RFC 5440,
             DOI 10.17487/RFC5440, March 2009,
             <https://www.rfc-editor.org/info/rfc5440>.

  [RFC8281]  Crabbe, E., Minei, I., Sivabalan, S., and R. Varga, "Path
             Computation Element Communication Protocol (PCEP)
             Extensions for PCE-Initiated LSP Setup in a Stateful PCE
             Model", RFC 8281, DOI 10.17487/RFC8281, December 2017,
             <https://www.rfc-editor.org/info/rfc8281>.








Farrel, et al.                Informational                    [Page 20]

RFC 8283                   PCE-CC Architecture             December 2017


8.2.  Informative References

  [PCECC]    Zhao, Q., Li, Z., Khasanov, B., Ke, Z., Fang, L., Zhou,
             C., Communications, T., Rachitskiy, A., and A. Gulida,
             "The Use Cases for Using PCE as the Central
             Controller(PCECC) of LSPs", Work in Progress,
             draft-zhao-teas-pcecc-use-cases-02, October 2016.

  [PCEP-CONTROLLER]
             Zhao, Q., Li, Z., Dhody, D., Karunanithi, S., Farrel, A.,
             and C. Zhou, "PCEP Procedures and Protocol Extensions for
             Using PCE as a Central Controller (PCECC) of LSPs", Work
             in Progress, draft-zhao-pce-pcep-extension-for-pce-
             controller-06, October 2017.

  [PCEP-WSON-RWA]
             Lee, Y. and R. Casellas, "PCEP Extension for WSON Routing
             and Wavelength Assignment", Work in Progress,
             draft-ietf-pce-wson-rwa-ext-07, November 2017.

  [RFC2702]  Awduche, D., Malcolm, J., Agogbua, J., O'Dell, M., and J.
             McManus, "Requirements for Traffic Engineering Over MPLS",
             RFC 2702, DOI 10.17487/RFC2702, September 1999,
             <https://www.rfc-editor.org/info/rfc2702>.

  [RFC3985]  Bryant, S., Ed. and P. Pate, Ed., "Pseudo Wire Emulation
             Edge-to-Edge (PWE3) Architecture", RFC 3985,
             DOI 10.17487/RFC3985, March 2005,
             <https://www.rfc-editor.org/info/rfc3985>.

  [RFC4090]  Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed., "Fast
             Reroute Extensions to RSVP-TE for LSP Tunnels", RFC 4090,
             DOI 10.17487/RFC4090, May 2005,
             <https://www.rfc-editor.org/info/rfc4090>.

  [RFC4364]  Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
             Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February
             2006, <https://www.rfc-editor.org/info/rfc4364>.

  [RFC4427]  Mannie, E., Ed. and D. Papadimitriou, Ed., "Recovery
             (Protection and Restoration) Terminology for Generalized
             Multi-Protocol Label Switching (GMPLS)", RFC 4427,
             DOI 10.17487/RFC4427, March 2006,
             <https://www.rfc-editor.org/info/rfc4427>.







Farrel, et al.                Informational                    [Page 21]

RFC 8283                   PCE-CC Architecture             December 2017


  [RFC6805]  King, D., Ed. and A. Farrel, Ed., "The Application of the
             Path Computation Element Architecture to the Determination
             of a Sequence of Domains in MPLS and GMPLS", RFC 6805,
             DOI 10.17487/RFC6805, November 2012,
             <https://www.rfc-editor.org/info/rfc6805>.

  [RFC7025]  Otani, T., Ogaki, K., Caviglia, D., Zhang, F., and C.
             Margaria, "Requirements for GMPLS Applications of PCE",
             RFC 7025, DOI 10.17487/RFC7025, September 2013,
             <https://www.rfc-editor.org/info/rfc7025>.

  [RFC7399]  Farrel, A. and D. King, "Unanswered Questions in the Path
             Computation Element Architecture", RFC 7399,
             DOI 10.17487/RFC7399, October 2014,
             <https://www.rfc-editor.org/info/rfc7399>.

  [RFC7420]  Koushik, A., Stephan, E., Zhao, Q., King, D., and J.
             Hardwick, "Path Computation Element Communication Protocol
             (PCEP) Management Information Base (MIB) Module",
             RFC 7420, DOI 10.17487/RFC7420, December 2014,
             <https://www.rfc-editor.org/info/rfc7420>.

  [RFC7432]  Sajassi, A., Ed., Aggarwal, R., Bitar, N., Isaac, A.,
             Uttaro, J., Drake, J., and W. Henderickx, "BGP MPLS-Based
             Ethernet VPN", RFC 7432, DOI 10.17487/RFC7432, February
             2015, <https://www.rfc-editor.org/info/rfc7432>.

  [RFC7491]  King, D. and A. Farrel, "A PCE-Based Architecture for
             Application-Based Network Operations", RFC 7491,
             DOI 10.17487/RFC7491, March 2015,
             <https://www.rfc-editor.org/info/rfc7491>.

  [RFC7665]  Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
             Chaining (SFC) Architecture", RFC 7665,
             DOI 10.17487/RFC7665, October 2015,
             <https://www.rfc-editor.org/info/rfc7665>.

  [RFC7752]  Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and
             S. Ray, "North-Bound Distribution of Link-State and
             Traffic Engineering (TE) Information Using BGP", RFC 7752,
             DOI 10.17487/RFC7752, March 2016,
             <https://www.rfc-editor.org/info/rfc7752>.

  [RFC8231]  Crabbe, E., Minei, I., Medved, J., and R. Varga, "Path
             Computation Element Communication Protocol (PCEP)
             Extensions for Stateful PCE", RFC 8231,
             DOI 10.17487/RFC8231, September 2017,
             <https://www.rfc-editor.org/info/rfc8231>.



Farrel, et al.                Informational                    [Page 22]

RFC 8283                   PCE-CC Architecture             December 2017


  [RFC8253]  Lopez, D., Gonzalez de Dios, O., Wu, Q., and D. Dhody,
             "PCEPS: Usage of TLS to Provide a Secure Transport for the
             Path Computation Element Communication Protocol (PCEP)",
             RFC 8253, DOI 10.17487/RFC8253, October 2017,
             <https://www.rfc-editor.org/info/rfc8253>.

  [SR-ARCH]  Filsfils, C., Previdi, S., Ginsberg, L., Decraene, B.,
             Litkowski, S., and R. Shakir, "Segment Routing
             Architecture", Work in Progress, draft-ietf-spring-
             segment-routing-13, October 2017.

  [YANG-PCEP]
             Dhody, D., Hardwick, J., Beeram, V., and j.
             [email protected], "A YANG Data Model for Path
             Computation Element Communications Protocol (PCEP)", Work
             in Progress, draft-ietf-pce-pcep-yang-05, June 2017.

  [YANG-TE]  Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and
             O. Dios, "YANG Data Model for Traffic Engineering (TE)
             Topologies", Work in Progress, draft-ietf-teas-yang-te-
             topo-13, October 2017.

Acknowledgments

  The ideas in this document owe a lot to the work started by the
  authors of [PCECC] and [PCEP-CONTROLLER].  The authors of this
  document fully acknowledge the prior work and thank those involved
  for opening the discussion.  The individuals concerned are: King Ke,
  Luyuan Fang, Chao Zhou, Boris Zhang, and Zhenbin Li.

  This document has benefited from the discussions within a small ad
  hoc design team; the members of which are listed as document
  contributors.

  Thanks to Michael Scharf and Andy Malis for a lively discussion of
  this document.

  Thanks to Phil Bedard, Aijun Wang, and Elwyn Davies for last call
  comments on this document.

  Spencer Dawkins, Adam Roach, and Ben Campbell provided helpful
  comments during IESG review.









Farrel, et al.                Informational                    [Page 23]

RFC 8283                   PCE-CC Architecture             December 2017


Contributors

  The following people contributed to discussions that led to the
  development of this document:

     Cyril Margaria
     Email: [email protected]

     Sudhir Cheruathur
     Email: [email protected]

     Dhruv Dhody
     Email: [email protected]

     Daniel King
     Email: [email protected]

     Iftekhar Hussain
     Email: [email protected]

     Anurag Sharma
     Email: [email protected]

     Eric Wu
     Email: [email protected]


























Farrel, et al.                Informational                    [Page 24]

RFC 8283                   PCE-CC Architecture             December 2017


Authors' Addresses

  Adrian Farrel (editor)
  Juniper Networks

  Email: [email protected]


  Quintin Zhao (editor)
  Huawei Technologies
  125 Nagog Technology Park
  Acton, MA  01719
  United States of America

  Email: [email protected]


  Robin Li
  Huawei Technologies
  Huawei Bld., No.156 Beiqing Road
  Beijing  100095
  China

  Email: [email protected]


  Chao Zhou
  Cisco Systems

  Email: [email protected]





















Farrel, et al.                Informational                    [Page 25]