Internet Engineering Task Force (IETF)                        R. Stewart
Request for Comments: 8260                                 Netflix, Inc.
Category: Standards Track                                      M. Tuexen
ISSN: 2070-1721                         Muenster Univ. of Appl. Sciences
                                                              S. Loreto
                                                               Ericsson
                                                          R. Seggelmann
                                    Metafinanz Informationssysteme GmbH
                                                          November 2017


           Stream Schedulers and User Message Interleaving
             for the Stream Control Transmission Protocol

Abstract

  The Stream Control Transmission Protocol (SCTP) is a message-oriented
  transport protocol supporting arbitrarily large user messages.  This
  document adds a new chunk to SCTP for carrying payload data.  This
  allows a sender to interleave different user messages that would
  otherwise result in head-of-line blocking at the sender.  The
  interleaving of user messages is required for WebRTC data channels.

  Whenever an SCTP sender is allowed to send user data, it may choose
  from multiple outgoing SCTP streams.  Multiple ways for performing
  this selection, called stream schedulers, are defined in this
  document.  A stream scheduler can choose to either implement, or not
  implement, user message interleaving.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8260.









Stewart, et al.              Standards Track                    [Page 1]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


Copyright Notice

  Copyright (c) 2017 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.





































Stewart, et al.              Standards Track                    [Page 2]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
    1.1.  Overview  . . . . . . . . . . . . . . . . . . . . . . . .   4
    1.2.  Conventions . . . . . . . . . . . . . . . . . . . . . . .   6
  2.  User Message Interleaving . . . . . . . . . . . . . . . . . .   6
    2.1.  The I-DATA Chunk Supporting User Message Interleaving . .   7
    2.2.  Procedures  . . . . . . . . . . . . . . . . . . . . . . .   9
      2.2.1.  Negotiation . . . . . . . . . . . . . . . . . . . . .  10
      2.2.2.  Sender-Side Considerations  . . . . . . . . . . . . .  10
      2.2.3.  Receiver-Side Considerations  . . . . . . . . . . . .  11
    2.3.  Interaction with Other SCTP Extensions  . . . . . . . . .  11
      2.3.1.  SCTP Partial Reliability Extension  . . . . . . . . .  11
      2.3.2.  SCTP Stream Reconfiguration Extension . . . . . . . .  13
  3.  Stream Schedulers . . . . . . . . . . . . . . . . . . . . . .  14
    3.1.  First-Come, First-Served Scheduler (SCTP_SS_FCFS) . . . .  14
    3.2.  Round-Robin Scheduler (SCTP_SS_RR)  . . . . . . . . . . .  14
    3.3.  Round-Robin Scheduler per Packet (SCTP_SS_RR_PKT) . . . .  14
    3.4.  Priority-Based Scheduler (SCTP_SS_PRIO) . . . . . . . . .  14
    3.5.  Fair Capacity Scheduler (SCTP_SS_FC)  . . . . . . . . . .  15
    3.6.  Weighted Fair Queueing Scheduler (SCTP_SS_WFQ)  . . . . .  15
  4.  Socket API Considerations . . . . . . . . . . . . . . . . . .  15
    4.1.  Exposure of the Stream Sequence Number (SSN)  . . . . . .  15
    4.2.  SCTP_ASSOC_CHANGE Notification  . . . . . . . . . . . . .  16
    4.3.  Socket Options  . . . . . . . . . . . . . . . . . . . . .  16
      4.3.1.  Enable or Disable the Support of User Message
              Interleaving (SCTP_INTERLEAVING_SUPPORTED)  . . . . .  16
      4.3.2.  Get or Set the Stream Scheduler
              (SCTP_STREAM_SCHEDULER) . . . . . . . . . . . . . . .  17
      4.3.3.  Get or Set the Stream Scheduler Parameter
              (SCTP_STREAM_SCHEDULER_VALUE) . . . . . . . . . . . .  18
    4.4.  Explicit EOR Marking  . . . . . . . . . . . . . . . . . .  19
  5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  19
    5.1.  I-DATA Chunk  . . . . . . . . . . . . . . . . . . . . . .  19
    5.2.  I-FORWARD-TSN Chunk . . . . . . . . . . . . . . . . . . .  20
  6.  Security Considerations . . . . . . . . . . . . . . . . . . .  20
  7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  21
    7.1.  Normative References  . . . . . . . . . . . . . . . . . .  21
    7.2.  Informative References  . . . . . . . . . . . . . . . . .  22
  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  22
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  23










Stewart, et al.              Standards Track                    [Page 3]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


1.  Introduction

1.1.  Overview

  When SCTP [RFC4960] was initially designed, it was mainly envisioned
  for the transport of small signaling messages.  Late in the design
  stage, it was decided to add support for fragmentation and reassembly
  of larger messages with the thought that someday signaling messages
  in the style of Session Initiation Protocol (SIP) [RFC3261] may also
  need to use SCTP, and a message that is a single Maximum Transmission
  Unit (MTU) would be too small.  Unfortunately this design decision,
  though valid at the time, did not account for other applications that
  might send large messages over SCTP.  The sending of such large
  messages over SCTP, as specified in [RFC4960], can result in a form
  of sender-side head-of-line blocking (e.g., when the transmission of
  a message is blocked from transmission because the sender has started
  the transmission of another, possibly large, message).  This head-of-
  line blocking is caused by the use of the Transmission Sequence
  Number (TSN) for three different purposes:

  1.  As an identifier for DATA chunks to provide a reliable transfer.

  2.  As an identifier for the sequence of fragments to allow
      reassembly.

  3.  As a sequence number allowing up to 2**16 - 1 Stream Sequence
      Numbers (SSNs) outstanding.

  The protocol requires all fragments of a user message to have
  consecutive TSNs.  This document allows an SCTP sender to interleave
  different user messages.

  This document also defines several stream schedulers for general SCTP
  associations allowing different relative stream treatments.  The
  stream schedulers may behave differently depending on whether or not
  user message interleaving has been negotiated for the association.

  Figure 1 illustrates the behavior of a round-robin stream scheduler
  using DATA chunks when three streams with the Stream Identifiers
  (SIDs) 0, 1, and 2 are used.  Each queue for SID 0 and SID 2 contains
  a single user message requiring three chunks.  The queue for SID 1
  contains three user messages each requiring a single chunk.  It is
  shown how these user messages are encapsulated in chunks using TSN 0
  to TSN 8.  Please note that the use of such a scheduler implies late







Stewart, et al.              Standards Track                    [Page 4]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


  TSN assignment, but it can be used with an implementation that is
  compliant with [RFC4960] and that does not support user message
  interleaving.  Late TSN assignment means that the sender generates
  chunks from user messages and assigns the TSN as late as possible in
  the process of sending the user messages.

  +---+---+---+
  |    0/0    |-+
  +---+---+---+ |
                |  +---+---+---+---+---+---+---+---+---+
  +---+---+---+ +->|1/2|1/1|2/0|2/0|2/0|1/0|0/0|0/0|0/0|
  |1/2|1/1|1/0|--->|---|---|---|---|---|---|---|---|---|
  +---+---+---+ +->| 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
                |  +---+---+---+---+---+---+---+---+---+
  +---+---+---+ |
  |    2/0    |-+
  +---+---+---+
                                 +-------+
    +-------+                    |SID/SSN|
    |SID/SSN|                    |-------|
    +-------+                    |  TSN  |
                                 +-------+

    Figure 1: Round-Robin Scheduler without User Message Interleaving

  This document describes a new chunk carrying payload data called
  I-DATA.  This chunk incorporates the properties of the current SCTP
  DATA chunk, all the flags and fields except the Stream Sequence
  Number (SSN), and also adds two new fields in its chunk header -- the
  Fragment Sequence Number (FSN) and the Message Identifier (MID).  The
  FSN is only used for reassembling all fragments that have the same
  MID and the same ordering property.  The TSN is only used for the
  reliable transfer in combination with Selective Acknowledgment (SACK)
  chunks.

  In addition, the MID is also used for ensuring ordered delivery
  instead of using the stream sequence number (the I-DATA chunk omits
  an SSN).

  Figure 2 illustrates the behavior of an interleaving round-robin
  stream scheduler using I-DATA chunks.










Stewart, et al.              Standards Track                    [Page 5]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


+---+---+---+
|    0/0    |-+
+---+---+---+ |
             |  +-----+-----+-----+-----+-----+-----+-----+-----+-----+
+---+---+---+ +->|2/0/2|1/2/0|0/0/2|2/0/1|1/1/0|0/0/1|2/0/0|1/0/0|0/0/0|
|1/2|1/1|1/0|--->|-----|-----|-----|-----|-----|-----|-----|-----|-----|
+---+---+---+ +->|  8  |  7  |  6  |  5  |  4  |  3  |  2  |  1  |  0  |
             |  +-----+-----+-----+-----+-----+-----+-----+-----+-----+
+---+---+---+ |
|    2/0    |-+
+---+---+---+
                                    +-----------+
 +-------+                          |SID/MID/FSN|
 |SID/MID|                          |-----------|
 +-------+                          |    TSN    |
                                    +-----------+

     Figure 2: Round-Robin Scheduler with User Message Interleaving

  The support of the I-DATA chunk is negotiated during the association
  setup using the Supported Extensions Parameter, as defined in
  [RFC5061].  If I-DATA support has been negotiated for an association,
  I-DATA chunks are used for all user messages.  DATA chunks are not
  permitted when I-DATA support has been negotiated.  It should be
  noted that an SCTP implementation supporting I-DATA chunks needs to
  allow the coexistence of associations using DATA chunks and
  associations using I-DATA chunks.

  In Section 2, this document specifies the user message interleaving
  by defining the I-DATA chunk, the procedures to use it, and its
  interactions with other SCTP extensions.  Section 3 defines multiple
  stream schedulers, and Section 4 describes an extension to the socket
  API for using the mechanism specified in this document.

1.2.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.  User Message Interleaving

  The protocol mechanisms described in this document allow the
  interleaving of user messages sent on different streams.  They do not
  support the interleaving of multiple messages (ordered or unordered)
  sent on the same stream.



Stewart, et al.              Standards Track                    [Page 6]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


  The interleaving of user messages is required for WebRTC data
  channels, as specified in [DATA-CHAN].

  An SCTP implementation supporting user message interleaving is
  REQUIRED to support the coexistence of associations using DATA chunks
  and associations using I-DATA chunks.  If an SCTP implementation
  supports user message interleaving and the Partial Reliability
  extension described in [RFC3758] or the Stream Reconfiguration
  Extension described in [RFC6525], it is REQUIRED to implement the
  corresponding changes specified in Section 2.3.

2.1.  The I-DATA Chunk Supporting User Message Interleaving

  The following Figure 3 shows the new I-DATA chunk allowing user
  message interleaving.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Type = 64   |  Res  |I|U|B|E|       Length = Variable       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                              TSN                              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        Stream Identifier      |           Reserved            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Message Identifier                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Payload Protocol Identifier / Fragment Sequence Number     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  \                                                               \
  /                           User Data                           /
  \                                                               \
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 3: I-DATA Chunk Format

  The only differences between the I-DATA chunk in Figure 3 and the
  DATA chunk defined in [RFC4960] and [RFC7053] are the addition of the
  new Message Identifier (MID) and the new Fragment Sequence Number
  (FSN) and the removal of the Stream Sequence Number (SSN).  The
  Payload Protocol Identifier (PPID), which is already defined for DATA
  chunks in [RFC4960], and the new FSN are stored at the same location
  of the packet using the B bit to determine which value is stored at
  the location.  The length of the I-DATA chunk header is 20 bytes,
  which is 4 bytes more than the length of the DATA chunk header
  defined in [RFC4960] and [RFC7053].





Stewart, et al.              Standards Track                    [Page 7]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


  The old fields are:

  Res: 4 bits
     These bits are reserved.  They MUST be set to 0 by the sender and
     MUST be ignored by the receiver.

  I bit: 1 bit
     The (I)mmediate Bit, if set, indicates that the receiver SHOULD
     NOT delay the sending of the corresponding SACK chunk.  Same as
     the I bit for DATA chunks, as specified in [RFC7053].

  U bit: 1 bit
     The (U)nordered bit, if set, indicates the user message is
     unordered.  Same as the U bit for DATA chunks, as specified in
     [RFC4960].

  B bit: 1 bit
     The (B)eginning fragment bit, if set, indicates the first fragment
     of a user message.  Same as the B bit for DATA chunks, as
     specified in [RFC4960].

  E bit: 1 bit
     The (E)nding fragment bit, if set, indicates the last fragment of
     a user message.  Same as the E bit for DATA chunks, as specified
     in [RFC4960].

  Length: 16 bits (unsigned integer)
     This field indicates the length in bytes of the DATA chunk from
     the beginning of the Type field to the end of the User Data field,
     excluding any padding.  Similar to the Length for DATA chunks, as
     specified in [RFC4960].

  TSN: 32 bits (unsigned integer)
     This value represents the TSN for this I-DATA chunk.  Same as the
     TSN for DATA chunks, as specified in [RFC4960].

  Stream Identifier: 16 bits (unsigned integer)
     Identifies the stream to which the user data belongs.  Same as the
     Stream Identifier for DATA chunks, as specified in [RFC4960].

  The new fields are:

  Reserved: 16 bits (unsigned integer)
     This field is reserved.  It MUST be set to 0 by the sender and
     MUST be ignored by the receiver.






Stewart, et al.              Standards Track                    [Page 8]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


  Message Identifier (MID): 32 bits (unsigned integer)
     The MID is the same for all fragments of a user message; it is
     used to determine which fragments (enumerated by the FSN) belong
     to the same user message.  For ordered user messages, the MID is
     also used by the SCTP receiver to deliver the user messages in the
     correct order to the upper layer (similar to the SSN of the DATA
     chunk defined in [RFC4960]).  The sender uses two counters for
     each outgoing stream: one for ordered messages and one for
     unordered messages.  All of these counters are independent and
     initially 0.  They are incremented by 1 for each user message.
     Please note that the serial number arithmetic defined in [RFC1982]
     using SERIAL_BITS = 32 applies.  Therefore, the sender MUST NOT
     have more than 2**31 - 1 ordered messages for each outgoing stream
     in flight and MUST NOT have more than 2**31 - 1 unordered messages
     for each outgoing stream in flight.  A message is considered in
     flight if at least one of its I-DATA chunks is not acknowledged in
     a way that cannot be reneged (i.e., not acknowledged by the
     cumulative TSN Ack).  Please note that the MID is in "network byte
     order", a.k.a.  Big Endian.

  Payload Protocol Identifier (PPID) / Fragment Sequence Number (FSN):
     32 bits (unsigned integer)
     If the B bit is set, this field contains the PPID of the user
     message.  Note that in this case, this field is not touched by an
     SCTP implementation; therefore, its byte order is not necessarily
     in network byte order.  The upper layer is responsible for any
     byte order conversions to this field, similar to the PPID of DATA
     chunks.  In this case, the FSN is implicitly considered to be 0.
     If the B bit is not set, this field contains the FSN.  The FSN is
     used to enumerate all fragments of a single user message, starting
     from 0 and incremented by 1.  The last fragment of a message MUST
     have the E bit set.  Note that the FSN MAY wrap completely
     multiple times, thus allowing arbitrarily large user messages.
     For the FSN, the serial number arithmetic defined in [RFC1982]
     applies with SERIAL_BITS = 32.  Therefore, a sender MUST NOT have
     more than 2**31 - 1 fragments of a single user message in flight.
     A fragment is considered in flight if it is not acknowledged in a
     way that cannot be reneged.  Please note that the FSN is in
     "network byte order", a.k.a.  Big Endian.

2.2.  Procedures

  This subsection describes how the support of the I-DATA chunk is
  negotiated and how the I-DATA chunk is used by the sender and
  receiver.

  The handling of the I bit for the I-DATA chunk corresponds to the
  handling of the I bit for the DATA chunk described in [RFC7053].



Stewart, et al.              Standards Track                    [Page 9]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


2.2.1.  Negotiation

  An SCTP endpoint indicates user message interleaving support by
  listing the I-DATA chunk within the Supported Extensions Parameter,
  as defined in [RFC5061].  User message interleaving has been
  negotiated for an association if both endpoints have indicated I-DATA
  support.

  If user message interleaving support has been negotiated for an
  association, I-DATA chunks MUST be used for all user messages and
  DATA chunks MUST NOT be used.  If user message interleaving support
  has not been negotiated for an association, DATA chunks MUST be used
  for all user messages and I-DATA chunks MUST NOT be used.

  An endpoint implementing the socket API specified in [RFC6458] MUST
  NOT indicate user message interleaving support unless the user has
  requested its use (e.g., via the socket API; see Section 4.3).  This
  constraint is made since the usage of this chunk requires that the
  application is capable of handling interleaved messages upon
  reception within an association.  This is not the default choice
  within the socket API (see the SCTP_FRAGMENT_INTERLEAVE socket option
  in Section 8.1.20 of [RFC6458]); thus, the user MUST indicate to the
  SCTP implementation its support for receiving completely interleaved
  messages.

  Note that stacks that do not implement [RFC6458] may use other
  methods to indicate interleaved message support and thus indicate the
  support of user message interleaving.  The crucial point is that the
  SCTP stack MUST know that the application can handle interleaved
  messages before indicating the I-DATA support.

2.2.2.  Sender-Side Considerations

  The sender-side usage of the I-DATA chunk is quite simple.  Instead
  of using the TSN for fragmentation purposes, the sender uses the new
  FSN field to indicate which fragment number is being sent.  The first
  fragment MUST have the B bit set.  The last fragment MUST have the E
  bit set.  All other fragments MUST NOT have the B or E bit set.  All
  other properties of the existing SCTP DATA chunk also apply to the
  I-DATA chunk, i.e., congestion control as well as receiver window
  conditions MUST be observed, as defined in [RFC4960].

  Note that the usage of this chunk implies the late assignment of the
  actual TSN to any chunk being sent.  Each I-DATA chunk uses a single
  TSN.  This way messages from other streams may be interleaved with
  the fragmented message.  Please note that this is the only form of
  interleaving support.  For example, it is not possible to interleave
  multiple ordered or unordered user messages from the same stream.



Stewart, et al.              Standards Track                   [Page 10]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


  The sender MUST NOT process (move user data into I-DATA chunks and
  assign a TSN to it) more than one user message in any given stream at
  any time.  At any time, a sender MAY process multiple user messages,
  each of them on different streams.

  The sender MUST assign TSNs to I-DATA chunks in a way that the
  receiver can make progress.  One way to achieve this is to assign a
  higher TSN to the later fragments of a user message and send out the
  I-DATA chunks such that the TSNs are in sequence.

2.2.3.  Receiver-Side Considerations

  Upon reception of an SCTP packet containing an I-DATA chunk whose
  user message needs to be reassembled, the receiver MUST first use the
  SID to identify the stream, consider the U bit to determine if it is
  part of an ordered or unordered message, find the user message
  identified by the MID, and use the FSN for reassembly of the message
  and not the TSN.  The receiver MUST NOT make any assumption about the
  TSN assignments of the sender.  Note that a non-fragmented message is
  indicated by the fact that both the E and B bits are set.  A message
  (either ordered or unordered) whose E and B bits are not both set may
  be identified as being fragmented.

  If I-DATA support has been negotiated for an association, the
  reception of a DATA chunk is a violation of the above rules and
  therefore the receiver of the DATA chunk MUST abort the association
  by sending an ABORT chunk.  The ABORT chunk MAY include the 'Protocol
  Violation' error cause.  The same applies if I-DATA support has not
  been negotiated for an association and an I-DATA chunk is received.

2.3.  Interaction with Other SCTP Extensions

  The usage of the I-DATA chunk might interfere with other SCTP
  extensions.  Future SCTP extensions MUST describe if and how they
  interfere with the usage of I-DATA chunks.  For the SCTP extensions
  already defined when this document was published, the details are
  given in the following subsections.

2.3.1.  SCTP Partial Reliability Extension

  When the SCTP extension defined in [RFC3758] is used in combination
  with the user message interleaving extension, the new I-FORWARD-TSN
  chunk MUST be used instead of the FORWARD-TSN chunk.  The difference
  between the FORWARD-TSN and the I-FORWARD-TSN chunk is that the
  16-bit Stream Sequence Number (SSN) has been replaced by the 32-bit
  Message Identifier (MID), and the largest skipped MID can also be





Stewart, et al.              Standards Track                   [Page 11]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


  provided for unordered messages.  Therefore, the principle applied to
  ordered messages when using FORWARD-TSN chunks is applied to ordered
  and unordered messages when using I-FORWARD-TSN chunks.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Type = 194  | Flags = 0x00  |      Length = Variable        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       New Cumulative TSN                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Stream Identifier       |          Reserved           |U|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Message Identifier                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  \                                                               \
  /                                                               /
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Stream Identifier       |          Reserved           |U|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Message Identifier                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 4: I-FORWARD-TSN Chunk Format

  The old fields are:

  Flags: 8 bits (unsigned integer)
     These bits are reserved.  They MUST be set to 0 by the sender and
     MUST be ignored by the receiver.  Same as the Flags for FORWARD
     TSN chunks, as specified in [RFC3758].

  Length: 16 bits (unsigned integer)
     This field holds the length of the chunk.  Similar to the Length
     for FORWARD TSN chunks, as specified in [RFC3758].

  New Cumulative TSN: 32 bits (unsigned integer)
     This indicates the New Cumulative TSN to the data receiver.  Same
     as the New Cumulative TSN for FORWARD TSN chunks, as specified in
     [RFC3758].

  The new fields are:

  Stream Identifier (SID): 16 bits (unsigned integer)
     This field holds the stream number this entry refers to.






Stewart, et al.              Standards Track                   [Page 12]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


  Reserved: 15 bits
     This field is reserved.  It MUST be set to 0 by the sender and
     MUST be ignored by the receiver.

  U bit: 1 bit
     The U bit specifies if the Message Identifier of this entry refers
     to unordered messages (U bit is set) or ordered messages (U bit is
     not set).

  Message Identifier (MID): 32 bits (unsigned integer)
     This field holds the largest Message Identifier for ordered or
     unordered messages indicated by the U bit that was skipped for the
     stream specified by the Stream Identifier.  For ordered messages,
     this is similar to the FORWARD-TSN chunk, just replacing the
     16-bit SSN by the 32-bit MID.

  Support for the I-FORWARD-TSN chunk is negotiated during the SCTP
  association setup via the Supported Extensions Parameter, as defined
  in [RFC5061].  The partial reliability extension is negotiated and
  can be used in combination with user message interleaving only if
  both endpoints indicated their support of user message interleaving
  and the I-FORWARD-TSN chunk.

  The FORWARD-TSN chunk MUST be used in combination with the DATA chunk
  and MUST NOT be used in combination with the I-DATA chunk.  The
  I-FORWARD-TSN chunk MUST be used in combination with the I-DATA chunk
  and MUST NOT be used in combination with the DATA chunk.

  If I-FORWARD-TSN support has been negotiated for an association, the
  reception of a FORWARD-TSN chunk is a violation of the above rules
  and therefore the receiver of the FORWARD-TSN chunk MUST abort the
  association by sending an ABORT chunk.  The ABORT chunk MAY include
  the 'Protocol Violation' error cause.  The same applies if
  I-FORWARD-TSN support has not been negotiated for an association and
  a FORWARD-TSN chunk is received.

2.3.2.  SCTP Stream Reconfiguration Extension

  When an association resets the SSN using the SCTP extension defined
  in [RFC6525], the two counters (one for the ordered messages, one for
  the unordered messages) used for the MIDs MUST be reset to 0.

  Since most schedulers, especially all schedulers supporting user
  message interleaving, require late TSN assignment, it should be noted
  that the implementation of [RFC6525] needs to handle this.






Stewart, et al.              Standards Track                   [Page 13]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


3.  Stream Schedulers

  This section defines several stream schedulers.  The stream
  schedulers may behave differently depending on whether or not user
  message interleaving has been negotiated for the association.  An
  implementation MAY implement any subset of them.  If the
  implementation is used for WebRTC data channels, as specified in
  [DATA-CHAN], it MUST implement the Weighted Fair Queueing Scheduler
  defined in Section 3.6.

  The selection of the stream scheduler is done at the sender side.
  There is no mechanism provided for signaling the stream scheduler
  being used to the receiver side or even for letting the receiver side
  influence the selection of the stream scheduler used at the sender
  side.

3.1.  First-Come, First-Served Scheduler (SCTP_SS_FCFS)

  The simple first-come, first-served scheduler of user messages is
  used.  It just passes through the messages in the order in which they
  have been delivered by the application.  No modification of the order
  is done at all.  The usage of user message interleaving does not
  affect the sending of the chunks, except that I-DATA chunks are used
  instead of DATA chunks.

3.2.  Round-Robin Scheduler (SCTP_SS_RR)

  When not interleaving user messages, this scheduler provides a fair
  scheduling based on the number of user messages by cycling around
  non-empty stream queues.  When interleaving user messages, this
  scheduler provides a fair scheduling based on the number of I-DATA
  chunks by cycling around non-empty stream queues.

3.3.  Round-Robin Scheduler per Packet (SCTP_SS_RR_PKT)

  This is a round-robin scheduler, which only switches streams when
  starting to fill a new packet.  It bundles only DATA or I-DATA chunks
  referring to the same stream in a packet.  This scheduler minimizes
  head-of-line blocking when a packet is lost because only a single
  stream is affected.

3.4.  Priority-Based Scheduler (SCTP_SS_PRIO)

  Scheduling of user messages with strict priorities is used.  The
  priority is configurable per outgoing SCTP stream.  Streams having a
  higher priority will be scheduled first and when multiple streams
  have the same priority, the scheduling between them is implementation




Stewart, et al.              Standards Track                   [Page 14]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


  dependent.  When the scheduler interleaves user messages, the sending
  of large, lower-priority user messages will not delay the sending of
  higher-priority user messages.

3.5.  Fair Capacity Scheduler (SCTP_SS_FC)

  A fair capacity distribution between the streams is used.  This
  scheduler considers the lengths of the messages of each stream and
  schedules them in a specific way to maintain an equal capacity for
  all streams.  The details are implementation dependent.  interleaving
  user messages allows for a better realization of the fair capacity
  usage.

3.6.  Weighted Fair Queueing Scheduler (SCTP_SS_WFQ)

  A Weighted Fair Queueing scheduler between the streams is used.  The
  weight is configurable per outgoing SCTP stream.  This scheduler
  considers the lengths of the messages of each stream and schedules
  them in a specific way to use the capacity according to the given
  weights.  If the weight of stream S1 is n times the weight of stream
  S2, the scheduler should assign to stream S1 n times the capacity it
  assigns to stream S2.  The details are implementation dependent.
  Interleaving user messages allows for a better realization of the
  capacity usage according to the given weights.

  This scheduler, in combination with user message interleaving, is
  used for WebRTC data channels, as specified in [DATA-CHAN].

4.  Socket API Considerations

  This section describes how the socket API defined in [RFC6458] is
  extended to allow applications to use the extension described in this
  document.

  Please note that this section is informational only.

4.1.  Exposure of the Stream Sequence Number (SSN)

  The socket API defined in [RFC6458] defines several structures in
  which the SSN of a received user message is exposed to the
  application.  The list of these structures includes:

  struct sctp_sndrcvinfo
     Specified in Section 5.3.2 of [RFC6458] and marked as deprecated.

  struct sctp_extrcvinfo
     Specified in Section 5.3.3 of [RFC6458] and marked as deprecated.




Stewart, et al.              Standards Track                   [Page 15]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


  struct sctp_rcvinfo
     Specified in Section 5.3.5 of [RFC6458].

  If user message interleaving is used, the lower-order 16 bits of the
  MID are used as the SSN when filling out these structures.

4.2.  SCTP_ASSOC_CHANGE Notification

  When an SCTP_ASSOC_CHANGE notification (specified in Section 6.1.1 of
  [RFC6458]) is delivered indicating a sac_state of SCTP_COMM_UP or
  SCTP_RESTART for an SCTP association where both peers support the
  I-DATA chunk, SCTP_ASSOC_SUPPORTS_INTERLEAVING should be listed in
  the sac_info field.

4.3.  Socket Options

  +-----------------------------+-------------------------+-----+-----+
  | Option Name                 | Data Type               | Get | Set |
  +-----------------------------+-------------------------+-----+-----+
  | SCTP_INTERLEAVING_SUPPORTED | struct sctp_assoc_value |  X  |  X  |
  | SCTP_STREAM_SCHEDULER       | struct sctp_assoc_value |  X  |  X  |
  | SCTP_STREAM_SCHEDULER_VALUE | struct                  |  X  |  X  |
  |                             | sctp_stream_value       |     |     |
  +-----------------------------+-------------------------+-----+-----+

4.3.1.  Enable or Disable the Support of User Message Interleaving
       (SCTP_INTERLEAVING_SUPPORTED)

  This socket option allows the enabling or disabling of the
  negotiation of user message interleaving support for future
  associations.  For existing associations, it allows for querying
  whether or not user message interleaving support was negotiated on a
  particular association.

  This socket option uses IPPROTO_SCTP as its level and
  SCTP_INTERLEAVING_SUPPORTED as its name.  It can be used with
  getsockopt() and setsockopt().  The socket option value uses the
  following structure defined in [RFC6458]:

  struct sctp_assoc_value {
    sctp_assoc_t assoc_id;
    uint32_t assoc_value;
  };








Stewart, et al.              Standards Track                   [Page 16]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


  assoc_id:  This parameter is ignored for one-to-one style sockets.
     For one-to-many style sockets, this parameter indicates upon which
     association the user is performing an action.  The special
     sctp_assoc_t SCTP_FUTURE_ASSOC can also be used; it is an error to
     use SCTP_{CURRENT|ALL}_ASSOC in assoc_id.

  assoc_value:  A non-zero value encodes the enabling of user message
     interleaving, whereas a value of zero encodes the disabling of
     user message interleaving.

  sctp_opt_info() needs to be extended to support
  SCTP_INTERLEAVING_SUPPORTED.

  An application using user message interleaving should also set the
  fragment interleave level to 2 by using the SCTP_FRAGMENT_INTERLEAVE
  socket option specified in Section 8.1.20 of [RFC6458].  This allows
  the interleaving of user messages from different streams.  Please
  note that it does not allow the interleaving of user messages
  (ordered or unordered) on the same stream.  Failure to set this
  option can possibly lead to application deadlock.  Some
  implementations might therefore put some restrictions on setting
  combinations of these values.  Setting the interleaving level to at
  least 2 before enabling the negotiation of user message interleaving
  should work on all platforms.  Since the default fragment interleave
  level is not 2, user message interleaving is disabled per default.

4.3.2.  Get or Set the Stream Scheduler (SCTP_STREAM_SCHEDULER)

  A stream scheduler can be selected with the SCTP_STREAM_SCHEDULER
  option for setsockopt().  The struct sctp_assoc_value is used to
  specify the association for which the scheduler should be changed and
  the value of the desired algorithm.

  The definition of struct sctp_assoc_value is the same as in
  [RFC6458]:

  struct sctp_assoc_value {
    sctp_assoc_t assoc_id;
    uint32_t assoc_value;
  };

  assoc_id:  Holds the identifier of the association for which the
     scheduler should be changed.  The special
     SCTP_{FUTURE|CURRENT|ALL}_ASSOC can also be used.  This parameter
     is ignored for one-to-one style sockets.






Stewart, et al.              Standards Track                   [Page 17]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


  assoc_value:  This specifies which scheduler is used.  The following
     constants can be used:

     SCTP_SS_DEFAULT:  The default scheduler used by the SCTP
        implementation.  Typical values are SCTP_SS_FCFS or SCTP_SS_RR.

     SCTP_SS_FCFS:  Use the scheduler specified in Section 3.1.

     SCTP_SS_RR:  Use the scheduler specified in Section 3.2.

     SCTP_SS_RR_PKT:  Use the scheduler specified in Section 3.3.

     SCTP_SS_PRIO:  Use the scheduler specified in Section 3.4.  The
        priority can be assigned with the sctp_stream_value struct.
        The higher the assigned value, the lower the priority.  That
        is, the default value 0 is the highest priority, and therefore
        the default scheduling will be used if no priorities have been
        assigned.

     SCTP_SS_FB:  Use the scheduler specified in Section 3.5.

     SCTP_SS_WFQ:  Use the scheduler specified in Section 3.6.  The
        weight can be assigned with the sctp_stream_value struct.

  sctp_opt_info() needs to be extended to support
  SCTP_STREAM_SCHEDULER.

4.3.3.  Get or Set the Stream Scheduler Parameter
       (SCTP_STREAM_SCHEDULER_VALUE)

  Some schedulers require additional information to be set for
  individual streams as shown in the following table:

                  +-----------------+-----------------+
                  | Name            | Per-Stream Info |
                  +-----------------+-----------------+
                  | SCTP_SS_DEFAULT |       n/a       |
                  | SCTP_SS_FCFS    |        no       |
                  | SCTP_SS_RR      |        no       |
                  | SCTP_SS_RR_PKT  |        no       |
                  | SCTP_SS_PRIO    |       yes       |
                  | SCTP_SS_FB      |        no       |
                  | SCTP_SS_WFQ     |       yes       |
                  +-----------------+-----------------+







Stewart, et al.              Standards Track                   [Page 18]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


  This is achieved with the SCTP_STREAM_SCHEDULER_VALUE option and the
  corresponding struct sctp_stream_value.  The definition of struct
  sctp_stream_value is as follows:

  struct sctp_stream_value {
    sctp_assoc_t assoc_id;
    uint16_t stream_id;
    uint16_t stream_value;
  };

  assoc_id:  Holds the identifier of the association for which the
     scheduler should be changed.  The special
     SCTP_{FUTURE|CURRENT|ALL}_ASSOC can also be used.  This parameter
     is ignored for one-to-one style sockets.

  stream_id:  Holds the identifier of the stream for which additional
     information has to be provided.

  stream_value:  The meaning of this field depends on the scheduler
     specified.  It is ignored when the scheduler does not need
     additional information.

  sctp_opt_info() needs to be extended to support
  SCTP_STREAM_SCHEDULER_VALUE.

4.4.  Explicit EOR Marking

  Using explicit End of Record (EOR) marking for an SCTP association
  supporting user message interleaving allows the user to interleave
  the sending of user messages on different streams.

5.  IANA Considerations

  Two new chunk types have been assigned by IANA.

5.1.  I-DATA Chunk

  IANA has assigned the chunk type for this chunk from the pool of
  chunks with the upper two bits set to '01'.  This appears in the
  "Chunk Types" registry for SCTP as follows:

  +----------+--------------------------------------------+-----------+
  | ID Value | Chunk Type                                 | Reference |
  +----------+--------------------------------------------+-----------+
  | 64       | Payload Data supporting Interleaving       | RFC 8260  |
  |          | (I-DATA)                                   |           |
  +----------+--------------------------------------------+-----------+




Stewart, et al.              Standards Track                   [Page 19]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


  The registration table (as defined in [RFC6096]) for the chunk flags
  of this chunk type is initially as follows:

           +------------------+-----------------+-----------+
           | Chunk Flag Value | Chunk Flag Name | Reference |
           +------------------+-----------------+-----------+
           | 0x01             | E bit           | RFC 8260  |
           | 0x02             | B bit           | RFC 8260  |
           | 0x04             | U bit           | RFC 8260  |
           | 0x08             | I bit           | RFC 8260  |
           | 0x10             | Unassigned      |           |
           | 0x20             | Unassigned      |           |
           | 0x40             | Unassigned      |           |
           | 0x80             | Unassigned      |           |
           +------------------+-----------------+-----------+

5.2.  I-FORWARD-TSN Chunk

  IANA has assigned the chunk type for this chunk from the pool of
  chunks with the upper two bits set to '11'.  This appears in the
  "Chunk Types" registry for SCTP as follows:

                +----------+---------------+-----------+
                | ID Value | Chunk Type    | Reference |
                +----------+---------------+-----------+
                | 194      | I-FORWARD-TSN | RFC 8260  |
                +----------+---------------+-----------+

  The registration table (as defined in [RFC6096]) for the chunk flags
  of this chunk type is initially empty.

6.  Security Considerations

  This document does not add any additional security considerations in
  addition to the ones given in [RFC4960] and [RFC6458].

  It should be noted that the application has to consent that it is
  willing to do the more complex reassembly support required for user
  message interleaving.  When doing so, an application has to provide a
  reassembly buffer for each incoming stream.  It has to protect itself
  against these buffers taking too many resources.  If user message
  interleaving is not used, only a single reassembly buffer needs to be
  provided for each association.  But the application has to protect
  itself for excessive resource usages there too.







Stewart, et al.              Standards Track                   [Page 20]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


7.  References

7.1.  Normative References

  [RFC1982]  Elz, R. and R. Bush, "Serial Number Arithmetic", RFC 1982,
             DOI 10.17487/RFC1982, August 1996,
             <https://www.rfc-editor.org/info/rfc1982>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC3758]  Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
             Conrad, "Stream Control Transmission Protocol (SCTP)
             Partial Reliability Extension", RFC 3758,
             DOI 10.17487/RFC3758, May 2004,
             <https://www.rfc-editor.org/info/rfc3758>.

  [RFC4960]  Stewart, R., Ed., "Stream Control Transmission Protocol",
             RFC 4960, DOI 10.17487/RFC4960, September 2007,
             <https://www.rfc-editor.org/info/rfc4960>.

  [RFC5061]  Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., and M.
             Kozuka, "Stream Control Transmission Protocol (SCTP)
             Dynamic Address Reconfiguration", RFC 5061,
             DOI 10.17487/RFC5061, September 2007,
             <https://www.rfc-editor.org/info/rfc5061>.

  [RFC6096]  Tuexen, M. and R. Stewart, "Stream Control Transmission
             Protocol (SCTP) Chunk Flags Registration", RFC 6096,
             DOI 10.17487/RFC6096, January 2011,
             <https://www.rfc-editor.org/info/rfc6096>.

  [RFC6525]  Stewart, R., Tuexen, M., and P. Lei, "Stream Control
             Transmission Protocol (SCTP) Stream Reconfiguration",
             RFC 6525, DOI 10.17487/RFC6525, February 2012,
             <https://www.rfc-editor.org/info/rfc6525>.

  [RFC7053]  Tuexen, M., Ruengeler, I., and R. Stewart, "SACK-
             IMMEDIATELY Extension for the Stream Control Transmission
             Protocol", RFC 7053, DOI 10.17487/RFC7053, November 2013,
             <https://www.rfc-editor.org/info/rfc7053>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.




Stewart, et al.              Standards Track                   [Page 21]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


7.2.  Informative References

  [DATA-CHAN]
             Jesup, R., Loreto, S., and M. Tuexen, "WebRTC Data
             Channels", Work in Progress,
             draft-ietf-rtcweb-data-channel-13, January 2015.

  [RFC3261]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
             A., Peterson, J., Sparks, R., Handley, M., and E.
             Schooler, "SIP: Session Initiation Protocol", RFC 3261,
             DOI 10.17487/RFC3261, June 2002,
             <https://www.rfc-editor.org/info/rfc3261>.

  [RFC6458]  Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.
             Yasevich, "Sockets API Extensions for the Stream Control
             Transmission Protocol (SCTP)", RFC 6458,
             DOI 10.17487/RFC6458, December 2011,
             <https://www.rfc-editor.org/info/rfc6458>.

Acknowledgments

  The authors wish to thank Benoit Claise, Julian Cordes, Spencer
  Dawkins, Gorry Fairhurst, Lennart Grahl, Christer Holmberg, Mirja
  Kuehlewind, Marcelo Ricardo Leitner, Karen E. Egede Nielsen, Maksim
  Proshin, Eric Rescorla, Irene Ruengeler, Felix Weinrank, Michael
  Welzl, Magnus Westerlund, and Lixia Zhang for their invaluable
  comments.

  This work has received funding from the European Union's Horizon 2020
  research and innovation program under grant agreement No. 644334
  (NEAT).  The views expressed are solely those of the authors.




















Stewart, et al.              Standards Track                   [Page 22]

RFC 8260         Stream Schedulers and the I-DATA Chunk    November 2017


Authors' Addresses

  Randall R. Stewart
  Netflix, Inc.
  Chapin, SC  29036
  United States of America

  Email: [email protected]


  Michael Tuexen
  Muenster University of Applied Sciences
  Stegerwaldstrasse 39
  48565 Steinfurt
  Germany

  Email: [email protected]


  Salvatore Loreto
  Ericsson
  Torshamnsgatan 21
  164 80 Stockholm
  Sweden

  Email: [email protected]


  Robin Seggelmann
  Metafinanz Informationssysteme GmbH
  Leopoldstrasse 146
  80804 Muenchen
  Germany

  Email: [email protected]
















Stewart, et al.              Standards Track                   [Page 23]