Internet Engineering Task Force (IETF)                          D. Lopez
Request for Comments: 8253                           O. Gonzalez de Dios
Updates: 5440                                             Telefonica I+D
Category: Standards Track                                          Q. Wu
ISSN: 2070-1721                                                 D. Dhody
                                                                 Huawei
                                                           October 2017


      PCEPS: Usage of TLS to Provide a Secure Transport for the
        Path Computation Element Communication Protocol (PCEP)

Abstract

  The Path Computation Element Communication Protocol (PCEP) defines
  the mechanisms for the communication between a Path Computation
  Client (PCC) and a Path Computation Element (PCE), or among PCEs.
  This document describes PCEPS -- the usage of Transport Layer
  Security (TLS) to provide a secure transport for PCEP.  The
  additional security mechanisms are provided by the transport protocol
  supporting PCEP; therefore, they do not affect the flexibility and
  extensibility of PCEP.

  This document updates RFC 5440 in regards to the PCEP initialization
  phase procedures.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc8253.












Lopez, et al.                Standards Track                    [Page 1]

RFC 8253                          PCEPS                     October 2017


Copyright Notice

  Copyright (c) 2017 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

























Lopez, et al.                Standards Track                    [Page 2]

RFC 8253                          PCEPS                     October 2017


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
  2.  Requirements Language . . . . . . . . . . . . . . . . . . . .   5
  3.  Applying PCEPS  . . . . . . . . . . . . . . . . . . . . . . .   5
    3.1.  Overview  . . . . . . . . . . . . . . . . . . . . . . . .   5
    3.2.  Initiating TLS Procedures . . . . . . . . . . . . . . . .   5
    3.3.  The StartTLS Message  . . . . . . . . . . . . . . . . . .   8
    3.4.  TLS Connection Establishment  . . . . . . . . . . . . . .  13
    3.5.  Peer Identity . . . . . . . . . . . . . . . . . . . . . .  15
    3.6.  Connection Establishment Failure  . . . . . . . . . . . .  16
  4.  Discovery Mechanisms  . . . . . . . . . . . . . . . . . . . .  16
    4.1.  DANE Applicability  . . . . . . . . . . . . . . . . . . .  17
  5.  Backward Compatibility  . . . . . . . . . . . . . . . . . . .  17
  6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  18
    6.1.  New PCEP Message  . . . . . . . . . . . . . . . . . . . .  18
    6.2.  New Error-Values  . . . . . . . . . . . . . . . . . . . .  19
  7.  Security Considerations . . . . . . . . . . . . . . . . . . .  19
  8.  Manageability Considerations  . . . . . . . . . . . . . . . .  20
    8.1.  Control of Function and Policy  . . . . . . . . . . . . .  20
    8.2.  Information and Data Models . . . . . . . . . . . . . . .  21
    8.3.  Liveness Detection and Monitoring . . . . . . . . . . . .  21
    8.4.  Verifying Correct Operations  . . . . . . . . . . . . . .  21
    8.5.  Requirements on Other Protocols . . . . . . . . . . . . .  22
    8.6.  Impact on Network Operation . . . . . . . . . . . . . . .  22
  9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  22
    9.1.  Normative References  . . . . . . . . . . . . . . . . . .  22
    9.2.  Informative References  . . . . . . . . . . . . . . . . .  23
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  25
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  26





















Lopez, et al.                Standards Track                    [Page 3]

RFC 8253                          PCEPS                     October 2017


1.  Introduction

  The Path Computation Element Communication Protocol (PCEP) [RFC5440]
  defines the mechanisms for the communication between a Path
  Computation Client (PCC) and a Path Computation Element (PCE), or
  between two PCEs.  These interactions include requests and replies
  that can be critical for a sustainable network operation and adequate
  resource allocation; therefore, appropriate security becomes a key
  element in the PCE infrastructure.  As the applications of the PCE
  framework evolve and more complex service patterns emerge, the
  definition of a secure mode of operation becomes more relevant.

  The Security Considerations section of [RFC5440] analyzes the
  potential threats to PCEP and their consequences; it also discusses
  several mechanisms for protecting PCEP against security attacks,
  without making a specific recommendation on a particular one or
  defining their application in depth.  Moreover, [RFC6952] states the
  importance of ensuring PCEP communication confidentiality, especially
  when PCEP communication endpoints do not reside in the same
  Autonomous System (AS), as the interception of PCEP messages could
  leak sensitive information related to computed paths and resources.

  Transport Layer Security (TLS) [RFC5246] is one of the solutions that
  seems most adequate among those mentioned in these documents, as it
  provides support for peer authentication, message encryption, and
  integrity.  TLS provides well-known mechanisms to support key
  configuration and exchange, as well as means to perform security
  checks on the results of PCE Discovery (PCED) procedures via the
  Interior Gateway Protocol (IGP) [RFC5088] [RFC5089].

  This document describes a security container for the transport of
  PCEP messages; therefore, it does not affect the flexibility and
  extensibility of PCEP.

  This document describes how to apply TLS to secure interactions with
  PCE, including initiation of the TLS procedures, the TLS handshake
  mechanism, the TLS methods for peer authentication, the applicable
  TLS ciphersuites for data exchange, and the handling of errors in the
  security checks.  In the rest of this document, we refer to this
  usage of TLS to provide a secure transport for PCEP as "PCEPS".

  Within this document, PCEP communications are described through a
  PCC-PCE relationship.  The PCE architecture also supports PCE-PCE
  communication; this is achieved by requesting the PCE to fill the
  role of a PCC, as usual.  Thus, in this document, the PCC refers to a
  PCC or a PCE initiating the PCEP session and acting as a client.





Lopez, et al.                Standards Track                    [Page 4]

RFC 8253                          PCEPS                     October 2017


2.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in BCP
  14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

3.  Applying PCEPS

3.1.  Overview

  The steps involved in establishing a PCEPS session are as follows:

  1.  Establishment of a TCP connection.

  2.  Initiation of the TLS procedures by the StartTLS message from PCE
      to PCC and from PCC to PCE.

  3.  Negotiation and establishment of a TLS connection.

  4.  Start exchange of PCEP messages as per [RFC5440].

  This document uses the standard StartTLS procedure in PCEP instead of
  using a different port for the secured session.  This is done to
  avoid requesting allocation of another port number for PCEPS.  The
  StartTLS procedure makes more efficient use of scarce port numbers
  and allows simpler configuration of PCEP.

  Implementations SHOULD follow the best practices and recommendations
  for using TLS, as per [RFC7525].

  It should be noted that this procedure updates what is defined in
  Sections 4.2.1 and 6.7 of [RFC5440] regarding the initialization
  phase and the processing of messages prior to the Open message.  The
  details of processing, including backward compatibility, are
  discussed in the following sections.

3.2.  Initiating TLS Procedures

  Since PCEP can operate either with or without TLS, it is necessary
  for a PCEP speaker to indicate whether it wants to set up a TLS
  connection or not.  For this purpose, this document specifies a new
  PCEP message called "StartTLS".  Thus, the PCEP session is secured
  via TLS from the start, before the exchange of any other PCEP message
  (including the Open message).  This document thus updates [RFC5440],
  which requires the Open message to be the first PCEP message that is
  exchanged.  In the case of a PCEP session using TLS, the StartTLS



Lopez, et al.                Standards Track                    [Page 5]

RFC 8253                          PCEPS                     October 2017


  message will be sent first.  Also, a PCEP speaker that supports PCEPS
  MUST NOT start the OpenWait timer after the TCP establishment;
  instead, it starts a StartTLSWait timer as described in Section 3.3.

  The PCEP speaker MAY discover that the PCEP peer supports PCEPS or
  can be preconfigured to use PCEPS for a given peer (see Section 4 for
  more details).  An existing PCEP session cannot be secured via TLS;
  the session MUST be closed and re-established with TLS as per the
  procedure described in this document.

  The StartTLS message is a PCEP message sent by a PCC to a PCE and by
  a PCE to a PCC in order to initiate the TLS procedure for PCEP.  The
  PCC initiates the use of TLS by sending a StartTLS message.  The PCE
  agrees to the use of TLS by responding with its own StartTLS message.
  If the PCE is configured to only support TLS, it may send the
  StartTLS message immediately upon TCP connection establishment;
  otherwise, it MUST wait to see if the PCC's first message is an Open
  or a StartTLS message.  The TLS negotiation and establishment
  procedures are triggered once the PCEP speaker has sent and received
  the StartTLS message.  The Message-Type field of the PCEP common
  header for the StartTLS message is set to 13.

  Once the TCP connection has been successfully established, the first
  message sent by the PCC to the PCE and by the PCE to the PCC MUST be
  a StartTLS message for PCEPS.  Note that this is a significant change
  from [RFC5440], where the first PCEP message is the Open message.

  A PCEP speaker receiving a StartTLS message, after any other PCEP
  exchange has taken place (by receiving or sending any other messages
  from either side), MUST treat it as an unexpected message and reply
  with a PCEP Error (PCErr) message with Error-Type set to 25 (PCEP
  StartTLS failure) and Error-value set to 1 (Reception of StartTLS
  after any PCEP exchange), and it MUST close the TCP connection.

  Any message received prior to the StartTLS or Open message MUST
  trigger a protocol error condition causing a PCErr message to be sent
  with Error-Type set to 25 (PCEP StartTLS failure) and Error-value set
  to 2 (Reception of any other message apart from StartTLS, Open, or
  PCErr), and it MUST close the TCP connection.

  If the PCEP speaker that does not support PCEPS receives a StartTLS
  message, it will behave according to the existing error mechanism
  described in Section 6.2 of [RFC5440] (if the message is received
  prior to an Open message) or Section 6.9 of [RFC5440] (if an unknown
  message is received).  See Section 5 for more details.






Lopez, et al.                Standards Track                    [Page 6]

RFC 8253                          PCEPS                     October 2017


  If the PCEP speaker that only supports PCEPS connections (as a local
  policy) receives an Open message, it MUST treat it as an unexpected
  message and reply with a PCErr message with Error-Type set to 1 (PCEP
  session establishment failure) and Error-value set to 1 (reception of
  an invalid Open message or a non Open message), and it MUST close the
  TCP connection.

  If a PCC supports PCEPS connections and allows non-PCEPS connections
  (as a local policy), it MUST first try to establish PCEPS by sending
  a StartTLS message, and in case it receives a PCErr message from the
  PCE, it MAY retry to establish a connection without PCEPS by sending
  an Open message.  If a PCE supports PCEPS connections and allows
  non-PCEPS connections (as a local policy), it MUST wait to respond
  after TCP establishment, based on the message received from the PCC.
  In case of a StartTLS message, the PCE MUST respond by sending a
  StartTLS message and moving to TLS establishment procedures as
  described in this document.  In case of an Open message, the PCE MUST
  respond with an Open message and move to the PCEP session
  establishment procedure as per [RFC5440].  If a PCE supports PCEPS
  connections only (as a local policy), it MAY send a StartTLS message
  to the PCC without waiting to receive a StartTLS message from the
  PCC.

  If a PCEP speaker that is unwilling or unable to negotiate TLS
  receives a StartTLS message, it MUST return a PCErr message (in the
  clear) with Error-Type set to 25 (PCEP StartTLS failure) and Error-
  value set to:

  o  3 (Failure, connection without TLS is not possible) if it is not
     willing to exchange PCEP messages without the solicited TLS
     connection, and it MUST close the TCP session.

  o  4 (Failure, connection without TLS is possible) if it is willing
     to exchange PCEP messages without the solicited TLS connection,
     and it MUST close the TCP session.  The receiver MAY choose to
     attempt to re-establish the PCEP session without TLS next.
     Re-establishing the PCEP session without TLS SHOULD be limited to
     only one attempt.

  If the PCEP speaker supports PCEPS and can establish a TLS
  connection, it MUST start the TLS connection negotiation and
  establishment steps described in Section 3.4 before the PCEP
  initialization procedure (see Section 4.2.1 of [RFC5440]).

  After the exchange of StartTLS messages, if the TLS negotiation fails
  for some reason (e.g., the required mechanisms for certificate
  revocation checking are not available), both peers MUST immediately
  close the connection.



Lopez, et al.                Standards Track                    [Page 7]

RFC 8253                          PCEPS                     October 2017


  A PCEP speaker that does not support PCEPS sends the Open message
  directly, as per [RFC5440].  A PCEP speaker that supports PCEPS, but
  has learned in the last exchange the peer's willingness to
  re-establish the session without TLS, MAY send the Open message
  directly, as per [RFC5440].  Re-establishing the PCEP session without
  TLS SHOULD be limited to only one attempt.

  Given the asymmetric nature of TLS for connection establishment, it
  is relevant to identify the roles of each of the PCEP peers in it.
  The PCC SHALL act as the TLS client, and the PCE SHALL act as the TLS
  server as per [RFC5246].

  As per the recommendation from [RFC7525] to avoid downgrade attacks,
  PCEP peers that support PCEPS SHOULD default to strict TLS
  configuration, i.e., not allowing non-TLS PCEP sessions to be
  established.  PCEPS implementations MAY provide an option to allow
  the operator to manually override strict TLS configuration and allow
  unsecured connections.  Execution of this override SHOULD trigger a
  warning about the security implications of permitting unsecured
  connections.

3.3.  The StartTLS Message

  The StartTLS message is used to initiate the TLS procedure for a
  PCEPS session between the PCEP peers.  A PCEP speaker sends the
  StartTLS message to request negotiation and establishment of a TLS
  connection for PCEP.  On receiving a StartTLS message from the PCEP
  peer (i.e., when the PCEP speaker has sent and received the StartTLS
  message), it is ready to start the negotiation and establishment of
  TLS and move to the steps described in Section 3.4.

  The collision resolution procedures described in [RFC5440] for the
  exchange of Open messages MUST be applied by the PCEP peers during
  the exchange of StartTLS messages.

  The format of a StartTLS message is as follows:

     <StartTLS Message>::= <Common Header>

  The StartTLS message MUST contain only the PCEP common header with
  the Message-Type field set to 13.

  Once the TCP connection has been successfully established, the PCEP
  speaker MUST start a timer called the "StartTLSWait timer".  After
  the expiration of this timer, if neither the StartTLS message nor a
  PCErr/Open message (in case of failure and PCEPS not being supported
  by the peer, respectively) has been received, the PCEP speaker MUST
  send a PCErr message with Error-Type set to 25 (PCEP StartTLS



Lopez, et al.                Standards Track                    [Page 8]

RFC 8253                          PCEPS                     October 2017


  failure) and Error-value set to 5 (No StartTLS message (nor PCErr/
  Open) before StartTLSWait timer expiry), and it MUST release the TCP
  connection.  A RECOMMENDED value for the StartTLSWait timer is 60
  seconds.  The value of the StartTLSWait timer MUST NOT be less than
  that of the OpenWait timer.

  The following figures illustrate the various interactions between a
  PCC and a PCE, based on the support for the PCEPS capability, during
  the PCEP session initialization.

                 +-+-+                 +-+-+
                 |PCC|                 |PCE|
                 +-+-+                 +-+-+
                   |                     |
                   | StartTLS            |
                   | msg                 |
                   |-------              |
                   |       \   StartTLS  |
                   |        \  msg       |
                   |         \  ---------|
                   |          \/         |
                   |          /\         |
                   |         /  -------->|
                   |        /            |
                   |<------              |
                   |:::::::::TLS:::::::::|
                   |:::::Establishment:::|
                   |                     |
                   |                     |
                   |:::::::PCEP::::::::::|
                   |                     |

           Figure 1: Both PCEP speakers support PCEPS (strict)


















Lopez, et al.                Standards Track                    [Page 9]

RFC 8253                          PCEPS                     October 2017


                 +-+-+                 +-+-+
                 |PCC|                 |PCE|
                 +-+-+                 +-+-+
                   |                     |
                   | StartTLS            |
                   | msg                 |
                   |-------              |
                   |       \   StartTLS  |
                   |        \  msg       |
                   |         \  ---------|
                   |          \/         |
                   |          /\         |
                   |         /  -------->|
                   |        /            |
                   |<------              |
                   |:::::::::TLS:::::::::| TLS Establishment
                   |:::::Establishment:::| Failure; both
                   |                     | peers close
                                           the session

     Figure 2: Both PCEP speakers support PCEPS (strict) but cannot
                              establish TLS





























Lopez, et al.                Standards Track                   [Page 10]

RFC 8253                          PCEPS                     October 2017


                 +-+-+                 +-+-+
                 |PCC|                 |PCE|
                 +-+-+                 +-+-+
                   |                     |  Does not support
                   | StartTLS            |  PCEPS and thus
                   | msg                 |  sends Open
                   |-------              |
                   |       \   Open      |
                   |        \  msg       |
                   |         \  ---------|
                   |          \/         |
                   |          /\         |
                   |         /  -------->|
                   |        /            |
                   |<------              |
                   |                     |
                   |<--------------------| Send Error
                   |       PCErr         | Type=1,Value=1
                   |                     | (non-Open message
                   |<--------------------|  received)
                   |       Close         |
                   ///////// TCP /////////
                   //////re-establish/////
         Send Open | Open                |
         this time | msg                 |
                   |-------              |
                   |       \   Open      |
                   |        \  msg       |
                   |         \  ---------|
                   |          \/         |
                   |          /\         |
                   |         /  -------->|
                   |        /            |
                   |<------              |

    Figure 3: PCE does not support connection with PCEPS, whereas PCC
                supports connection with or without PCEPS














Lopez, et al.                Standards Track                   [Page 11]

RFC 8253                          PCEPS                     October 2017


                 +-+-+                 +-+-+
                 |PCC|                 |PCE|
                 +-+-+                 +-+-+
                   |                     |
                   | StartTLS            |
                   | msg                 | PCE waits
                   |-------------------->| for PCC and
                   |            StartTLS | responds with
                   |<--------------------| Start TLS
                   |                     |
                   |:::::::::TLS:::::::::|
                   |:::::Establishment:::|
                   |                     |
                   |                     |
                   |:::::::PCEP::::::::::|
                   |                     |

  Figure 4: Both PCEP speakers support connection with or without PCEPS


                 +-+-+                 +-+-+
                 |PCC|                 |PCE|
                 +-+-+                 +-+-+
                   |                     |
                   | StartTLS            |
                   | msg                 | PCE waits
                   |-------------------->| for PCC
                   |               PCErr |
                   |<--------------------| Send Error
                   |                     | Type=25,Value=3
                   |                     | (Failure, connection
                   |<--------------------|  without TLS is not
                   |       Close         |  possible)

     Figure 5: Both PCEP speakers support connection with or without
               PCEPS, but PCE cannot start TLS negotiation















Lopez, et al.                Standards Track                   [Page 12]

RFC 8253                          PCEPS                     October 2017


                 +-+-+                 +-+-+
                 |PCC|                 |PCE|
                 +-+-+                 +-+-+
                   |                     |
                   | Open                |
                   | msg                 | PCE waits
                   |-------------------->| for PCC and
                   |                Open | responds with
                   |<--------------------| Open
                   |                     |
                   |:::::::PCEP::::::::::|
                   |                     |

  Figure 6: PCE supports connection with or without PCEPS, whereas PCC
                 does not support connection with PCEPS

3.4.  TLS Connection Establishment

  Once the establishment of TLS has been agreed upon by the PCEP peers,
  the connection establishment SHALL follow the following steps:

  1.  Immediately negotiate a TLS session according to [RFC5246].  The
      following restrictions apply:

      *  Support for TLS v1.2 [RFC5246] or later is REQUIRED.

      *  Support for certificate-based mutual authentication is
         REQUIRED.

      *  Negotiation of a ciphersuite providing for integrity
         protection is REQUIRED.

      *  Negotiation of a ciphersuite providing for confidentiality is
         RECOMMENDED.

      *  Support for and negotiation of compression is OPTIONAL.

      *  PCEPS implementations MUST, at a minimum, support negotiation
         of the TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 [RFC6460] and
         SHOULD support TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as
         well.  Implementations SHOULD support the NIST P-256
         (secp256r1) curve [RFC4492].  In addition, PCEPS
         implementations MUST support negotiation of the
         mandatory-to-implement ciphersuites required by the versions
         of TLS that they support from TLS 1.3 onwards.






Lopez, et al.                Standards Track                   [Page 13]

RFC 8253                          PCEPS                     October 2017


  2.  Peer authentication can be performed in any of the following two
      REQUIRED operation models:

      *  TLS with X.509 certificates using Public-Key Infrastructure
         Exchange (PKIX) trust models:

         +  Implementations MUST allow the configuration of a list of
            trusted Certification Authorities (CAs) for incoming
            connections.

         +  Certificate validation MUST include the verification rules
            as per [RFC5280].

         +  PCEPS implementations SHOULD incorporate revocation methods
            (Certificate Revocation List (CRL) downloading, Online
            Certificate Status Protocol (OCSP), etc.) according to the
            trusted CA policies.

         +  Implementations SHOULD indicate their trusted CAs.  For TLS
            1.2, this is done using "certificate_authorities" on the
            server side (see Section 7.4.4 of [RFC5246]) and the
            "TrustedAuthorities" extension on the client side (see
            Section 6 of [RFC6066]).

         +  Implementations MUST follow the rules and guidelines for
            peer validation as defined in [RFC6125].  If an expected
            DNS name or IP address for the peer is configured, then the
            implementations MUST check them against the values in the
            presented certificate.  The DNS names and the IP addresses
            can be contained in the Common Name Identifier (CN-ID)
            [RFC6125] or the subjectAltName entries.  For verification,
            only one of these entries is considered.  The following
            precedence applies: for DNS name validation, DNS-ID
            [RFC6125] has precedence over CN-ID, and for IP address
            validation, subjectAltName:iPAddr has precedence over
            CN-ID.

         +  Implementations MAY allow the configuration of a set of
            additional properties of the certificate to check for a
            peer's authorization to communicate (e.g., a set of allowed
            values in URI-ID [RFC6125] or a set of allowed X.509 v3
            Certificate Policies).  The definitions of these properties
            are out of scope of this document.

      *  TLS with X.509 certificates using certificate fingerprints:
         Implementations MUST allow the configuration of a list of
         certificates that are trusted to identify peers, identified
         via the fingerprint of certificate octets encoded by the



Lopez, et al.                Standards Track                   [Page 14]

RFC 8253                          PCEPS                     October 2017


         Distinguished Encoding Rules (DER).  Implementations MUST
         support SHA-256 as defined by [SHS] as the hash algorithm for
         the fingerprint, but a later revision may demand support for a
         stronger hash function.

  3.  Start exchanging PCEP messages.

      *  Once the TLS connection has been successfully established, the
         PCEP speaker MUST start the OpenWait timer [RFC5440]; after
         the expiration of this timer, if no Open message has been
         received, the PCEP speaker sends a PCErr message and releases
         the TCP/TLS connection.

3.5.  Peer Identity

  Depending on the peer authentication method in use, PCEPS supports
  different operation modes to establish a peer's identity and whether
  it is entitled to perform requests or can be considered authoritative
  in its replies.  PCEPS implementations SHOULD provide mechanisms for
  associating peer identities with different levels of access and/or
  authoritativeness, and they MUST provide a mechanism for establishing
  a default level for properly identified peers.  Any connection
  established with a peer that cannot be properly identified SHALL be
  terminated before any PCEP exchange takes place.

  In TLS X.509 mode using fingerprints, a peer is uniquely identified
  by the fingerprint of the presented certificate.

  There are numerous trust models in PKIX environments, and it is
  beyond the scope of this document to define how a particular
  deployment determines whether a peer is trustworthy.  Implementations
  that want to support a wide variety of trust models should expose as
  many details of the presented certificate to the administrator as
  possible so that the trust model can be implemented by the
  administrator.  At least the following parameters of the X.509
  certificate SHOULD be exposed:

  o  Peer's IP Address

  o  Peer's Fully Qualified Domain Name (FQDN)

  o  Certificate Fingerprint

  o  Issuer

  o  Subject

  o  All X.509 v3 Extended Key Usage



Lopez, et al.                Standards Track                   [Page 15]

RFC 8253                          PCEPS                     October 2017


  o  All X.509 v3 Subject Alternative Name

  o  All X.509 v3 Certificate Policies

  Note that the remote IP address used for the TCP session
  establishment is also exposed.

  [RFC8232] specifies a Speaker Entity Identifier TLV
  (SPEAKER-ENTITY-ID) as an optional TLV that is included in the OPEN
  object.  It contains a unique identifier for the node that does not
  change during the lifetime of the PCEP speaker.  An implementation
  would thus expose the speaker entity identifier as part of the X.509
  v3 certificate's subjectAltName:otherName, so that an implementation
  could use this identifier for the peer identification trust model.

  In addition, a PCC MAY apply the procedures described in "DNS-Based
  Authentication of Named Entities (DANE)" [RFC6698] to verify its peer
  identity when using DNS discovery.  See Section 4.1 for further
  details.

3.6.  Connection Establishment Failure

  In case the initial TLS negotiation or the peer identity check fails,
  according to the procedures listed in this document, both peers MUST
  immediately close the connection.

  The initiator SHOULD follow the procedure listed in [RFC5440] to
  retry session setup as per the exponential back-off session
  establishment retry procedure.

4.  Discovery Mechanisms

  This document does not specify any discovery mechanism for support of
  PCEPS.  [PCE-DISCOVERY-PCEPS-SUPPORT] and [PCE-DISCOVERY-DNS] make
  the following proposals:

  o  A PCE can advertise its capability to support PCEPS using the
     IGP's advertisement mechanism of the PCED information.  The
     PCE-CAP-FLAGS sub-TLV is an optional sub-TLV used to advertise PCE
     capabilities.  It is present within the PCED sub-TLV carried by
     OSPF or IS-IS.  [RFC5088] and [RFC5089] provide the description
     and processing rules for this sub-TLV when carried within OSPF and
     IS-IS, respectively.  PCE capability bits are defined in
     [RFC5088].  A new capability flag bit for the PCE-CAP-FLAGS
     sub-TLV that can be announced as an attribute to distribute PCEP
     security support information is proposed in
     [PCE-DISCOVERY-PCEPS-SUPPORT].




Lopez, et al.                Standards Track                   [Page 16]

RFC 8253                          PCEPS                     October 2017


  o  A PCE can advertise its capability to support PCEPS using DNS
     [PCE-DISCOVERY-DNS] by identifying the support of TLS.

4.1.  DANE Applicability

  DANE [RFC6698] defines a secure method to associate the certificate
  that is obtained from a TLS server with a domain name using DNS,
  i.e., using the TLSA DNS resource record (RR) to associate a TLS
  server certificate or public key with the domain name where the
  record is found, thus forming a "TLSA certificate association".  The
  DNS information needs to be protected by DNS Security (DNSSEC).  A
  PCC willing to apply DANE to verify server identity MUST conform to
  the rules defined in Section 4 of [RFC6698].  The implementation MUST
  support service certificate constraint (TLSA certificate usages type
  1) with Matching type 1 (SHA2-256) as described in [RFC6698] and
  [RFC7671].  The server's domain name must be authorized separately,
  as TLSA does not provide any useful authorization guarantees.

5.  Backward Compatibility

  The procedures described in this document define a security container
  for the transport of PCEP requests and replies carried by a TLS
  connection initiated by means of a specific extended message
  (StartTLS) that does not interfere with PCEP speaker implementations
  not supporting it.

  A PCC that does not support PCEPS will send an Open message as the
  first message on TCP establishment.  A PCE that only supports PCEPS
  will send a StartTLS message on TCP establishment.  The PCC would
  consider the received StartTLS message as an error and behave
  according to the existing error mechanism of [RFC5440], i.e., it
  would send a PCErr message with Error-Type 1 (PCEP session
  establishment failure) and Error-value 1 (reception of an invalid
  Open message or a non Open message) and close the session.

  A PCC that support PCEPS will send a StartTLS message as the first
  message on TCP establishment.  A PCE that does not support PCEPS
  would consider receiving a StartTLS message as an error, respond with
  a PCErr message with Error-Type 1 (PCEP session establishment
  failure) and Error-value 1 (reception of an invalid Open message or a
  non Open message), and close the session.

  If a StartTLS message is received at any other time by a PCEP speaker
  that does not implement PCEPS, it would consider it as an unknown
  message and would behave according to the existing error mechanism of
  [RFC5440], i.e., it would send a PCErr message with Error-Type 2
  (Capability not supported) and close the session.




Lopez, et al.                Standards Track                   [Page 17]

RFC 8253                          PCEPS                     October 2017


  An existing PCEP session cannot be upgraded to PCEPS; the session
  needs to be terminated and re-established as per the procedure
  described in this document.  During the incremental upgrade, the PCEP
  speaker SHOULD allow session establishment with and without TLS.
  Once both PCEP speakers are upgraded to support PCEPS, the PCEP
  session is re-established with TLS; otherwise, a PCEP session without
  TLS is set up.  A redundant PCE MAY also be used during the
  incremental deployment to take over the PCE undergoing upgrade.  Once
  the upgrade is completed, support for the unsecured version SHOULD be
  removed.

  A PCE that accepts connections with or without PCEPS would respond
  based on the message received from the PCC.  A PCC that supports
  connection with or without PCEPS would first attempt to connect with
  PCEPS, and in case of error, it MAY retry to establish connection
  without PCEPS.  For successful TLS operations with PCEP, both PCEP
  peers in the network would need to be upgraded to support this
  document.

  Note that a PCEP implementation that supports PCEPS would respond
  with a PCErr message with Error-Type set to 25 (PCEP StartTLS
  failure) and Error-value set to 2 (Reception of any other message
  apart from StartTLS, Open, or PCErr) if any other message is sent
  before a StartTLS or Open message.  If the sender of the invalid
  message is a PCEP implementation that does not support PCEPS, it will
  not be able to understand this error.  A PCEPS implementation could
  also send the PCErr message as per [RFC5440] with Error-Type 1 (PCEP
  session establishment failure) and Error-value 1 (reception of an
  invalid Open message or a non Open message) before closing the
  session.

6.  IANA Considerations

6.1.  New PCEP Message

  The following new message type has been allocated within the "PCEP
  Messages" sub-registry of the "Path Computation Element Protocol
  (PCEP) Numbers" registry:

     Value      Description                    Reference
     -------------------------------------------------------
     13         StartTLS                       This document









Lopez, et al.                Standards Track                   [Page 18]

RFC 8253                          PCEPS                     October 2017


6.2.  New Error-Values

  The following new error types and error values have been allocated
  within the "PCEP-ERROR Object Error Types and Values" sub-registry of
  the "Path Computation Element Protocol (PCEP) Numbers" registry:

  Error-Type   Meaning           Error-value             Reference
  ---------------------------------------------------------------------
   25          PCEP StartTLS     0: Unassigned            This document
               failure
                                 1: Reception of          This document
                                 StartTLS after
                                 any PCEP exchange

                                 2: Reception of          This document
                                 any other message
                                 apart from StartTLS,
                                 Open, or PCErr

                                 3: Failure, connection   This document
                                 without TLS is not
                                 possible

                                 4: Failure, connection   This document
                                 without TLS is
                                 possible

                                 5: No StartTLS message   This document
                                 (nor PCErr/Open)
                                 before StartTLSWait
                                 timer expiry

7.  Security Considerations

  While the application of TLS satisfies the requirement on
  confidentiality as well as fine-grained, policy-based peer
  authentication, there are security threats that it cannot address.
  It may be advisable to apply additional protection measures, in
  particular in what relates to attacks specifically addressed to
  forging the TCP connection underpinning TLS, especially in the case
  of long-lived connections.  One of these measures is the application
  of the TCP Authentication Option (TCP-AO) [RFC5925], which is fully
  compatible with and deemed as complementary to TLS.  The mechanisms
  to configure the requirements to use TCP-AO and other lower-layer
  protection measures with a particular peer are outside the scope of
  this document.





Lopez, et al.                Standards Track                   [Page 19]

RFC 8253                          PCEPS                     October 2017


  Since computational resources required by the TLS handshake and
  ciphersuite are higher than unencrypted TCP, clients connecting to a
  PCEPS server can more easily create high-load conditions, and a
  malicious client might create a denial-of-service attack more easily.

  Some TLS ciphersuites only provide integrity validation of their
  payload and provide no encryption; such ciphersuites SHOULD NOT be
  used by default.  Administrators MAY allow the usage of these
  ciphersuites after careful weighting of the risk of relevant internal
  data leakage that can occur in such a case, as explicitly stated by
  [RFC6952].

  When using certificate fingerprints to identify PCEPS peers, any two
  certificates that produce the same hash value will be considered the
  same peer.  Therefore, it is important to make sure that the hash
  function used is cryptographically uncompromised, so that attackers
  are very unlikely to be able to produce a hash collision with a
  certificate of their choice.  This document mandates support for
  SHA-256 as defined by [SHS], but a later revision may demand support
  for stronger functions if suitable attacks on it are known.

  PCEPS implementations that continue to accept connections without TLS
  are susceptible to downgrade attacks as described in [RFC7457].  An
  attacker could attempt to remove the use of StartTLS messages that
  request the use of TLS as it pass on the wire in clear and could also
  attempt to inject a PCErr message that suggests attempting PCEP
  connection without TLS.

  The guidance given in [RFC7525] SHOULD be followed to avoid attacks
  on TLS.

8.  Manageability Considerations

  All manageability requirements and considerations listed in [RFC5440]
  apply to PCEP protocol extensions defined in this document.  In
  addition, requirements and considerations listed in this section
  apply.

8.1.  Control of Function and Policy

  A PCE or PCC implementation SHOULD allow configuring the PCEP
  security via TLS capabilities as described in this document.

  A PCE or PCC implementation supporting PCEP security via TLS MUST
  support general TLS configuration as per [RFC5246].  At least the
  configuration of one of the trust models and its corresponding
  parameters, as described in Sections 3.4 and 3.5, MUST be supported
  by the implementation.



Lopez, et al.                Standards Track                   [Page 20]

RFC 8253                          PCEPS                     October 2017


  A PCEPS implementation SHOULD allow configuring the StartTLSWait
  timer value.

  PCEPS implementations MAY provide an option to allow the operator to
  manually override strict TLS configuration and allow unsecure
  connections.  Execution of this override SHOULD trigger a warning
  about the security implications of permitting unsecure connections.

  Further, the operator needs to develop suitable security policies
  around PCEP within his network.  The PCEP peers SHOULD provide ways
  for the operator to complete the following tasks in regards to a PCEP
  session:

  o  Determine if a session is protected via PCEPS.

  o  Determine the version of TLS, the mechanism used for
     authentication, and the ciphersuite in use.

  o  Determine if the certificate could not be verified and the reason
     for this circumstance.

  o  Inspect the certificate offered by the PCEP peer.

  o  Be warned if the StartTLS procedure fails for the PCEP peers that
     are known to support PCEPS via configurations or capability
     advertisements.

8.2.  Information and Data Models

  The PCEP MIB module is defined in [RFC7420].  The MIB module could be
  extended to include the ability to view the PCEPS capability,
  TLS-related information, and the TLS status for each PCEP peer.

  Further, to allow the operator to configure the PCEPS capability and
  various TLS-related parameters as well as to view the current TLS
  status for a PCEP session, the PCEP YANG module [PCEP-YANG] is
  extended to include TLS-related information.

8.3.  Liveness Detection and Monitoring

  Mechanisms defined in this document do not imply any new liveness
  detection and monitoring requirements in addition to those already
  listed in [RFC5440] and [RFC5246].

8.4.  Verifying Correct Operations

  A PCEPS implementation SHOULD log error events and provide PCEPS
  failure statistics with reasons.



Lopez, et al.                Standards Track                   [Page 21]

RFC 8253                          PCEPS                     October 2017


8.5.  Requirements on Other Protocols

  Mechanisms defined in this document do not imply any new requirements
  on other protocols.  Note that Section 4 lists possible discovery
  mechanisms for support of PCEPS.

8.6.  Impact on Network Operation

  Mechanisms defined in this document do not have any significant
  impact on network operations in addition to those already listed in
  [RFC5440] and on the policy and management implications discussed
  above.

9.  References

9.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246,
             DOI 10.17487/RFC5246, August 2008,
             <https://www.rfc-editor.org/info/rfc5246>.

  [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
             Housley, R., and W. Polk, "Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
             <https://www.rfc-editor.org/info/rfc5280>.

  [RFC5440]  Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
             Element (PCE) Communication Protocol (PCEP)", RFC 5440,
             DOI 10.17487/RFC5440, March 2009,
             <https://www.rfc-editor.org/info/rfc5440>.

  [RFC6066]  Eastlake 3rd, D., "Transport Layer Security (TLS)
             Extensions: Extension Definitions", RFC 6066,
             DOI 10.17487/RFC6066, January 2011,
             <https://www.rfc-editor.org/info/rfc6066>.









Lopez, et al.                Standards Track                   [Page 22]

RFC 8253                          PCEPS                     October 2017


  [RFC6125]  Saint-Andre, P. and J. Hodges, "Representation and
             Verification of Domain-Based Application Service Identity
             within Internet Public Key Infrastructure Using X.509
             (PKIX) Certificates in the Context of Transport Layer
             Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
             2011, <https://www.rfc-editor.org/info/rfc6125>.

  [RFC6698]  Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
             of Named Entities (DANE) Transport Layer Security (TLS)
             Protocol: TLSA", RFC 6698, DOI 10.17487/RFC6698, August
             2012, <https://www.rfc-editor.org/info/rfc6698>.

  [RFC7525]  Sheffer, Y., Holz, R., and P. Saint-Andre,
             "Recommendations for Secure Use of Transport Layer
             Security (TLS) and Datagram Transport Layer Security
             (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
             2015, <https://www.rfc-editor.org/info/rfc7525>.

  [RFC7671]  Dukhovni, V. and W. Hardaker, "The DNS-Based
             Authentication of Named Entities (DANE) Protocol: Updates
             and Operational Guidance", RFC 7671, DOI 10.17487/RFC7671,
             October 2015, <https://www.rfc-editor.org/info/rfc7671>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [SHS]      National Institute of Standards and Technology, "Secure
             Hash Standard (SHS)", FIPS PUB 180-4,
             DOI 10.6028/NIST.FIPS.180-4, August 2015,
             <http://nvlpubs.nist.gov/nistpubs/FIPS/
             NIST.FIPS.180-4.pdf>.

9.2.  Informative References

  [PCE-DISCOVERY-DNS]
             Wu, Q., Dhody, D., King, D., Lopez, D., and J. Tantsura,
             "Path Computation Element (PCE) Discovery using Domain
             Name System(DNS)", Work in Progress, draft-wu-pce-dns-pce-
             discovery-10, March 2017.

  [PCE-DISCOVERY-PCEPS-SUPPORT]
             Lopez, D., Wu, Q., Dhody, D., Wang, Z., and D. King, "IGP
             extension for PCEP security capability support in the PCE
             discovery", Work in Progress, draft-wu-pce-discovery-
             pceps-support-07, March 2017.





Lopez, et al.                Standards Track                   [Page 23]

RFC 8253                          PCEPS                     October 2017


  [PCEP-YANG]
             Dhody, D., Hardwick, J., Beeram, V., and J. Tantsura, "A
             YANG Data Model for Path Computation Element
             Communications Protocol (PCEP)", Work in Progress,
             draft-ietf-pce-pcep-yang-05, July 2017.

  [RFC4492]  Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
             Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
             for Transport Layer Security (TLS)", RFC 4492,
             DOI 10.17487/RFC4492, May 2006,
             <https://www.rfc-editor.org/info/rfc4492>.

  [RFC4513]  Harrison, R., Ed., "Lightweight Directory Access Protocol
             (LDAP): Authentication Methods and Security Mechanisms",
             RFC 4513, DOI 10.17487/RFC4513, June 2006,
             <https://www.rfc-editor.org/info/rfc4513>.

  [RFC5088]  Le Roux, JL., Ed., Vasseur, JP., Ed., Ikejiri, Y., and R.
             Zhang, "OSPF Protocol Extensions for Path Computation
             Element (PCE) Discovery", RFC 5088, DOI 10.17487/RFC5088,
             January 2008, <https://www.rfc-editor.org/info/rfc5088>.

  [RFC5089]  Le Roux, JL., Ed., Vasseur, JP., Ed., Ikejiri, Y., and R.
             Zhang, "IS-IS Protocol Extensions for Path Computation
             Element (PCE) Discovery", RFC 5089, DOI 10.17487/RFC5089,
             January 2008, <https://www.rfc-editor.org/info/rfc5089>.

  [RFC5925]  Touch, J., Mankin, A., and R. Bonica, "The TCP
             Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
             June 2010, <https://www.rfc-editor.org/info/rfc5925>.

  [RFC6460]  Salter, M. and R. Housley, "Suite B Profile for Transport
             Layer Security (TLS)", RFC 6460, DOI 10.17487/RFC6460,
             January 2012, <https://www.rfc-editor.org/info/rfc6460>.

  [RFC6614]  Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
             "Transport Layer Security (TLS) Encryption for RADIUS",
             RFC 6614, DOI 10.17487/RFC6614, May 2012,
             <https://www.rfc-editor.org/info/rfc6614>.

  [RFC6952]  Jethanandani, M., Patel, K., and L. Zheng, "Analysis of
             BGP, LDP, PCEP, and MSDP Issues According to the Keying
             and Authentication for Routing Protocols (KARP) Design
             Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013,
             <https://www.rfc-editor.org/info/rfc6952>.






Lopez, et al.                Standards Track                   [Page 24]

RFC 8253                          PCEPS                     October 2017


  [RFC7420]  Koushik, A., Stephan, E., Zhao, Q., King, D., and J.
             Hardwick, "Path Computation Element Communication Protocol
             (PCEP) Management Information Base (MIB) Module",
             RFC 7420, DOI 10.17487/RFC7420, December 2014,
             <https://www.rfc-editor.org/info/rfc7420>.

  [RFC7457]  Sheffer, Y., Holz, R., and P. Saint-Andre, "Summarizing
             Known Attacks on Transport Layer Security (TLS) and
             Datagram TLS (DTLS)", RFC 7457, DOI 10.17487/RFC7457,
             February 2015, <https://www.rfc-editor.org/info/rfc7457>.

  [RFC8232]  Crabbe, E., Minei, I., Medved, J., Varga, R., Zhang, X.,
             and D. Dhody, "Optimizations of Label Switched Path State
             Synchronization Procedures for a Stateful PCE", RFC 8232,
             DOI 10.17487/RFC8232, September 2017,
             <https://www.rfc-editor.org/info/rfc8232>.

Acknowledgements

  This specification relies on the analysis and profiling of TLS
  included in [RFC6614] and the procedures described for the StartTLS
  command in [RFC4513].

  We would like to thank Joe Touch for his suggestions and support
  regarding the StartTLS mechanisms.

  Thanks to Daniel King for reminding the authors about manageability
  considerations.

  Thanks to Cyril Margaria for shepherding this document.

  Thanks to David Mandelberg for early SECDIR review comments as well
  as further review during IETF last call.

  Thanks to Dan Frost for the RTGDIR review and comments.

  Thanks to Dale Worley for the Gen-ART review and comments.

  Thanks to Tianran Zhou for the OPSDIR review.

  Thanks to Deborah Brungard for being the responsible AD and guiding
  the authors as needed.

  Also, thanks to Mirja Kuhlewind, Eric Rescorla, Warren Kumari,
  Kathleen Moriarty, Suresh Krishnan, Ben Campbell, and Alexey Melnikov
  for the IESG review and comments.





Lopez, et al.                Standards Track                   [Page 25]

RFC 8253                          PCEPS                     October 2017


Authors' Addresses

  Diego R. Lopez
  Telefonica I+D
  Don Ramon de la Cruz, 82
  Madrid  28006
  Spain

  Phone: +34 913 129 041
  Email: [email protected]


  Oscar Gonzalez de Dios
  Telefonica I+D
  Don Ramon de la Cruz, 82
  Madrid  28006
  Spain

  Phone: +34 913 129 041
  Email: [email protected]


  Qin Wu
  Huawei
  101 Software Avenue, Yuhua District
  Nanjing, Jiangsu  210012
  China

  Email: [email protected]


  Dhruv Dhody
  Huawei
  Divyashree Techno Park, Whitefield
  Bangalore, KA  560066
  India

  Email: [email protected]













Lopez, et al.                Standards Track                   [Page 26]