Request for Comments:  823
Obsoletes IEN-30 and IEN-109




                       THE DARPA INTERNET GATEWAY



                                 RFC 823






                              Robert Hinden
                              Alan Sheltzer





                      Bolt Beranek and Newman Inc.
                             10 Moulton St.
                     Cambridge, Massachusetts 02238





                             September 1982




                              Prepared for

                Defense Advanced Research Projects Agency
                Information Processing Techniques Office
                          1400 Wilson Boulevard
                        Arlington, Virginia 22209





This RFC is a status report on the Internet Gateway developed by BBN. It
describes the Internet Gateway as of September 1982.  This memo presents
detailed descriptions of message formats and gateway procedures, however
this is not an implementation specification, and such details are
subject to change.







    DARPA Internet Gateway                             September 1982
    RFC 823



                            Table of Contents




    1   INTRODUCTION.......................................... 1
    2   BACKGROUND............................................ 2
    3   FORWARDING INTERNET DATAGRAMS......................... 5
    3.1   Input............................................... 5
    3.2   IP Header Checks.................................... 6
    3.3   Routing............................................. 7
    3.4   Redirects........................................... 9
    3.5   Fragmentation....................................... 9
    3.6   Header Rebuild..................................... 10
    3.7   Output............................................. 10
    4   PROTOCOLS SUPPORTED BY THE GATEWAY................... 12
    4.1   Cross-Net Debugging Protocol....................... 12
    4.2   Host Monitoring Protocol........................... 12
    4.3   ICMP............................................... 14
    4.4   Gateway-to-Gateway Protocol........................ 14
    4.4.1   Determining Connectivity to Networks............. 14
    4.4.2   Determining Connectivity to Neighbors............ 16
    4.4.3   Exchanging Routing Information................... 17
    4.4.4   Computing Routes................................. 19
    4.4.5   Non-Routing Gateways............................. 22
    4.4.6   Adding New Neighbors and Networks................ 23
    4.5   Exterior Gateway Protocol.......................... 24
    5   GATEWAY SOFTWARE..................................... 26
    5.1   Software Structure................................. 26
    5.1.1   Device Drivers................................... 27
    5.1.2   Network Software................................. 27
    5.1.3   Shared Gateway Software.......................... 29
    5.2   Gateway Processes.................................. 29
    5.2.1   Network Processes................................ 29
    5.2.2   GGP Process...................................... 30
    5.2.3   HMP Process...................................... 31
    APPENDIX A. GGP Message Formats.......................... 32
    APPENDIX B. Information Maintained by Gateways........... 39
    APPENDIX C. GGP Events and Responses..................... 41
    REFERENCES............................................... 43







                                   -i-





    DARPA Internet Gateway                             September 1982
    RFC 823



    1  INTRODUCTION


         This document explains the design of  the  Internet  gateway

    used  in  the  Defense  Advanced  Research Project Agency (DARPA)

    Internet program.  The gateway design was  originally  documented

    in  IEN-30,  "Gateway  Routing:  An Implementation Specification"

    [2], and was later updated in IEN-109, "How to Build  a  Gateway"

    [3].   This  document  reflects changes made both in the internet

    protocols and in the gateway design since  these  documents  were

    released.  It supersedes both IEN-30 and IEN-109.


         The Internet gateway described in this document is based  on

    the  work  of many people; in particular, special credit is given

    to V. Strazisar, M. Brescia, E. Rosen, and J. Haverty.


         The gateway's primary purpose is to route internet datagrams

    to their destination networks.  These datagrams are generated and

    processed as described in RFC 791,  "Internet  Protocol  -  DARPA

    Internet  Program  Protocol  Specification"  [1].   This document

    describes  how  the  gateway  forwards  datagrams,  the   routing

    algorithm  and  protocol  used  to  route  them, and the software

    structure  of  the  current   gateway.    The   current   gateway

    implementation  is written in macro-11 assembly language and runs

    in the DEC PDP-11 or LSI-11 16-bit processor.



                                   -1-





    DARPA Internet Gateway                             September 1982
    RFC 823



    2  BACKGROUND


         The gateway system has undergone a series of  changes  since

    its  inception,  and  it  is  continuing  to  evolve  as research

    proceeds in the Internet community.  This document describes  the

    implementation as of mid-1982.


         Early versions of gateway software  were  implemented  using

    the   BCPL   language   and   the  ELF  operating  system.   This

    implementation evolved into one  which  used  the  MOS  operating

    system  for  increased  performance.   In  late 1981, we began an

    effort to produce a  totally  new  gateway  implementation.   The

    primary  motivation  for  this was the need for a system oriented

    towards  the  requirements  of  an   operational   communications

    facility,  rather than the research testbed environment which was

    associated with the BCPL implementation.   In  addition,  it  was

    generally   recognized   that   the   complexity   and  buffering

    requirements of future gateway  configurations  were  beyond  the

    capabilities of the PDP-11/LSI-11 and BCPL architecture.  The new

    gateway implementation therefore had a second goal of producing a

    highly  space-efficient  implementation in order to provide space

    for buffers and for the extra  mechanisms,  such  as  monitoring,

    which are needed for an operational environment.




                                   -2-





    DARPA Internet Gateway                             September 1982
    RFC 823



         This document  describes  the  implementation  of  this  new

    gateway  which  incorporates  several  mechanisms  for operations

    activities,  is coded in assembly  language  for  maximum  space-

    efficiency,  but otherwise is fundamentally the same architecture

    as the older, research-oriented, implementations.


         One of the results of recent research  is  the  thesis  that

    gateways  should be viewed as elements of a gateway system, where

    the  gateways   act   as   a   loosely-coupled   packet-switching

    communications   system.   For  reasons  of  maintainability  and

    operability,  it  is  easiest  to  build  such  a  system  in  an

    homogeneous  fashion  where  all  gateways  are  under  a  single

    authority and control,  as  is  the  practice  in  other  network

    implementations.


         In order to create  a  system  architecture  that  permitted

    multiple  sets of gateways with each set under single control but

    acting together to implement a composite single Internet  System,

    new  protocols  needed to be developed.  These protocols, such as

    the "Exterior Gateway Protocol," will be introduced in the  later

    releases of the gateway implementation.


         We  also  anticipate  further   changes   to   the   gateway

    architecture  and  implementation  to  introduce  support for new



                                   -3-





    DARPA Internet Gateway                             September 1982
    RFC 823



    capabilities, such as large numbers of networks, access  control,

    and  other  requirements which have been proposed by the Internet

    research community.  This document represents a snapshot  of  the

    current implementation, rather than a specification.








































                                   -4-





    DARPA Internet Gateway                             September 1982
    RFC 823



    3  FORWARDING INTERNET DATAGRAMS


         This section describes how the  gateway  forwards  datagrams

    between  networks.   A host computer that wants an IP datagram to

    reach a host on another network  must  send  the  datagram  to  a

    gateway to be forwarded.  Before it is sent into the network, the

    host attaches to the datagram a local network  header  containing

    the address of the gateway.




    3.1  Input


         When a gateway receives a message, the  gateway  checks  the

    message's  local  network header for possible errors and performs

    any actions  required  by  the  host-to-network  protocol.   This

    processing involves functions such as verifying the local network

    header checksum or  generating  a  local  network  acknowledgment

    message.   If  the  header indicates that the message contains an

    Internet datagram, the datagram is passed to the Internet  header

    check  routine.   All  other  messages  received that do not pass

    these tests are discarded.









                                   -5-





    DARPA Internet Gateway                             September 1982
    RFC 823



    3.2  IP Header Checks


         The Internet header  check  routine  performs  a  number  of

    validity tests on the IP header.  Datagrams that fail these tests

    are discarded causing an HMP trap to  be  sent  to  the  Internet

    Network  Operations  Center (INOC) [7].  The following checks are

    currently performed:


         o  Proper IP Version Number
         o  Valid IP Header Length ( >= 20 bytes)
         o  Valid IP Message Length
         o  Valid IP Header Checksum
         o  Non-Zero Time to Live field


    After a datagram passes these checks,  its  Internet  destination

    address  is examined to determine if the datagram is addressed to

    the gateway.  Each of the gateway's internet addresses  (one  for

    each  network  interface)  is  checked  against  the  destination

    address in the datagram.  If a match is not found,  the  datagram

    is passed to the forwarding routine.


         If the datagram is addressed to the gateway itself,  the  IP

    options  in  the IP header are processed.  Currently, the gateway

    supports the following IP options:








                                   -6-





    DARPA Internet Gateway                             September 1982
    RFC 823




         o  NOP
         o  End of Option List
         o  Loose Source and Record Route
         o  Strict Source and Record Route


    The datagram is next processed according to the protocol  in  the

    IP  header.  If  the protocol is not supported by the gateway, it

    replies with an ICMP error message  and  discards  the  datagram.

    The  gateway  does  not  support  IP  reassembly,  so  fragmented

    datagrams which are addressed to the gateway are discarded.




    3.3  Routing


         The gateway must make a routing decision for  all  datagrams

    that  are to be to forwarded.  The routing algorithm provides two

    pieces of information for the gateway:  1) the network  interface

    that  should be used to send this datagram and 2) the destination

    address that should be put in the local  network  header  of  the

    datagram.


         The gateway maintains a dynamic Routing Table which contains

    an  entry  for  each  reachable network.  The entry consists of a

    network number and the address of the  neighbor  gateway  on  the

    shortest  route  to  the  network, or else an indication that the




                                   -7-





    DARPA Internet Gateway                             September 1982
    RFC 823



    gateway is directly connected to the network.  A neighbor gateway

    is  one  which  shares  a  common network with this gateway.  The

    distance metric that is  used  to  determine  which  neighbor  is

    closest  is  defined  as the "number of hops," where a gateway is

    considered to be zero hops from its directly connected  networks,

    one  hop  from a network that is reachable via one other gateway,

    etc.  The Gateway-to-Gateway Protocol (GGP) is used to update the

    Routing  Table (see Section 4.4 describing the Gateway-to-Gateway

    Protocol).


         The gateway tries to match the destination  network  address

    in  the IP header of the datagram to be forwarded, with a network

    in its Routing Table.  If no match is found,  the  gateway  drops

    the datagram and sends an ICMP Destination Unreachable message to

    the IP source.  If the gateway does find an entry for the network

    in  its  table,  it  will use the network address of the neighbor

    gateway entry as the local network  destination  address  of  the

    datagram.   However, if the final destination network is one that

    the gateway is directly connected to, the destination address  in

    the  local network header is created from the destination address

    in the IP header of the datagram.







                                   -8-





    DARPA Internet Gateway                             September 1982
    RFC 823



    3.4  Redirects


         If the routing procedure decides that an IP datagram  is  to

    be  sent back out the same network interface that it was read in,

    then this gateway is not on the shortest path  to  the  IP  final

    destination.   Nevertheless, the datagram will still be forwarded

    to the next address chosen by  the  routing  procedure.   If  the

    datagram  is  not  using  the  IP Source Route Option, and the IP

    source network of the datagram is the same as the network of  the

    next  gateway  chosen  by the routing procedure, an ICMP Redirect

    message will be sent  to  the  IP  source  host  indicating  that

    another  gateway  should  be used to send traffic to the final IP

    destination.




    3.5  Fragmentation


         The datagram is passed to the  fragmentation  routine  after

    the  routing decision has been made.  If the next network through

    which the datagram must pass has a maximum message size  that  is

    smaller  than  the  size  of  the  datagram, the datagram must be

    fragmented.   Fragmentation  is  performed   according   to   the

    algorithm  described  in the Internet Protocol Specification [1].

    Certain IP options must be copied  into  the  IP  header  of  all



                                   -9-





    DARPA Internet Gateway                             September 1982
    RFC 823



    fragments, and others appear only in the first fragment according

    to the IP specification.  If a datagram must be  fragmented,  but

    the  Don't  fragment bit is set, the datagram is discarded and an

    ICMP error message is sent to the IP source of the datagram.




    3.6  Header Rebuild


         The datagram (or the fragments of the original  datagram  if

    fragmentation  was  needed)  is  next  passed  to  a routine that

    rebuilds  the  Internet  header.  The  Time  to  Live  field   is

    decremented by one and the IP checksum is recomputed.


         The  local  network  header  is  now   built.    Using   the

    information  obtained  from  its  routing  procedure, the gateway

    chooses the network interface it considers  proper  to  send  the

    datagram  and  to  build  the  destination  address  in the local

    network header.




    3.7  Output


         The datagram is now enqueued on an output queue for delivery

    towards  its destination.  A limit is enforced on the size of the

    output queue for each network interface so that  a  slow  network



                                  -10-





    DARPA Internet Gateway                             September 1982
    RFC 823



    does  not  unfairly  use  up  all of the gateway's buffers.  If a

    datagram cannot be enqueued due to the limit on the output  queue

    length, it is dropped and an HMP trap is sent to the INOC.  These

    traps, and others of a similar nature, are  used  by  operational

    personnel to monitor the operations of the gateways.






































                                  -11-





    DARPA Internet Gateway                             September 1982
    RFC 823



    4  PROTOCOLS SUPPORTED BY THE GATEWAY


         A number of  protocols  are  supported  by  the  gateway  to

    provide   dynamic   routing,  monitoring,  debugging,  and  error

    reporting.  These protocols are described below.




    4.1  Cross-Net Debugging Protocol


         The Cross-Net Debugging Protocol (XNET) [8] is used to  load

    the  gateway  and  to  examine  and  deposit  data.   The gateway

    supports the following XNET op-codes:


         o  NOP
         o  Debug
         o  End Debug
         o  Deposit
         o  Examine
         o  Create Process




    4.2  Host Monitoring Protocol


         The Host Monitoring Protocol (HMP) [6] is  used  to  collect

    measurements   and   status   information   from   the  gateways.

    Exceptional conditions in the gateways are reported in HMP traps.

    The status of a gateway's interfaces, neighbors, and the networks

    which it can reach are reported in the HMP status message.



                                  -12-





    DARPA Internet Gateway                             September 1982
    RFC 823



         Two types of gateway statistics, the Host Traffic Matrix and

    the  gateway  throughput,  are currently defined by the HMP.  The

    Host Traffic Matrix records the number  of  datagrams  that  pass

    through  the  gateway  with  a  given IP source, destination, and

    protocol number.   The  gateway  throughput  message  collects  a

    number  of  important counters that are kept by the gateway.  The

    current gateway reports the following values:


         o  Datagrams dropped because destination net unreachable

         o  Datagrams dropped because destination host unreachable


         o  Per Interface:
                 Datagrams received with IP errors
                 Datagrams received for this gateway
                 Datagrams received to be forwarded
                 Datagrams looped
                 Bytes received
                 Datagrams sent, originating at this gateway
                 Datagrams sent to destination hosts
                 Datagrams dropped due to flow control limitations
                 Datagrams dropped due to full queue
                 Bytes sent

         o  Per Neighbor:
                 Routing updates sent to
                 Routing updates received from
                 Datagrams sent, originating here
                 Datagrams forwarded to
                 Datagrams dropped due to flow control limitations
                 Datagrams dropped due to full queue
                 Bytes sent







                                  -13-





    DARPA Internet Gateway                             September 1982
    RFC 823



    4.3  ICMP


         The gateway will generate the following ICMP messages  under

    appropriate  circumstances  as  defined by the ICMP specification

    [4]:


         o  Echo Reply
         o  Destination Unreachable
         o  Source Quench
         o  Redirect
         o  Time Exceeded
         o  Parameter Problem
         o  Information Reply




    4.4  Gateway-to-Gateway Protocol


         The gateway uses the Gateway-to-Gateway  Protocol  (GGP)  to

    determine  connectivity  to networks and neighbor gateways; it is

    also used in  the  implementation  of  a  dynamic,  shortest-path

    routing  algorithm.  The current GGP message formats (for release

    1003 of the gateway software) are presented in Appendix A.




    4.4.1  Determining Connectivity to Networks


         When a gateway  starts  running  it  assumes  that  all  its

    neighbor  gateways  are  "down,"  that  it  is  disconnected from




                                  -14-





    DARPA Internet Gateway                             September 1982
    RFC 823



    networks to which it is attached, and that the distance  reported

    in  routing  updates  from  each  neighbor  to  each  network  is

    "infinity."


         The gateway first determines the state of  its  connectivity

    to  networks  to  which it is physically attached.  The gateway's

    connection to a network is declared up if it can send and receive

    internet  datagrams  on its interface to that network.  Note that

    the method that the gateway uses to determine its connectivity to

    a  network  is network-dependent.  In some networks, the host-to-

    network protocol determines whether or not datagrams can be  sent

    and  received  on  the  host  interface.   In these networks, the

    gateway simply checks-status information provided by the protocol

    in order to determine if it can communicate with the network.  In

    other networks, where  the  host-to-network  protocols  are  less

    sophisticated,  it  may  be  necessary  for  the  gateway to send

    datagrams to itself to determine if it can communicate  with  the

    network.   In  these networks, the gateways periodically poll the

    network using GGP network interface status messages [Appendix  A]

    to determine if the network interface is operational.


         The gateway has two rules relevant to computing distances to

    networks:   1) if the gateway can send and receive traffic on its




                                  -15-





    DARPA Internet Gateway                             September 1982
    RFC 823



    network interface, its distance to the network is zero;  2) if it

    cannot send and receive traffic on the interface, its distance to

    the network is "infinity."  Note  that  if  a  gateway's  network

    interface is not working, it may still be able to send traffic to

    the network on  an  alternate  route  via  one  of  its  neighbor

    gateways.




    4.4.2  Determining Connectivity to Neighbors


         The gateway determines connectivity to neighbors using a  "K

    out  of  N"  algorithm.   Every 15 seconds, the gateway sends GGP

    Echo messages  [Appendix  A]  to  each  of  its  neighbors.   The

    neighbors  respond  by  sending GGP echo replies.  If there is no

    reply to K out of  N  (current  values  are  K=3  and  N=4)  echo

    messages sent to a neighbor, the neighbor is declared down.  If a

    neighbor is down and J out of M (current values are J=2 and  M=4)

    echo  replies  are  received,  the neighbor is declared to be up.

    The values of J,K,M,N  and  the  time  interval  are  operational

    parameters which can be adjusted as required.










                                  -16-





    DARPA Internet Gateway                             September 1982
    RFC 823



    4.4.3  Exchanging Routing Information


         The gateway sends routing information in GGP Routing  Update

    messages.  The gateway receives and transmits routing information

    reliably using sequence-numbered messages  and  a  retransmission

    and acknowledgment scheme as explained below.  For each neighbor,

    the gateway remembers the Receive Sequence  Number,  R,  that  it

    received  in  the  most recent routing update from that neighbor.

    This value is initialized with the sequence number in  the  first

    Routing  Update  received  from  a neighbor after that neighbor's

    status is set to "up."  On receipt of a  routing  update  from  a

    neighbor,  the  gateway subtracts the Receive Sequence Number, R,

    from the sequence number in the routing update, S. If this  value

    (S-R)  is greater than or equal to zero, then the gateway accepts

    the routing update, sends an acknowledgment (see Appendix  A)  to

    the  neighbor  containing the sequence number S, and replaces the

    Receive Sequence Number, R, with S. If this value (S-R)  is  less

    than  zero,  the  gateway  rejects the routing update and sends a

    negative  acknowledgment  [Appendix  A]  to  the  neighbor   with

    sequence number R.


         The gateway has a  Send  Sequence  Number,  N,  for  sending

    routing  updates  to  all of its neighbors.  This sequence number




                                  -17-





    DARPA Internet Gateway                             September 1982
    RFC 823



    can be initialized to any value.  The  Send  Sequence  Number  is

    incremented  each  time  a  new  routing  update  is created.  On

    receiving an acknowledgment for a  routing  update,  the  gateway

    subtracts  the  sequence  number  acknowledged,  A, from the Send

    Sequence Number, N.  If the value (N-A) is non-zero, then an  old

    routing  update  is being acknowledged.  The gateway continues to

    retransmit the most recent routing update to  the  neighbor  that

    sent  the  acknowledgment.   If (N-A) is zero, the routing update

    has been acknowledged.  Note that only the  most  recent  routing

    update  must  be  acknowledged;  if  a  second  routing update is

    generated before the first routing update is  acknowledged,  only

    the second routing update must be acknowledged.


         If  a  negative  acknowledgment  is  received,  the  gateway

    subtracts  the  sequence  number negatively acknowledged, A, from

    its Send Sequence Number, N.  If this value (N-A)  is  less  than

    zero, then the gateway replaces its Send Sequence Number, N, with

    the sequence number negatively acknowledged plus  one,  A+1,  and

    retransmits the routing update to all of its neighbors.  If (N-A)

    is greater than or equal to zero, then the gateway  continues  to

    retransmit  the routing update using sequence number N.  In order

    to maintain the correct sequence numbers at all gateways, routing

    updates  must  be  retransmitted  to  all  neighbors  if the Send



                                  -18-





    DARPA Internet Gateway                             September 1982
    RFC 823



    Sequence Number changes, even if the routing information does not

    change.


         The gateway retransmits routing updates  periodically  until

    they  are  acknowledged  and  whenever  its  Send Sequence Number

    changes.  The gateway sends routing  updates  only  to  neighbors

    that are in the "up" state.




    4.4.4  Computing Routes


         A routing update  contains  a  list  of  networks  that  are

    reachable  through  this  gateway, and the distance in "number of

    hops"  to  each  network  mentioned.   The  routing  update  only

    contains information about a network if the gateway believes that

    it is as close or closer to that network then the neighbor  which

    is  to receive the routing update.  The network address may be an

    internet class A, B, or C address.


         The information inside a  routing  update  is  processed  as

    follows.   The gateway contains an N x K distance matrix, where N

    is the number of  networks  and  K  is  the  number  of  neighbor

    gateways.   An  entry  in this matrix, represented as dm(I,J), is

    the distance to network I from neighbor J as reported in the most




                                  -19-





    DARPA Internet Gateway                             September 1982
    RFC 823



    recent routing update from neighbor J.  The gateway also contains

    a vector indicating  the  connectivity  between  itself  and  its

    neighbor  gateways.   The  values  in this vector are computed as

    discussed above (see Section 4.4.2, Determining  Connectivity  to

    Neighbors).   The value of the Jth entry of this vector, which is

    the connectivity between the gateway and  the  Jth  neighbor,  is

    represented as d(J).


         The gateway copies the routing update received from the  Jth

    neighbor  into  the  appropriate row of the distance matrix, then

    updates its routes as follows.  The gateway calculates a  minimum

    distance  vector  which  contains  the  minimum  distance to each

    network  from  the  gateway.   The  Ith  entry  of  this  vector,

    represented as MinD(I) is:


      MinD(I) = minimum over all neighbors of d(J) + dm(I,J)


    where d(J) is the  distance  between  the  gateway  and  the  Jth

    neighbor,  and  dm(I,J)  is the distance from the Jth neighbor to

    the Ith network.  If the Ith network is attached to  the  gateway

    and  the  gateway  can  send  and  receive traffic on its network

    interface (see Section 4.4.2), then  the  gateway  sets  the  Ith

    entry of the minimum distance vector to zero.





                                  -20-





    DARPA Internet Gateway                             September 1982
    RFC 823



         Using the minimum distance vector, the  gateway  computes  a

    list  of  neighbor gateways through which to send traffic to each

    network.  The entry for a  given  network  contains  one  of  the

    neighbors that is the minimum distance away from that network.


         After updating its  routes  to  the  networks,  the  gateway

    computes  the  new  routing  updates to be sent to its neighbors.

    The gateway reports a network to a neighbor  only  if  it  is  as

    close  to  or closer to that network than its neighbor.  For each

    network I, the routing update contains the address of the network

    and the minimum distance to that network which is MinD(I).


         Finally, the gateway must determine whether it  should  send

    routing  updates to its neighbors.  The gateway sends new updates

    to its neighbors if every one of the following  three  conditions

    occurs:   1)  one  of the gateway's interfaces changes state,  2)

    one of the gateway's neighbor gateways changes state, and  3) the

    gateway  receives  a  routing  update  from  a  neighbor  that is

    different from the update that it had  previously  received  from

    that  neighbor.   The  gateway  sends  routing  updates  only  to

    neighbors that are currently in the "up" state.


         The gateway requests a routing update  from  neighbors  that

    are  in  the  "up"  state,  but  from which it has yet received a



                                  -21-





    DARPA Internet Gateway                             September 1982
    RFC 823



    routing update.  Routing updates are  requested  by  setting  the

    appropriate  bit  in  the routing update being sent [Appendix A].

    Similarly, if a gateway receives from a neighbor a routing update

    in  which the bit requesting a routing update is set, the gateway

    sends the neighbor the most recent routing update.




    4.4.5  Non-Routing Gateways


         A Non-routing Gateway is a gateway  that  forwards  internet

    traffic,  but  does  not  implement  the  GGP  routing algorithm.

    Networks that are behind a Non-routing Gateway are known a-priori

    to  Routing Gateways.  There can be one or more of these networks

    which are considered to be directly connected to the  Non-routing

    Gateway.   A  Routing  Gateway  will forward a datagram to a Non-

    routing Gateway if it is addressed to a network behind  the  Non-

    routing   Gateway.    Routing  Gateways  currently  do  not  send

    Redirects for  Non-routing  Gateways.   A  Routing  Gateway  will

    always  use  another  Routing Gateway as a path instead of a Non-

    routing Gateways if both exist and are the same  number  of  hops

    away from the destination network.  The Non-routing Gateways path

    will be used only when the Routing Gateway path is down; when the

    Routing Gateway path comes back up, it will be used again.




                                  -22-





    DARPA Internet Gateway                             September 1982
    RFC 823



    4.4.6  Adding New Neighbors and Networks


         Gateways  dynamically  add  routing  information  about  new

    neighbors   and  new  networks  to  their  tables.   The  gateway

    maintains a list of neighbor gateway addresses.  When  a  routing

    update  is  received, the gateway searches this list of addresses

    for the Internet source address of the  routing  update  message.

    If  the  Internet  source  address  of  the routing update is not

    contained in the list of neighbor  addresses,  the  gateway  adds

    this  address  to  the  list  of  neighbor addresses and sets the

    neighbor's connectivity status to "down."   Routing  updates  are

    not  accepted  from neighbors until the GGP polling mechanism has

    determined that the neighbor is up.


         This strategy of adding  new  neighbors  requires  that  one

    gateway   in  each  pair  of  neighbor  gateways  must  have  the

    neighbor's address configured in its tables.  The newest  gateway

    can be given a complete list of neighbors, thus avoiding the need

    to re-configure older gateways when new gateways are installed.


         Gateways obtain routing information about  new  networks  in

    several  steps.   The  gateway has a list of all the networks for

    which it currently maintains routing information.  When a routing

    update  is  received,  if the routing update contains information



                                  -23-





    DARPA Internet Gateway                             September 1982
    RFC 823



    about a new network, the gateway adds this network to the list of

    networks  for  which it maintains routing information.  Next, the

    gateway adds  the  new  network  to  its  distance  matrix.   The

    distance  matrix comprises the is the matrix of distances (number

    of hops) to networks as reported  in  routing  updates  from  the

    neighbor  gateways.   The  gateway  sets  the distance to all new

    networks to "infinity," and then  computes  new  routes  and  new

    routing updates as outlined above.




    4.5  Exterior Gateway Protocol


         The Exterior Gateway Protocol (EGP) is used to permit  other

    gateways  and  gateway systems to pass routing information to the

    DARPA Internet gateways.  The use of the EGP permits the user  to

    perceive  all  of  the networks and gateways as part of one total

    Internet system, even though the "exterior" gateways are disjoint

    and  may  use  a  routing  algorithm  that  is  different and not

    compatible with  that  used  in  the  "interior"  gateways.   The

    important elements of the EGP are:


    o Neighbor Acquisition

         The procedure by which a gateway requests that it  become  a
         neighbor  of  another  gateway.  This is used when a gateway
         wants to become a neighbor  of  another  in  order  to  pass



                                  -24-





    DARPA Internet Gateway                             September 1982
    RFC 823



         routing information.  This includes the capability to accept
         or refuse the request.

    o Neighbor Up/Down

         The procedure by which a gateway decides if another  gateway
         is up or down.

    o Network Reachability Information

         The facility used to pass routing and  neighbor  information
         between gateways.

    o Gateway Going Down

         The ability of a gateway to inform other gateways that it is
         going  down  and  no  longer  has  any  routes  to any other
         networks.  This permits a gateway to go down in  an  orderly
         way without disrupting the rest of the Internet system.


    A complete description of the EGP can be found  in  IEN-209,  the

    "Exterior Gateway Protocol" [10].























                                  -25-





    DARPA Internet Gateway                             September 1982
    RFC 823



    5  GATEWAY SOFTWARE


         The DARPA Internet Gateway  runs  under  the  MOS  operating

    system [9] which provides facilities for:


         o Multiple processes
         o Interprocess communication
         o Buffer management
         o Asynchronous input/output
         o Shareable real-time clock


    There is a MOS process for  each  network  that  the  gateway  is

    directly  connected  to.   A  data  structure  called  a NETBLOCK

    contains variables of interest for each network and  pointers  to

    local  network  routines.   Network  processes run common gateway

    code while  network-specific  functions  are  dispatched  to  the

    routines  pointed  to  in the NETBLOCK.  There are also processes

    for gateway functions which require their own timing, such as GGP

    and HMP.




    5.1  Software Structure


         The gateway software can be divided conceptually into  three

    parts:   MOS Device Drivers, Network software, and Shared Gateway

    software.





                                  -26-





    DARPA Internet Gateway                             September 1982
    RFC 823



    5.1.1  Device Drivers


         The gateway has a set of  routines  to  handle  sending  and

    receiving  data  for  each type of hardware interface.  There are

    routines for initialization,  initiation,  and  interruption  for

    both  the  transmit  and  receive sides of a device.  The gateway

    supports the following types of devices:


         a)  ACC LSI-11 1822
         b)  DEC IMP11a 1822
         c)  ACC LHDH 1822
         d)  ACC VDH11E
         e)  ACC VDH11C
         f)  Proteon Ring Network
         g)  RSRE HDLC
         h)  Interlan Ethernet
         i)  BBN Fibernet
         j)  ACC XQ/CP X.25 **
         k)  ACC XQ/CP HDH  **




    5.1.2  Network Software


         For each connected network, the gateway has a set  of  eight

    routines  which  handle  local  network  functions.   The network

    routines and their functions are described briefly below.




    _______________
    ** Planned, not yet supported.




                                  -27-





    DARPA Internet Gateway                             September 1982
    RFC 823



         Up.net    Perform  local  network  initialization  such   as
                   flapping the 1822 ready line.

         Sg.net    Handle specific  local  network  timing  functions
                   such as timing out 1822 Destination Deads.

         Rc.net    A message  has  been  received  from  the  network
                   interface.  Check for any input errors.

         Wc.net    A message has  been  transmitted  to  the  network
                   interface.  Check for any output errors.

         Rs.net    Set up a buffer (or buffers) to  receive  messages
                   on the network interface.

         Ws.net    Transmit a message to the network interface.

         Hc.net    Check the local network  header  of  the  received
                   message.    Perform  any  local  network  protocol
                   tasks.

         Hb.net    Rebuild the local network header.


         There are  network  routines  for  the  following  types  of

    networks:


         o  Arpanet (a,b,c,k)
         o  Satnet (d,e,k)
         o  Proteon Ring Network (f)
         o  Packet Radio Network (a,b,c)
         o  Rsre HDLC Null Network (g)
         o  Ethernet (h)
         o  Fibernet (i)
         o  Telenet X.25 (j) **


    Note: The letters in parentheses refer to the device drivers used

    _______________
    ** Planned, not yet supported.




                                  -28-





    DARPA Internet Gateway                             September 1982
    RFC 823



    for each type of network as described in the previous section.




    5.1.3  Shared Gateway Software


         The internet processing of a datagram is performed by a body

    of  code  which  is  shared  by the network processes.  This code

    includes  routines  to  check   the   IP   header,   perform   IP

    fragmentation, calculate the IP checksum, forward a datagram, and

    implement the routing, monitoring, and error reporting protocols.




    5.2  Gateway Processes


    5.2.1  Network Processes


         When the gateway starts up, each network process  calls  its

    local network initialization routine and read start routine.  The

    read start routine sets up two maximum network size  buffers  for

    receiving datagrams.  The network process then waits for an input

    complete signal from the network device driver.


         When a message has been received, the MOS  Operating  System

    signals  the  appropriate  network process with an input complete

    signal.  The network process wakes up and executes the  net  read




                                  -29-





    DARPA Internet Gateway                             September 1982
    RFC 823



    complete  routine.   After  the  message  has been processed, the

    network process waits for more input.


         The  net  read  complete  routine  is  the   major   message

    processing  loop  in  the  gateway.   The  following  actions are

    performed when a message has been received:


         o  Call Local Network Read Complete Routine
         o  Start more reads
         o  Check local Network Header
         o  Check Internet header
         o  Check if datagram is for the gateway
         o  Forward the datagram if necessary
         o  Send ICMP error message if necessary.




    5.2.2  GGP Process


         The GGP process periodically sends GGP echos to each of  the

    gateway's neighbors to determine neighbor connectivity, and sends

    interface  status  messages  addressed  to  itself  to  determine

    network  connectivity.   The  GGP  process also sends out routing

    updates when necessary.  The details of the algorithms  currently

    implemented  by  the  GGP  process  are  given  in  Section  4.4,

    Gateway-to-Gateway Protocol, and in Appendix C.








                                  -30-





    DARPA Internet Gateway                             September 1982
    RFC 823



    5.2.3  HMP Process


         The  HMP  process  handles  timer-based  gateway  statistics

    collection and the periodic transmission of traps.









































                                  -31-





    DARPA Internet Gateway                             September 1982
    RFC 823



    APPENDIX A. GGP Message Formats


         Note that the GGP protocol is currently undergoing extensive

    changes to introduce the Exterior Gateway Protocol facility; this

    is the vehicle needed to permit  gateways  in  other  systems  to

    exchange  routing information with the gateways described in this

    document.


         Each GGP message consists of an Internet header followed  by

    one  of the messages explained below.  The values (in decimal) in

    the Internet header used in a GGP message are as follows.


    Version                  4.

    IHL                      Internet header length in 32-bit words.

    Type of Service          0.

    Total Length             Length of Internet header  and  data  in
                             octets.

    ID, Flags,
    Fragment Offset          0.

    Time to Live             Time to live in seconds.  This field  is
                             decremented   at   least  once  by  each
                             machine that processes the datagram.

    Protocol                 Gateway Protocol = 3.

    Header Checksum          The 16 bit one's complement of the one's
                             complement  sum  of  all 16-bit words in
                             the header.  For computing the checksum,
                             the checksum field should be zero.




                                  -32-





    DARPA Internet Gateway                             September 1982
    RFC 823



    Source Address           The address of the  gateway's  interface
                             from which the message is sent.

    Destination Address      The address of the gateway to which  the
                             message is sent.










































                                  -33-





    DARPA Internet Gateway                             September 1982
    RFC 823



    ROUTING UPDATE


     0                   1
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !Gateway Type   !  unused (0)   !                 ; 2 bytes
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !     Sequence Number           !                 ; 2 bytes
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !  need-update  !  n-distances  !                 ; 2 bytes
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !  distance 1   !   n1-dist     !                 ; 2 bytes
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !   net11       !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ; 1, 2 or 3
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ;   bytes
    !   net12       !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ; 1, 2 or 3
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ;   bytes
                                    .
                                    .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !   net1n1      !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  ; n1 nets at
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  ;   dist 1
                                    .                      ...
                                    .                  ; ndist groups
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                  ;    of nets
    !  distance n   !   nn-dist     !                  ; 2 bytes
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !   netn1       !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  ; 1, 2 or 3
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  ;   bytes
    !   netn2       !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  ; 1, 2 or 3
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  ;   bytes
                               .
                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    !   netnnn      !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  ; nn nets at
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  ;  dist n

    Gateway Type             12 (decimal)

    Sequence Number          The  16-bit  sequence  number  used   to
                             identify routing updates.

    need-update              An 8-bit field.  This byte is set  to  1



                                  -34-





    DARPA Internet Gateway                             September 1982
    RFC 823



                             if the source gateway requests a routing
                             update from the destination gateway, and
                             set to 0 if not.

    n-distances              An   8-bit   field.    The   number   of
                             distance-groups reported in this update.
                             Each  distance-group   consists   of   a
                             distance  value  and  a  number of nets,
                             followed by the actual net numbers which
                             are reachable at that distance.  Not all
                             distances need be reported.

    distance 1               hop count (or  other  distance  measure)
                             which applies to this distance-group.

    n1-dist                  number of nets  which  are  reported  in
                             this distance-group.

    net11                    1, 2, or 3 bytes for the  first  net  at
                             distance "distance 1".

    net12                    second net

    ...

    net1n1                   etc.





















                                  -35-





    DARPA Internet Gateway                             September 1982
    RFC 823



    ACKNOWLEDGMENT or NEGATIVE ACKNOWLEDGMENT


     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Gateway Type  |  Unused       |        Sequence number        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


    Gateway Type             Acknowledgments are  type  2.   Negative
                             acknowledgments are type 10.

    Sequence Number          The  16-bit  sequence  number  that  the
                             gateway  is  acknowledging or negatively
                             acknowledging.































                                  -36-





    DARPA Internet Gateway                             September 1982
    RFC 823



    GGP ECHO and ECHO REPLY



     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Gateway Type  |            Unused                             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


    Gateway Type             8 for echo message; 0 for echo reply.

    Source Address           In an echo message, this is the  address
                             of  the  gateway  on the same network as
                             the neighbor to which it is sending  the
                             echo message.  In an echo reply message,
                             the source and destination addresses are
                             simply  reversed,  and  the remainder is
                             returned unchanged.



























                                  -37-





    DARPA Internet Gateway                             September 1982
    RFC 823



    NETWORK INTERFACE STATUS

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ! Gateway Type  !                  unused                       !
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Gateway Type             9

    Source Address
    Destination Address      The address  of  the  gateway's  network
                             interface.   The  gateway  can  send Net
                             Interface Status messages to  itself  to
                             determine  if  it  is  able  to send and
                             receive   traffic   on    its    network
                             interface.






























                                  -38-





    DARPA Internet Gateway                             September 1982
    RFC 823



    APPENDIX B. Information Maintained by Gateways


         In order to implement the shortest-path  routing  algorithm,

    gateways  must  maintain  information about their connectivity to

    networks  and  other  gateways.   This   section   explains   the

    information  maintained  by each gateway; this information can be

    organized into the following tables and variables.


    o  Number of Networks

         The number of  networks  for  which  the  gateway  maintains
         routing information and to which it can forward traffic.

    o  Number of Neighbors

         The number of  neighbor  gateways  with  which  the  gateway
         exchanges routing information.

    o  Gateway Addresses

         The addresses of the gateway's network interfaces.

    o  Neighbor Gateway Addresses

         The address of each  neighbor  gateway's  network  interface
         that is on the same network as this gateway.

    o  Neighbor Connectivity Vector

         A vector of the connectivity between this gateway  and  each
         of its neighbors.

    o  Distance Matrix

         A matrix of the routing updates received from  the  neighbor
         gateways.





                                  -39-





    DARPA Internet Gateway                             September 1982
    RFC 823



    o  Minimum Distance Vector

         A vector containing the minimum distance to each network.

    o  Routing Updates from Non-Routing Gateways

         The routing updates that would have been received from  each
         non-routing  neighbor  gateway which does not participate in
         this routing strategy.

    o  Routing Table

         A table containing, for each network, a list of the neighbor
         gateways on a minimum-distance route to the network.

    o  Send Sequence Number

         The sequence number that will  be  used  to  send  the  next
         routing update.

    o  Receive Sequence Numbers

         The sequence numbers that the gateway received in  the  last
         routing update from each of its neighbors.

    o  Received Acknowledgment Vector

         A  vector  indicating  whether  or  not  each  neighbor  has
         acknowledged  the sequence number in the most recent routing
         update sent.

















                                  -40-





    DARPA Internet Gateway                             September 1982
    RFC 823



    APPENDIX C. GGP Events and Responses


         The following list shows the GGP  events  that  occur  at  a

    gateway  and  the  gateway's responses.  The variables and tables

    referred to are listed above.



    o  Connectivity to an attached network changes.

         a. Update the Minimum Distance Vector.
         b. Recompute the Routing Updates.
         c. Recompute the Routing Table.
         d. If any routing update has changed, send the  new  routing
            updates to the neighbors.

    o  Connectivity to a neighbor gateway changes.

         a. Update the Neighbor Connectivity Vector.
         b. Recompute the Minimum Distance Vector.
         c. Recompute the Routing Updates.
         d. Recompute the Routing Table.
         e. If any routing update has changed, send the  new  routing
            updates to the neighbors.

    o  A Routing Update message is received.

         a. Compare the Internet source address of the Routing Update
            message to the Neighbor Addresses.  If the address is not
            on the list, add it to the list  of  Neighbor  Addresses,
            increment  the  Number  of Neighbors, and set the Receive
            Sequence Number for this neighbor to the sequence  number
            in the Routing Update message.

         b. Compare the Receive Sequence Number for this neighbor  to
            the  sequence  number  in  the  Routing Update message to
            determine whether or not to accept this message.  If  the
            message  is  rejected,  send  a  Negative  Acknowledgment
            message.   If  the   message   is   accepted,   send   an
            Acknowledgment  message  and  proceed  with the following
            steps.



                                  -41-





    DARPA Internet Gateway                             September 1982
    RFC 823



         c. Compare the  networks  reported  in  the  Routing  Update
            message  to  the Number of Networks.  If new networks are
            reported, enter them in the network vectors, increase the
            number  of  networks,  and  expand the Distance Matrix to
            account for the new networks.

         d. Copy the routing update received into the appropriate row
            of the Distance Matrix.

         e. Recompute the Minimum Distance Vector.

         f. Recompute the Routing Updates.

         g. Recompute the Routing Table.

         h. If any routing update has changed, send the  new  routing
            updates to the neighbors.

    o  An Acknowledgment message is received.

            Compare the sequence number in the message  to  the  Send
            Sequence   Number.    If  the  Send  Sequence  Number  is
            acknowledged,  update   the   entry   in   the   Received
            Acknowledgment  Vector  for  the  neighbor  that sent the
            acknowledgment.

    o  A Negative Acknowledgment message is received.

            Compare the sequence number in the message  to  the  Send
            Sequence Number.  If necessary, replace the Send Sequence
            Number, and retransmit the routing updates.
















                                  -42-





    DARPA Internet Gateway                             September 1982
    RFC 823



    REFERENCES

    [1]  Postel,  J.  (ed.),  "Internet  Protocol  -  DARPA  Internet
         Program  Protocol  Specification,"  RFC 791, USC/Information
         Sciences Institute, September 1981.

    [2]  Strazisar,  V.,   "Gateway   Routing:    An   Implementation
         Specification," IEN-30, Bolt Beranek and Newman Inc., August
         1979.

    [3]  Strazisar, V., "How  to  Build  a  Gateway,"  IEN-109,  Bolt
         Beranek and Newman Inc., August 1979.

    [4]  Postel, J.,  "Internet  Control  Message  Protocol  -  DARPA
         Internet   Program   Protocol   Specification,"   RFC   792,
         USC/Information Sciences Institute, September 1981.

    [5]  Postel, J., "Assigned  Numbers,"  RFC  790,  USC/Information
         Sciences Institute, September 1981.

    [6]  Littauer, B., Huang, A.,  Hinden,  R.,  "A  Host  Monitoring
         Protocol,"  IEN-197, Bolt Beranek and Newman Inc., September
         1981.

    [7]  Santos,  P.,  Chalstrom,   H.,   Linn,   J.,   Herman,   J.,
         "Architecture   of   a   Network   Monitoring,  Control  and
         Management System," Proc. of  the  5th  Int.  Conference  on
         Computer Communication, October 1980.

    [8]  Haverty, J., "XNET Formats for Internet Protocol Version 4,"
         IEN-158, Bolt Beranek and Newman Inc., October 1980.

    [9]  Mathis, J., Klemba, K., Poggio,  "TIU  Notebook-  Volume  2,
         Software Documentation," SRI, May 1979.

    [10] Rosen,  E.,  "Exterior  Gateway  Protocol,"  IEN-209,   Bolt
         Beranek and Newman Inc., August 1982.










                                  -43-