Internet Engineering Task Force (IETF)                          T. Pauly
Request for Comments: 8229                                    Apple Inc.
Category: Standards Track                                      S. Touati
ISSN: 2070-1721                                                 Ericsson
                                                              R. Mantha
                                                          Cisco Systems
                                                            August 2017


              TCP Encapsulation of IKE and IPsec Packets

Abstract

  This document describes a method to transport Internet Key Exchange
  Protocol (IKE) and IPsec packets over a TCP connection for traversing
  network middleboxes that may block IKE negotiation over UDP.  This
  method, referred to as "TCP encapsulation", involves sending both IKE
  packets for Security Association establishment and Encapsulating
  Security Payload (ESP) packets over a TCP connection.  This method is
  intended to be used as a fallback option when IKE cannot be
  negotiated over UDP.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc8229.
















Pauly, et al.                Standards Track                    [Page 1]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


Copyright Notice

  Copyright (c) 2017 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
     1.1. Prior Work and Motivation ..................................4
     1.2. Terminology and Notation ...................................5
  2. Configuration ...................................................5
  3. TCP-Encapsulated Header Formats .................................6
     3.1. TCP-Encapsulated IKE Header Format .........................6
     3.2. TCP-Encapsulated ESP Header Format .........................7
  4. TCP-Encapsulated Stream Prefix ..................................7
  5. Applicability ...................................................8
     5.1. Recommended Fallback from UDP ..............................8
  6. Connection Establishment and Teardown ...........................9
  7. Interaction with NAT Detection Payloads ........................11
  8. Using MOBIKE with TCP Encapsulation ............................11
  9. Using IKE Message Fragmentation with TCP Encapsulation .........12
  10. Considerations for Keep-Alives and Dead Peer Detection ........12
  11. Middlebox Considerations ......................................12
  12. Performance Considerations ....................................13
     12.1. TCP-in-TCP ...............................................13
     12.2. Added Reliability for Unreliable Protocols ...............14
     12.3. Quality-of-Service Markings ..............................14
     12.4. Maximum Segment Size .....................................14
     12.5. Tunneling ECN in TCP .....................................14
  13. Security Considerations .......................................15
  14. IANA Considerations ...........................................16
  15. References ....................................................16
     15.1. Normative References .....................................16
     15.2. Informative References ...................................17







Pauly, et al.                Standards Track                    [Page 2]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


  Appendix A. Using TCP Encapsulation with TLS ......................18
  Appendix B. Example Exchanges of TCP Encapsulation with TLS .......19
    B.1. Establishing an IKE Session ................................19
    B.2. Deleting an IKE Session ....................................21
    B.3. Re-establishing an IKE Session .............................22
    B.4. Using MOBIKE between UDP and TCP Encapsulation .............23
  Acknowledgments ...................................................25
  Authors' Addresses ................................................25

1.  Introduction

  The Internet Key Exchange Protocol version 2 (IKEv2) [RFC7296] is a
  protocol for establishing IPsec Security Associations (SAs), using
  IKE messages over UDP for control traffic, and using Encapsulating
  Security Payload (ESP) [RFC4303] messages for encrypted data traffic.
  Many network middleboxes that filter traffic on public hotspots block
  all UDP traffic, including IKE and IPsec, but allow TCP connections
  through because they appear to be web traffic.  Devices on these
  networks that need to use IPsec (to access private enterprise
  networks, to route Voice over IP calls to carrier networks, or
  because of security policies) are unable to establish IPsec SAs.
  This document defines a method for encapsulating IKE control messages
  as well as IPsec data messages within a TCP connection.

  Using TCP as a transport for IPsec packets adds a third option to the
  list of traditional IPsec transports:

  1.  Direct.  Currently, IKE negotiations begin over UDP port 500.  If
      no Network Address Translation (NAT) device is detected between
      the Initiator and the Responder, then subsequent IKE packets are
      sent over UDP port 500, and IPsec data packets are sent
      using ESP.

  2.  UDP Encapsulation [RFC3948].  If a NAT is detected between the
      Initiator and the Responder, then subsequent IKE packets are sent
      over UDP port 4500 with four bytes of zero at the start of the
      UDP payload, and ESP packets are sent out over UDP port 4500.
      Some peers default to using UDP encapsulation even when no NAT is
      detected on the path, as some middleboxes do not support IP
      protocols other than TCP and UDP.

  3.  TCP Encapsulation.  If the other two methods are not available or
      appropriate, IKE negotiation packets as well as ESP packets can
      be sent over a single TCP connection to the peer.







Pauly, et al.                Standards Track                    [Page 3]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


  Direct use of ESP or UDP encapsulation should be preferred by
  IKE implementations due to performance concerns when using
  TCP encapsulation (Section 12).  Most implementations should use
  TCP encapsulation only on networks where negotiation over UDP has
  been attempted without receiving responses from the peer or if a
  network is known to not support UDP.

1.1.  Prior Work and Motivation

  Encapsulating IKE connections within TCP streams is a common approach
  to solve the problem of UDP packets being blocked by network
  middleboxes.  The specific goals of this document are as follows:

  o  To promote interoperability by defining a standard method of
     framing IKE and ESP messages within TCP streams.

  o  To be compatible with the current IKEv2 standard without requiring
     modifications or extensions.

  o  To use IKE over UDP by default to avoid the overhead of other
     alternatives that always rely on TCP or Transport Layer Security
     (TLS) [RFC5246].

  Some previous alternatives include:

  Cellular Network Access
     Interworking Wireless LAN (IWLAN) uses IKEv2 to create secure
     connections to cellular carrier networks for making voice calls
     and accessing other network services over Wi-Fi networks. 3GPP has
     recommended that IKEv2 and ESP packets be sent within a TLS
     connection to be able to establish connections on restrictive
     networks.

  ISAKMP over TCP
     Various non-standard extensions to the Internet Security
     Association and Key Management Protocol (ISAKMP) have been
     deployed that send IPsec traffic over TCP or TCP-like packets.

  Secure Sockets Layer (SSL) VPNs
     Many proprietary VPN solutions use a combination of TLS and IPsec
     in order to provide reliability.  These often run on TCP port 443.

  IKEv2 over TCP
     IKEv2 over TCP as described in [IKE-over-TCP] is used to avoid UDP
     fragmentation.






Pauly, et al.                Standards Track                    [Page 4]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


1.2.  Terminology and Notation

  This document distinguishes between the IKE peer that initiates TCP
  connections to be used for TCP encapsulation and the roles of
  Initiator and Responder for particular IKE messages.  During the
  course of IKE exchanges, the role of IKE Initiator and Responder may
  swap for a given SA (as with IKE SA rekeys), while the Initiator of
  the TCP connection is still responsible for tearing down the TCP
  connection and re-establishing it if necessary.  For this reason,
  this document will use the term "TCP Originator" to indicate the IKE
  peer that initiates TCP connections.  The peer that receives TCP
  connections will be referred to as the "TCP Responder".  If an IKE SA
  is rekeyed one or more times, the TCP Originator MUST remain the peer
  that originally initiated the first IKE SA.

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.  Configuration

  One of the main reasons to use TCP encapsulation is that UDP traffic
  may be entirely blocked on a network.  Because of this, support for
  TCP encapsulation is not specifically negotiated in the IKE exchange.
  Instead, support for TCP encapsulation must be pre-configured on both
  the TCP Originator and the TCP Responder.

  Implementations MUST support TCP encapsulation on TCP port 4500,
  which is reserved for IPsec NAT traversal.

  Beyond a flag indicating support for TCP encapsulation, the
  configuration for each peer can include the following optional
  parameters:

  o  Alternate TCP ports on which the specific TCP Responder listens
     for incoming connections.  Note that the TCP Originator may
     initiate TCP connections to the TCP Responder from any local port.

  o  An extra framing protocol to use on top of TCP to further
     encapsulate the stream of IKE and IPsec packets.  See Appendix A
     for a detailed discussion.








Pauly, et al.                Standards Track                    [Page 5]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


  Since TCP encapsulation of IKE and IPsec packets adds overhead and
  has potential performance trade-offs compared to direct or
  UDP-encapsulated SAs (as described in Section 12), implementations
  SHOULD prefer ESP direct or UDP-encapsulated SAs over
  TCP-encapsulated SAs when possible.

3.  TCP-Encapsulated Header Formats

  Like UDP encapsulation, TCP encapsulation uses the first four bytes
  of a message to differentiate IKE and ESP messages.  TCP
  encapsulation also adds a Length field to define the boundaries of
  messages within a stream.  The message length is sent in a 16-bit
  field that precedes every message.  If the first 32 bits of the
  message are zeros (a non-ESP marker), then the contents comprise an
  IKE message.  Otherwise, the contents comprise an ESP message.
  Authentication Header (AH) messages are not supported for TCP
  encapsulation.

  Although a TCP stream may be able to send very long messages,
  implementations SHOULD limit message lengths to typical UDP datagram
  ESP payload lengths.  The maximum message length is used as the
  effective MTU for connections that are being encrypted using ESP, so
  the maximum message length will influence characteristics of inner
  connections, such as the TCP Maximum Segment Size (MSS).

  Note that this method of encapsulation will also work for placing IKE
  and ESP messages within any protocol that presents a stream
  abstraction, beyond TCP.

3.1.  TCP-Encapsulated IKE Header Format

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
                                  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                  |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Non-ESP Marker                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                      IKE header [RFC7296]                     ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                Figure 1







Pauly, et al.                Standards Track                    [Page 6]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


  The IKE header is preceded by a 16-bit Length field in network byte
  order that specifies the length of the IKE message (including the
  non-ESP marker) within the TCP stream.  As with IKE over UDP
  port 4500, a zeroed 32-bit non-ESP marker is inserted before the
  start of the IKE header in order to differentiate the traffic from
  ESP traffic between the same addresses and ports.

  o  Length (2 octets, unsigned integer) - Length of the IKE packet,
     including the Length field and non-ESP marker.

3.2.  TCP-Encapsulated ESP Header Format

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
                                  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                  |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                     ESP header [RFC4303]                      ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                Figure 2

  The ESP header is preceded by a 16-bit Length field in network byte
  order that specifies the length of the ESP packet within the TCP
  stream.

  The Security Parameter Index (SPI) field [RFC7296] in the ESP header
  MUST NOT be a zero value.

  o  Length (2 octets, unsigned integer) - Length of the ESP packet,
     including the Length field.

4.  TCP-Encapsulated Stream Prefix

  Each stream of bytes used for IKE and IPsec encapsulation MUST begin
  with a fixed sequence of six bytes as a magic value, containing the
  characters "IKETCP" as ASCII values.  This value is intended to
  identify and validate that the TCP connection is being used for TCP
  encapsulation as defined in this document, to avoid conflicts with
  the prevalence of previous non-standard protocols that used TCP
  port 4500.  This value is only sent once, by the TCP Originator only,
  at the beginning of any stream of IKE and ESP messages.

  If other framing protocols are used within TCP to further encapsulate
  or encrypt the stream of IKE and ESP messages, the stream prefix must
  be at the start of the TCP Originator's IKE and ESP message stream



Pauly, et al.                Standards Track                    [Page 7]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


  within the added protocol layer (Appendix A).  Although some framing
  protocols do support negotiating inner protocols, the stream prefix
  should always be used in order for implementations to be as generic
  as possible and not rely on other framing protocols on top of TCP.

               0      1      2      3      4      5
              +------+------+------+------+------+------+
              | 0x49 | 0x4b | 0x45 | 0x54 | 0x43 | 0x50 |
              +------+------+------+------+------+------+

                                Figure 3

5.  Applicability

  TCP encapsulation is applicable only when it has been configured to
  be used with specific IKE peers.  If a Responder is configured to use
  TCP encapsulation, it MUST listen on the configured port(s) in case
  any peers will initiate new IKE sessions.  Initiators MAY use TCP
  encapsulation for any IKE session to a peer that is configured to
  support TCP encapsulation, although it is recommended that Initiators
  should only use TCP encapsulation when traffic over UDP is blocked.

  Since the support of TCP encapsulation is a configured property, not
  a negotiated one, it is recommended that if there are multiple IKE
  endpoints representing a single peer (such as multiple machines with
  different IP addresses when connecting by Fully Qualified Domain
  Name, or endpoints used with IKE redirection), all of the endpoints
  equally support TCP encapsulation.

  If TCP encapsulation is being used for a specific IKE SA, all
  messages for that IKE SA and its Child SAs MUST be sent over a TCP
  connection until the SA is deleted or IKEv2 Mobility and Multihoming
  (MOBIKE) is used to change the SA endpoints and/or the encapsulation
  protocol.  See Section 8 for more details on using MOBIKE to
  transition between encapsulation modes.

5.1.  Recommended Fallback from UDP

  Since UDP is the preferred method of transport for IKE messages,
  implementations that use TCP encapsulation should have an algorithm
  for deciding when to use TCP after determining that UDP is unusable.
  If an Initiator implementation has no prior knowledge about the
  network it is on and the status of UDP on that network, it SHOULD
  always attempt to negotiate IKE over UDP first.  IKEv2 defines how to
  use retransmission timers with IKE messages and, specifically,
  IKE_SA_INIT messages [RFC7296].  Generally, this means that the
  implementation will define a frequency of retransmission and the
  maximum number of retransmissions allowed before marking the IKE SA



Pauly, et al.                Standards Track                    [Page 8]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


  as failed.  An implementation can attempt negotiation over TCP once
  it has hit the maximum retransmissions over UDP, or slightly before
  to reduce connection setup delays.  It is recommended that the
  initial message over UDP be retransmitted at least once before
  falling back to TCP, unless the Initiator knows beforehand that the
  network is likely to block UDP.

6.  Connection Establishment and Teardown

  When the IKE Initiator uses TCP encapsulation, it will initiate a TCP
  connection to the Responder using the configured TCP port.  The first
  bytes sent on the stream MUST be the stream prefix value (Section 4).
  After this prefix, encapsulated IKE messages will negotiate the IKE
  SA and initial Child SA [RFC7296].  After this point, both
  encapsulated IKE (Figure 1) and ESP (Figure 2) messages will be sent
  over the TCP connection.  The TCP Responder MUST wait for the entire
  stream prefix to be received on the stream before trying to parse out
  any IKE or ESP messages.  The stream prefix is sent only once, and
  only by the TCP Originator.

  In order to close an IKE session, either the Initiator or Responder
  SHOULD gracefully tear down IKE SAs with DELETE payloads.  Once the
  SA has been deleted, the TCP Originator SHOULD close the TCP
  connection if it does not intend to use the connection for another
  IKE session to the TCP Responder.  If the connection is left idle and
  the TCP Responder needs to clean up resources, the TCP Responder MAY
  close the TCP connection.

  An unexpected FIN or a TCP Reset on the TCP connection may indicate a
  loss of connectivity, an attack, or some other error.  If a DELETE
  payload has not been sent, both sides SHOULD maintain the state for
  their SAs for the standard lifetime or timeout period.  The TCP
  Originator is responsible for re-establishing the TCP connection if
  it is torn down for any unexpected reason.  Since new TCP connections
  may use different ports due to NAT mappings or local port allocations
  changing, the TCP Responder MUST allow packets for existing SAs to be
  received from new source ports.

  A peer MUST discard a partially received message due to a broken
  connection.

  Whenever the TCP Originator opens a new TCP connection to be used for
  an existing IKE SA, it MUST send the stream prefix first, before any
  IKE or ESP messages.  This follows the same behavior as the initial
  TCP connection.






Pauly, et al.                Standards Track                    [Page 9]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


  If a TCP connection is being used to resume a previous IKE session,
  the TCP Responder can recognize the session using either the IKE SPI
  from an encapsulated IKE message or the ESP SPI from an encapsulated
  ESP message.  If the session had been fully established previously,
  it is suggested that the TCP Originator send an UPDATE_SA_ADDRESSES
  message if MOBIKE is supported, or an informational message (a
  keep-alive) otherwise.

  The TCP Responder MUST NOT accept any messages for the existing IKE
  session on a new incoming connection, unless that connection begins
  with the stream prefix.  If either the TCP Originator or TCP
  Responder detects corruption on a connection that was started with a
  valid stream prefix, it SHOULD close the TCP connection.  The
  connection can be determined to be corrupted if there are too many
  subsequent messages that cannot be parsed as valid IKE messages or
  ESP messages with known SPIs, or if the authentication check for an
  ESP message with a known SPI fails.  Implementations SHOULD NOT
  tear down a connection if only a single ESP message has an unknown
  SPI, since the SPI databases may be momentarily out of sync.  If
  there is instead a syntax issue within an IKE message, an
  implementation MUST send the INVALID_SYNTAX notify payload and
  tear down the IKE SA as usual, rather than tearing down the TCP
  connection directly.

  A TCP Originator SHOULD only open one TCP connection per IKE SA, over
  which it sends all of the corresponding IKE and ESP messages.  This
  helps ensure that any firewall or NAT mappings allocated for the TCP
  connection apply to all of the traffic associated with the IKE SA
  equally.

  Similarly, a TCP Responder SHOULD at any given time send packets for
  an IKE SA and its Child SAs over only one TCP connection.  It SHOULD
  choose the TCP connection on which it last received a valid and
  decryptable IKE or ESP message.  In order to be considered valid for
  choosing a TCP connection, an IKE message must be successfully
  decrypted and authenticated, not be a retransmission of a previously
  received message, and be within the expected window for IKE
  message IDs.  Similarly, an ESP message must pass authentication
  checks and be decrypted, and must not be a replay of a previous
  message.

  Since a connection may be broken and a new connection re-established
  by the TCP Originator without the TCP Responder being aware, a TCP
  Responder SHOULD accept receiving IKE and ESP messages on both old
  and new connections until the old connection is closed by the TCP
  Originator.  A TCP Responder MAY close a TCP connection that it
  perceives as idle and extraneous (one previously used for IKE and ESP
  messages that has been replaced by a new connection).



Pauly, et al.                Standards Track                   [Page 10]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


  Multiple IKE SAs MUST NOT share a single TCP connection, unless one
  is a rekey of an existing IKE SA, in which case there will
  temporarily be two IKE SAs on the same TCP connection.

7.  Interaction with NAT Detection Payloads

  When negotiating over UDP port 500, IKE_SA_INIT packets include
  NAT_DETECTION_SOURCE_IP and NAT_DETECTION_DESTINATION_IP payloads to
  determine if UDP encapsulation of IPsec packets should be used.
  These payloads contain SHA-1 digests of the SPIs, IP addresses, and
  ports as defined in [RFC7296].  IKE_SA_INIT packets sent on a TCP
  connection SHOULD include these payloads with the same content as
  when sending over UDP and SHOULD use the applicable TCP ports when
  creating and checking the SHA-1 digests.

  If a NAT is detected due to the SHA-1 digests not matching the
  expected values, no change should be made for encapsulation of
  subsequent IKE or ESP packets, since TCP encapsulation inherently
  supports NAT traversal.  Implementations MAY use the information that
  a NAT is present to influence keep-alive timer values.

  If a NAT is detected, implementations need to handle transport mode
  TCP and UDP packet checksum fixup as defined for UDP encapsulation in
  [RFC3948].

8.  Using MOBIKE with TCP Encapsulation

  When an IKE session that has negotiated MOBIKE [RFC4555] is
  transitioning between networks, the Initiator of the transition may
  switch between using TCP encapsulation, UDP encapsulation, or no
  encapsulation.  Implementations that implement both MOBIKE and TCP
  encapsulation MUST support dynamically enabling and disabling TCP
  encapsulation as interfaces change.

  When a MOBIKE-enabled Initiator changes networks, the
  UPDATE_SA_ADDRESSES notification SHOULD be sent out first over UDP
  before attempting over TCP.  If there is a response to the
  UPDATE_SA_ADDRESSES notification sent over UDP, then the ESP packets
  should be sent directly over IP or over UDP port 4500 (depending on
  if a NAT was detected), regardless of if a connection on a previous
  network was using TCP encapsulation.  Similarly, if the Responder
  only responds to the UPDATE_SA_ADDRESSES notification over TCP, then
  the ESP packets should be sent over the TCP connection, regardless of
  if a connection on a previous network did not use TCP encapsulation.







Pauly, et al.                Standards Track                   [Page 11]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


9.  Using IKE Message Fragmentation with TCP Encapsulation

  IKE message fragmentation [RFC7383] is not required when using TCP
  encapsulation, since a TCP stream already handles the fragmentation
  of its contents across packets.  Since fragmentation is redundant in
  this case, implementations might choose to not negotiate IKE
  fragmentation.  Even if fragmentation is negotiated, an
  implementation SHOULD NOT send fragments when going over a TCP
  connection, although it MUST support receiving fragments.

  If an implementation supports both MOBIKE and IKE fragmentation, it
  SHOULD negotiate IKE fragmentation over a TCP-encapsulated session in
  case the session switches to UDP encapsulation on another network.

10.  Considerations for Keep-Alives and Dead Peer Detection

  Encapsulating IKE and IPsec inside of a TCP connection can impact the
  strategy that implementations use to detect peer liveness and to
  maintain middlebox port mappings.  Peer liveness should be checked
  using IKE informational packets [RFC7296].

  In general, TCP port mappings are maintained by NATs longer than UDP
  port mappings, so IPsec ESP NAT keep-alives [RFC3948] SHOULD NOT be
  sent when using TCP encapsulation.  Any implementation using TCP
  encapsulation MUST silently drop incoming NAT keep-alive packets
  and not treat them as errors.  NAT keep-alive packets over a
  TCP-encapsulated IPsec connection will be sent as an ESP message with
  a one-octet-long payload with the value 0xFF.

  Note that, depending on the configuration of TCP and TLS on the
  connection, TCP keep-alives [RFC1122] and TLS keep-alives [RFC6520]
  may be used.  These MUST NOT be used as indications of IKE peer
  liveness.

11.  Middlebox Considerations

  Many security networking devices, such as firewalls or intrusion
  prevention systems, network optimization/acceleration devices, and
  NAT devices, keep the state of sessions that traverse through them.

  These devices commonly track the transport-layer and/or application-
  layer data to drop traffic that is anomalous or malicious in nature.
  While many of these devices will be more likely to pass
  TCP-encapsulated traffic as opposed to UDP-encapsulated traffic, some
  may still block or interfere with TCP-encapsulated IKE and IPsec
  traffic.





Pauly, et al.                Standards Track                   [Page 12]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


  A network device that monitors the transport layer will track the
  state of TCP sessions, such as TCP sequence numbers.  TCP
  encapsulation of IKE should therefore use standard TCP behaviors to
  avoid being dropped by middleboxes.

12.  Performance Considerations

  Several aspects of TCP encapsulation for IKE and IPsec packets may
  negatively impact the performance of connections within a tunnel-mode
  IPsec SA.  Implementations should be aware of these performance
  impacts and take these into consideration when determining when to
  use TCP encapsulation.  Implementations SHOULD favor using direct ESP
  or UDP encapsulation over TCP encapsulation whenever possible.

12.1.  TCP-in-TCP

  If the outer connection between IKE peers is over TCP, inner TCP
  connections may suffer negative effects from using TCP within TCP.
  Running TCP within TCP is discouraged, since the TCP algorithms
  generally assume that they are running over an unreliable datagram
  layer.

  If the outer (tunnel) TCP connection experiences packet loss, this
  loss will be hidden from any inner TCP connections, since the outer
  connection will retransmit to account for the losses.  Since the
  outer TCP connection will deliver the inner messages in order, any
  messages after a lost packet may have to wait until the loss is
  recovered.  This means that loss on the outer connection will be
  interpreted only as delay by inner connections.  The burstiness of
  inner traffic can increase, since a large number of inner packets may
  be delivered across the tunnel at once.  The inner TCP connection may
  interpret a long period of delay as a transmission problem,
  triggering a retransmission timeout, which will cause spurious
  retransmissions.  The sending rate of the inner connection may be
  unnecessarily reduced if the retransmissions are not detected as
  spurious in time.

  The inner TCP connection's round-trip-time estimation will be
  affected by the burstiness of the outer TCP connection if there are
  long delays when packets are retransmitted by the outer TCP
  connection.  This will make the congestion control loop of the inner
  TCP traffic less reactive, potentially permanently leading to a lower
  sending rate than the outer TCP would allow for.








Pauly, et al.                Standards Track                   [Page 13]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


  TCP-in-TCP can also lead to increased buffering, or bufferbloat.
  This can occur when the window size of the outer TCP connection is
  reduced and becomes smaller than the window sizes of the inner TCP
  connections.  This can lead to packets backing up in the outer TCP
  connection's send buffers.  In order to limit this effect, the outer
  TCP connection should have limits on its send buffer size and on the
  rate at which it reduces its window size.

  Note that any negative effects will be shared between all flows going
  through the outer TCP connection.  This is of particular concern for
  any latency-sensitive or real-time applications using the tunnel.  If
  such traffic is using a TCP-encapsulated IPsec connection, it is
  recommended that the number of inner connections sharing the tunnel
  be limited as much as possible.

12.2.  Added Reliability for Unreliable Protocols

  Since ESP is an unreliable protocol, transmitting ESP packets over a
  TCP connection will change the fundamental behavior of the packets.
  Some application-level protocols that prefer packet loss to delay
  (such as Voice over IP or other real-time protocols) may be
  negatively impacted if their packets are retransmitted by the TCP
  connection due to packet loss.

12.3.  Quality-of-Service Markings

  Quality-of-Service (QoS) markings, such as the Differentiated
  Services Code Point (DSCP) and Traffic Class, should be used with
  care on TCP connections used for encapsulation.  Individual packets
  SHOULD NOT use different markings than the rest of the connection,
  since packets with different priorities may be routed differently and
  cause unnecessary delays in the connection.

12.4.  Maximum Segment Size

  A TCP connection used for IKE encapsulation SHOULD negotiate its MSS
  in order to avoid unnecessary fragmentation of packets.

12.5.  Tunneling ECN in TCP

  Since there is not a one-to-one relationship between outer IP packets
  and inner ESP/IP messages when using TCP encapsulation, the markings
  for Explicit Congestion Notification (ECN) [RFC3168] cannot be simply
  mapped.  However, any ECN Congestion Experienced (CE) marking on
  inner headers should be preserved through the tunnel.






Pauly, et al.                Standards Track                   [Page 14]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


  Implementations SHOULD follow the ECN compatibility mode for tunnel
  ingress as described in [RFC6040].  In compatibility mode, the outer
  tunnel TCP connection marks its packet headers as not ECN-capable.
  If upon egress, the arriving outer header is marked with CE, the
  implementation will drop the inner packet, since there is not a
  distinct inner packet header onto which to translate the ECN
  markings.

13.  Security Considerations

  IKE Responders that support TCP encapsulation may become vulnerable
  to new Denial-of-Service (DoS) attacks that are specific to TCP, such
  as SYN-flooding attacks.  TCP Responders should be aware of this
  additional attack surface.

  TCP Responders should be careful to ensure that (1) the stream prefix
  "IKETCP" uniquely identifies incoming streams as streams that use the
  TCP encapsulation protocol and (2) they are not running any other
  protocols on the same listening port (to avoid potential conflicts).

  Attackers may be able to disrupt the TCP connection by sending
  spurious TCP Reset packets.  Therefore, implementations SHOULD make
  sure that IKE session state persists even if the underlying TCP
  connection is torn down.

  If MOBIKE is being used, all of the security considerations outlined
  for MOBIKE apply [RFC4555].

  Similarly to MOBIKE, TCP encapsulation requires a TCP Responder to
  handle changes to source address and port due to network or
  connection disruption.  The successful delivery of valid IKE or ESP
  messages over a new TCP connection is used by the TCP Responder to
  determine where to send subsequent responses.  If an attacker is able
  to send packets on a new TCP connection that pass the validation
  checks of the TCP Responder, it can influence which path future
  packets will take.  For this reason, the validation of messages on
  the TCP Responder must include decryption, authentication, and replay
  checks.

  Since TCP provides reliable, in-order delivery of ESP messages, the
  ESP anti-replay window size SHOULD be set to 1.  See [RFC4303] for a
  complete description of the ESP anti-replay window.  This increases
  the protection of implementations against replay attacks.








Pauly, et al.                Standards Track                   [Page 15]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


14.  IANA Considerations

  TCP port 4500 is already allocated to IPsec for NAT traversal.  This
  port SHOULD be used for TCP-encapsulated IKE and ESP as described in
  this document.

  This document updates the reference for TCP port 4500:

        Keyword       Decimal    Description           Reference
        -----------   --------   -------------------   ---------
        ipsec-nat-t   4500/tcp   IPsec NAT-Traversal   RFC 8229

                                Figure 4

15.  References

15.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC3948]  Huttunen, A., Swander, B., Volpe, V., DiBurro, L., and M.
             Stenberg, "UDP Encapsulation of IPsec ESP Packets",
             RFC 3948, DOI 10.17487/RFC3948, January 2005,
             <http://www.rfc-editor.org/info/rfc3948>.

  [RFC4303]  Kent, S., "IP Encapsulating Security Payload (ESP)",
             RFC 4303, DOI 10.17487/RFC4303, December 2005,
             <http://www.rfc-editor.org/info/rfc4303>.

  [RFC6040]  Briscoe, B., "Tunnelling of Explicit Congestion
             Notification", RFC 6040, DOI 10.17487/RFC6040,
             November 2010, <http://www.rfc-editor.org/info/rfc6040>.

  [RFC7296]  Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
             Kivinen, "Internet Key Exchange Protocol Version 2
             (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296,
             October 2014, <http://www.rfc-editor.org/info/rfc7296>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <http://www.rfc-editor.org/info/rfc8174>.







Pauly, et al.                Standards Track                   [Page 16]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


15.2.  Informative References

  [IKE-over-TCP]
             Nir, Y., "A TCP transport for the Internet Key Exchange",
             Work in Progress, draft-ietf-ipsecme-ike-tcp-01,
             December 2012.

  [RFC1122]  Braden, R., Ed., "Requirements for Internet Hosts -
             Communication Layers", STD 3, RFC 1122,
             DOI 10.17487/RFC1122, October 1989,
             <http://www.rfc-editor.org/info/rfc1122>.

  [RFC2817]  Khare, R. and S. Lawrence, "Upgrading to TLS Within
             HTTP/1.1", RFC 2817, DOI 10.17487/RFC2817, May 2000,
             <http://www.rfc-editor.org/info/rfc2817>.

  [RFC3168]  Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
             of Explicit Congestion Notification (ECN) to IP",
             RFC 3168, DOI 10.17487/RFC3168, September 2001,
             <http://www.rfc-editor.org/info/rfc3168>.

  [RFC4555]  Eronen, P., "IKEv2 Mobility and Multihoming Protocol
             (MOBIKE)", RFC 4555, DOI 10.17487/RFC4555, June 2006,
             <http://www.rfc-editor.org/info/rfc4555>.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246,
             DOI 10.17487/RFC5246, August 2008,
             <http://www.rfc-editor.org/info/rfc5246>.

  [RFC6520]  Seggelmann, R., Tuexen, M., and M. Williams, "Transport
             Layer Security (TLS) and Datagram Transport Layer Security
             (DTLS) Heartbeat Extension", RFC 6520,
             DOI 10.17487/RFC6520, February 2012,
             <http://www.rfc-editor.org/info/rfc6520>.

  [RFC7383]  Smyslov, V., "Internet Key Exchange Protocol Version 2
             (IKEv2) Message Fragmentation", RFC 7383,
             DOI 10.17487/RFC7383, November 2014,
             <http://www.rfc-editor.org/info/rfc7383>.











Pauly, et al.                Standards Track                   [Page 17]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


Appendix A.  Using TCP Encapsulation with TLS

  This section provides recommendations on how to use TLS in addition
  to TCP encapsulation.

  When using TCP encapsulation, implementations may choose to use TLS
  [RFC5246] on the TCP connection to be able to traverse middleboxes,
  which may otherwise block the traffic.

  If a web proxy is applied to the ports used for the TCP connection
  and TLS is being used, the TCP Originator can send an HTTP CONNECT
  message to establish an SA through the proxy [RFC2817].

  The use of TLS should be configurable on the peers, and may be used
  as the default when using TCP encapsulation or may be used as a
  fallback when basic TCP encapsulation fails.  The TCP Responder may
  expect to read encapsulated IKE and ESP packets directly from the TCP
  connection, or it may expect to read them from a stream of TLS data
  packets.  The TCP Originator should be pre-configured to use TLS
  or not when communicating with a given port on the TCP Responder.

  When new TCP connections are re-established due to a broken
  connection, TLS must be renegotiated.  TLS session resumption is
  recommended to improve efficiency in this case.

  The security of the IKE session is entirely derived from the IKE
  negotiation and key establishment and not from the TLS session (which
  in this context is only used for encapsulation purposes); therefore,
  when TLS is used on the TCP connection, both the TCP Originator and
  the TCP Responder SHOULD allow the NULL cipher to be selected for
  performance reasons.

  Implementations should be aware that the use of TLS introduces
  another layer of overhead requiring more bytes to transmit a given
  IKE and IPsec packet.  For this reason, direct ESP, UDP
  encapsulation, or TCP encapsulation without TLS should be preferred
  in situations in which TLS is not required in order to traverse
  middleboxes.













Pauly, et al.                Standards Track                   [Page 18]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


Appendix B.  Example Exchanges of TCP Encapsulation with TLS

B.1.  Establishing an IKE Session

                  Client                              Server
                ----------                          ----------
    1)  --------------------  TCP Connection  -------------------
        (IP_I:Port_I  -> IP_R:Port_R)
        TcpSyn                    ---------->
                                  <----------          TcpSyn,Ack
        TcpAck                    ---------->

    2)  ---------------------  TLS Session  ---------------------
        ClientHello               ---------->
                                                      ServerHello
                                                     Certificate*
                                               ServerKeyExchange*
                                  <----------     ServerHelloDone
        ClientKeyExchange
        CertificateVerify*
        [ChangeCipherSpec]
        Finished                  ---------->
                                               [ChangeCipherSpec]
                                  <----------            Finished

    3)  ---------------------- Stream Prefix --------------------
        "IKETCP"                  ---------->
    4)  ----------------------- IKE Session ---------------------
        Length + Non-ESP Marker   ---------->
        IKE_SA_INIT
        HDR, SAi1, KEi, Ni,
        [N(NAT_DETECTION_*_IP)]
                                  <------ Length + Non-ESP Marker
                                                      IKE_SA_INIT
                                              HDR, SAr1, KEr, Nr,
                                          [N(NAT_DETECTION_*_IP)]
        Length + Non-ESP Marker   ---------->
        first IKE_AUTH
        HDR, SK {IDi, [CERTREQ]
        CP(CFG_REQUEST), IDr,
        SAi2, TSi, TSr, ...}
                                  <------ Length + Non-ESP Marker
                                                   first IKE_AUTH
                                      HDR, SK {IDr, [CERT], AUTH,
                                             EAP, SAr2, TSi, TSr}






Pauly, et al.                Standards Track                   [Page 19]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


        Length + Non-ESP Marker   ---------->
        IKE_AUTH + EAP
        repeat 1..N times
                                  <------ Length + Non-ESP Marker
                                                   IKE_AUTH + EAP
        Length + Non-ESP Marker   ---------->
        final IKE_AUTH
        HDR, SK {AUTH}
                                  <------ Length + Non-ESP Marker
                                                   final IKE_AUTH
                                    HDR, SK {AUTH, CP(CFG_REPLY),
                                               SA, TSi, TSr, ...}
        -------------- IKE and IPsec SAs Established ------------
        Length + ESP Frame        ---------->

                                Figure 5

  1.  The client establishes a TCP connection with the server on
      port 4500 or on an alternate pre-configured port that the server
      is listening on.

  2.  If configured to use TLS, the client initiates a TLS handshake.
      During the TLS handshake, the server SHOULD NOT request the
      client's certificate, since authentication is handled as part of
      IKE negotiation.

  3.  The client sends the stream prefix for TCP-encapsulated IKE
      (Section 4) traffic to signal the beginning of IKE negotiation.

  4.  The client and server establish an IKE connection.  This example
      shows EAP-based authentication, although any authentication type
      may be used.



















Pauly, et al.                Standards Track                   [Page 20]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


B.2.  Deleting an IKE Session

                  Client                              Server
                ----------                          ----------
    1)  ----------------------- IKE Session ---------------------
        Length + Non-ESP Marker   ---------->
        INFORMATIONAL
        HDR, SK {[N,] [D,]
               [CP,] ...}
                                  <------ Length + Non-ESP Marker
                                                    INFORMATIONAL
                                               HDR, SK {[N,] [D,]
                                                       [CP], ...}

    2)  ---------------------  TLS Session  ---------------------
        close_notify              ---------->
                                  <----------        close_notify
    3)  --------------------  TCP Connection  -------------------
        TcpFin                    ---------->
                                  <----------                 Ack
                                  <----------              TcpFin
        Ack                       ---------->
        --------------------  IKE SA Deleted  -------------------

                                Figure 6

  1.  The client and server exchange informational messages to notify
      IKE SA deletion.

  2.  The client and server negotiate TLS session deletion using TLS
      CLOSE_NOTIFY.

  3.  The TCP connection is torn down.

  The deletion of the IKE SA should lead to the disposal of the
  underlying TLS and TCP state.















Pauly, et al.                Standards Track                   [Page 21]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


B.3.  Re-establishing an IKE Session

                  Client                              Server
                ----------                          ----------
    1)  --------------------  TCP Connection  -------------------
        (IP_I:Port_I  -> IP_R:Port_R)
        TcpSyn                    ---------->
                                  <----------          TcpSyn,Ack
        TcpAck                    ---------->
    2)  ---------------------  TLS Session  ---------------------
        ClientHello               ---------->
                                  <----------         ServerHello
                                               [ChangeCipherSpec]
                                                         Finished
        [ChangeCipherSpec]        ---------->
        Finished
    3)  ---------------------- Stream Prefix --------------------
        "IKETCP"                  ---------->
    4)  <---------------------> IKE/ESP Flow <------------------>
        Length + ESP Frame        ---------->

                                Figure 7

  1.  If a previous TCP connection was broken (for example, due to a
      TCP Reset), the client is responsible for re-initiating the TCP
      connection.  The TCP Originator's address and port (IP_I and
      Port_I) may be different from the previous connection's address
      and port.

  2.  In the ClientHello TLS message, the client SHOULD send the
      session ID it received in the previous TLS handshake if
      available.  It is up to the server to perform either an
      abbreviated handshake or a full handshake based on the session ID
      match.

  3.  After TCP and TLS are complete, the client sends the stream
      prefix for TCP-encapsulated IKE traffic (Section 4).

  4.  The IKE and ESP packet flow can resume.  If MOBIKE is being used,
      the Initiator SHOULD send an UPDATE_SA_ADDRESSES message.











Pauly, et al.                Standards Track                   [Page 22]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


B.4.  Using MOBIKE between UDP and TCP Encapsulation

                    Client                              Server
                  ----------                          ----------
        (IP_I1:UDP500 -> IP_R:UDP500)
    1)  ----------------- IKE_SA_INIT Exchange -----------------
        (IP_I1:UDP4500 -> IP_R:UDP4500)
        Non-ESP Marker           ----------->
        Initial IKE_AUTH
        HDR, SK { IDi, CERT, AUTH,
        CP(CFG_REQUEST),
        SAi2, TSi, TSr,
        N(MOBIKE_SUPPORTED) }
                                 <-----------      Non-ESP Marker
                                                 Initial IKE_AUTH
                                       HDR, SK { IDr, CERT, AUTH,
                                             EAP, SAr2, TSi, TSr,
                                            N(MOBIKE_SUPPORTED) }
        <------------------ IKE SA Establishment --------------->

    2)  ------------ MOBIKE Attempt on New Network --------------
        (IP_I2:UDP4500 -> IP_R:UDP4500)
        Non-ESP Marker           ----------->
        INFORMATIONAL
        HDR, SK { N(UPDATE_SA_ADDRESSES),
        N(NAT_DETECTION_SOURCE_IP),
        N(NAT_DETECTION_DESTINATION_IP) }


    3)  --------------------  TCP Connection  -------------------
        (IP_I2:Port_I -> IP_R:Port_R)
        TcpSyn                   ----------->
                                 <-----------          TcpSyn,Ack
        TcpAck                   ----------->

    4)  ---------------------  TLS Session  ---------------------
        ClientHello              ----------->
                                                      ServerHello
                                                     Certificate*
                                               ServerKeyExchange*
                                 <-----------     ServerHelloDone
        ClientKeyExchange
        CertificateVerify*
        [ChangeCipherSpec]
        Finished                 ----------->
                                               [ChangeCipherSpec]
                                 <-----------            Finished




Pauly, et al.                Standards Track                   [Page 23]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


    5)  ---------------------- Stream Prefix --------------------
        "IKETCP"                  ---------->

    6)  ----------------------- IKE Session ---------------------
        Length + Non-ESP Marker  ----------->
        INFORMATIONAL (Same as step 2)
        HDR, SK { N(UPDATE_SA_ADDRESSES),
        N(NAT_DETECTION_SOURCE_IP),
        N(NAT_DETECTION_DESTINATION_IP) }

                                 <------- Length + Non-ESP Marker
                            HDR, SK { N(NAT_DETECTION_SOURCE_IP),
                                N(NAT_DETECTION_DESTINATION_IP) }
    7)  <----------------- IKE/ESP Data Flow ------------------->

                                Figure 8

  1.  During the IKE_SA_INIT exchange, the client and server exchange
      MOBIKE_SUPPORTED notify payloads to indicate support for MOBIKE.

  2.  The client changes its point of attachment to the network and
      receives a new IP address.  The client attempts to re-establish
      the IKE session using the UPDATE_SA_ADDRESSES notify payload, but
      the server does not respond because the network blocks UDP
      traffic.

  3.  The client brings up a TCP connection to the server in order to
      use TCP encapsulation.

  4.  The client initiates a TLS handshake with the server.

  5.  The client sends the stream prefix for TCP-encapsulated IKE
      traffic (Section 4).

  6.  The client sends the UPDATE_SA_ADDRESSES notify payload on the
      TCP-encapsulated connection.  Note that this IKE message is the
      same as the one sent over UDP in step 2; it should have the same
      message ID and contents.

  7.  The IKE and ESP packet flow can resume.











Pauly, et al.                Standards Track                   [Page 24]

RFC 8229       TCP Encapsulation of IKE and IPsec Packets    August 2017


Acknowledgments

  The authors would like to acknowledge the input and advice of Stuart
  Cheshire, Delziel Fernandes, Yoav Nir, Christoph Paasch, Yaron
  Sheffer, David Schinazi, Graham Bartlett, Byju Pularikkal, March Wu,
  Kingwel Xie, Valery Smyslov, Jun Hu, and Tero Kivinen.  Special
  thanks to Eric Kinnear for his implementation work.

Authors' Addresses

  Tommy Pauly
  Apple Inc.
  1 Infinite Loop
  Cupertino, California  95014
  United States of America

  Email: [email protected]


  Samy Touati
  Ericsson
  2755 Augustine
  Santa Clara, California  95054
  United States of America

  Email: [email protected]


  Ravi Mantha
  Cisco Systems
  SEZ, Embassy Tech Village
  Panathur, Bangalore  560 037
  India

  Email: [email protected]
















Pauly, et al.                Standards Track                   [Page 25]