Internet Engineering Task Force (IETF)                          W. Cheng
Request for Comments: 8184                                       L. Wang
Category: Informational                                            H. Li
ISSN: 2070-1721                                             China Mobile
                                                              S. Davari
                                                   Broadcom Corporation
                                                                J. Dong
                                                    Huawei Technologies
                                                              June 2017


                      Dual-Homing Protection for
      MPLS and the MPLS Transport Profile (MPLS-TP) Pseudowires

Abstract

  This document describes a framework and several scenarios for a
  pseudowire (PW) dual-homing local protection mechanism that avoids
  unnecessary switchovers and does not depend on whether a control
  plane is used.  A Dual-Node Interconnection (DNI) PW is used to carry
  traffic between the dual-homing Provider Edge (PE) nodes when a
  failure occurs in one of the Attachment Circuits (AC) or PWs.  This
  PW dual-homing local protection mechanism is complementary to
  existing PW protection mechanisms.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc8184.











Cheng, et al.                 Informational                     [Page 1]

RFC 8184                Dual-Homing PW Protection              June 2017


Copyright Notice

  Copyright (c) 2017 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents

  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
  2.  Reference Models of Dual-Homing Local Protection  . . . . . .   4
    2.1.  PE Architecture . . . . . . . . . . . . . . . . . . . . .   4
    2.2.  Dual-Homing Local Protection Reference Scenarios  . . . .   5
      2.2.1.  One-Side Dual-Homing Protection . . . . . . . . . . .   5
      2.2.2.  Two-Side Dual-Homing Protection . . . . . . . . . . .   6
  3.  Generic Dual-Homing PW Protection Mechanism . . . . . . . . .   8
  4.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   8
  5.  Security Considerations . . . . . . . . . . . . . . . . . . .   9
  6.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   9
    6.1.  Normative References  . . . . . . . . . . . . . . . . . .   9
    6.2.  Informative References  . . . . . . . . . . . . . . . . .   9
  Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .  10
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  11



















Cheng, et al.                 Informational                     [Page 2]

RFC 8184                Dual-Homing PW Protection              June 2017


1.  Introduction

  [RFC6372] and [RFC6378] describe the framework and mechanism of MPLS
  Transport Profile (MPLS-TP) linear protection, which can provide
  protection for the MPLS Label Switched Path (LSP) or pseudowire (PW)
  between the edge nodes.  This mechanism does not protect against
  failure of the Attachment Circuit (AC) or the Provider Edge (PE)
  node.  [RFC6718] and [RFC6870] describe the framework and mechanism
  for PW redundancy to provide protection against AC or PE node
  failure.  The PW redundancy mechanism is based on the signaling of
  the Label Distribution Protocol (LDP), which is applicable to PWs
  with a dynamic control plane.  [RFC8104] describes a fast local
  repair mechanism for PW egress endpoint failures, which is based on
  PW redundancy, upstream label assignment, and context-specific label
  switching.  The mechanism defined in [RFC8104] is only applicable to
  PWs with a dynamic control plane.

  There is a need to support a dual-homing local protection mechanism
  that avoids unnecessary switches of the AC or PW and can be used
  regardless of whether a control plane is used.  In some scenarios,
  such as mobile backhauling, the MPLS PWs are provisioned with dual-
  homing topology in which at least the Customer Edge (CE) node on one
  side is dual-homed to two PEs.  If some fault occurs in the primary
  AC, operators usually prefer to have the switchover only on the dual-
  homing PE side and keep the working pseudowires unchanged if
  possible.  This is to avoid massive PW switchover in the mobile
  backhaul network due to AC failure in the mobile core site; such
  massive PW switchover may in turn lead to congestion caused by
  migrating traffic away from the preferred paths of network planners.
  Similarly, as multiple PWs share the physical AC in the mobile core
  site, it is preferable to keep using the working AC when one working
  PW fails in the Packet Switched Network (PSN) to potentially avoid
  unnecessary switchover for other PWs.  To meet the above
  requirements, a fast dual-homing local PW protection mechanism is
  needed to protect against the failures of an AC, the PE node, and the
  PSN.

  This document describes the framework and several typical scenarios
  of PW dual-homing local protection.  A Dual-Node Interconnection
  (DNI) PW is used between the dual-homing PE nodes to carry traffic
  when a failure occurs in the AC or PW side.  In order for the dual-
  homing PE nodes to determine the forwarding state of AC, PW, and
  DNI-PW, necessary state exchange and coordination between the
  dual-homing PEs is needed.  The necessary mechanisms and protocol
  extensions are defined in [RFC8185].






Cheng, et al.                 Informational                     [Page 3]

RFC 8184                Dual-Homing PW Protection              June 2017


2.  Reference Models of Dual-Homing Local Protection

  This section shows the reference architecture of the dual-homing PW
  local protection and the usage of the architecture in different
  scenarios.

2.1.  PE Architecture

  Figure 1 shows the PE architecture for dual-homing local protection.
  This is based on the architecture in Figure 4a of [RFC3985].  In
  addition to the AC and the service PW between the local and remote
  PEs, a DNI-PW is used to connect the forwarders of the dual-homing
  PEs.  It can be used to forward traffic between the dual-homing PEs
  when a failure occurs in the AC or service PW side.  As [RFC3985]
  specifies: "any required switching functionality is the
  responsibility of a forwarder function".  In this case, the forwarder
  is responsible for switching the payloads between three entities: the
  AC, the service PW, and the DNI-PW.

           +----------------------------------------+
           |          Dual-Homing PE Device         |
           +----------------------------------------+
      AC   |                 |                      | Service PW
   <------>o    Forwarder    +       Service        X<===========>
           |                 |         PW           |
           +--------+--------+                      |
           |     DNI-PW      |                      |
           +--------X--------+----------------------+
                    ^
                    |  DNI-PW
                    |
                    V
           +--------X--------+----------------------+
           |     DNI-PW      |                      |
           +--------+--------+                      | Service PW
      AC   |                 |       Service        X<===========>
   <------>o    Forwarder    +         PW           |
           |                 |                      |
           +----------------------------------------+
           |          Dual-Homing PE Device         |
           +----------------------------------------+

          Figure 1: PE Architecture for Dual-Homing Protection








Cheng, et al.                 Informational                     [Page 4]

RFC 8184                Dual-Homing PW Protection              June 2017


2.2.  Dual-Homing Local Protection Reference Scenarios

2.2.1.  One-Side Dual-Homing Protection

  Figure 2 illustrates the network scenario of dual-homing PW local
  protection where only one of the CEs is dual-homed to two PE nodes.
  CE1 is dual-homed to PE1 and PE2, while CE2 is single-homed to PE3.
  A DNI-PW is established between the dual-homing PEs, which is used to
  bridge traffic when a failure occurs in the PSN or the AC side.  A
  dual-homing control mechanism enables the PEs and CE to determine
  which AC should be used to carry traffic between CE1 and the PSN.
  The necessary control mechanisms and protocol extensions are defined
  in [RFC8185].

  This scenario can protect against node failure of PE1 or PE2 or
  failure of one of the ACs between CE1 and the dual-homing PEs.  In
  addition, dual-homing PW protection can protect against failure
  occurring in the PSN that impacts the working PW; thus, it can be an
  alternative solution of PSN tunnel protection mechanisms.  This
  topology can be used in mobile backhauling application scenarios.
  For example, CE2 might be an equipment cell site such as a NodeB,
  while CE1 is the shared Radio Network Controller (RNC).  PE3
  functions as an access-side MPLS device, while PE1 and PE2 function
  as core-side MPLS devices.

          |<--------------- Emulated Service --------------->|
          |                                                  |
          |          |<------- Pseudowire  ------>|          |
          |          |                            |          |
          |          |    |<-- PSN Tunnels-->|    |          |
          |          V    V                  V    V          |
          V    AC1   +----+                  +----+          V
    +-----+    |     | PE1|                  |    |          +-----+
    |     |----------|........PW1.(working).......|          |     |
    |     |          |    |                  |    |          |     |
    |     |          +-+--+                  |    |     AC3  |     |
    |     |            |                     |    |     |    |     |
    | CE1 |     DNI-PW |                     |PE3 |----------| CE2 |
    |     |            |                     |    |          |     |
    |     |          +-+--+                  |    |          |     |
    |     |          |    |                  |    |          |     |
    |     |----------|......PW2.(protection)......|          |     |
    +-----+    |     | PE2|                  |    |          +-----+
               AC2   +----+                  +----+


              Figure 2: One-Side Dual-Homing PW Protection




Cheng, et al.                 Informational                     [Page 5]

RFC 8184                Dual-Homing PW Protection              June 2017


  Consider the example where in normal state AC1 from CE1 to PE1 is
  initially active and AC2 from CE1 to PE2 is initially standby.  PW1
  is configured as the working PW and PW2 is configured as the
  protection PW.

  When a failure occurs in AC1, then the state of AC2 changes to active
  based on the AC dual-homing control mechanism.  In order to keep the
  switchover local and continue using PW1 for traffic forwarding as
  preferred according to traffic planning, the forwarder on PE2 needs
  to connect AC2 to the DNI-PW, and the forwarder on PE1 needs to
  connect the DNI-PW to PW1.  In this way, the failure in AC1 will not
  impact the forwarding of the service PWs across the network.  After
  the switchover, traffic will go through the bidirectional path:
  CE1-(AC2)-PE2-(DNI-PW)-PE1-(PW1)-PE3-(AC3)-CE2.

  When a failure in the PSN affects the working PW (PW1), according to
  PW protection mechanisms [RFC6378], traffic is switched onto the
  protection PW (PW2) while the state of AC1 remains active.  Then, the
  forwarder on PE1 needs to connect AC1 to the DNI-PW, and the
  forwarder on PE2 needs to connect the DNI-PW to PW2.  In this way,
  the failure in the PSN will not impact the state of the ACs.  After
  the switchover, traffic will go through the bidirectional path:
  CE1-(AC1)-PE1-(DNI-PW)-PE2-(PW2)-PE3-(AC3)-CE2.

  When a failure occurs in the working PE (PE1), it is equivalent to a
  failure of the working AC, the working PW, and the DNI-PW.  The state
  of AC2 changes to active based on the AC dual-homing control
  mechanism.  In addition, according to the PW protection mechanism,
  traffic is switched on to the protection PW "PW2".  In this case, the
  forwarder on PE2 needs to connect AC2 to PW2.  After the switchover,
  traffic will go through the bidirectional path:
  CE1-(AC2)-PE2-(PW2)-PE3-(AC3)-CE2.

2.2.2.  Two-Side Dual-Homing Protection

  Figure 3 illustrates the network scenario of dual-homing PW
  protection where the CEs in both sides are dual-homed.  CE1 is dual-
  homed to PE1 and PE2, and CE2 is dual-homed to PE3 and PE4.  A dual-
  homing control mechanism enables the PEs and CEs to determine which
  AC should be used to carry traffic between the CE and the PSN.
  DNI-PWs are used between the dual-homing PEs on both sides.  One
  service PW is established between PE1 and PE3, and another service PW
  is established between PE2 and PE4.  The role of working and
  protection PWs can be determined by either configuration or existing
  signaling mechanisms.






Cheng, et al.                 Informational                     [Page 6]

RFC 8184                Dual-Homing PW Protection              June 2017


  This scenario can protect against node failure on one of the dual-
  homing PEs or failure on one of the ACs between the CEs and their
  dual-homing PEs.  Also, dual-homing PW protection can protect against
  the occurrence of failure in the PSN that impacts one of the PWs;
  thus, it can be used as an alternative solution of PSN tunnel
  protection mechanisms.  Note, this scenario is mainly used for
  services requiring high availability as it requires redundancy of the
  PEs and network utilization.  In this case, CE1 and CE2 can be
  regarded as service access points.

          |<---------------- Emulated Service -------------->|
          |                                                  |
          |          |<-------- Pseudowire ------>|          |
          |          |                            |          |
          |          |    |<-- PSN Tunnels-->|    |          |
          |          V    V                  V    V          |
          V    AC1   +----+                  +----+     AC3  V
    +-----+    |     | ...|...PW1.(working)..|... |     |    +-----+
    |     |----------| PE1|                  | PE3|----------|     |
    |     |          +----+                  +----+          |     |
    |     |            |                        |            |     |
    | CE1 |    DNI-PW1 |                        |  DNI-PW2   | CE2 |
    |     |            |                        |            |     |
    |     |          +----+                  +----+          |     |
    |     |          |    |                  |    |          |     |
    |     |----------| PE2|                  | PE4|--------- |     |
    +-----+    |     | ...|.PW2.(protection).|... |     |    +-----+
               AC2   +----+                  +----+     AC4

              Figure 3: Two-Side Dual-Homing PW Protection

  Consider the example where in normal state AC1 between CE1 and PE1 is
  initially active, AC2 between CE1 and PE2 is initially standby, AC3
  between CE2 and PE3 is initially active and AC4 from CE2 to PE4 is
  initially standby.  PW1 is configured as the working PW and PW2 is
  configured as the protection PW.

  When a failure occurs in AC1, the state of AC2 changes to active
  based on the AC dual-homing control mechanism.  In order to keep the
  switchover local and continue using PW1 for traffic forwarding, the
  forwarder on PE2 needs to connect AC2 to the DNI-PW1, and the
  forwarder on PE1 needs to connect DNI-PW1 with PW1.  In this way,
  failures in the AC side will not impact the forwarding of the service
  PWs across the network.  After the switchover, traffic will go
  through the bidirectional path:
  CE1-(AC2)-PE2-(DNI-PW1)-PE1-(PW1)-PE3-(AC3)-CE2.





Cheng, et al.                 Informational                     [Page 7]

RFC 8184                Dual-Homing PW Protection              June 2017


  When a failure occurs in the working PW (PW1), according to the PW
  protection mechanism [RFC6378], traffic needs to be switched onto the
  protection PW "PW2".  In order to keep the state of AC1 and AC3
  unchanged, the forwarder on PE1 needs to connect AC1 to DNI-PW1, and
  the forwarder on PE2 needs to connect DNI-PW1 to PW2.  On the other
  side, the forwarder of PE3 needs to connect AC3 to DNI-PW2, and the
  forwarder on PE4 needs to connect PW2 to DNI-PW2.  In this way, the
  state of the ACs will not be impacted by the failure in the PSN.
  After the switchover, traffic will go through the bidirectional path:
  CE1-(AC1)-PE1-(DNI-PW1)-PE2-(PW2)-PE4-(DNI-PW2)-PE3-(AC3)-CE2.

  When a failure occurs in the working PE (PE1), it is equivalent to
  the failures of the working AC, the working PW, and the DNI-PW.  The
  state of AC2 changes to active based on the AC dual-homing control
  mechanism.  In addition, according to the PW protection mechanism,
  traffic is switched on to the protection PW "PW2".  In this case, the
  forwarder on PE2 needs to connect AC2 to PW2, and the forwarder on
  PE4 needs to connect PW2 to DNI-PW2.  After the switchover, traffic
  will go through the bidirectional path:
  CE1-(AC2)-PE2-(PW2)-PE4-(DNI-PW2)-PE3-(AC3)-CE2.

3.  Generic Dual-Homing PW Protection Mechanism

  As shown in the above scenarios, with the described dual-homing PW
  protection, failures in the AC side will not impact the forwarding
  behavior of the PWs in the PSN, and vice-versa.

  In order for the dual-homing PEs to coordinate traffic forwarding
  during failures, synchronization of the status information of the
  involved entities and coordination of switchover between the dual-
  homing PEs are needed.  For PWs with a dynamic control plane, such
  synchronization and coordination information can be achieved with a
  dynamic protocol, such as that described in [RFC7275], possibly with
  some extensions.  For PWs that are manually configured without a
  control plane, a new mechanism is needed to exchange the status
  information and coordinate switchover between the dual-homing PEs,
  e.g., over an embedded PW control channel.  This is described in
  [RFC8185].

4.  IANA Considerations

  This document does not require any IANA action.









Cheng, et al.                 Informational                     [Page 8]

RFC 8184                Dual-Homing PW Protection              June 2017


5.  Security Considerations

  The scenarios defined in this document do not affect the security
  model as defined in [RFC3985].

  With the proposed protection mechanism, the disruption of a dual-
  homed AC, a component that is outside the core network, would have a
  reduced impact on the traffic flows in the core network.  This could
  also avoid unnecessary congestion in the core network.

  The security consideration of the DNI-PW is the same as for service
  PWs in the data plane [RFC3985].  Security considerations for the
  coordination/control mechanism will be addressed in the companion
  document, RFC 8185, which defines the mechanism.

6.  References

6.1.  Normative References

  [RFC3985]  Bryant, S., Ed. and P. Pate, Ed., "Pseudo Wire Emulation
             Edge-to-Edge (PWE3) Architecture", RFC 3985,
             DOI 10.17487/RFC3985, March 2005,
             <http://www.rfc-editor.org/info/rfc3985>.

  [RFC8185]  Cheng, W., Wang, L., Li, H., Dong, J., and A.
             D'Alessandro, "Dual-Homing Coordination for MPLS Transport
             Profile (MPLS-TP) Pseudowires Protection", RFC 8185,
             DOI 10.17487/RFC8185, June 2017.

6.2.  Informative References

  [RFC6372]  Sprecher, N., Ed. and A. Farrel, Ed., "MPLS Transport
             Profile (MPLS-TP) Survivability Framework", RFC 6372,
             DOI 10.17487/RFC6372, September 2011,
             <http://www.rfc-editor.org/info/rfc6372>.

  [RFC6378]  Weingarten, Y., Ed., Bryant, S., Osborne, E., Sprecher,
             N., and A. Fulignoli, Ed., "MPLS Transport Profile (MPLS-
             TP) Linear Protection", RFC 6378, DOI 10.17487/RFC6378,
             October 2011, <http://www.rfc-editor.org/info/rfc6378>.

  [RFC6718]  Muley, P., Aissaoui, M., and M. Bocci, "Pseudowire
             Redundancy", RFC 6718, DOI 10.17487/RFC6718, August 2012,
             <http://www.rfc-editor.org/info/rfc6718>.







Cheng, et al.                 Informational                     [Page 9]

RFC 8184                Dual-Homing PW Protection              June 2017


  [RFC6870]  Muley, P., Ed. and M. Aissaoui, Ed., "Pseudowire
             Preferential Forwarding Status Bit", RFC 6870,
             DOI 10.17487/RFC6870, February 2013,
             <http://www.rfc-editor.org/info/rfc6870>.

  [RFC7275]  Martini, L., Salam, S., Sajassi, A., Bocci, M.,
             Matsushima, S., and T. Nadeau, "Inter-Chassis
             Communication Protocol for Layer 2 Virtual Private Network
             (L2VPN) Provider Edge (PE) Redundancy", RFC 7275,
             DOI 10.17487/RFC7275, June 2014,
             <http://www.rfc-editor.org/info/rfc7275>.

  [RFC8104]  Shen, Y., Aggarwal, R., Henderickx, W., and Y. Jiang,
             "Pseudowire (PW) Endpoint Fast Failure Protection",
             RFC 8104, DOI 10.17487/RFC8104, March 2017,
             <http://www.rfc-editor.org/info/rfc8104>.

Contributors

  The following individuals substantially contributed to the content of
  this document:

  Kai Liu
  Huawei Technologies
  Email: [email protected]


  Alessandro D'Alessandro
  Telecom Italia
  Email: [email protected]





















Cheng, et al.                 Informational                    [Page 10]

RFC 8184                Dual-Homing PW Protection              June 2017


Authors' Addresses

  Weiqiang Cheng
  China Mobile
  No.32 Xuanwumen West Street
  Beijing  100053
  China

  Email: [email protected]


  Lei Wang
  China Mobile
  No.32 Xuanwumen West Street
  Beijing  100053
  China

  Email: [email protected]


  Han Li
  China Mobile
  No.32 Xuanwumen West Street
  Beijing  100053
  China

  Email: [email protected]


  Shahram Davari
  Broadcom Corporation
  3151 Zanker Road
  San Jose  95134-1933
  United States of America

  Email: [email protected]


  Jie Dong
  Huawei Technologies
  Huawei Campus, No. 156 Beiqing Rd.
  Beijing  100095
  China

  Email: [email protected]






Cheng, et al.                 Informational                    [Page 11]