Internet Engineering Task Force (IETF)                         G. Mirsky
Request for Comments: 8169                                     ZTE Corp.
Category: Standards Track                                     S. Ruffini
ISSN: 2070-1721                                                  E. Gray
                                                               Ericsson
                                                               J. Drake
                                                       Juniper Networks
                                                              S. Bryant
                                                                 Huawei
                                                          A. Vainshtein
                                                            ECI Telecom
                                                               May 2017


             Residence Time Measurement in MPLS Networks

Abstract

  This document specifies a new Generic Associated Channel (G-ACh) for
  Residence Time Measurement (RTM) and describes how it can be used by
  time synchronization protocols within an MPLS domain.

  Residence time is the variable part of the propagation delay of
  timing and synchronization messages; knowing this delay for each
  message allows for a more accurate determination of the delay to be
  taken into account when applying the value included in a Precision
  Time Protocol event message.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc8169.










Mirsky, et al.               Standards Track                    [Page 1]

RFC 8169               Residence Time Measurement               May 2017


Copyright Notice

  Copyright (c) 2017 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.





































Mirsky, et al.               Standards Track                    [Page 2]

RFC 8169               Residence Time Measurement               May 2017


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
    1.1.  Conventions Used in This Document . . . . . . . . . . . .   4
      1.1.1.  Terminology . . . . . . . . . . . . . . . . . . . . .   4
      1.1.2.  Requirements Language . . . . . . . . . . . . . . . .   5
  2.  Residence Time Measurement  . . . . . . . . . . . . . . . . .   5
    2.1.  One-Step Clock and Two-Step Clock Modes . . . . . . . . .   6
      2.1.1.  RTM with Two-Step Upstream PTP Clock  . . . . . . . .   7
      2.1.2.  Two-Step RTM with One-Step Upstream PTP Clock . . . .   8
  3.  G-ACh for Residence Time Measurement  . . . . . . . . . . . .   8
    3.1.  PTP Packet Sub-TLV  . . . . . . . . . . . . . . . . . . .  10
    3.2.  PTP Associated Value Field  . . . . . . . . . . . . . . .  11
  4.  Control-Plane Theory of Operation . . . . . . . . . . . . . .  11
    4.1.  RTM Capability  . . . . . . . . . . . . . . . . . . . . .  11
    4.2.  RTM Capability Sub-TLV  . . . . . . . . . . . . . . . . .  12
    4.3.  RTM Capability Advertisement in Routing Protocols . . . .  13
      4.3.1.  RTM Capability Advertisement in OSPFv2  . . . . . . .  13
      4.3.2.  RTM Capability Advertisement in OSPFv3  . . . . . . .  14
      4.3.3.  RTM Capability Advertisement in IS-IS . . . . . . . .  14
      4.3.4.  RTM Capability Advertisement in BGP-LS  . . . . . . .  14
    4.4.  RSVP-TE Control-Plane Operation to Support RTM  . . . . .  15
      4.4.1.  RTM_SET TLV . . . . . . . . . . . . . . . . . . . . .  16
  5.  Data-Plane Theory of Operation  . . . . . . . . . . . . . . .  20
  6.  Applicable PTP Scenarios  . . . . . . . . . . . . . . . . . .  21
  7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  22
    7.1.  New RTM G-ACh . . . . . . . . . . . . . . . . . . . . . .  22
    7.2.  New MPLS RTM TLV Registry . . . . . . . . . . . . . . . .  22
    7.3.  New MPLS RTM Sub-TLV Registry . . . . . . . . . . . . . .  23
    7.4.  RTM Capability Sub-TLV in OSPFv2  . . . . . . . . . . . .  23
    7.5.  RTM Capability Sub-TLV in IS-IS . . . . . . . . . . . . .  24
    7.6.  RTM Capability TLV in BGP-LS  . . . . . . . . . . . . . .  24
    7.7.  RTM_SET Sub-object RSVP Type and Sub-TLVs . . . . . . . .  25
    7.8.  RTM_SET Attribute Flag  . . . . . . . . . . . . . . . . .  26
    7.9.  New Error Codes . . . . . . . . . . . . . . . . . . . . .  26
  8.  Security Considerations . . . . . . . . . . . . . . . . . . .  26
  9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  27
    9.1.  Normative References  . . . . . . . . . . . . . . . . . .  27
    9.2.  Informative References  . . . . . . . . . . . . . . . . .  28
  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  29
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  30










Mirsky, et al.               Standards Track                    [Page 3]

RFC 8169               Residence Time Measurement               May 2017


1.  Introduction

  Time synchronization protocols, e.g., the Network Time Protocol
  version 4 (NTPv4) [RFC5905] and the Precision Time Protocol version 2
  (PTPv2) [IEEE.1588], define timing messages that can be used to
  synchronize clocks across a network domain.  Measurement of the
  cumulative time that one of these timing messages spends transiting
  the nodes on the path from ingress node to egress node is termed
  "residence time" and is used to improve the accuracy of clock
  synchronization.  Residence time is the sum of the difference between
  the time of receipt at an ingress interface and the time of
  transmission from an egress interface for each node along the network
  path from an ingress node to an egress node.  This document defines a
  new Generic Associated Channel (G-ACh) value and an associated
  Residence Time Measurement (RTM) message that can be used in a
  Multiprotocol Label Switching (MPLS) network to measure residence
  time over a Label Switched Path (LSP).

  This document describes RTM over an LSP signaled using RSVP-TE
  [RFC3209].  Using RSVP-TE, the LSP's path can be either explicitly
  specified or determined during signaling.  Although it is possible to
  use RTM over an LSP instantiated using the Label Distribution
  Protocol [RFC5036], that is outside the scope of this document.

  Comparison with alternative proposed solutions such as
  [TIMING-OVER-MPLS] is outside the scope of this document.

1.1.  Conventions Used in This Document

1.1.1.  Terminology

  MPLS:   Multiprotocol Label Switching

  ACH:    Associated Channel Header

  TTL:    Time to Live

  G-ACh:  Generic Associated Channel

  GAL:    Generic Associated Channel Label

  NTP:    Network Time Protocol

  ppm:    parts per million

  PTP:    Precision Time Protocol

  BC:     boundary clock



Mirsky, et al.               Standards Track                    [Page 4]

RFC 8169               Residence Time Measurement               May 2017


  LSP:    Label Switched Path

  OAM:    Operations, Administration, and Maintenance

  RRO:    Record Route Object

  RTM:    Residence Time Measurement

  IGP:    Internal Gateway Protocol

  BGP-LS: Border Gateway Protocol - Link State

1.1.2.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.


2.  Residence Time Measurement

  "Packet Loss and Delay Measurement for MPLS Networks" [RFC6374] can
  be used to measure one-way or two-way end-to-end propagation delay
  over an LSP or a pseudowire (PW).  But these measurements are
  insufficient for use in some applications, for example, time
  synchronization across a network as defined in the PTP.  In PTPv2
  [IEEE.1588], the residence time is accumulated in the correctionField
  of the PTP event message, which is defined in [IEEE.1588] and
  referred to as using a one-step clock, or in the associated follow-up
  message (or Delay_Resp message associated with the Delay_Req
  message), which is referred to as using a two-step clock (see the
  detailed discussion in Section 2.1).

  IEEE 1588 uses this residence time to correct for the transit times
  of nodes on an LSP, effectively making the transit nodes transparent.

  This document proposes a mechanism that can be used as one type of
  on-path support for a clock synchronization protocol or can be used
  to perform one-way measurement of residence time.  The proposed
  mechanism accumulates residence time from all nodes that support this
  extension along the path of a particular LSP in the Scratch Pad field
  of an RTM message (Figure 1).  This value can then be used by the
  egress node to update, for example, the correctionField of the PTP
  event packet carried within the RTM message prior to performing its
  PTP processing.




Mirsky, et al.               Standards Track                    [Page 5]

RFC 8169               Residence Time Measurement               May 2017


2.1.  One-Step Clock and Two-Step Clock Modes

  One-step mode refers to the mode of operation where an egress
  interface updates the correctionField value of an original event
  message.  Two-step mode refers to the mode of operation where this
  update is made in a subsequent follow-up message.

  Processing of the follow-up message, if present, requires the
  downstream endpoint to wait for the arrival of the follow-up message
  in order to combine correctionField values from both the original
  (event) message and the subsequent (follow-up) message.  In a similar
  fashion, each two-step node needs to wait for the related follow-up
  message, if there is one, in order to update that follow-up message
  (as opposed to creating a new one).  Hence, the first node that uses
  two-step mode MUST do two things:

  1.  Mark the original event message to indicate that a follow-up
      message will be forthcoming.  This is necessary in order to

      *  Let any subsequent two-step node know that there is already a
         follow-up message, and

      *  Let the endpoint know to wait for a follow-up message.

  2.  Create a follow-up message in which to put the RTM determined as
      an initial correctionField value.

  IEEE 1588v2 [IEEE.1588] defines this behavior for PTP messages.

  Thus, for example, with reference to the PTP protocol, the PTPType
  field identifies whether the message is a Sync message, Follow_up
  message, Delay_Req message, or Delay_Resp message.  The 10-octet-long
  Port ID field contains the identity of the source port [IEEE.1588],
  that is, the specific PTP port of the boundary clock (BC) connected
  to the MPLS network.  The Sequence ID is the sequence ID of the PTP
  message carried in the Value field of the message.

  PTP messages also include a bit that indicates whether or not a
  follow-up message will be coming.  This bit MAY be set by a two-step
  mode PTP device.  The value MUST NOT be unset until the original and
  follow-up messages are combined by an endpoint (such as a BC).

  For compatibility with PTP, RTM (when used for PTP packets) must
  behave in a similar fashion.  It should be noted that the handling of
  Sync event messages and of Delay_Req/Delay_Resp event messages that
  cross a two-step RTM node is different.  The following outlines the
  handling of a PTP Sync event message by the two-step RTM node.  The
  details of handling Delay_Resp/Delay_Req PTP event messages by the



Mirsky, et al.               Standards Track                    [Page 6]

RFC 8169               Residence Time Measurement               May 2017


  two-step RTM node are discussed in Section 2.1.1.  As a summary, a
  two-step RTM-capable egress interface will need to examine the S bit
  in the Flags field of the PTP sub-TLV (for RTM messages that indicate
  they are for PTP), and -- if it is clear (set to zero) -- it MUST set
  the S bit and create a follow-up PTP Type RTM message.  If the S bit
  is already set, then the RTM-capable node MUST wait for the RTM
  message with the PTP type of follow-up and matching originator and
  sequence number to make the corresponding residence time update to
  the Scratch Pad field.  The wait period MUST be reasonably bounded.

  Thus, an RTM packet, containing residence time information relating
  to an earlier packet, also contains information identifying that
  earlier packet.

  In practice, an RTM node operating in two-step mode behaves like a
  two-step transparent clock.

  A one-step-capable RTM node MAY elect to operate in either one-step
  mode (by making an update to the Scratch Pad field of the RTM message
  containing the PTP event message) or two-step mode (by making an
  update to the Scratch Pad of a follow-up message when presence of a
  follow-up is indicated), but it MUST NOT do both.

  Two main subcases identified for an RTM node operating as a two-step
  clock are described in the following sub-sections.

2.1.1.  RTM with Two-Step Upstream PTP Clock

  If any of the previous RTM-capable nodes or the previous PTP clock
  (e.g., the BC connected to the first node) is a two-step clock and if
  the local RTM-capable node is also operating a two-tep clock, the
  residence time is added to the RTM packet that has been created to
  include the second PTP packet (i.e., the follow-up message in the
  downstream direction).  This RTM packet carries the related
  accumulated residence time, the appropriate values of the Sequence ID
  and Port ID (the same identifiers carried in the original packet),
  and the two-step flag set to 1.

  Note that the fact that an upstream RTM-capable node operating in
  two-step mode has created a follow-up message does not require any
  subsequent RTM-capable node to also operate in two-step mode, as long
  as that RTM-capable node forwards the follow-up message on the same
  LSP on which it forwards the corresponding previous message.

  A one-step-capable RTM node MAY elect to update the RTM follow-up
  message as if it were operating in two-step mode; however, it MUST
  NOT update both messages.




Mirsky, et al.               Standards Track                    [Page 7]

RFC 8169               Residence Time Measurement               May 2017


  A PTP Sync packet is carried in the RTM packet in order to indicate
  to the RTM node that RTM must be performed on that specific packet.

  To handle the residence time of the Delay_Req message in the upstream
  direction, an RTM packet must be created to carry the residence time
  in the associated downstream Delay_Resp message.

  The last RTM node of the MPLS network, in addition to updating the
  correctionField of the associated PTP packet, must also react
  properly to the two-step flag of the PTP packets.

2.1.2.  Two-Step RTM with One-Step Upstream PTP Clock

  When the PTP network connected to the MPLS operates in one-step clock
  mode and an RTM node operates in two-step mode, the follow-up RTM
  packet must be created by the RTM node itself.  The RTM packet
  carrying the PTP event packet needs now to indicate that a follow-up
  message will be coming.

  The egress RTM-capable node of the LSP will remove RTM encapsulation
  and, in case of two-step clock mode being indicated, will generate
  PTP messages to include the follow-up correction as appropriate
  (according to [IEEE.1588]).  In this case, the common header of the
  PTP packet carrying the synchronization message would have to be
  modified by setting the twoStepFlag field indicating that there is
  now a follow-up message associated to the current message.

3.  G-ACh for Residence Time Measurement

  [RFC5586] and [RFC6423] define the G-ACh to extend the applicability
  of the Pseudowire Associated Channel Header (ACH) [RFC5085] to LSPs.
  G-ACh provides a mechanism to transport OAM and other control
  messages over an LSP.  Processing of these messages by selected
  transit nodes is controlled by the use of the Time-to-Live (TTL)
  value in the MPLS header of these messages.

  The message format for RTM is presented in Figure 1.














Mirsky, et al.               Standards Track                    [Page 8]

RFC 8169               Residence Time Measurement               May 2017


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0 0 0 1|Version|   Reserved    |           RTM G-ACh           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                        Scratch Pad                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            Type               |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Value (optional)                        |
   ~                                                               ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    Figure 1: RTM G-ACh Message Format for Residence Time Measurement

  o  The first four octets are defined as a G-ACh header in [RFC5586].

  o  The Version field is set to 0, as defined in [RFC4385].

  o  The Reserved field MUST be set to 0 on transmit and ignored on
     receipt.

  o  The RTM G-ACh field (value 0x000F; see Section 7.1) identifies the
     packet as such.

  o  The Scratch Pad field is 8 octets in length.  It is used to
     accumulate the residence time spent in each RTM-capable node
     transited by the packet on its path from ingress node to egress
     node.  The first RTM-capable node MUST initialize the Scratch Pad
     field with its RTM.  Its format is a 64-bit signed integer, and it
     indicates the value of the residence time measured in nanoseconds
     and multiplied by 2^16.  Note that depending on whether the timing
     procedure is a one-step or two-step operation (Section 2.1), the
     residence time is either for the timing packet carried in the
     Value field of this RTM message or for an associated timing packet
     carried in the Value field of another RTM message.

  o  The Type field identifies the type and encapsulation of a timing
     packet carried in the Value field, e.g., NTP [RFC5905] or PTP
     [IEEE.1588].  Per this document, IANA has created a sub-registry
     called the "MPLS RTM TLV Registry" in the "Generic Associated
     Channel (G-ACh) Parameters" registry (see Section 7.2).

  o  The Length field contains the length, in octets, of any Value
     field defined for the Type given in the Type field.




Mirsky, et al.               Standards Track                    [Page 9]

RFC 8169               Residence Time Measurement               May 2017


  o  The TLV MUST be included in the RTM message, even if the length of
     the Value field is zero.

3.1.  PTP Packet Sub-TLV

  Figure 2 presents the format of a PTP sub-TLV that MUST be included
  in the Value field of an RTM message preceding the carried timing
  packet when the timing packet is PTP.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             Type              |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Flags                         |PTPType|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                            Port ID                            |
   |                                                               |
   |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                               |           Sequence ID         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 2: PTP Sub-TLV Format

  where the Flags field has the following format:

    0                   1                   2
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |S|                      Reserved                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 3: Flags Field Format of PTP Packet Sub-TLV

  o  The Type field identifies the PTP packet sub-TLV and is set to 1
     according to Section 7.3.

  o  The Length field of the PTP sub-TLV contains the number of octets
     of the Value part of the TLV and MUST be 20.

  o  The Flags field currently defines one bit, the S bit, that defines
     whether the current message has been processed by a two-step node,
     where the flag is cleared if the message has been handled
     exclusively by one-step nodes and there is no follow-up message
     and is set if there has been at least one two-step node and a
     follow-up message is forthcoming.





Mirsky, et al.               Standards Track                   [Page 10]

RFC 8169               Residence Time Measurement               May 2017


  o  The PTPType field indicates the type of PTP packet to which this
     PTP sub-TLV applies.  PTPType is the messageType field of a PTPv2
     packet with possible values defined in Table 19 of [IEEE.1588].

  o  The 10-octet-long Port ID field contains the identity of the
     source port.

  o  The Sequence ID is the sequence ID of the PTP message to which
     this PTP sub-TLV applies.

  A tuple of PTPType, Port ID, and Sequence ID uniquely identifies the
  PTP timing message included in an RTM message and is used in two-step
  RTM mode; see Section 2.1.1.

3.2.  PTP Associated Value Field

  The Value field (see Figure 1) -- in addition to the PTP sub-TLV --
  MAY carry a packet of the PTP Time synchronization protocol (as was
  identified by the Type field).  It is important to note that the
  timing message packet may be authenticated or encrypted and carried
  over this LSP unchanged (and inaccessible to intermediate RTM capable
  LSRs) while the residence time is accumulated in the Scratch Pad
  field.

  The LSP ingress RTM-capable LSR populates the identifying tuple
  information of the PTP sub-TLV (see section 3.1) prior to including
  the (possibly authenticated/encrypted) PTP message packet after the
  PTP sub-TLV in the Value field of the RTM message for an RTM message
  of the PTP Type (Type 1; see Section 7.3).

4.  Control-Plane Theory of Operation

  The operation of RTM depends upon TTL expiry to deliver an RTM packet
  from one RTM-capable interface to the next along the path from
  ingress node to egress node.  This means that a node with RTM-capable
  interfaces MUST be able to compute a TTL, which will cause the expiry
  of an RTM packet at the next node with RTM-capable interfaces.

4.1.  RTM Capability

  Note that the RTM capability of a node is with respect to the pair of
  interfaces that will be used to forward an RTM packet.  In general,
  the ingress interface of this pair must be able to capture the
  arrival time of the packet and encode it in some way such that this
  information will be available to the egress interface of a node.






Mirsky, et al.               Standards Track                   [Page 11]

RFC 8169               Residence Time Measurement               May 2017


  The supported mode (one-step or two-step) of any pair of interfaces
  is determined by the capability of the egress interface.  For both
  modes, the egress interface implementation MUST be able to determine
  the precise departure time of the same packet and determine from
  this, and the arrival time information from the corresponding ingress
  interface, the difference representing the residence time for the
  packet.

  An interface with the ability to do this and update the associated
  Scratch Pad in real time (i.e., while the packet is being forwarded)
  is said to be one-step capable.

  Hence, while both ingress and egress interfaces are required to
  support RTM for the pair to be RTM capable, it is the egress
  interface that determines whether or not the node is one-step or two-
  step capable with respect to the interface pair.

  The RTM capability used in the sub-TLV shown in Figures 4 and 5 is
  thus a non-routing-related capability associated with the interface
  being advertised based on its egress capability.  The ability of any
  pair of interfaces on a node that includes this egress interface to
  support any mode of RTM depends on the ability of the ingress
  interface of a node to record packet arrival time and convey it to
  the egress interface on the node.

  When a node uses an IGP to support the RTM capability advertisement,
  the IGP sub-TLV MUST reflect the RTM capability (one-step or two-
  step) associated with the advertised interface.  Changes of RTM
  capability are unlikely to be frequent and would result, for example,
  from the operator's decision to include or exclude a particular port
  from RTM processing or switch between RTM modes.

4.2.  RTM Capability Sub-TLV

  [RFC4202] explains that the Interface Switching Capability Descriptor
  describes the switching capability of an interface.  For
  bidirectional links, the switching capabilities of an interface are
  defined to be the same in either direction, that is, for data
  entering the node through that interface and for data leaving the
  node through that interface.  That principle SHOULD be applied when a
  node advertises RTM capability.

  A node that supports RTM MUST be able to act in two-step mode and MAY
  also support one-step RTM mode.  A detailed discussion of one-step
  and two-step RTM modes is contained in Section 2.1.






Mirsky, et al.               Standards Track                   [Page 12]

RFC 8169               Residence Time Measurement               May 2017


4.3.  RTM Capability Advertisement in Routing Protocols

4.3.1.  RTM Capability Advertisement in OSPFv2

  The format for the RTM Capability sub-TLV in OSPF is presented in
  Figure 4.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Type             |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | RTM |  Value       ...
   +-+-+-+-+-+-+-+-+-+- ...

               Figure 4: RTM Capability Sub-TLV in OSPFv2

  o  Type value (5) has been assigned by IANA in the "OSPFv2 Extended
     Link TLV Sub-TLVs" registry (see Section 7.4).

  o  Length value equals the number of octets of the Value field.

  o  Value contains a variable number of bitmap fields so that the
     overall number of bits in the fields equals Length * 8.

  o  Bits are defined/sent starting with Bit 0.  Additional bitmap
     field definitions that may be defined in the future SHOULD be
     assigned in ascending bit order so as to minimize the number of
     bits that will need to be transmitted.

  o  Undefined bits MUST be transmitted as 0 and MUST be ignored on
     receipt.

  o  Bits that are NOT transmitted MUST be treated as if they are set
     to 0 on receipt.

  o  RTM (capability) is a 3-bit-long bitmap field with values defined
     as follows:

     *  0b001 - one-step RTM supported

     *  0b010 - two-step RTM supported

     *  0b100 - reserved

  The capability to support RTM on a particular link (interface) is
  advertised in the OSPFv2 Extended Link Opaque LSA as described in
  Section 3 of [RFC7684] via the RTM Capability sub-TLV.



Mirsky, et al.               Standards Track                   [Page 13]

RFC 8169               Residence Time Measurement               May 2017


4.3.2.  RTM Capability Advertisement in OSPFv3

  The capability to support RTM on a particular link (interface) can be
  advertised in OSPFv3 using LSA extensions as described in
  [OSPFV3-EXTENDED-LSA].  The sub-TLV SHOULD use the same format as in
  Section 4.3.1.  The type allocation and full details of exact use of
  OSPFv3 LSA extensions is for further study.

4.3.3.  RTM Capability Advertisement in IS-IS

  The capability to support RTM on a particular link (interface) is
  advertised in a new sub-TLV that may be included in TLVs advertising
  Intermediate System (IS) Reachability on a specific link (TLVs 22,
  23, 222, and 223).

  The format for the RTM Capability sub-TLV is presented in Figure 5.

    0                   1                   2
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...
   |      Type     |     Length    | RTM |   Value      ...
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+...

                    Figure 5: RTM Capability Sub-TLV

  o  Type value (40) has been assigned by IANA in the "Sub-TLVs for
     TLVs 22, 23, 141, 222, and 223" registry for IS-IS (see
     Section 7.5).

  o  Definitions, rules of handling, and values for the Length and
     Value fields are as defined in Section 4.3.1.

  o  RTM (capability) is a 3-bit-long bitmap field with values defined
     in Section 4.3.1.

4.3.4.  RTM Capability Advertisement in BGP-LS

  The format for the RTM Capability TLV is presented in Figure 4.

  Type value (1105) has been assigned by IANA in the "BGP-LS Node
  Descriptor, Link Descriptor, Prefix Descriptor, and Attribute TLVs"
  sub-registry (see Section 7.6).

  Definitions, rules of handling, and values for fields Length, Value,
  and RTM are as defined in Section 4.3.1.






Mirsky, et al.               Standards Track                   [Page 14]

RFC 8169               Residence Time Measurement               May 2017


  The RTM capability will be advertised in BGP-LS as a Link Attribute
  TLV associated with the Link NLRI as described in Section 3.3.2 of
  [RFC7752].

4.4.  RSVP-TE Control-Plane Operation to Support RTM

  Throughout this document, we refer to a node as an RTM-capable node
  when at least one of its interfaces is RTM capable.  Figure 6
  provides an example of roles a node may have with respect to RTM
  capability:

   -----     -----     -----     -----     -----     -----     -----
   | A |-----| B |-----| C |-----| D |-----| E |-----| F |-----| G |
   -----     -----     -----     -----     -----     -----     -----

                       Figure 6: RTM-Capable Roles

  o  A is a boundary clock with its egress port in Master state.  Node
     A transmits IP-encapsulated timing packets whose destination IP
     address is G.

  o  B is the ingress Label Edge Router (LER) for the MPLS LSP and is
     the first RTM-capable node.  It creates RTM packets, and in each
     it places a timing packet, possibly encrypted, in the Value field
     and initializes the Scratch Pad field with its RTM.

  o  C is a transit node that is not RTM capable.  It forwards RTM
     packets without modification.

  o  D is an RTM-capable transit node.  It updates the Scratch Pad
     field of the RTM packet without updating the timing packet.

  o  E is a transit node that is not RTM capable.  It forwards RTM
     packets without modification.

  o  F is the egress LER and the last RTM-capable node.  It removes the
     RTM ACH encapsulation and processes the timing packet carried in
     the Value field using the value in the Scratch Pad field.  In
     particular, the value in the Scratch Pad field of the RTM ACH is
     used in updating the Correction field of the PTP message(s).  The
     LER should also include its own residence time before creating the
     outgoing PTP packets.  The details of this process depend on
     whether or not the node F is itself operating as a one-step or
     two-step clock.

  o  G is a boundary clock with its ingress port in Slave state.  Node
     G receives PTP messages.




Mirsky, et al.               Standards Track                   [Page 15]

RFC 8169               Residence Time Measurement               May 2017


  An ingress node that is configured to perform RTM along a path
  through an MPLS network to an egress node MUST verify that the
  selected egress node has an interface that supports RTM via the
  egress node's advertisement of the RTM Capability sub-TLV, as covered
  in Section 4.3.  In the Path message that the ingress node uses to
  instantiate the LSP to that egress node, it places an LSP_ATTRIBUTES
  object [RFC5420] with an RTM_SET Attribute Flag set, as described in
  Section 7.8, which indicates to the egress node that RTM is requested
  for this LSP.  The RTM_SET Attribute Flag SHOULD NOT be set in the
  LSP_REQUIRED_ATTRIBUTES object [RFC5420], unless it is known that all
  nodes recognize the RTM attribute (but need not necessarily implement
  it), because a node that does not recognize the RTM_SET Attribute
  Flag would reject the Path message.

  If an egress node receives a Path message with the RTM_SET Attribute
  Flag in an LSP_ATTRIBUTES object, the egress node MUST include an
  initialized RRO [RFC3209] and LSP_ATTRIBUTES object where the RTM_SET
  Attribute Flag is set and the RTM_SET TLV (Section 4.4.1) is
  initialized.  When the Resv message is received by the ingress node,
  the RTM_SET TLV will contain an ordered list, from egress node to
  ingress node, of the RTM-capable nodes along the LSP's path.

  After the ingress node receives the Resv, it MAY begin sending RTM
  packets on the LSP's path.  Each RTM packet has its Scratch Pad field
  initialized and its TTL set to expire on the closest downstream RTM-
  capable node.

  It should be noted that RTM can also be used for LSPs instantiated
  using [RFC3209] in an environment in which all interfaces in an IGP
  support RTM.  In this case, the RTM_SET TLV and LSP_ATTRIBUTES object
  MAY be omitted.

4.4.1.  RTM_SET TLV

  RTM-capable interfaces can be recorded via the RTM_SET TLV.  The
  RTM_SET sub-object format is a generic TLV format, presented in
  Figure 7.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |     Length    |I|         Reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                             Value                             ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 7: RTM_SET TLV Format



Mirsky, et al.               Standards Track                   [Page 16]

RFC 8169               Residence Time Measurement               May 2017


  Type value (5) has been assigned by IANA in the RSVP-TE "Attributes
  TLV Space" sub-registry (see Section 7.7).

  The Length contains the total length of the sub-object in bytes,
  including the Type and Length fields.

  The I bit indicates whether the downstream RTM-capable node along the
  LSP is present in the RRO.

  The Reserved field must be zeroed on initiation and ignored on
  receipt.

  The content of an RTM_SET TLV is a series of variable-length
  sub-TLVs.  Only a single RTM_SET can be present in a given
  LSP_ATTRIBUTES object.  The sub-TLVs are defined in Section 4.4.1.1.

  The following processing procedures apply to every RTM-capable node
  along the LSP.  In this paragraph, an RTM-capable node is referred to
  as a node for sake of brevity.  Each node MUST examine the Resv
  message for whether the RTM_SET Attribute Flag in the LSP_ATTRIBUTES
  object is set.  If the RTM_SET flag is set, the node MUST inspect the
  LSP_ATTRIBUTES object for presence of an RTM_SET TLV.  If more than
  one is found, then the LSP setup MUST fail with generation of the
  ResvErr message with Error Code "Duplicate TLV" (Section 7.9) and
  Error Value that contains the Type value in its 8 least significant
  bits.  If no RTM_SET TLV is found, then the LSP setup MUST fail with
  generation of the ResvErr message with Error Code "RTM_SET TLV
  Absent" (Section 7.9).  If one RTM_SET TLV has been found, the node
  will use the ID of the first node in the RTM_SET in conjunction with
  the RRO to compute the hop count to its downstream node with a
  reachable RTM-capable interface.  If the node cannot find a matching
  ID in the RRO, then it MUST try to use the ID of the next node in the
  RTM_SET until it finds the match or reaches the end of the RTM_SET
  TLV.  If a match has been found, the calculated value is used by the
  node as the TTL value in the outgoing label to reach the next RTM-
  capable node on the LSP.  Otherwise, the TTL value MUST be set to
  255.  The node MUST add an RTM_SET sub-TLV with the same address it
  used in the RRO sub-object at the beginning of the RTM_SET TLV in the
  associated outgoing Resv message before forwarding it upstream.  If
  the calculated TTL value has been set to 255, as described above,
  then the I flag in the node's RTM_SET TLV MUST be set to 1 before the
  Resv message is forwarded upstream.  Otherwise, the I flag MUST be
  cleared (0).

  The ingress node MAY inspect the I bit received in each RTM_SET TLV
  contained in the LSP_ATTRIBUTES object of a received Resv message.
  The presence of the RTM_SET TLV with the I bit set to 1 indicates
  that some RTM nodes along the LSP could not be included in the



Mirsky, et al.               Standards Track                   [Page 17]

RFC 8169               Residence Time Measurement               May 2017


  calculation of the residence time.  An ingress node MAY choose to
  resignal the LSP to include all RTM nodes or simply notify the user
  via a management interface.

  There are scenarios when some information is removed from an RRO due
  to policy processing (e.g., as may happen between providers) or the
  RRO is limited due to size constraints.  Such changes affect the core
  assumption of this method and the processing of RTM packets.  RTM
  SHOULD NOT be used if it is not guaranteed that the RRO contains
  complete information.

4.4.1.1.  RTM_SET Sub-TLVs

  The RTM Set sub-object contains an ordered list, from egress node to
  ingress node, of the RTM-capable nodes along the LSP's path.

  The contents of an RTM_SET sub-object are a series of variable-length
  sub-TLVs.  Each sub-TLV has its own Length field.  The Length
  contains the total length of the sub-TLV in bytes, including the Type
  and Length fields.  The Length MUST always be a multiple of 4, and at
  least 8 (smallest IPv4 sub-object).

  Sub-TLVs are organized as a last-in-first-out stack.  The first-out
  sub-TLV relative to the beginning of RTM_SET TLV is considered the
  top.  The last-out sub-TLV is considered the bottom.  When a new
  sub-TLV is added, it is always added to the top.

  The RTM_SET TLV is intended to include the subset of the RRO sub-TLVs
  that represent those egress interfaces on the LSP that are RTM
  capable.  After a node chooses an egress interface to use in the RRO
  sub-TLV, that same egress interface, if RTM capable, SHOULD be placed
  into the RTM_SET TLV using one of the following: IPv4 sub-TLV, IPv6
  sub-TLV, or Unnumbered Interface sub-TLV.  The address family chosen
  SHOULD match that of the RESV message and that used in the RRO; the
  unnumbered interface sub-TLV is used when the egress interface has no
  assigned IP address.  A node MUST NOT place more sub-TLVs in the
  RTM_SET TLV than the number of RTM-capable egress interfaces the LSP
  traverses that are under that node's control.  Only a single RTM_SET
  sub-TLV with the given Value field MUST be present in the RTM_SET
  TLV.  If more than one sub-TLV with the same value (e.g., a
  duplicated address) is found, the LSP setup MUST fail with the
  generation of a ResvErr message with the Error Code "Duplicate
  sub-TLV" (Section 7.9) and the Error Value containing a 16-bit value
  composed of (Type of TLV, Type of sub-TLV).

  Three kinds of sub-TLVs for RTM_SET are currently defined.





Mirsky, et al.               Standards Track                   [Page 18]

RFC 8169               Residence Time Measurement               May 2017


4.4.1.1.1.  IPv4 Sub-TLV

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Type     |     Length    |            Reserved             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       IPv4 address                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 8: IPv4 Sub-TLV Format

  Type
     0x01 IPv4 address.

  Length
     The Length contains the total length of the sub-TLV in bytes,
     including the Type and Length fields.  The Length is always 8.

  IPv4 address
     A 32-bit unicast host address.

  Reserved
     Zeroed on initiation and ignored on receipt.

4.4.1.1.2.  IPv6 Sub-TLV

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Type     |     Length    |            Reserved             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                         IPv6 address                          |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 9: IPv6 Sub-TLV Format

  Type
     0x02 IPv6 address.

  Length
     The Length contains the total length of the sub-TLV in bytes,
     including the Type and Length fields.  The Length is always 20.





Mirsky, et al.               Standards Track                   [Page 19]

RFC 8169               Residence Time Measurement               May 2017


  IPv6 address
     A 128-bit unicast host address.

  Reserved
     Zeroed on initiation and ignored on receipt.

4.4.1.1.3.  Unnumbered Interface Sub-TLV

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Type     |     Length    |            Reserved             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          Node ID                              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Interface ID                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 10: IPv4 Sub-TLV Format

  Type
     0x03 Unnumbered interface.

  Length
     The Length contains the total length of the sub-TLV in bytes,
     including the Type and Length fields.  The Length is always 12.

  Node ID
     The Node ID interpreted as the Router ID as discussed in Section 2
     of [RFC3477].

  Interface ID
     The identifier assigned to the link by the node specified by the
     Node ID.

  Reserved
     Zeroed on initiation and ignored on receipt.

5.  Data-Plane Theory of Operation

  After instantiating an LSP for a path using RSVP-TE [RFC3209] as
  described in Section 4.4, the ingress node MAY begin sending RTM
  packets to the first downstream RTM-capable node on that path.  Each
  RTM packet has its Scratch Pad field initialized and its TTL set to
  expire on the next downstream RTM-capable node.  Each RTM-capable
  node on the explicit path receives an RTM packet and records the time
  at which it receives that packet at its ingress interface as well as
  the time at which it transmits that packet from its egress interface.



Mirsky, et al.               Standards Track                   [Page 20]

RFC 8169               Residence Time Measurement               May 2017


  These actions should be done as close to the physical layer as
  possible at the same point of packet processing, striving to avoid
  introducing the appearance of jitter in propagation delay whereas it
  should be accounted as residence time.  The RTM-capable node
  determines the difference between those two times; for one-step
  operation, this difference is determined just prior to or while
  sending the packet, and the RTM-capable egress interface adds it to
  the value in the Scratch Pad field of the message in progress.  Note,
  for the purpose of calculating a residence time, a common free
  running clock synchronizing all the involved interfaces may be
  sufficient, as, for example, 4.6 ppm accuracy leads to a 4.6
  nanosecond error for residence time on the order of 1 millisecond.
  This may be acceptable for applications where the target accuracy is
  in the order of hundreds of nanoseconds.  As an example, several
  applications being considered in the area of wireless applications
  are satisfied with an accuracy of 1.5 microseconds [ITU-T.G.8271].

  For two-step operation, the difference between packet arrival time
  (at an ingress interface) and subsequent departure time (from an
  egress interface) is determined at some later time prior to sending a
  subsequent follow-up message, so that this value can be used to
  update the correctionField in the follow-up message.

  See Section 2.1 for further details on the difference between one-
  step and two-step operation.

  The last RTM-capable node on the LSP MAY then use the value in the
  Scratch Pad field to perform time correction, if there is no
  follow-up message.  For example, the egress node may be a PTP
  boundary clock synchronized to a Master Clock and will use the value
  in the Scratch Pad field to update PTP's correctionField.

6.  Applicable PTP Scenarios

  This approach can be directly integrated in a PTP network based on
  the IEEE 1588 delay request-response mechanism.  The RTM-capable
  nodes act as end-to-end transparent clocks, and boundary clocks, at
  the edges of the MPLS network, typically use the value in the Scratch
  Pad field to update the correctionField of the corresponding PTP
  event packet prior to performing the usual PTP processing.











Mirsky, et al.               Standards Track                   [Page 21]

RFC 8169               Residence Time Measurement               May 2017


7.  IANA Considerations

7.1.  New RTM G-ACh

  IANA has assigned a new G-ACh as follows:

         +--------+----------------------------+---------------+
         | Value  |        Description         | Reference     |
         +--------+----------------------------+---------------+
         | 0x000F | Residence Time Measurement | This document |
         +--------+----------------------------+---------------+

                 Table 1: New Residence Time Measurement

7.2.  New MPLS RTM TLV Registry

  IANA has created a sub-registry in the "Generic Associated Channel
  (G-ACh) Parameters" registry called the "MPLS RTM TLV Registry".  All
  codepoints in the range 0 through 127 in this registry shall be
  allocated according to the "IETF Review" procedure as specified in
  [RFC5226].  Codepoints in the range 128 through 191 in this registry
  shall be allocated according to the "First Come First Served"
  procedure as specified in [RFC5226].  This document defines the
  following new RTM TLV types:

       +---------+-------------------------------+---------------+
       | Value   |          Description          | Reference     |
       +---------+-------------------------------+---------------+
       | 0       |            Reserved           | This document |
       | 1       |           No payload          | This document |
       | 2       | PTPv2, Ethernet encapsulation | This document |
       | 3       |   PTPv2, IPv4 encapsulation   | This document |
       | 4       |   PTPv2, IPv6 encapsulation   | This document |
       | 5       |              NTP              | This document |
       | 6-191   |           Unassigned          |               |
       | 192-254 |    Reserved for Private Use   | This document |
       | 255     |            Reserved           | This document |
       +---------+-------------------------------+---------------+

                         Table 2: RTM TLV Types











Mirsky, et al.               Standards Track                   [Page 22]

RFC 8169               Residence Time Measurement               May 2017


7.3.  New MPLS RTM Sub-TLV Registry

  IANA has created a sub-registry in the "MPLS RTM TLV Registry" (see
  Section 7.2) called the "MPLS RTM Sub-TLV Registry".  All codepoints
  in the range 0 through 127 in this registry shall be allocated
  according to the "IETF Review" procedure as specified in [RFC5226].
  Codepoints in the range 128 through 191 in this registry shall be
  allocated according to the "First Come First Served" procedure as
  specified in [RFC5226].  This document defines the following new RTM
  sub-TLV types:

         +---------+--------------------------+---------------+
         | Value   |       Description        | Reference     |
         +---------+--------------------------+---------------+
         | 0       |         Reserved         | This document |
         | 1       |           PTP            | This document |
         | 2-191   |        Unassigned        |               |
         | 192-254 | Reserved for Private Use | This document |
         | 255     |         Reserved         | This document |
         +---------+--------------------------+---------------+

                        Table 3: RTM Sub-TLV Type

7.4.  RTM Capability Sub-TLV in OSPFv2

  IANA has assigned a new type for the RTM Capability sub-TLV in the
  "OSPFv2 Extended Link TLV Sub-TLVs" registry as follows:

               +-------+----------------+---------------+
               | Value |  Description   | Reference     |
               +-------+----------------+---------------+
               | 5     | RTM Capability | This document |
               +-------+----------------+---------------+

                     Table 4: RTM Capability Sub-TLV
















Mirsky, et al.               Standards Track                   [Page 23]

RFC 8169               Residence Time Measurement               May 2017


7.5.  RTM Capability Sub-TLV in IS-IS

  IANA has assigned a new type for the RTM Capability sub-TLV from the
  "Sub-TLVs for TLVs 22, 23, 141, 222, and 223" registry as follows:

  +------+----------------+----+----+-----+-----+-----+---------------+
  | Type |  Description   | 22 | 23 | 141 | 222 | 223 | Reference     |
  +------+----------------+----+----+-----+-----+-----+---------------+
  | 40   | RTM Capability | y  | y  | n   | y   | y   | This document |
  +------+----------------+----+----+-----+-----+-----+---------------+

       Table 5: IS-IS RTM Capability Sub-TLV Registry Description

7.6.  RTM Capability TLV in BGP-LS

  IANA has assigned a new codepoint for the RTM Capability TLV from the
  "BGP-LS Node Descriptor, Link Descriptor, Prefix Descriptor, and
  Attribute TLVs" sub-registry in the "Border Gateway Protocol - Link
  State (BGP-LS) Parameters" registry as follows:

  +---------------+----------------+------------------+---------------+
  | TLV Code      |  Description   |  IS-IS TLV/Sub-  | Reference     |
  | Point         |                |       TLV        |               |
  +---------------+----------------+------------------+---------------+
  | 1105          | RTM Capability |      22/40       | This document |
  +---------------+----------------+------------------+---------------+

                  Table 6: RTM Capability TLV in BGP-LS























Mirsky, et al.               Standards Track                   [Page 24]

RFC 8169               Residence Time Measurement               May 2017


7.7.  RTM_SET Sub-object RSVP Type and Sub-TLVs

  IANA has assigned a new type for the RTM_SET sub-object from the
  RSVP-TE "Attributes TLV Space" sub-registry as follows:

+------+------------+-----------+---------------+-----------+----------+
| Type |    Name    |  Allowed  | Allowed on    | Allowed   | Reference|
|      |            | on LSP_   | LSP_REQUIRED_ | on LSP    |          |
|      |            | ATTRIBUTES|   ATTRIBUTES  | Hop       |          |
|      |            |           |               | Attributes|          |
+------+------------+-----------+---------------+-----------+----------+
| 5    |  RTM_SET   |    Yes    |       No      |    No     | This     |
|      | sub-object |           |               |           | document |
+------+------------+-----------+---------------+-----------+----------+

                    Table 7: RTM_SET Sub-object Type

  IANA has created a new sub-registry for sub-TLV types of the RTM_SET
  sub-object called the "RTM_SET Object Sub-Object Types" registry.
  All codepoints in the range 0 through 127 in this registry shall be
  allocated according to the "IETF Review" procedure as specified in
  [RFC5226].  Codepoints in the range 128 through 191 in this registry
  shall be allocated according to the "First Come First Served"
  procedure as specified in [RFC5226].  This document defines the
  following new values of RTM_SET object sub-object types:

         +---------+--------------------------+---------------+
         | Value   |       Description        | Reference     |
         +---------+--------------------------+---------------+
         | 0       |         Reserved         | This document |
         | 1       |       IPv4 address       | This document |
         | 2       |       IPv6 address       | This document |
         | 3       |   Unnumbered interface   | This document |
         | 4-191   |        Unassigned        |               |
         | 192-254 | Reserved for Private Use | This document |
         | 255     |         Reserved         | This document |
         +---------+--------------------------+---------------+

                Table 8: RTM_SET Object Sub-object Types












Mirsky, et al.               Standards Track                   [Page 25]

RFC 8169               Residence Time Measurement               May 2017


7.8.  RTM_SET Attribute Flag

  IANA has assigned a new flag in the RSVP-TE "Attribute Flags"
  registry.

  +-----+---------+-----------+-----------+-----+-----+---------------+
  | Bit | Name    | Attribute | Attribute | RRO | ERO | Reference     |
  | No  |         | Flags     | Flags     |     |     |               |
  |     |         | Path      | Resv      |     |     |               |
  +-----+---------+-----------+-----------+-----+-----+---------------+
  | 15  | RTM_SET | Yes       | Yes       | No  | No  | This document |
  +-----+---------+-----------+-----------+-----+-----+---------------+

                     Table 9: RTM_SET Attribute Flag

7.9.  New Error Codes

  IANA has assigned the following new error codes in the RSVP "Error
  Codes and Globally-Defined Error Value Sub-Codes" registry.

           +------------+--------------------+---------------+
           | Error Code | Meaning            | Reference     |
           +------------+--------------------+---------------+
           | 41         | Duplicate TLV      | This document |
           | 42         | Duplicate sub-TLV  | This document |
           | 43         | RTM_SET TLV Absent | This document |
           +------------+--------------------+---------------+

                        Table 10: New Error Codes

8.  Security Considerations

  Routers that support RTM are subject to the same security
  considerations as defined in [RFC4385] and [RFC5085].

  In addition -- particularly as applied to use related to PTP -- there
  is a presumed trust model that depends on the existence of a trusted
  relationship of at least all PTP-aware nodes on the path traversed by
  PTP messages.  This is necessary as these nodes are expected to
  correctly modify specific content of the data in PTP messages, and
  proper operation of the protocol depends on this ability.  In
  practice, this means that those portions of messages cannot be
  covered by either confidentiality or integrity protection.  Though
  there are methods that make it possible in theory to provide either
  or both such protections and still allow for intermediate nodes to
  make detectable but authenticated modifications, such methods do not
  seem practical at present, particularly for timing protocols that are
  sensitive to latency and/or jitter.



Mirsky, et al.               Standards Track                   [Page 26]

RFC 8169               Residence Time Measurement               May 2017


  The ability to potentially authenticate and/or encrypt RTM and PTP
  data for scenarios both with and without participation of
  intermediate RTM-/PTP-capable nodes is left for further study.

  While it is possible for a supposed compromised node to intercept and
  modify the G-ACh content, this is an issue that exists for nodes in
  general -- for any and all data that may be carried over an LSP --
  and is therefore the basis for an additional presumed trust model
  associated with existing LSPs and nodes.

  Security requirements of time protocols are provided in RFC 7384
  [RFC7384].

9.  References

9.1.  Normative References

  [IEEE.1588]
             IEEE, "IEEE Standard for a Precision Clock Synchronization
             Protocol for Networked Measurement and Control Systems",
             IEEE Std 1588-2008, DOI 10.1109/IEEESTD.2008.4579760.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC3209]  Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
             and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
             Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
             <http://www.rfc-editor.org/info/rfc3209>.

  [RFC3477]  Kompella, K. and Y. Rekhter, "Signalling Unnumbered Links
             in Resource ReSerVation Protocol - Traffic Engineering
             (RSVP-TE)", RFC 3477, DOI 10.17487/RFC3477, January 2003,
             <http://www.rfc-editor.org/info/rfc3477>.

  [RFC4385]  Bryant, S., Swallow, G., Martini, L., and D. McPherson,
             "Pseudowire Emulation Edge-to-Edge (PWE3) Control Word for
             Use over an MPLS PSN", RFC 4385, DOI 10.17487/RFC4385,
             February 2006, <http://www.rfc-editor.org/info/rfc4385>.

  [RFC5085]  Nadeau, T., Ed. and C. Pignataro, Ed., "Pseudowire Virtual
             Circuit Connectivity Verification (VCCV): A Control
             Channel for Pseudowires", RFC 5085, DOI 10.17487/RFC5085,
             December 2007, <http://www.rfc-editor.org/info/rfc5085>.





Mirsky, et al.               Standards Track                   [Page 27]

RFC 8169               Residence Time Measurement               May 2017


  [RFC5420]  Farrel, A., Ed., Papadimitriou, D., Vasseur, JP., and A.
             Ayyangarps, "Encoding of Attributes for MPLS LSP
             Establishment Using Resource Reservation Protocol Traffic
             Engineering (RSVP-TE)", RFC 5420, DOI 10.17487/RFC5420,
             February 2009, <http://www.rfc-editor.org/info/rfc5420>.

  [RFC5586]  Bocci, M., Ed., Vigoureux, M., Ed., and S. Bryant, Ed.,
             "MPLS Generic Associated Channel", RFC 5586,
             DOI 10.17487/RFC5586, June 2009,
             <http://www.rfc-editor.org/info/rfc5586>.

  [RFC5905]  Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
             "Network Time Protocol Version 4: Protocol and Algorithms
             Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
             <http://www.rfc-editor.org/info/rfc5905>.

  [RFC6423]  Li, H., Martini, L., He, J., and F. Huang, "Using the
             Generic Associated Channel Label for Pseudowire in the
             MPLS Transport Profile (MPLS-TP)", RFC 6423,
             DOI 10.17487/RFC6423, November 2011,
             <http://www.rfc-editor.org/info/rfc6423>.

  [RFC7684]  Psenak, P., Gredler, H., Shakir, R., Henderickx, W.,
             Tantsura, J., and A. Lindem, "OSPFv2 Prefix/Link Attribute
             Advertisement", RFC 7684, DOI 10.17487/RFC7684, November
             2015, <http://www.rfc-editor.org/info/rfc7684>.

  [RFC7752]  Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and
             S. Ray, "North-Bound Distribution of Link-State and
             Traffic Engineering (TE) Information Using BGP", RFC 7752,
             DOI 10.17487/RFC7752, March 2016,
             <http://www.rfc-editor.org/info/rfc7752>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <http://www.rfc-editor.org/info/rfc8174>.

9.2.  Informative References

  [ITU-T.G.8271]
             ITU-T, "Time and phase synchronization aspects of packet
             networks", ITU-T Recomendation G.8271/Y.1366, July 2016.

  [OSPFV3-EXTENDED-LSA]
             Lindem, A., Roy, A., Goethals, D., Vallem, V., and F.
             Baker, "OSPFv3 LSA Extendibility", Work in Progress,
             draft-ietf-ospf-ospfv3-lsa-extend-14, April 2017.




Mirsky, et al.               Standards Track                   [Page 28]

RFC 8169               Residence Time Measurement               May 2017


  [RFC4202]  Kompella, K., Ed. and Y. Rekhter, Ed., "Routing Extensions
             in Support of Generalized Multi-Protocol Label Switching
             (GMPLS)", RFC 4202, DOI 10.17487/RFC4202, October 2005,
             <http://www.rfc-editor.org/info/rfc4202>.

  [RFC5036]  Andersson, L., Ed., Minei, I., Ed., and B. Thomas, Ed.,
             "LDP Specification", RFC 5036, DOI 10.17487/RFC5036,
             October 2007, <http://www.rfc-editor.org/info/rfc5036>.

  [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 5226,
             DOI 10.17487/RFC5226, May 2008,
             <http://www.rfc-editor.org/info/rfc5226>.

  [RFC6374]  Frost, D. and S. Bryant, "Packet Loss and Delay
             Measurement for MPLS Networks", RFC 6374,
             DOI 10.17487/RFC6374, September 2011,
             <http://www.rfc-editor.org/info/rfc6374>.

  [RFC7384]  Mizrahi, T., "Security Requirements of Time Protocols in
             Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
             October 2014, <http://www.rfc-editor.org/info/rfc7384>.

  [TIMING-OVER-MPLS]
             Davari, S., Oren, A., Bhatia, M., Roberts, P., and L.
             Montini, "Transporting Timing messages over MPLS
             Networks", Work in Progress, draft-ietf-tictoc-
             1588overmpls-07, October 2015.

Acknowledgments

  The authors want to thank Loa Andersson, Lou Berger, Acee Lindem, Les
  Ginsberg, and Uma Chunduri for their thorough reviews, thoughtful
  comments, and, most of all, patience.

















Mirsky, et al.               Standards Track                   [Page 29]

RFC 8169               Residence Time Measurement               May 2017


Authors' Addresses

  Greg Mirsky
  ZTE Corp.

  Email: [email protected]


  Stefano Ruffini
  Ericsson

  Email: [email protected]


  Eric Gray
  Ericsson

  Email: [email protected]


  John Drake
  Juniper Networks

  Email: [email protected]


  Stewart Bryant
  Huawei

  Email: [email protected]


  Alexander Vainshtein
  ECI Telecom

  Email: [email protected]
         [email protected]














Mirsky, et al.               Standards Track                   [Page 30]