Internet Engineering Task Force (IETF)           M. Konstantynowicz, Ed.
Request for Comments: 8159                                 G. Heron, Ed.
Category: Standards Track                                  Cisco Systems
ISSN: 2070-1721                                            R. Schatzmayr
                                                    Deutsche Telekom AG
                                                          W. Henderickx
                                                   Alcatel-Lucent, Inc.
                                                               May 2017


                          Keyed IPv6 Tunnel

Abstract

  This document describes a tunnel encapsulation for Ethernet over IPv6
  with a mandatory 64-bit cookie for connecting Layer 2 (L2) Ethernet
  attachment circuits identified by IPv6 addresses.  The encapsulation
  is based on the Layer 2 Tunneling Protocol Version 3 (L2TPv3) over IP
  and does not use the L2TPv3 control plane.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc8159.

Copyright Notice

  Copyright (c) 2017 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.



Konstantynowicz, et al.      Standards Track                    [Page 1]

RFC 8159                    Keyed IPv6 Tunnel                   May 2017


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
    1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   3
  2.  Static 1:1 Mapping without a Control Plane  . . . . . . . . .   3
  3.  64-Bit Cookie . . . . . . . . . . . . . . . . . . . . . . . .   4
  4.  Encapsulation . . . . . . . . . . . . . . . . . . . . . . . .   4
  5.  Fragmentation and Reassembly  . . . . . . . . . . . . . . . .   7
  6.  OAM Considerations  . . . . . . . . . . . . . . . . . . . . .   7
  7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   8
  8.  Security Considerations . . . . . . . . . . . . . . . . . . .   8
  9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   9
    9.1.  Normative References  . . . . . . . . . . . . . . . . . .   9
    9.2.  Informative References  . . . . . . . . . . . . . . . . .  10
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  11
  Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .  11
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  12

1.  Introduction

  L2TPv3, as defined in [RFC3931], provides a mechanism for tunneling
  Layer 2 (L2) "circuits" across a packet-oriented data network (e.g.,
  over IP), with multiple attachment circuits multiplexed over a single
  pair of IP address endpoints (i.e., a tunnel) using the L2TPv3
  Session ID as a circuit discriminator.

  Implementing L2TPv3 over IPv6 [RFC2460] provides the opportunity to
  utilize unique IPv6 addresses to identify Ethernet attachment
  circuits directly, leveraging the key property that IPv6 offers -- a
  vast number of unique IP addresses.  In this case, processing of the
  L2TPv3 Session ID may be bypassed upon receipt, as each tunnel has
  one and only one associated session.  This local optimization does
  not hinder the ability to continue supporting the multiplexing of
  circuits via the Session ID on the same router for other L2TPv3
  tunnels.

  There are various advantages to this approach when compared to the
  "traditional" L2TPv3 approach of using a loopback address to
  terminate the tunnel and then carrying multiple sessions over the
  tunnel.  These include better ECMP load balancing (since each tunnel
  has a unique source/destination IPv6 address pair) and finer-grained
  control when advertising tunnel endpoints using a routing protocol.









Konstantynowicz, et al.      Standards Track                    [Page 2]

RFC 8159                    Keyed IPv6 Tunnel                   May 2017


1.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in RFC
  2119 [RFC2119].

2.  Static 1:1 Mapping without a Control Plane

  The L2TPv3 control plane defined in [RFC3931] is not used for this
  encapsulation.  The management plane is used to create and maintain
  matching configurations at either end of each tunnel.  Local
  configuration by the management plane creates a one-to-one mapping
  between the access-side L2 attachment circuit and the IP address used
  in the network-side IPv6 encapsulation.

  The IPv6 L2TPv3 tunnel encapsulating device uniquely identifies each
  Ethernet L2 attachment connection by a port ID or a combination of a
  port ID and VLAN ID(s) on the access side and by a local IPv6 address
  on the network side.  The local IPv6 address also identifies the
  tunnel endpoint.  The local IPv6 addresses identifying L2TPv3 tunnels
  SHOULD NOT be assigned from connected IPv6 subnets facing towards
  remote tunnel endpoints, since that approach would result in an IPv6
  Neighbor Discovery cache entry per tunnel on the next-hop router
  towards the remote tunnel endpoint.  It is RECOMMENDED that local
  IPv6 addresses identifying L2TPv3 tunnels are assigned from dedicated
  subnets used only for such tunnel endpoints.

  Certain deployment scenarios may require using a single IPv6 address
  (such as a unicast or anycast address assigned to a specific service
  instance, for example, a virtual switch) to identify a tunnel
  endpoint for multiple IPv6 L2TPv3 tunnels.  For such cases, the
  tunnel decapsulating device uses the local IPv6 address to identify
  the service instance and the remote IPv6 address to identify the
  individual tunnel within that service instance.

  As mentioned above, Session ID processing is not required, as each
  keyed IPv6 tunnel has one and only one associated session.  However,
  for compatibility with existing [RFC3931] implementations, the
  packets need to be sent with the Session ID.  Routers implementing
  L2TPv3 according to [RFC3931] can be configured with multiple L2TPv3
  tunnels, with one session per tunnel, to interoperate with routers
  implementing the keyed IPv6 tunnel as specified by this document.
  Note that as Session ID processing is not enabled for keyed IPv6
  tunnels, there can only be a single keyed IPv6 tunnel between two
  IPv6 addresses.





Konstantynowicz, et al.      Standards Track                    [Page 3]

RFC 8159                    Keyed IPv6 Tunnel                   May 2017


3.  64-Bit Cookie

  In line with [RFC3931], the 64-bit cookie is used for an additional
  tunnel endpoint context check.  This is the largest cookie size
  permitted in [RFC3931].  All packets MUST carry the 64-bit L2TPv3
  cookie field.  The cookie MUST be 64 bits long in order to provide
  sufficient protection against spoofing and brute-force blind
  insertion attacks.  The cookie values SHOULD be randomly selected.

  In the absence of the L2TPv3 control plane, the L2TPv3 encapsulating
  router MUST be provided with a local configuration of the 64-bit
  cookie for each local and remote IPv6 endpoint.  Note that cookies
  are asymmetric, so local and remote endpoints may send different
  cookie values and, in fact, SHOULD do so.  The value of the cookie
  MUST be able to be changed at any time in a manner that does not drop
  any legitimate tunneled packets, i.e., the receiver MUST be
  configurable to accept two discrete cookies for a single tunnel
  simultaneously.  This enables the receiver to hold both the 'old' and
  'new' cookie values during a change of cookie value.  Cookie values
  SHOULD be changed periodically by the management plane.

  Note that mandating a 64-bit cookie is a change from the optional
  variable-length cookie of [RFC3931] and that this requirement
  constrains interoperability with existing [RFC3931] implementations
  to those supporting a 64-bit cookie.  The management plane MUST NOT
  configure a keyed IP tunnel unless both endpoints support the 64-bit
  cookie.

4.  Encapsulation

  The ingress router encapsulates the entire Ethernet frame, without
  the preamble and Frame Check Sequence (FCS) in L2TPv3 as per
  [RFC4719].  The L2-specific sublayer MAY be carried if Virtual
  Circuit Connectivity Verification (VCCV) [RFC5085] and/or frame
  sequencing is required, but it SHOULD NOT be carried otherwise.  The
  L2TPv3 packet is encapsulated directly over IPv6 (i.e., no UDP header
  is carried).

  The ingress router MAY retain the FCS as per [RFC4720].  Support for
  retaining the FCS and for receiving packets with a retained FCS is
  OPTIONAL and, if present, MUST be configurable.  In the absence of
  the L2TPv3 control plane, such configuration MUST be consistent for
  the two endpoints of any given tunnel, i.e., if one router is
  configured to retain the FCS, then the other router MUST be
  configured to receive packets with the retained FCS.  Any router
  configured to retain FCS for a tunnel MUST retain FCS for all frames





Konstantynowicz, et al.      Standards Track                    [Page 4]

RFC 8159                    Keyed IPv6 Tunnel                   May 2017


  sent over that tunnel.  All routers implementing this specification
  MUST support the ability to send frames without retaining the FCS and
  to receive such frames.

  Any service-delimiting IEEE 802.1Q [IEEE802.1Q] or IEEE 802.1ad
  [IEEE802.1ad] VLAN IDs -- S-tag, C-tag, or the tuple (S-tag, C-tag)
  -- are treated with local significance within the Ethernet L2 port
  and MUST NOT be forwarded over the IPv6 L2TPv3 tunnel.

  Note that the same approach may be used to transport protocols other
  than Ethernet, though this is outside the scope of this
  specification.

  The full encapsulation is as follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     +                   IPv6 Header (320 bits)                      +
     ~                                                               ~
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    Session ID (32 bits)                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Cookie (0:31)                          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        Cookie (32:63)                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |          (Optional) L2-Specific Sublayer (32 bits)            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                                                               |
     |                      Payload (variable)                       |
     |                                                               |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The combined IPv6 and keyed IP tunnel header contains the following
  fields:

  o  IPv6 Header.  Note that:

     *  The traffic class may be set by the ingress router to ensure
        correct Per-Hop Behavior (PHB) treatment by transit routers
        between the ingress and egress and to correct QoS disposition
        at the egress router.





Konstantynowicz, et al.      Standards Track                    [Page 5]

RFC 8159                    Keyed IPv6 Tunnel                   May 2017


     *  The flow label, as defined in [RFC6437], may be set by the
        ingress router to indicate a flow of packets from the client,
        which may not be reordered by the network (if there is a
        requirement for finer-grained ECMP load balancing rather than
        per-circuit load balancing).

     *  The next header will be set to 0x73 to indicate that the next
        header is L2TPv3.

     *  In the "Static 1:1 Mapping" case described in Section 2, the
        IPv6 source address may correspond to a port or port/VLAN being
        transported as an L2 circuit, or it may correspond to a virtual
        interface terminating inside the router (e.g., if L2 circuits
        are being used within a multipoint VPN or if an anycast address
        is being terminated on a set of data-center virtual machines.)

     *  As with the source address, the IPv6 destination address may
        correspond to a port or port/VLAN being transported as an L2
        circuit or to a virtual interface.

  o  Session ID.  In the "Static 1:1 Mapping" case described in
     Section 2, the IPv6 address identifies an L2TPv3 session directly;
     thus, at endpoints supporting one-stage resolution (IPv6 Address
     Only), the Session ID SHOULD be ignored upon receipt.  It is
     RECOMMENDED that the remote endpoint is configured to set the
     Session ID to all ones (0xFFFFFFFF) for easy identification in
     case of troubleshooting.  For compatibility with other tunnel
     termination platforms supporting only two-stage resolution (IPv6
     Address + Session ID), this specification recommends supporting
     explicit configuration of Session ID to any value other than zero
     (including all ones).  The Session ID of zero MUST NOT be used, as
     it is reserved for use by L2TP control messages as specified in
     [RFC3931].  Note that the Session ID is unidirectional; the sent
     and received Session IDs at an endpoint may be different.

  o  Cookie.  The 64-bit cookie, configured and described as in
     Section 3.  All packets for a destined L2 circuit (or L2TPv3
     Session) MUST match one of the cookie values configured for that
     circuit.  Any packets that do not contain a valid cookie value
     MUST be discarded (see [RFC3931] for more details).

  o  L2-Specific Sublayer (Optional).  As noted above, this will be
     present if VCCV and/or frame sequencing is required.  If VCCV is
     required, then any frames with bit 0 (the "V-bit") set are VCCV
     messages.  If frame sequencing is required, then any frames with
     bit 1 (the "S-bit") set have a valid frame sequence number in bits
     8-31.




Konstantynowicz, et al.      Standards Track                    [Page 6]

RFC 8159                    Keyed IPv6 Tunnel                   May 2017


  o  Payload (variable).  As noted above, the preamble and any service-
     delimiting tags MUST be stripped before encapsulation, and the FCS
     MUST be stripped unless FCS retention is configured at both
     ingress and egress routers.  Since a new FCS is added at each hop
     when the encapsulating IP packet is transmitted, the payload is
     protected against bit errors.

5.  Fragmentation and Reassembly

  Using tunnel encapsulation of Ethernet L2 datagrams in IPv6 will
  reduce the effective MTU allowed for the encapsulated traffic.

  The recommended solution to deal with this problem is for the network
  operator to increase the MTU size of all the links between the
  devices acting as IPv6 L2TPv3 tunnel endpoints to accommodate both
  the IPv6 L2TPv3 encapsulation header and the Ethernet L2 datagram
  without requiring fragmentation of the IPv6 packet.

  It is RECOMMENDED that routers implementing this specification
  implement IPv6 Path MTU (PMTU) discovery as defined in [RFC1981] to
  confirm that the path over which packets are sent has sufficient MTU
  to transport a maximum-length Ethernet frame plus encapsulation
  overhead.

  Routers implementing this specification MAY implement L2TPv3
  fragmentation (as defined in Section 5 of [RFC4623]).  In the absence
  of the L2TPv3 control plane, it is RECOMMENDED that fragmentation (if
  implemented) is locally configured on a per-tunnel basis.
  Fragmentation configuration MUST be consistent between the two ends
  of a tunnel.

  It is NOT RECOMMENDED for routers implementing this specification to
  enable IPv6 fragmentation (as defined in Section 4.5 of [RFC2460])
  for keyed IP tunnels.

6.  OAM Considerations

  Operations, Administration, and Maintenance (OAM) is an important
  consideration when providing circuit-oriented services such as those
  described in this document; it is all the more important in the
  absence of a dedicated tunnel control plane, as OAM becomes the only
  way to detect failures in the tunnel overlay.

  Note that in the context of keyed IP tunnels, failures in the IPv6
  underlay network can be detected using the usual methods such as
  through the routing protocol, including the use of single-hop





Konstantynowicz, et al.      Standards Track                    [Page 7]

RFC 8159                    Keyed IPv6 Tunnel                   May 2017


  Bidirectional Forwarding Detection (BFD) [RFC5881] to rapidly detect
  link failures.  Multihop BFD MAY also be enabled between tunnel
  endpoints as per [RFC5883].

  Since keyed IP tunnels always carry an Ethernet payload and since OAM
  at the tunnel layer is unable to detect failures in the Ethernet
  service processing at the ingress or egress router or on the Ethernet
  attachment circuit between the router and the Ethernet client, it is
  RECOMMENDED that Ethernet OAM as defined in [IEEE802.1ag] and/or
  [Y.1731] be enabled for keyed IP tunnels.  As defined in those
  specifications, the following Connectivity Fault Management (CFM)
  and/or Ethernet Continuity Check (ETH-CC) configurations are to be
  used in conjunction with keyed IPv6 tunnels:

  o  Connectivity verification between the tunnel endpoints across
     the tunnel: Use an Up Maintenance End Point (MEP) located at the
     tunnel endpoint for transmitting the CFM PDUs towards, and
     receiving them from, the direction of the tunnel.

  o  Connectivity verification from the tunnel endpoint across
     the local attachment circuit: Use a Down MEP located at the tunnel
     endpoint for transmitting the CFM PDUs towards, and receiving them
     from, the direction of the local attachment circuit.

  o  Intermediate connectivity verification: Use a Maintenance
     Intermediate Point (MIP) located at the tunnel endpoint to relay
     CFM PDUs.

  In addition, Pseudowire VCCV [RFC5085] MAY be used.  Furthermore, BFD
  MAY be enabled over the VCCV channel [RFC5885].

  Note that since there is no control plane, it is RECOMMENDED that the
  management plane take action when attachment circuit failure is
  detected, for example, by dropping the remote attachment circuit.

7.  IANA Considerations

  This document does not require any IANA actions.

8.  Security Considerations

  Packet spoofing for any type of Virtual Private Network (VPN)
  tunneling protocol is of particular concern as insertion of carefully
  constructed rogue packets into the VPN transit network could result
  in a violation of VPN traffic separation, leaking data into a
  customer VPN.  This is complicated by the fact that it may be
  particularly difficult for the operator of the VPN to even be aware
  that it has become a point of transit into or between customer VPNs.



Konstantynowicz, et al.      Standards Track                    [Page 8]

RFC 8159                    Keyed IPv6 Tunnel                   May 2017


  Keyed IPv6 encapsulation provides traffic separation for its VPNs via
  the use of separate 128-bit IPv6 addresses to identify the endpoints.
  The mandatory use of the 64-bit L2TPv3 cookie provides an additional
  check to ensure that an arriving packet is intended for the
  identified tunnel.

  In the presence of a blind packet-spoofing attack, the 64-bit L2TPv3
  cookie provides security against inadvertent leaking of frames into a
  customer VPN, as documented in Section 8.2 of [RFC3931].

  For protection against brute-force blind insertion attacks, the 64-
  bit cookie MUST be used with all tunnels.

  Note that the cookie provides no protection against a sophisticated
  man-in-the-middle attacker who can sniff and correlate captured data
  between nodes for use in a coordinated attack.

  The L2TPv3 64-bit cookie must not be regarded as a substitute for
  security such as that provided by IPsec when operating over an open
  or untrusted network where packets may be sniffed, decoded, and
  correlated for use in a coordinated attack.

9.  References

9.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC2460]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
             (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
             December 1998, <http://www.rfc-editor.org/info/rfc2460>.

  [RFC3931]  Lau, J., Ed., Townsley, M., Ed., and I. Goyret, Ed.,
             "Layer Two Tunneling Protocol - Version 3 (L2TPv3)",
             RFC 3931, DOI 10.17487/RFC3931, March 2005,
             <http://www.rfc-editor.org/info/rfc3931>.

  [RFC4719]  Aggarwal, R., Ed., Townsley, M., Ed., and M. Dos Santos,
             Ed., "Transport of Ethernet Frames over Layer 2 Tunneling
             Protocol Version 3 (L2TPv3)", RFC 4719,
             DOI 10.17487/RFC4719, November 2006,
             <http://www.rfc-editor.org/info/rfc4719>.






Konstantynowicz, et al.      Standards Track                    [Page 9]

RFC 8159                    Keyed IPv6 Tunnel                   May 2017


9.2.  Informative References

  [IEEE802.1ad]
             IEEE, "IEEE Standard for Local and Metropolitan Area
             Networks - Virtual Bridged Local Area Networks, Amendment
             4: Provider Bridges", IEEE 802.1ad-2005, DOI
             10.1109/IEEESTD.2006.216360.

  [IEEE802.1ag]
             IEEE, "IEEE Standard for Local and metropolitan area
             networks - Virtual Bridged Local Area Networks, Amendment
             5: Connectivity Fault Management", IEEE 802.1ag-2007, DOI
             10.1109/IEEESTD.2007.4431836.

  [IEEE802.1Q]
             IEEE, "IEEE Standard for Local and metropolitan area
             networks - Bridges and Bridged Networks", IEEE 802.1Q-
             2014, DOI 10.1109/IEEESTD.2014.6991462.

  [RFC1981]  McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
             for IP version 6", RFC 1981, DOI 10.17487/RFC1981, August
             1996, <http://www.rfc-editor.org/info/rfc1981>.

  [RFC4623]  Malis, A. and M. Townsley, "Pseudowire Emulation Edge-to-
             Edge (PWE3) Fragmentation and Reassembly", RFC 4623,
             DOI 10.17487/RFC4623, August 2006,
             <http://www.rfc-editor.org/info/rfc4623>.

  [RFC4720]  Malis, A., Allan, D., and N. Del Regno, "Pseudowire
             Emulation Edge-to-Edge (PWE3) Frame Check Sequence
             Retention", RFC 4720, DOI 10.17487/RFC4720, November 2006,
             <http://www.rfc-editor.org/info/rfc4720>.

  [RFC5085]  Nadeau, T., Ed. and C. Pignataro, Ed., "Pseudowire Virtual
             Circuit Connectivity Verification (VCCV): A Control
             Channel for Pseudowires", RFC 5085, DOI 10.17487/RFC5085,
             December 2007, <http://www.rfc-editor.org/info/rfc5085>.

  [RFC5881]  Katz, D. and D. Ward, "Bidirectional Forwarding Detection
             (BFD) for IPv4 and IPv6 (Single Hop)", RFC 5881,
             DOI 10.17487/RFC5881, June 2010,
             <http://www.rfc-editor.org/info/rfc5881>.

  [RFC5883]  Katz, D. and D. Ward, "Bidirectional Forwarding Detection
             (BFD) for Multihop Paths", RFC 5883, DOI 10.17487/RFC5883,
             June 2010, <http://www.rfc-editor.org/info/rfc5883>.





Konstantynowicz, et al.      Standards Track                   [Page 10]

RFC 8159                    Keyed IPv6 Tunnel                   May 2017


  [RFC5885]  Nadeau, T., Ed. and C. Pignataro, Ed., "Bidirectional
             Forwarding Detection (BFD) for the Pseudowire Virtual
             Circuit Connectivity Verification (VCCV)", RFC 5885,
             DOI 10.17487/RFC5885, June 2010,
             <http://www.rfc-editor.org/info/rfc5885>.

  [RFC6437]  Amante, S., Carpenter, B., Jiang, S., and J. Rajahalme,
             "IPv6 Flow Label Specification", RFC 6437,
             DOI 10.17487/RFC6437, November 2011,
             <http://www.rfc-editor.org/info/rfc6437>.

  [Y.1731]   ITU-T, "Operation, administration and maintenance (OAM)
             functions and mechanisms for Ethernet-based networks",
             Recommendation ITU-T G.8013/Y.1731, August 2015.

Acknowledgements

  The authors would like to thank Carlos Pignataro, Stewart Bryant,
  Karsten Thomann, Qi Sun, and Ian Farrer for their insightful
  suggestions and review.

Contributors

  Peter Weinberger
  Cisco Systems
  Email: [email protected]

  Michael Lipman
  Cisco Systems
  Email: [email protected]

  Mark Townsley
  Cisco Systems
  Email: [email protected]

















Konstantynowicz, et al.      Standards Track                   [Page 11]

RFC 8159                    Keyed IPv6 Tunnel                   May 2017


Authors' Addresses

  Maciek Konstantynowicz (editor)
  Cisco Systems

  Email: [email protected]


  Giles Heron (editor)
  Cisco Systems

  Email: [email protected]


  Rainer Schatzmayr
  Deutsche Telekom AG

  Email: [email protected]


  Wim Henderickx
  Alcatel-Lucent, Inc.

  Email: [email protected]



























Konstantynowicz, et al.      Standards Track                   [Page 12]