Internet Engineering Task Force (IETF)                           Y. Oiwa
Request for Comments: 8121                                   H. Watanabe
Category: Experimental                                         H. Takagi
ISSN: 2070-1721                                               ITRI, AIST
                                                               K. Maeda
                                                 Individual Contributor
                                                             T. Hayashi
                                                                Lepidum
                                                                Y. Ioku
                                                 Individual Contributor
                                                             April 2017


  Mutual Authentication Protocol for HTTP: Cryptographic Algorithms
            Based on the Key Agreement Mechanism 3 (KAM3)

Abstract

  This document specifies cryptographic algorithms for use with the
  Mutual user authentication method for the Hypertext Transfer Protocol
  (HTTP).

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for examination, experimental implementation, and
  evaluation.

  This document defines an Experimental Protocol for the Internet
  community.  This document is a product of the Internet Engineering
  Task Force (IETF).  It represents the consensus of the IETF
  community.  It has received public review and has been approved for
  publication by the Internet Engineering Steering Group (IESG).  Not
  all documents approved by the IESG are a candidate for any level of
  Internet Standard; see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc8121.












Oiwa, et al.                  Experimental                      [Page 1]

RFC 8121         HTTP Mutual Authentication: Algorithms       April 2017


Copyright Notice

  Copyright (c) 2017 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................2
     1.1. Terminology ................................................3
  2. Cryptographic Overview (Non-normative) ..........................3
  3. Authentication Algorithms .......................................4
     3.1. Support Functions and Notations ............................5
     3.2. Functions for Discrete-Logarithm Settings ..................6
     3.3. Functions for Elliptic-Curve Settings ......................7
  4. IANA Considerations .............................................9
  5. Security Considerations .........................................9
     5.1. General Implementation Considerations ......................9
     5.2. Cryptographic Assumptions and Considerations ..............10
  6. References .....................................................11
     6.1. Normative References ......................................11
     6.2. Informative References ....................................12
  Appendix A. (Informative) Group Parameters for Algorithms Based
              on the Discrete Logarithm .............................13
  Appendix B. (Informative) Derived Numerical Values ................16
  Authors' Addresses ................................................17

1.  Introduction

  This document specifies algorithms for use with the Mutual
  authentication protocol for the Hypertext Transfer Protocol (HTTP)
  [RFC8120] (hereafter referred to as the "core specification").  The
  algorithms are based on augmented password-based authenticated key
  exchange (augmented PAKE) techniques.  In particular, it uses one of
  three key exchange algorithms defined in ISO 11770-4 ("Information
  technology - Security techniques - Key management - Part 4:
  Mechanisms based on weak secrets") [ISO.11770-4.2006] as its basis.





Oiwa, et al.                  Experimental                      [Page 2]

RFC 8121         HTTP Mutual Authentication: Algorithms       April 2017


  To briefly summarize, the Mutual authentication protocol exchanges
  four values -- K_c1, K_s1, VK_c, and VK_s -- to perform authenticated
  key exchanges, using the password-derived secret pi and its
  "augmented version" J(pi).  This document defines the set of
  functions K_c1, K_s1, and J for a specific algorithm family.

  Please note that from the point of view of literature related to
  cryptography, the original functionality of augmented PAKE is
  separated into the functions K_c1 and K_s1 as defined in this
  document, and the functions VK_c and VK_s, which are defined in
  Section 12.2 of [RFC8120] as "default functions".  For the purpose of
  security analysis, please also refer to these functions.

1.1.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  [RFC2119].

  The term "natural numbers" refers to non-negative integers (including
  zero) throughout this document.

  This document treats both the input (domain) and the output
  (codomain) of hash functions as octet strings.  When a natural-number
  output of hash function H is required, it will be notated, for
  example, as INT(H(s)).

2.  Cryptographic Overview (Non-normative)

  The cryptographic primitive used in this algorithm specification is
  based on a variant of augmented PAKE called "APKAS-AMP" (augmented
  password-authenticated key agreement scheme, version AMP), proposed
  by T. Kwon and originally submitted to [IEEE-1363.2_2008].  The
  general flow of the successful exchange is shown below for
  informative purposes only.  The multiplicative notations are used for
  group operators, and all modulus operations for finite groups (mod q
  and mod r) are omitted.













Oiwa, et al.                  Experimental                      [Page 3]

RFC 8121         HTTP Mutual Authentication: Algorithms       April 2017


     C: S_c1 = random
     C: K_c1 = g^(S_c1)
                      ----- ID, K_c1 ----->
     C: t_1 = H1(K_c1)                S: t_1 = H1(K_c1)
                                      S: fetch J = g^pi by ID
                                      S: S_s1 = random
                                      S: K_s1 = (J * K_c1^(t_1))^(S_s1)
                      <----- K_s1 -----
     C: t_2 = H2(K_c1, K_s1)          S: t_2 = H2(K_c1, K_s1)
     C: z = K_s1^((S_c1 + t_2) / (S_c1 * t_1 + pi))
                                      S: z' = (K_c1 * g^(t_2))^(S_s1)
     (assumption at this point: z = z' if authentication succeeded)

     C: VK_c = H4(K_c1, K_s1, z)      S: VK_c' = H4(K_c1, K_s1, z')
                      ----- VK_c ------->
                                      S: assert(VK_c = VK_c')

     C: VK_s' = H3(K_c1, K_s1, z)     S: VK_s = H3(K_c1, K_s1, z')
                      <----- VK_s ------
     C: assert(VK_s = VK_s')

  Note that the concrete (binary) message formats (mapping to HTTP
  messages), as well as the formal definitions of equations for the
  latter two messages, are defined in the core specification [RFC8120].
  The formal definitions for values corresponding to the first two
  messages are defined in the following sections.

3.  Authentication Algorithms

  This document specifies one family of algorithms based on APKAS-AMP,
  to be used with [RFC8120].  This family consists of four
  authentication algorithms, which differ only in their underlying
  mathematical groups and security parameters.  These algorithms do not
  add any additional parameters.  The tokens for these algorithms are
  as follows:

  o  iso-kam3-dl-2048-sha256: for the 2048-bit discrete-logarithm
     setting with the SHA-256 hash function.

  o  iso-kam3-dl-4096-sha512: for the 4096-bit discrete-logarithm
     setting with the SHA-512 hash function.

  o  iso-kam3-ec-p256-sha256: for the 256-bit prime-field
     elliptic-curve setting with the SHA-256 hash function.

  o  iso-kam3-ec-p521-sha512: for the 521-bit prime-field
     elliptic-curve setting with the SHA-512 hash function.




Oiwa, et al.                  Experimental                      [Page 4]

RFC 8121         HTTP Mutual Authentication: Algorithms       April 2017


  For discrete-logarithm settings, the underlying groups are the
  2048-bit and 4096-bit Modular Exponential (MODP) groups defined in
  [RFC3526].  See Appendix A for the exact specifications for the
  groups and associated parameters.  Hash function H is SHA-256 for the
  2048-bit group and SHA-512 for the 4096-bit group, respectively, as
  defined in FIPS PUB 180-4 [FIPS.180-4.2015].  The hash iteration
  count nIterPi is 16384.  The representation of the parameters "kc1",
  "ks1", "vkc", and "vks" is base64-fixed-number.

  For the elliptic-curve settings, the underlying groups are the
  elliptic curves over the prime fields P-256 and P-521, respectively,
  as specified in Appendix D.1.2 of the FIPS PUB 186-4
  [FIPS.186-4.2013] specification.  Hash function H is SHA-256 for the
  P-256 curve and SHA-512 for the P-521 curve, respectively.  Cofactors
  of these curves are 1.  The hash iteration count nIterPi is 16384.
  The representation of the parameters "kc1", "ks1", "vkc", and "vks"
  is hex-fixed-number.

  Note: This algorithm is based on the Key Agreement Mechanism 3 (KAM3)
  as defined in Section 6.3 of ISO/IEC 11770-4 [ISO.11770-4.2006], with
  a few modifications/improvements.  However, implementers should
  consider this document as normative, because several minor details of
  the algorithm have changed and major improvements have been made.

3.1.  Support Functions and Notations

  The algorithm definitions use the support functions and notations
  defined below.

  Decimal notations are used for integers in this specification by
  default.  Integers in hexadecimal notations are prefixed with "0x".

  In this document, the octet(), OCTETS(), and INT() functions are used
  as defined in the core specification [RFC8120].

  Note: The definition of OCTETS() is different from the function
  GE2OS_x in the original ISO specification; GE2OS_x takes the shortest
  representation without preceding zeros.

  All of the algorithms defined in this specification use the default
  functions defined in Section 12.2 of [RFC8120] for computing the
  values pi, VK_c, and VK_s.









Oiwa, et al.                  Experimental                      [Page 5]

RFC 8121         HTTP Mutual Authentication: Algorithms       April 2017


3.2.  Functions for Discrete-Logarithm Settings

  In this section, an equation (x / y mod z) denotes a natural number w
  less than z that satisfies (w * y) mod z = x mod z.

  For the discrete logarithm, we refer to some of the domain parameters
  by using the following symbols:

  o  q: for "the prime" defining the MODP group.

  o  g: for "the generator" associated with the group.

  o  r: for the order of the subgroup generated by g.

  The function J is defined as

     J(pi) = g^(pi) mod q

  The value of K_c1 is derived as

     K_c1 = g^(S_c1) mod q

  where S_c1 is a random integer within the range [1, r-1] and r is the
  size of the subgroup generated by g.  In addition, S_c1 MUST be
  larger than log(q)/log(g) (so that g^(S_c1) > q).

  The server MUST check the condition 1 < K_c1 < q-1 upon reception.

  Let an intermediate value t_1 be

     t_1 = INT(H(octet(1) | OCTETS(K_c1)))

  The value of K_s1 is derived from J(pi) and K_c1 as

     K_s1 = (J(pi) * K_c1^(t_1))^(S_s1) mod q

  where S_s1 is a random number within the range [1, r-1].  The value
  of K_s1 MUST satisfy 1 < K_s1 < q-1.  If this condition is not held,
  the server MUST reject the exchange.  The client MUST check this
  condition upon reception.

  Let an intermediate value t_2 be

     t_2 = INT(H(octet(2) | OCTETS(K_c1) | OCTETS(K_s1)))

  The value z on the client side is derived by the following equation:

     z = K_s1^((S_c1 + t_2) / (S_c1 * t_1 + pi) mod r) mod q



Oiwa, et al.                  Experimental                      [Page 6]

RFC 8121         HTTP Mutual Authentication: Algorithms       April 2017


  The value z on the server side is derived by the following equation:

     z = (K_c1 * g^(t_2))^(S_s1) mod q

  (Note: The original ISO specification contained a message pair
  containing verification of value z along with the "transcript" of the
  protocol exchange.  This functionality is contained in the functions
  VK_c and VK_s.)

3.3.  Functions for Elliptic-Curve Settings

  For the elliptic-curve settings, we refer to some of the domain
  parameters by the following symbols:

  o  q: for the prime used to define the group.

  o  G: for the point defined with the underlying group called
     "the generator".

  o  h: for the cofactor of the group.

  o  r: for the order of the subgroup generated by G.

  The function P(p) converts a curve point p into an integer
  representing point p, by computing x * 2 + (y mod 2), where (x, y)
  are the coordinates of point p.  P'(z) is the inverse of function P;
  that is, it converts an integer z to a point p that satisfies
  P(p) = z.  If such p exists, it is uniquely defined.  Otherwise,
  z does not represent a valid curve point.

  The operator "+" indicates the elliptic-curve group operation, and
  the operation [x] * p denotes an integer-multiplication of point p:
  it calculates p + p + ... (x times) ... + p.  See the literature on
  elliptic-curve cryptography for the exact algorithms used for those
  functions (e.g., Section 3 of [RFC6090]; however, note that [RFC6090]
  uses different notations).  0_E represents the infinity point.  The
  equation (x / y mod z) denotes a natural number w less than z that
  satisfies (w * y) mod z = x mod z.

  The function J is defined as

     J(pi) = [pi] * G









Oiwa, et al.                  Experimental                      [Page 7]

RFC 8121         HTTP Mutual Authentication: Algorithms       April 2017


  The value of K_c1 is derived as

     K_c1 = P(K_c1'), where K_c1' = [S_c1] * G

  where S_c1 is a random number within the range [1, r-1].  The server
  MUST check that (1) the value of received K_c1 represents a valid
  curve point and (2) [h] * K_c1' is not equal to 0_E.

  Let an intermediate integer t_1 be

     t_1 = INT(H(octet(1) | OCTETS(K_c1)))

  The value of K_s1 is derived from J(pi) and K_c1' = P'(K_c1) as

     K_s1 = P([S_s1] * (J(pi) + [t_1] * K_c1'))

  where S_s1 is a random number within the range [1, r-1].  The value
  of K_s1 MUST represent a valid curve point and satisfy
  [h] * P'(K_s1) <> 0_E.  If this condition is not satisfied, the
  server MUST reject the exchange.  The client MUST check this
  condition upon reception.

  Let an intermediate integer t_2 be

     t_2 = INT(H(octet(2) | OCTETS(K_c1) | OCTETS(K_s1)))

  The value z on the client side is derived by the following equation:

     z = P([(S_c1 + t_2) / (S_c1 * t_1 + pi) mod r] * P'(K_s1))

  The value z on the server side is derived by the following equation:

     z = P([S_s1] * (P'(K_c1) + [t_2] * G))


















Oiwa, et al.                  Experimental                      [Page 8]

RFC 8121         HTTP Mutual Authentication: Algorithms       April 2017


4.  IANA Considerations

  This document defines four new tokens that have been added to the
  "HTTP Mutual Authentication Algorithms" registry:

  +-------------------------+-----------------------------+-----------+
  | Token                   | Description                 | Reference |
  +-------------------------+-----------------------------+-----------+
  | iso-kam3-dl-2048-sha256 | ISO-11770-4 KAM3,           | RFC 8121  |
  |                         | 2048-bit DL                 |           |
  |                         |                             |           |
  | iso-kam3-dl-4096-sha512 | ISO-11770-4 KAM3,           | RFC 8121  |
  |                         | 4096-bit DL                 |           |
  |                         |                             |           |
  | iso-kam3-ec-p256-sha256 | ISO-11770-4 KAM3,           | RFC 8121  |
  |                         | 256-bit EC                  |           |
  |                         |                             |           |
  | iso-kam3-ec-p521-sha512 | ISO-11770-4 KAM3,           | RFC 8121  |
  |                         | 521-bit EC                  |           |
  +-------------------------+-----------------------------+-----------+

5.  Security Considerations

  Please refer to the Security Considerations section of the core
  specification [RFC8120] for algorithm-independent considerations.

5.1.  General Implementation Considerations

  o  During the exchange, the value VK_s, defined in [RFC8120], MUST
     only be sent when the server has received a correct (expected)
     value of VK_c.  This is a cryptographic requirement, as stated in
     [ISO.11770-4.2006].

  o  All random numbers used in these algorithms MUST be
     cryptographically secure against forward and backward guessing
     attacks.

  o  To prevent timing-based side-channel attacks, computation times of
     all numerical operations on discrete-logarithm group elements and
     elliptic-curve points MUST be normalized and made independent of
     the exact values.










Oiwa, et al.                  Experimental                      [Page 9]

RFC 8121         HTTP Mutual Authentication: Algorithms       April 2017


5.2.  Cryptographic Assumptions and Considerations

  The notes in this subsection are for those who analyze the security
  of this algorithm and those who might want to make a derived work
  from this algorithm specification.

  o  The treatment of an invalid K_s1 value in the exchange has been
     changed from the method defined in the original ISO specification,
     which specifies that the sender should retry with another random
     S_s1 value.  We specify that the exchange must be rejected.  This
     is due to an observation that this condition is less likely to
     result from a random error caused by an unlucky choice of S_s1 but
     is more likely the result of a systematic failure caused by an
     invalid J(pi) value (even implying possible denial-of-service
     attacks).

  o  The usual construction of authenticated key exchange algorithms
     consists of a key exchange phase and a key verification phase.  To
     avoid security risks or vulnerabilities caused by mixing values
     from two or more key exchanges, the latter usually involves some
     kinds of exchange transactions to be verified.  In the algorithms
     defined in this document, such verification steps are provided in
     the generalized definitions of VK_c and VK_s in [RFC8120].  If the
     algorithm defined above is used in other protocols, this aspect
     MUST be given careful consideration.

  o  The domain parameters chosen and specified in this document are
     based on a few assumptions.  In the discrete-logarithm setting,
     q has to be a safe prime ([(q - 1) / 2] must also be prime), and
     r should be the largest possible value [(q - 1) / 2].  In the
     elliptic-curve setting, r has to be prime.  Implementers defining
     a variation of this algorithm using a different domain parameter
     SHOULD be attentive to these conditions.


















Oiwa, et al.                  Experimental                     [Page 10]

RFC 8121         HTTP Mutual Authentication: Algorithms       April 2017


6.  References

6.1.  Normative References

  [FIPS.180-4.2015]
             National Institute of Standards and Technology, "Secure
             Hash Standard (SHS)", FIPS PUB 180-4,
             DOI 10.6028/NIST.FIPS.180-4, August 2015,
             <http://nvlpubs.nist.gov/nistpubs/FIPS/
             NIST.FIPS.180-4.pdf>.

  [FIPS.186-4.2013]
             National Institute of Standards and Technology, "Digital
             Signature Standard (DSS)", FIPS PUB 186-4,
             DOI 10.6028/NIST.FIPS.186-4, July 2013,
             <http://nvlpubs.nist.gov/nistpubs/FIPS/
             NIST.FIPS.186-4.pdf>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC3526]  Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)
             Diffie-Hellman groups for Internet Key Exchange (IKE)",
             RFC 3526, DOI 10.17487/RFC3526, May 2003,
             <http://www.rfc-editor.org/info/rfc3526>.

  [RFC8120]  Oiwa, Y., Watanabe, H., Takagi, H., Maeda, K., Hayashi,
             T., and Y. Ioku, "Mutual Authentication Protocol for
             HTTP", RFC 8120, DOI 10.17487/RFC8120, April 2017,
             <http://www.rfc-editor.org/info/rfc8120>.



















Oiwa, et al.                  Experimental                     [Page 11]

RFC 8121         HTTP Mutual Authentication: Algorithms       April 2017


6.2.  Informative References

  [IEEE-1363.2_2008]
             IEEE, "IEEE Standard Specifications for Password-Based
             Public-Key Cryptographic Techniques", IEEE 1363.2-2008,
             DOI 10.1109/ieeestd.2009.4773330,
             <http://ieeexplore.ieee.org/servlet/
             opac?punumber=4773328>.

  [ISO.11770-4.2006]
             International Organization for Standardization,
             "Information technology -- Security techniques -- Key
             management -- Part 4: Mechanisms based on weak secrets",
             ISO Standard 11770-4, May 2006,
             <http://www.iso.org/iso/iso_catalogue/catalogue_tc/
             catalogue_detail.htm?csnumber=39723>.

  [RFC6090]  McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
             Curve Cryptography Algorithms", RFC 6090,
             DOI 10.17487/RFC6090, February 2011,
             <http://www.rfc-editor.org/info/rfc6090>.






























Oiwa, et al.                  Experimental                     [Page 12]

RFC 8121         HTTP Mutual Authentication: Algorithms       April 2017


Appendix A.  (Informative) Group Parameters for Algorithms Based on the
            Discrete Logarithm

  The MODP group used for the iso-kam3-dl-2048-sha256 algorithm is
  defined by the following parameters:

  The prime is

     q = 0xFFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
           29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
           EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
           E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
           EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
           C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F
           83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
           670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B
           E39E772C 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9
           DE2BCBF6 95581718 3995497C EA956AE5 15D22618 98FA0510
           15728E5A 8AACAA68 FFFFFFFF FFFFFFFF

  The generator is

     g = 2

  The size of the subgroup generated by g is

     r = (q - 1) / 2 =
         0x7FFFFFFF FFFFFFFF E487ED51 10B4611A 62633145 C06E0E68
           94812704 4533E63A 0105DF53 1D89CD91 28A5043C C71A026E
           F7CA8CD9 E69D218D 98158536 F92F8A1B A7F09AB6 B6A8E122
           F242DABB 312F3F63 7A262174 D31BF6B5 85FFAE5B 7A035BF6
           F71C35FD AD44CFD2 D74F9208 BE258FF3 24943328 F6722D9E
           E1003E5C 50B1DF82 CC6D241B 0E2AE9CD 348B1FD4 7E9267AF
           C1B2AE91 EE51D6CB 0E3179AB 1042A95D CF6A9483 B84B4B36
           B3861AA7 255E4C02 78BA3604 650C10BE 19482F23 171B671D
           F1CF3B96 0C074301 CD93C1D1 7603D147 DAE2AEF8 37A62964
           EF15E5FB 4AAC0B8C 1CCAA4BE 754AB572 8AE9130C 4C7D0288
           0AB9472D 45565534 7FFFFFFF FFFFFFFF













Oiwa, et al.                  Experimental                     [Page 13]

RFC 8121         HTTP Mutual Authentication: Algorithms       April 2017


  The MODP group used for the iso-kam3-dl-4096-sha512 algorithm is
  defined by the following parameters:

  The prime is

     q = 0xFFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
           29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
           EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
           E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
           EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
           C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F
           83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
           670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B
           E39E772C 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9
           DE2BCBF6 95581718 3995497C EA956AE5 15D22618 98FA0510
           15728E5A 8AAAC42D AD33170D 04507A33 A85521AB DF1CBA64
           ECFB8504 58DBEF0A 8AEA7157 5D060C7D B3970F85 A6E1E4C7
           ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226 1AD2EE6B
           F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
           BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31
           43DB5BFC E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7
           88719A10 BDBA5B26 99C32718 6AF4E23C 1A946834 B6150BDA
           2583E9CA 2AD44CE8 DBBBC2DB 04DE8EF9 2E8EFC14 1FBECAA6
           287C5947 4E6BC05D 99B2964F A090C3A2 233BA186 515BE7ED
           1F612970 CEE2D7AF B81BDD76 2170481C D0069127 D5B05AA9
           93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34063199
           FFFFFFFF FFFFFFFF

  The generator is

     g = 2




















Oiwa, et al.                  Experimental                     [Page 14]

RFC 8121         HTTP Mutual Authentication: Algorithms       April 2017


  The size of the subgroup generated by g is

     r = (q - 1) / 2 =
         0x7FFFFFFF FFFFFFFF E487ED51 10B4611A 62633145 C06E0E68
           94812704 4533E63A 0105DF53 1D89CD91 28A5043C C71A026E
           F7CA8CD9 E69D218D 98158536 F92F8A1B A7F09AB6 B6A8E122
           F242DABB 312F3F63 7A262174 D31BF6B5 85FFAE5B 7A035BF6
           F71C35FD AD44CFD2 D74F9208 BE258FF3 24943328 F6722D9E
           E1003E5C 50B1DF82 CC6D241B 0E2AE9CD 348B1FD4 7E9267AF
           C1B2AE91 EE51D6CB 0E3179AB 1042A95D CF6A9483 B84B4B36
           B3861AA7 255E4C02 78BA3604 650C10BE 19482F23 171B671D
           F1CF3B96 0C074301 CD93C1D1 7603D147 DAE2AEF8 37A62964
           EF15E5FB 4AAC0B8C 1CCAA4BE 754AB572 8AE9130C 4C7D0288
           0AB9472D 45556216 D6998B86 82283D19 D42A90D5 EF8E5D32
           767DC282 2C6DF785 457538AB AE83063E D9CB87C2 D370F263
           D5FAD746 6D8499EB 8F464A70 2512B0CE E771E913 0D697735
           F897FD03 6CC50432 6C3B0139 9F643532 290F958C 0BBD9006
           5DF08BAB BD30AEB6 3B84C460 5D6CA371 047127D0 3A72D598
           A1EDADFE 707E8847 25C16890 54908400 8D391E09 53C3F36B
           C438CD08 5EDD2D93 4CE1938C 357A711E 0D4A341A 5B0A85ED
           12C1F4E5 156A2674 6DDDE16D 826F477C 97477E0A 0FDF6553
           143E2CA3 A735E02E CCD94B27 D04861D1 119DD0C3 28ADF3F6
           8FB094B8 67716BD7 DC0DEEBB 10B8240E 68034893 EAD82D54
           C9DA754C 46C7EEE0 C37FDBEE 48536047 A6FA1AE4 9A0318CC
           FFFFFFFF FFFFFFFF


























Oiwa, et al.                  Experimental                     [Page 15]

RFC 8121         HTTP Mutual Authentication: Algorithms       April 2017


Appendix B.  (Informative) Derived Numerical Values

  This section provides several numerical values for implementing this
  protocol.  These values are derived from the specifications provided
  in Section 3.  The values shown in this section are for informative
  purposes only.

  +----------------+---------+---------+---------+---------+----------+
  |                | dl-2048 | dl-4096 | ec-p256 | ec-p521 |          |
  +----------------+---------+---------+---------+---------+----------+
  | Size of K_c1,  | 2048    | 4096    | 257     | 522     | (bits)   |
  | etc.           |         |         |         |         |          |
  |                |         |         |         |         |          |
  | hSize, size of | 256     | 512     | 256     | 512     | (bits)   |
  | H(...)         |         |         |         |         |          |
  |                |         |         |         |         |          |
  | Length of      | 256     | 512     | 33      | 66      | (octets) |
  | OCTETS(K_c1),  |         |         |         |         |          |
  | etc.           |         |         |         |         |          |
  |                |         |         |         |         |          |
  | Length of kc1, | 344*    | 684*    | 66      | 132     | (octets) |
  | ks1 param.     |         |         |         |         |          |
  | values         |         |         |         |         |          |
  |                |         |         |         |         |          |
  | Length of vkc, | 44*     | 88*     | 64      | 128     | (octets) |
  | vks param.     |         |         |         |         |          |
  | values         |         |         |         |         |          |
  |                |         |         |         |         |          |
  | Minimum        | 2048    | 4096    | 1       | 1       |          |
  | allowed S_c1   |         |         |         |         |          |
  +----------------+---------+---------+---------+---------+----------+

  (The numbers marked with an "*" do not include any enclosing
  quotation marks.)

















Oiwa, et al.                  Experimental                     [Page 16]

RFC 8121         HTTP Mutual Authentication: Algorithms       April 2017


Authors' Addresses

  Yutaka Oiwa
  National Institute of Advanced Industrial Science and Technology
  Information Technology Research Institute
  Tsukuba Central 1
  1-1-1 Umezono
  Tsukuba-shi, Ibaraki
  Japan
  Email: [email protected]

  Hajime Watanabe
  National Institute of Advanced Industrial Science and Technology
  Information Technology Research Institute
  Tsukuba Central 1
  1-1-1 Umezono
  Tsukuba-shi, Ibaraki
  Japan
  Email: [email protected]

  Hiromitsu Takagi
  National Institute of Advanced Industrial Science and Technology
  Information Technology Research Institute
  Tsukuba Central 1
  1-1-1 Umezono
  Tsukuba-shi, Ibaraki
  Japan
  Email: [email protected]

  Kaoru Maeda
  Individual Contributor
  Email: [email protected]

  Tatsuya Hayashi
  Lepidum Co. Ltd.
  Village Sasazuka 3, Suite #602
  1-30-3 Sasazuka
  Shibuya-ku, Tokyo
  Japan
  Email: [email protected]

  Yuichi Ioku
  Individual Contributor
  Email: [email protected]







Oiwa, et al.                  Experimental                     [Page 17]