Internet Engineering Task Force (IETF)                          J. Jeong
Request for Comments: 8106                       Sungkyunkwan University
Obsoletes: 6106                                                  S. Park
Category: Standards Track                            Samsung Electronics
ISSN: 2070-1721                                               L. Beloeil
                                                                 Orange
                                                         S. Madanapalli
                                                               NTT Data
                                                             March 2017


       IPv6 Router Advertisement Options for DNS Configuration

Abstract

  This document specifies IPv6 Router Advertisement (RA) options
  (called "DNS RA options") to allow IPv6 routers to advertise a list
  of DNS Recursive Server Addresses and a DNS Search List to IPv6
  hosts.

  This document, which obsoletes RFC 6106, defines a higher default
  value of the lifetime of the DNS RA options to reduce the likelihood
  of expiry of the options on links with a relatively high rate of
  packet loss.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc8106.













Jeong, et al.                Standards Track                    [Page 1]

RFC 8106                   IPv6 DNS RA Options                March 2017


Copyright Notice

  Copyright (c) 2017 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
     1.1. Applicability Statements ...................................3
     1.2. Coexistence of RA Options and DHCP Options for DNS
          Configuration ..............................................4
  2. Requirements Language ...........................................4
  3. Terminology .....................................................4
  4. Overview ........................................................5
  5. Neighbor Discovery Extension ....................................5
     5.1. Recursive DNS Server Option ................................6
     5.2. DNS Search List Option .....................................7
     5.3. DNS Configuration Procedure ................................8
          5.3.1. Procedure in IPv6 Hosts .............................9
          5.3.2. Warnings for DNS Options Configuration ..............9
  6. Implementation Considerations ..................................10
     6.1. DNS Repository Management .................................10
     6.2. Synchronization between DNS Server List and
          Resolver Repository .......................................11
     6.3. Synchronization between DNS Search List and
          Resolver Repository .......................................12
  7. Security Considerations ........................................12
     7.1. Security Threats ..........................................12
     7.2. Recommendations ...........................................13
  8. IANA Considerations ............................................13
  9. References .....................................................14
     9.1. Normative References ......................................14
     9.2. Informative References ....................................14
  Appendix A. Changes from RFC 6106 .................................17
  Acknowledgements ..................................................18
  Authors' Addresses ................................................19





Jeong, et al.                Standards Track                    [Page 2]

RFC 8106                   IPv6 DNS RA Options                March 2017


1.  Introduction

  The purpose of this document is to standardize IPv6 Router
  Advertisement (RA) options (DNS RA options) for DNS Recursive Server
  Addresses used for DNS name resolution in IPv6 hosts, and also for a
  DNS Search List (DNSSL) of domain suffixes.

  IPv6 Neighbor Discovery (ND) and IPv6 Stateless Address
  Autoconfiguration (SLAAC) provide ways to configure either fixed or
  mobile nodes with one or more IPv6 addresses, default routers, and
  some other parameters [RFC4861] [RFC4862].

  It is infeasible to manually configure nomadic hosts each time they
  connect to a different network.  While a one-time static
  configuration is possible, it is generally not desirable on general-
  purpose hosts such as laptops.  For instance, locally defined
  namespaces would not be available to the host if it were to run its
  own recursive name server directly connected to the global DNS.

  The DNS information can also be provided through DHCPv6 [RFC3315]
  [RFC3736] [RFC3646].  However, access to DNS is a fundamental
  requirement for almost all hosts, so IPv6 SLAAC cannot stand on its
  own as an alternative deployment model in any practical network
  without any support for DNS configuration.

  These issues are not pressing in dual-stack networks as long as a DNS
  server is available on the IPv4 side, but they become more critical
  with the deployment of IPv6-only networks.  As a result, this
  document defines a mechanism based on DNS RA options to allow IPv6
  hosts to perform automatic DNS configuration.

1.1.  Applicability Statements

  RA-based DNS configuration is a useful alternative in networks where
  an IPv6 host's address is autoconfigured through IPv6 SLAAC and where
  either (i) there is no DHCPv6 infrastructure at all or (ii) some
  hosts do not have a DHCPv6 client.  The intention is to enable the
  full configuration of basic networking information for hosts without
  requiring DHCPv6.  However, for networks that need to distribute
  additional information, DHCPv6 is likely to be employed.  In these
  networks, RA-based DNS configuration may not be needed.

  RA-based DNS configuration allows an IPv6 host to acquire the DNS
  configuration (i.e., DNS Recursive Server Addresses and the DNSSL)
  for the link(s) to which the host is connected.  Furthermore, the
  host learns this DNS configuration from the same RA message that
  provides configuration information for the link.




Jeong, et al.                Standards Track                    [Page 3]

RFC 8106                   IPv6 DNS RA Options                March 2017


  The advantages and disadvantages of the RA-based approach are
  discussed in [RFC4339] along with other approaches, such as the DHCP
  and well-known anycast address approaches.

1.2.  Coexistence of RA Options and DHCP Options for DNS Configuration

  Two protocols exist to configure the DNS information on a host: the
  RA options specified in this document and the DHCPv6 options
  specified in [RFC3646].  They can be used together.  The rules
  governing the decision to use stateful configuration mechanisms are
  specified in [RFC4861].  Hosts conforming to this specification MUST
  extract DNS information from RA messages, unless static DNS
  configuration has been specified by the user.  If there is DNS
  information available from multiple RAs and/or from DHCP, the host
  MUST maintain an ordered list of this information as specified in
  Section 5.3.1.

2.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

3.  Terminology

  This document uses the terminology defined in [RFC4861] and
  [RFC4862].  In addition, six new terms are defined below:

  o  Recursive DNS Server (RDNSS): A server that provides a recursive
     DNS resolution service for translating domain names into IP
     addresses or resolving PTR records as defined in [RFC1034] and
     [RFC1035].

  o  RDNSS Option: An IPv6 RA option to deliver the RDNSS information
     to IPv6 hosts [RFC4861].

  o  DNS Search List (DNSSL): The list of DNS suffix domain names used
     by IPv6 hosts when they perform DNS query searches for short,
     unqualified domain names.

  o  DNSSL Option: An IPv6 RA option to deliver the DNSSL information
     to IPv6 hosts.

  o  DNS Repository: Two data structures for managing DNS configuration
     information in the IPv6 protocol stack, in addition to the
     Neighbor Cache and Destination Cache for Neighbor Discovery





Jeong, et al.                Standards Track                    [Page 4]

RFC 8106                   IPv6 DNS RA Options                March 2017


     [RFC4861].  The first data structure is the DNS Server List for
     RDNSS addresses, and the second is the DNSSL for DNS search domain
     names.

  o  Resolver Repository: Configuration repository with RDNSS addresses
     and a DNSSL that a DNS resolver on the host uses for DNS name
     resolution -- for example, the UNIX resolver file (i.e.,
     /etc/resolv.conf) and the Windows registry.

4.  Overview

  This document standardizes an ND option called the "RDNSS option",
  which contains the addresses of RDNSSes.  This document also
  standardizes an ND option called the "DNSSL option", which contains
  the DNSSL.  This is to maintain parity with the DHCPv6 options and to
  ensure that there is necessary functionality to determine the search
  domains.

  The existing ND message (i.e., RA) is used to carry this information.
  An IPv6 host can configure the IPv6 addresses of one or more RDNSSes
  via RA messages.  Through the RDNSS and DNSSL options, along with the
  Prefix Information option based on the ND protocol [RFC4861]
  [RFC4862], an IPv6 host can perform the network configuration of its
  IPv6 address and the DNS information simultaneously without needing
  DHCPv6 for the DNS configuration.  The RA options for RDNSS and DNSSL
  can be used on networks that support the use of ND.

  This approach requires manual configuration or automatic mechanisms
  (e.g., DHCPv6 or vendor-proprietary configuration mechanisms) to
  configure the DNS information in routers sending the advertisements.
  The automatic configuration of RDNSS addresses and a DNSSL in routers
  is out of scope for this document.

5.  Neighbor Discovery Extension

  The IPv6 DNS configuration mechanism described in this document needs
  two ND options in Neighbor Discovery: (i) the RDNSS option and
  (ii) the DNSSL option.













Jeong, et al.                Standards Track                    [Page 5]

RFC 8106                   IPv6 DNS RA Options                March 2017


5.1.  Recursive DNS Server Option

  The RDNSS option contains one or more IPv6 addresses of RDNSSes.  All
  of the addresses share the same Lifetime value.  If it is desirable
  to have different Lifetime values, multiple RDNSS options can be
  used.  Figure 1 shows the format of the RDNSS option.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Type      |     Length    |           Reserved            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                           Lifetime                            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    :            Addresses of IPv6 Recursive DNS Servers            :
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 1: RDNSS Option Format

  Fields:

  Type        8-bit identifier of the RDNSS option type as assigned by
              IANA: 25

  Length      8-bit unsigned integer.  The length of the option
              (including the Type and Length fields) is in units of
              8 octets.  The minimum value is 3 if one IPv6 address is
              contained in the option.  Every additional RDNSS address
              increases the length by 2.  The Length field is used by
              the receiver to determine the number of IPv6 addresses in
              the option.

  Lifetime    32-bit unsigned integer.  The maximum time in seconds
              (relative to the time the packet is received) over which
              these RDNSS addresses MAY be used for name resolution.
              The value of Lifetime SHOULD by default be at least
              3 * MaxRtrAdvInterval, where MaxRtrAdvInterval is the
              maximum RA interval as defined in [RFC4861].  A value of
              all one bits (0xffffffff) represents infinity.  A value
              of zero means that the RDNSS addresses MUST no longer
              be used.








Jeong, et al.                Standards Track                    [Page 6]

RFC 8106                   IPv6 DNS RA Options                March 2017


  Addresses of IPv6 Recursive DNS Servers
              One or more 128-bit IPv6 addresses of the RDNSSes.  The
              number of addresses is determined by the Length field.
              That is, the number of addresses is equal to
              (Length - 1) / 2.

  Note: The addresses for RDNSSes in the RDNSS option MAY be link-local
        addresses.  Such link-local addresses SHOULD be registered in
        the Resolver Repository along with the corresponding link zone
        indices of the links that receive the RDNSS option(s) for them.
        The link-local addresses MAY be represented in the Resolver
        Repository with their link zone indices in the textual format
        for scoped addresses as described in [RFC4007].  When a
        resolver sends a DNS query message to an RDNSS identified by a
        link-local address, it MUST use the corresponding link.

        The rationale of the default value of the Lifetime field is as
        follows.  The Router Lifetime field, set by AdvDefaultLifetime,
        has the default of 3 * MaxRtrAdvInterval as specified in
        [RFC4861], so such a default or a larger default can allow for
        the reliability of DNS options even under the loss of RAs on
        links with a relatively high rate of packet loss.  Note that
        the ratio of AdvDefaultLifetime to MaxRtrAdvInterval is the
        number of unsolicited multicast RAs sent by the router.  Since
        the DNS option entries can survive for at most three
        consecutive losses of RAs containing DNS options, the default
        value of the Lifetime lets the DNS option entries be resilient
        to packet-loss environments.

5.2.  DNS Search List Option

  The DNSSL option contains one or more domain names of DNS suffixes.
  All of the domain names share the same Lifetime value.  If it is
  desirable to have different Lifetime values, multiple DNSSL options
  can be used.  Figure 2 shows the format of the DNSSL option.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Type      |     Length    |           Reserved            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                           Lifetime                            |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    :                Domain Names of DNS Search List                :
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+




Jeong, et al.                Standards Track                    [Page 7]

RFC 8106                   IPv6 DNS RA Options                March 2017


                      Figure 2: DNSSL Option Format

  Fields:

  Type        8-bit identifier of the DNSSL option type as assigned by
              IANA: 31

  Length      8-bit unsigned integer.  The length of the option
              (including the Type and Length fields) is in units of
              8 octets.  The minimum value is 2 if at least one domain
              name is contained in the option.  The Length field is set
              to a multiple of 8 octets to accommodate all the domain
              names in the "Domain Names of DNS Search List" field.

  Lifetime    32-bit unsigned integer.  The maximum time in seconds
              (relative to the time the packet is received) over which
              these DNSSL domain names MAY be used for name resolution.
              The Lifetime value has the same semantics as the
              semantics for the RDNSS option.  That is, Lifetime SHOULD
              by default be at least 3 * MaxRtrAdvInterval.  A value of
              all one bits (0xffffffff) represents infinity.  A value
              of zero means that the DNSSL domain names MUST no longer
              be used.

  Domain Names of DNS Search List
              One or more domain names of the DNSSL that MUST be
              encoded as described in Section 3.1 of [RFC1035].  With
              this technique, each domain name is represented as a
              sequence of labels ending in a zero octet, defined as a
              domain name representation.  For more than one domain
              name, the corresponding domain name representations are
              concatenated as they are.  Note that for the simple
              decoding, the domain names MUST NOT be encoded in the
              compressed form described in Section 4.1.4 of [RFC1035].
              Because the size of this field MUST be a multiple of
              8 octets, for the minimum multiple including the domain
              name representations, the remaining octets other than the
              encoding parts of the domain name representations MUST be
              padded with zeros.

5.3.  DNS Configuration Procedure

  The procedure for DNS configuration through the RDNSS and DNSSL
  options is the same as it is with any other ND option [RFC4861].







Jeong, et al.                Standards Track                    [Page 8]

RFC 8106                   IPv6 DNS RA Options                March 2017


5.3.1.  Procedure in IPv6 Hosts

  When an IPv6 host receives DNS options (i.e., RDNSS and DNSSL
  options) through RA messages, it processes the options as follows:

  o  The validity of DNS options is checked with the Length field;
     that is, the value of the Length field in the RDNSS option is
     greater than or equal to the minimum value (3) and satisfies the
     requirement that (Length - 1) % 2 == 0.  The value of the Length
     field in the DNSSL option is greater than or equal to the minimum
     value (2).  Also, the validity of the RDNSS option is checked with
     the "Addresses of IPv6 Recursive DNS Servers" field; that is, the
     addresses should be unicast addresses.

  o  If the DNS options are valid, the host SHOULD copy the values of
     the options into the DNS Repository and the Resolver Repository in
     order.  Otherwise, the host MUST discard the options.  Refer to
     Section 6 for the detailed procedure.

  In the case where the DNS information of RDNSS and DNSSL can be
  obtained from multiple sources, such as RAs and DHCP, the IPv6 host
  SHOULD keep some DNS options from all sources.  Unless explicitly
  specified for the discovery mechanism, the exact number of addresses
  and domain names to keep is a matter of local policy and
  implementation choice as a local configuration option.  However, in
  the case of multiple sources, the ability to store a total of at
  least three RDNSS addresses (or DNSSL domain names) from the multiple
  sources is RECOMMENDED.  The DNS options from RAs and DHCP SHOULD be
  stored in the DNS Repository and Resolver Repository so that
  information from DHCP appears there first and therefore takes
  precedence.  Thus, the DNS information from DHCP takes precedence
  over that from RAs for DNS queries.  On the other hand, for DNS
  options announced by RAs, if some RAs use the Secure Neighbor
  Discovery (SEND) protocol [RFC3971] for RA security, they MUST be
  preferred over those that do not use SEND.  Also, DNS options
  announced by RAs via SEND MUST be preferred over those announced by
  unauthenticated DHCP [RFC3118].  Refer to Section 7 for a detailed
  discussion of SEND for DNS RA options.

5.3.2.  Warnings for DNS Options Configuration

  There are two warnings for DNS options configuration: (i) warning for
  multiple sources of DNS options and (ii) warning for multiple network
  interfaces.  First, in the case of multiple sources for DNS options
  (e.g., RAs and DHCP), an IPv6 host can configure its IP addresses
  from these sources.  In this case, it is not possible to control how
  the host uses DNS information and what source addresses it uses to
  send DNS queries.  As a result, configurations where different



Jeong, et al.                Standards Track                    [Page 9]

RFC 8106                   IPv6 DNS RA Options                March 2017


  information is provided by different mechanisms for autoconfiguration
  may lead to problems.  Therefore, the network administrator needs to
  carefully configure different DNS options in the multiple mechanisms
  for autoconfiguration in order to minimize the impact of such
  problems [DHCPv6-SLAAC].

  Second, if different DNS information is provided on different network
  interfaces, this can lead to inconsistent behavior.  The IETF worked
  on solving this problem for both DNS and other information obtained
  from multiple interfaces [RFC6418] [RFC6419] and standardized a
  DHCP-based solution for RDNSS selection for multi-interfaced nodes as
  described in [RFC6731].

6.  Implementation Considerations

  The implementation considerations in this document include the
  following three: (i) DNS repository management, (ii) synchronization
  between the DNS Server List and the Resolver Repository, and
  (iii) synchronization between the DNSSL and the Resolver Repository.

  Note: The implementations that are updated according to this document
        will still interoperate with the existing implementations
        according to [RFC6106].  This is because the main change in
        this document is the increase of the default Lifetime of DNS
        options, considering lossy links.

6.1.  DNS Repository Management

  For DNS repository management, the following two data structures
  SHOULD be synchronized with the Resolver Repository: (i) the DNS
  Server List, which keeps the list of RDNSS addresses and (ii) the
  DNSSL, which keeps the list of DNS search domain names.  Each entry
  in these two lists consists of a pair of an RDNSS address (or DNSSL
  domain name) and Expiration-time as follows:

  o  RDNSS address for DNS Server List: IPv6 address of the RDNSS that
     is available for recursive DNS resolution service in the network
     advertising the RDNSS option.

  o  DNSSL domain name for DNSSL: DNS suffix domain name that is used
     to perform DNS query searches for short, unqualified domain names.

  o  Expiration-time for DNS Server List or DNSSL: The time when this
     entry becomes invalid.  Expiration-time is set to the value of the
     Lifetime field of the RDNSS option or DNSSL option plus the
     current time.  Whenever a new RDNSS option with the same address
     (or DNSSL option with the same domain name) is received on the
     same interface as a previous RDNSS option (or DNSSL option), this



Jeong, et al.                Standards Track                   [Page 10]

RFC 8106                   IPv6 DNS RA Options                March 2017


     field is updated to have a new Expiration-time.  When the current
     time becomes larger than Expiration-time, this entry is regarded
     as expired, so it should not be used any more.  Note that the DNS
     information for the RDNSS and DNSSL options need not be dropped if
     the expiry of the RA router lifetime happens.  This is because
     these options have their own lifetime values.

6.2.  Synchronization between DNS Server List and Resolver Repository

  When an IPv6 host receives the information of multiple RDNSS
  addresses within a network (e.g., campus network and company network)
  through an RA message with RDNSS option(s), it stores the RDNSS
  addresses (in order) in both the DNS Server List and the Resolver
  Repository.  The processing of the RDNSS consists of (i) the
  processing of RDNSS option(s) included in an RA message and (ii) the
  handling of expired RDNSSes.  The processing of RDNSS option(s) is as
  follows:

  o  Step (a): Receive and parse the RDNSS option(s).  For the RDNSS
     addresses in each RDNSS option, perform Steps (b) through (d).

  o  Step (b): For each RDNSS address, check the following: If the
     RDNSS address already exists in the DNS Server List and the RDNSS
     option's Lifetime field is set to zero, delete the corresponding
     RDNSS entry from both the DNS Server List and the Resolver
     Repository in order to prevent the RDNSS address from being used
     any more for certain reasons in network management, e.g., the
     termination of the RDNSS or a renumbering scenario.  That is, the
     RDNSS can resign from its DNS service because the machine running
     the RDNSS is out of service intentionally or unintentionally.
     Also, in the renumbering scenario, the RDNSS's IPv6 address will
     be changed, so the previous RDNSS address should not be used any
     more.  The processing of this RDNSS address is finished here.
     Otherwise, go to Step (c).

  o  Step (c): For each RDNSS address, if it already exists in the DNS
     Server List and the RDNSS option's Lifetime field is not set to
     zero, then just update the value of the Expiration-time field
     according to the procedure specified in the third bullet of
     Section 6.1.  Otherwise, go to Step (d).

  o  Step (d): For each RDNSS address, if it does not exist in the DNS
     Server List, register the RDNSS address and Lifetime with the DNS
     Server List and then insert the RDNSS address as the first one in
     the Resolver Repository.  In the case where the data structure for
     the DNS Server List is full of RDNSS entries (that is, has more
     RDNSSes than the sufficient number discussed in Section 5.3.1),
     delete from the DNS Server List the entry with the shortest



Jeong, et al.                Standards Track                   [Page 11]

RFC 8106                   IPv6 DNS RA Options                March 2017


     Expiration-time (i.e., the entry that will expire first).  The
     corresponding RDNSS address is also deleted from the Resolver
     Repository.  For the ordering of RDNSS addresses in an RDNSS
     option, position the first RDNSS address in the RDNSS option as
     the first one in the Resolver Repository, the second RDNSS address
     in the option as the second one in the repository, and so on.
     This ordering allows the RDNSS addresses in the RDNSS option to be
     preferred according to their order in the RDNSS option for DNS
     name resolution.  The processing of these RDNSS addresses is
     finished here.

  The handling of expired RDNSSes is as follows: Whenever an entry
  expires in the DNS Server List, the expired entry is deleted from the
  DNS Server List, and also the RDNSS address corresponding to the
  entry is deleted from the Resolver Repository.

6.3.  Synchronization between DNS Search List and Resolver Repository

  When an IPv6 host receives the information of multiple DNSSL domain
  names within a network through an RA message with DNSSL option(s), it
  stores the DNSSL domain names (in order) in both the DNSSL and the
  Resolver Repository.  The processing of the DNSSL consists of (i) the
  processing of DNSSL option(s) included in an RA message and (ii) the
  handling of expired DNSSLs.  The processing of DNSSL option(s) is the
  same as the processing of RDNSS option(s) as described in
  Section 6.2.

7.  Security Considerations

  In this section, we analyze security threats related to DNS options
  and then make recommendations to cope with such security threats.

7.1.  Security Threats

  For the RDNSS option, an attacker could send an RA with a fraudulent
  RDNSS address, misleading IPv6 hosts into contacting an unintended
  DNS server for DNS name resolution.  Also, for the DNSSL option, an
  attacker can let IPv6 hosts resolve a hostname without a DNS suffix
  into an unintended host's IP address with a fraudulent DNSSL.  These
  attacks are similar to ND attacks specified in [RFC4861] that use
  Redirect or Neighbor Advertisement messages to redirect traffic to
  individual addresses of malicious parties.









Jeong, et al.                Standards Track                   [Page 12]

RFC 8106                   IPv6 DNS RA Options                March 2017


  However, the security of these RA options for DNS configuration does
  not affect ND protocol security [RFC4861].  This is because learning
  DNS information via the RA options cannot be worse than learning bad
  router information via the RA options.  Therefore, the vulnerability
  of ND is not worse and is a subset of the attacks that any node
  attached to a LAN can do.

7.2.  Recommendations

  The Secure Neighbor Discovery (SEND) protocol [RFC3971] is designed
  as a security mechanism for ND.  In this case, ND can use SEND to
  allow all the ND options, including the RDNSS and DNSSL options, to
  be automatically signed with digital signatures.

  It is common for network devices such as switches to include
  mechanisms to block unauthorized ports from running a DHCPv6 server
  to provide protection from rogue DHCPv6 servers [RFC7610].  That
  means that an attacker on other ports cannot insert bogus DNS servers
  using DHCPv6.  The corresponding technique for network devices is
  RECOMMENDED to block rogue RA messages that include the RDNSS and
  DNSSL options from unauthorized nodes [RFC6104] [RFC6105].

  An attacker may provide a bogus DNSSL option in order to cause the
  victim to send DNS queries to a specific DNS server when the victim
  queries non-FQDNs (fully qualified domain names).  For this attack,
  the DNS resolver in IPv6 hosts can mitigate the vulnerability with
  the recommendations mentioned in [RFC1535], [RFC1536], and [RFC3646].

8.  IANA Considerations

  The RDNSS option defined in this document uses the IPv6 Neighbor
  Discovery Option type assigned by IANA as follows:

     Option Name                    Type
     -----------------------------------
     Recursive DNS Server Option    25

  The DNSSL option defined in this document uses the IPv6 Neighbor
  Discovery Option type assigned by IANA as follows:

     Option Name                    Type
     -----------------------------------
     DNS Search List Option         31

  These options are registered in the "IPv6 Neighbor Discovery Option
  Formats" registry [ICMPv6].





Jeong, et al.                Standards Track                   [Page 13]

RFC 8106                   IPv6 DNS RA Options                March 2017


9.  References

9.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC4861]  Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
             "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
             DOI 10.17487/RFC4861, September 2007,
             <http://www.rfc-editor.org/info/rfc4861>.

  [RFC4862]  Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
             Address Autoconfiguration", RFC 4862,
             DOI 10.17487/RFC4862, September 2007,
             <http://www.rfc-editor.org/info/rfc4862>.

  [RFC1035]  Mockapetris, P., "Domain names - implementation and
             specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
             November 1987, <http://www.rfc-editor.org/info/rfc1035>.

  [RFC4007]  Deering, S., Haberman, B., Jinmei, T., Nordmark, E., and
             B. Zill, "IPv6 Scoped Address Architecture", RFC 4007,
             DOI 10.17487/RFC4007, March 2005,
             <http://www.rfc-editor.org/info/rfc4007>.

9.2.  Informative References

  [RFC1034]  Mockapetris, P., "Domain names - concepts and facilities",
             STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
             <http://www.rfc-editor.org/info/rfc1034>.

  [RFC3315]  Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
             C., and M. Carney, "Dynamic Host Configuration Protocol
             for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315,
             July 2003, <http://www.rfc-editor.org/info/rfc3315>.

  [RFC3736]  Droms, R., "Stateless Dynamic Host Configuration Protocol
             (DHCP) Service for IPv6", RFC 3736, DOI 10.17487/RFC3736,
             April 2004, <http://www.rfc-editor.org/info/rfc3736>.

  [RFC3646]  Droms, R., Ed., "DNS Configuration options for Dynamic
             Host Configuration Protocol for IPv6 (DHCPv6)", RFC 3646,
             DOI 10.17487/RFC3646, December 2003,
             <http://www.rfc-editor.org/info/rfc3646>.




Jeong, et al.                Standards Track                   [Page 14]

RFC 8106                   IPv6 DNS RA Options                March 2017


  [RFC6106]  Jeong, J., Park, S., Beloeil, L., and S. Madanapalli,
             "IPv6 Router Advertisement Options for DNS Configuration",
             RFC 6106, DOI 10.17487/RFC6106, November 2010,
             <http://www.rfc-editor.org/info/rfc6106>.

  [RFC4339]  Jeong, J., Ed., "IPv6 Host Configuration of DNS Server
             Information Approaches", RFC 4339, DOI 10.17487/RFC4339,
             February 2006, <http://www.rfc-editor.org/info/rfc4339>.

  [RFC3971]  Arkko, J., Ed., Kempf, J., Zill, B., and P. Nikander,
             "SEcure Neighbor Discovery (SEND)", RFC 3971,
             DOI 10.17487/RFC3971, March 2005,
             <http://www.rfc-editor.org/info/rfc3971>.

  [RFC3118]  Droms, R., Ed., and W. Arbaugh, Ed., "Authentication for
             DHCP Messages", RFC 3118, DOI 10.17487/RFC3118, June 2001,
             <http://www.rfc-editor.org/info/rfc3118>.

  [RFC6104]  Chown, T. and S. Venaas, "Rogue IPv6 Router Advertisement
             Problem Statement", RFC 6104, DOI 10.17487/RFC6104,
             February 2011, <http://www.rfc-editor.org/info/rfc6104>.

  [RFC6105]  Levy-Abegnoli, E., Van de Velde, G., Popoviciu, C., and J.
             Mohacsi, "IPv6 Router Advertisement Guard", RFC 6105,
             DOI 10.17487/RFC6105, February 2011,
             <http://www.rfc-editor.org/info/rfc6105>.

  [RFC7610]  Gont, F., Liu, W., and G. Van de Velde, "DHCPv6-Shield:
             Protecting against Rogue DHCPv6 Servers", BCP 199,
             RFC 7610, DOI 10.17487/RFC7610, August 2015,
             <http://www.rfc-editor.org/info/rfc7610>.

  [RFC1535]  Gavron, E., "A Security Problem and Proposed Correction
             With Widely Deployed DNS Software", RFC 1535,
             DOI 10.17487/RFC1535, October 1993,
             <http://www.rfc-editor.org/info/rfc1535>.

  [RFC1536]  Kumar, A., Postel, J., Neuman, C., Danzig, P., and S.
             Miller, "Common DNS Implementation Errors and Suggested
             Fixes", RFC 1536, DOI 10.17487/RFC1536, October 1993,
             <http://www.rfc-editor.org/info/rfc1536>.

  [DHCPv6-SLAAC]
             Liu, B., Jiang, S., Gong, X., Wang, W., and E. Rey,
             "DHCPv6/SLAAC Interaction Problems on Address and
             DNS Configuration", Work in Progress,
             draft-ietf-v6ops-dhcpv6-slaac-problem-07, August 2016.




Jeong, et al.                Standards Track                   [Page 15]

RFC 8106                   IPv6 DNS RA Options                March 2017


  [RFC6418]  Blanchet, M. and P. Seite, "Multiple Interfaces and
             Provisioning Domains Problem Statement", RFC 6418,
             DOI 10.17487/RFC6418, November 2011,
             <http://www.rfc-editor.org/info/rfc6418>.

  [RFC6419]  Wasserman, M. and P. Seite, "Current Practices for
             Multiple-Interface Hosts", RFC 6419, DOI 10.17487/RFC6419,
             November 2011, <http://www.rfc-editor.org/info/rfc6419>.

  [RFC6731]  Savolainen, T., Kato, J., and T. Lemon, "Improved
             Recursive DNS Server Selection for Multi-Interfaced
             Nodes", RFC 6731, DOI 10.17487/RFC6731, December 2012,
             <http://www.rfc-editor.org/info/rfc6731>.

  [ICMPv6]   IANA, "Internet Control Message Protocol version 6
             (ICMPv6) Parameters",
             <http://www.iana.org/assignments/icmpv6-parameters/>.


































Jeong, et al.                Standards Track                   [Page 16]

RFC 8106                   IPv6 DNS RA Options                March 2017


Appendix A.  Changes from RFC 6106

  The following changes were made from RFC 6106 ("IPv6 Router
  Advertisement Options for DNS Configuration"):

  o  This document allows a higher default value of the lifetime of the
     DNS RA options than RFC 6106 in order to avoid the frequent expiry
     of the options on links with a relatively high rate of packet
     loss; at the same time, this document also makes additional
     clarifications.  The lifetime's lower bound of
     2 * MaxRtrAdvInterval was shown to lead to the expiry of these
     options on links with a relatively high rate of packet loss.  To
     avoid this problem, this revision relaxes the lower bound and sets
     a higher default value of 3 * MaxRtrAdvInterval.

  o  The text regarding the generation of a Router Solicitation message
     to ensure that the RDNSS information is fresh before the expiry of
     the RDNSS option is removed in order to prevent multicast traffic
     on the link from increasing.

  o  The addresses for RDNSSes in the RDNSS option can be not only
     global addresses but also link-local addresses.  The link-local
     addresses for RDNSSes should be registered in the Resolver
     Repository along with the corresponding link zone indices.

  o  RFC 6106 recommended that the number of RDNSS addresses that
     should be learned and maintained through the RDNSS RA option
     should be limited to three.  This document removes that
     recommendation; thus, the number of RDNSS addresses to maintain is
     determined by an implementer's local policy.

  o  RFC 6106 recommended that the number of DNS search domains that
     should be learned and maintained through the DNSSL RA option
     should be limited to three.  This document removes that
     recommendation; thus, when the set of unique DNSSL values are not
     equivalent, none of them may be ignored for hostname lookups
     according to an implementer's local policy.

  o  The guidance of the specific implementation for the
     synchronization of the DNS Repository and Resolver Repository in
     the kernel space and user space is removed.

  o  The key words "SHOULD" and "RECOMMENDED" (RFC 2119) are removed in
     the recommendation of using SEND as a security mechanism for ND.
     Instead of using these key words, SEND is specified as only a
     possible security mechanism for ND.





Jeong, et al.                Standards Track                   [Page 17]

RFC 8106                   IPv6 DNS RA Options                March 2017


Acknowledgements

  This document has greatly benefited from inputs by Robert Hinden,
  Pekka Savola, Iljitsch van Beijnum, Brian Haberman, Tim Chown, Erik
  Nordmark, Dan Wing, Jari Arkko, Ben Campbell, Vincent Roca, Tony
  Cheneau, Fernando Gont, Jen Linkova, Ole Troan, Mark Smith, Tatuya
  Jinmei, Lorenzo Colitti, Tore Anderson, David Farmer, Bing Liu, and
  Tassos Chatzithomaoglou.  The authors sincerely appreciate their
  contributions.

  This document was supported by an Institute for Information &
  communications Technology Promotion (IITP) grant funded by the Korean
  government (MSIP) [10041244, Smart TV 2.0 Software Platform].






































Jeong, et al.                Standards Track                   [Page 18]

RFC 8106                   IPv6 DNS RA Options                March 2017


Authors' Addresses

  Jaehoon Paul Jeong
  Department of Software
  Sungkyunkwan University
  2066 Seobu-Ro, Jangan-Gu
  Suwon, Gyeonggi-Do  16419
  Republic of Korea

  Phone: +82 31 299 4957
  Fax:   +82 31 290 7996
  Email: [email protected]
  URI:   http://iotlab.skku.edu/people-jaehoon-jeong.php


  Soohong Daniel Park
  Software R&D Center
  Samsung Electronics
  Seoul R&D Campus D-Tower, 56, Seongchon-Gil, Seocho-Gu
  Seoul  06765
  Republic of Korea

  Email: [email protected]


  Luc Beloeil
  Orange
  5 rue Maurice Sibille
  BP 44211
  44042 Nantes Cedex 1
  France

  Phone: +33 2 28 56 11 84
  Email: [email protected]


  Syam Madanapalli
  NTT Data
  #H304, Shriram Samruddhi, Thubarahalli
  Bangalore  560066
  India

  Phone: +91 959 175 7926
  Email: [email protected]







Jeong, et al.                Standards Track                   [Page 19]