Internet Engineering Task Force (IETF)                   L. Martini, Ed.
Request for Comments: 8077                                 G. Heron, Ed.
STD: 84                                                            Cisco
Obsoletes: 4447, 6723                                      February 2017
Category: Standards Track
ISSN: 2070-1721


                   Pseudowire Setup and Maintenance
             Using the Label Distribution Protocol (LDP)

Abstract

  Layer 2 services (such as Frame Relay, Asynchronous Transfer Mode,
  and Ethernet) can be emulated over an MPLS backbone by encapsulating
  the Layer 2 Protocol Data Units (PDUs) and then transmitting them
  over pseudowires (PWs).  It is also possible to use pseudowires to
  provide low-rate Time-Division Multiplexed and Synchronous Optical
  NETworking circuit emulation over an MPLS-enabled network.  This
  document specifies a protocol for establishing and maintaining the
  pseudowires, using extensions to the Label Distribution Protocol
  (LDP).  Procedures for encapsulating Layer 2 PDUs are specified in
  other documents.

  This document is a rewrite of RFC 4447 for publication as an Internet
  Standard.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc8077.











Martini & Heron              Standards Track                    [Page 1]

RFC 8077                     PWE3 Using LDP                February 2017


Copyright Notice

  Copyright (c) 2017 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

























Martini & Heron              Standards Track                    [Page 2]

RFC 8077                     PWE3 Using LDP                February 2017


Table of Contents

  1. Introduction ....................................................4
  2. Changes from RFC 4447 ...........................................6
  3. Specification of Requirements ...................................6
  4. The Pseudowire Label ............................................7
  5. Details Specific to Particular Emulated Services ................9
     5.1. IP Layer 2 Transport .......................................9
  6. LDP .............................................................9
     6.1. The PWid FEC Element .......................................9
     6.2. The Generalized PWid FEC Element ..........................11
          6.2.1. Attachment Identifiers .............................12
          6.2.2. Encoding the Generalized PWid FEC Element ..........14
                 6.2.2.1. PW Interface Parameters TLV ...............15
                 6.2.2.2. PW Group ID TLV ...........................15
          6.2.3. Signaling Procedures ...............................16
     6.3. Signaling of Pseudowire Status ............................17
          6.3.1. Use of Label Mapping Messages ......................17
          6.3.2. Signaling PW Status ................................18
          6.3.3. Pseudowire Status Negotiation Procedures ...........19
     6.4. Interface Parameter Sub-TLV ...............................20
     6.5. LDP Label Withdrawal Procedures ...........................21
  7. Control Word ...................................................22
     7.1. PW Types for Which the Control Word Is REQUIRED ...........22
     7.2. PW Types for Which the Control Word Is NOT Mandatory ......22
     7.3. Control-Word Renegotiation by Label Request Message .......24
     7.4. Sequencing Considerations .................................25
          7.4.1. Label Advertisements ...............................25
          7.4.2. Label Release ......................................25
  8. IANA Considerations ............................................26
     8.1. LDP TLV TYPE ..............................................26
     8.2. LDP Status Codes ..........................................26
     8.3. FEC Type Name Space .......................................26
  9. Security Considerations ........................................26
     9.1. Data-Plane Security .......................................27
     9.2. Control-Plane Security ....................................28
  10. Interoperability and Deployment ...............................29
  11. References ....................................................29
     11.1. Normative References .....................................29
     11.2. Informative References ...................................30
  Acknowledgments ...................................................31
  Contributors ......................................................32
  Authors' Addresses ................................................35








Martini & Heron              Standards Track                    [Page 3]

RFC 8077                     PWE3 Using LDP                February 2017


1.  Introduction

  [RFC4619], [RFC4717], [RFC4618], and [RFC4448] explain how to
  encapsulate a Layer 2 Protocol Data Unit (PDU) for transmission over
  an MPLS-enabled network.  Those documents specify that a "pseudowire
  header", consisting of a demultiplexer field, will be prepended to
  the encapsulated PDU.  The pseudowire demultiplexer field is
  prepended before transmitting a packet on a pseudowire.  When the
  packet arrives at the remote endpoint of the pseudowire, the
  demultiplexer is what enables the receiver to identify the particular
  pseudowire on which the packet has arrived.  To transmit the packet
  from one pseudowire endpoint to another, the packet may need to
  travel through a "Packet Switched Network (PSN) tunnel"; this will
  require that an additional header be prepended to the packet.

  [RFC4842] and [RFC4553] specify two methods for transporting time-
  division multiplexing (TDM) digital signals (TDM circuit emulation)
  over a packet-oriented MPLS-enabled network.  The transmission system
  for circuit-oriented TDM signals is the Synchronous Optical Network
  (SONET) [ANSI] / Synchronous Digital Hierarchy (SDH) [ITUG].  To
  support TDM traffic, which includes voice, data, and private leased-
  line service, the pseudowires must emulate the circuit
  characteristics of SONET/SDH payloads.  The TDM signals and payloads
  are encapsulated for transmission over pseudowires.  A pseudowire
  demultiplexer and a PSN tunnel header are prepended to this
  encapsulation.

  [RFC4553] describes methods for transporting low-rate time-division
  multiplexing (TDM) digital signals (TDM circuit emulation) over PSNs,
  while [RFC4842] similarly describes transport of high-rate TDM
  (SONET/SDH).  To support TDM traffic, the pseudowires must emulate
  the circuit characteristics of the original T1, E1, T3, E3, SONET, or
  SDH signals.  [RFC4553] does this by encapsulating an arbitrary but
  constant amount of the TDM data in each packet, and the other methods
  encapsulate TDM structures.

  In this document, we specify the use of the MPLS Label Distribution
  Protocol (LDP) [RFC5036] as a protocol for setting up and maintaining
  the pseudowires.  In particular, we define new TLVs, Forwarding
  Equivalence Class (FEC) elements, parameters, and codes for LDP,
  which enable LDP to identify pseudowires and to signal attributes of
  pseudowires.  We specify how a pseudowire endpoint uses these TLVs in
  LDP to bind a demultiplexer field value to a pseudowire and how it
  informs the remote endpoint of the binding.  We also specify
  procedures for reporting pseudowire status changes, for passing
  additional information about the pseudowire as needed, and for
  releasing the bindings.  These procedures are intended to be
  independent of the underlying version of IP used for LDP signaling.



Martini & Heron              Standards Track                    [Page 4]

RFC 8077                     PWE3 Using LDP                February 2017


  In the protocol specified herein, the pseudowire demultiplexer field
  is an MPLS label.  Thus, the packets that are transmitted from one
  end of the pseudowire to the other are MPLS packets, which must be
  transmitted through an MPLS tunnel.  However, if the pseudowire
  endpoints are immediately adjacent and penultimate hop popping
  behavior is in use, the MPLS tunnel may not be necessary.  Any sort
  of PSN tunnel can be used, as long as it is possible to transmit MPLS
  packets through it.  The PSN tunnel can itself be an MPLS LSP, or any
  other sort of tunnel that can carry MPLS packets.  Procedures for
  setting up and maintaining the MPLS tunnels are outside the scope of
  this document.

  This document deals only with the setup and maintenance of point-to-
  point pseudowires.  Neither point-to-multipoint nor multipoint-to-
  point pseudowires are discussed.

  QoS-related issues are not discussed in this document.

  The following two figures describe the reference models that are
  derived from [RFC3985] to support the PW emulated services.

        |<-------------- Emulated Service ---------------->|
        |                                                  |
        |          |<------- Pseudowire ------->|          |
        |          |                            |          |
        |Attachment|    |<-- PSN Tunnel -->|    |Attachment|
        |  Circuit V    V                  V    V  Circuit |
        V   (AC)   +----+                  +----+   (AC)   V
  +-----+    |     | PE1|==================| PE2|     |    +-----+
  |     |----------|............PW1.............|----------|     |
  | CE1 |    |     |    |                  |    |     |    | CE2 |
  |     |----------|............PW2.............|----------|     |
  +-----+  ^ |     |    |==================|    |     | ^  +-----+
        ^  |       +----+                  +----+     | |  ^
        |  |   Provider Edge 1         Provider Edge 2  |  |
        |  |                                            |  |
  Customer |                                            | Customer
  Edge 1   |                                            | Edge 2
           |                                            |
     native service                               native service

                    Figure 1: PWE3 Reference Model









Martini & Heron              Standards Track                    [Page 5]

RFC 8077                     PWE3 Using LDP                February 2017


   +-----------------+                           +-----------------+
   |Emulated Service |                           |Emulated Service |
   |(e.g., TDM, ATM) |<==== Emulated Service ===>|(e.g., TDM, ATM) |
   +-----------------+                           +-----------------+
   |    Payload      |                           |    Payload      |
   |  Encapsulation  |<====== Pseudowire =======>|  Encapsulation  |
   +-----------------+                           +-----------------+
   |PW Demultiplexer |                           |PW Demultiplexer |
   |   PSN Tunnel,   |<======= PSN Tunnel ======>|  PSN Tunnel,    |
   | PSN & Physical  |                           | PSN & Physical  |
   |     Layers      |                           |    Layers       |
   +-------+---------+        ___________        +---------+-------+
           |                /             \                 |
           +===============/     PSN       \================+
                           \               /
                            \_____________/

             Figure 2: PWE3 Protocol Stack Reference Model

  For the purpose of this document, PE1 (Provider Edge 1) will be
  defined as the ingress router, and PE2 as the egress router.  A Layer
  2 PDU will be received at PE1, encapsulated at PE1, transported and
  decapsulated at PE2, and transmitted out of PE2.

2.  Changes from RFC 4447

  The changes in this document are mostly minor fixes to spelling and
  grammar, or clarifications to the text, which were either noted as
  errata to [RFC4447] or found by the editors.

  Additionally, Section 7.3 ("Control-Word Renegotiation by Label
  Request Message") has been added, obsoleting [RFC6723].  The diagram
  of C-bit handling procedures has also been removed.  A note has been
  added in Section 6.3.2 to clarify that the C-bit is part of the FEC.

  A reference has also been added to [RFC7358] to indicate the use of
  downstream unsolicited mode to distribute PW FEC label bindings,
  independent of the negotiated label advertisement mode of the LDP
  session.

3.  Specification of Requirements

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].






Martini & Heron              Standards Track                    [Page 6]

RFC 8077                     PWE3 Using LDP                February 2017


4.  The Pseudowire Label

  Suppose that it is desired to transport Layer 2 PDUs from ingress LSR
  PE1 to egress LSR PE2, across an intervening MPLS-enabled network.
  We assume that there is an MPLS tunnel from PE1 to PE2.  That is, we
  assume that PE1 can cause a packet to be delivered to PE2 by
  encapsulating the packet in an "MPLS tunnel header" and sending the
  result to one of its adjacencies.  The MPLS tunnel is an MPLS Label
  Switched Path (LSP); thus, putting on an MPLS tunnel encapsulation is
  a matter of pushing on an MPLS label.

  We presuppose that a large number of pseudowires can be carried
  through a single MPLS tunnel.  Thus, it is never necessary to
  maintain state in the network core for individual pseudowires.  We do
  not presuppose that the MPLS tunnels are point to point; although the
  pseudowires are point to point, the MPLS tunnels may be multipoint to
  point.  We do not presuppose that PE2 will even be able to determine
  the MPLS tunnel through which a received packet was transmitted.
  (For example, if the MPLS tunnel is an LSP and penultimate hop
  popping is used, when the packet arrives at PE2, it will contain no
  information identifying the tunnel.)

  When PE2 receives a packet over a pseudowire, it must be able to
  determine that the packet was in fact received over a pseudowire, and
  it must be able to associate that packet with a particular
  pseudowire.  PE2 is able to do this by examining the MPLS label that
  serves as the pseudowire demultiplexer field shown in Figure 2.  Call
  this label the "PW label".

  When PE1 sends a Layer 2 PDU to PE2, it creates an MPLS packet by
  adding the PW label to the packet, thus creating the first entry of
  the label stack.  If the PSN tunnel is an MPLS LSP, the PE1 pushes
  another label (the tunnel label) onto the packet as the second entry
  of the label stack.  The PW label is not visible again until the MPLS
  packet reaches PE2.  PE2's disposition of the packet is based on the
  PW label.

  If the payload of the MPLS packet is, for example, an ATM Adaptation
  Layer 5 (AAL5) PDU, the PW label will generally correspond to a
  particular ATM Virtual Circuit (VC) at PE2.  That is, PE2 needs to be
  able to infer from the PW label the outgoing interface and the
  VPI/VCI (Virtual Path Identifier / Virtual Circuit Identifier) value
  for the AAL5 PDU.  If the payload is a Frame Relay PDU, then PE2
  needs to be able to infer from the PW label the outgoing interface
  and the Data Link Connection Identifier (DLCI) value.  If the payload
  is an Ethernet frame, then PE2 needs to be able to infer from the PW
  label the outgoing interface, and perhaps the VLAN identifier.  This
  process is unidirectional and will be repeated independently for



Martini & Heron              Standards Track                    [Page 7]

RFC 8077                     PWE3 Using LDP                February 2017


  bidirectional operation.  When using the PWid FEC Element, it is
  REQUIRED that the same PW ID and PW type be assigned for a given
  circuit in both directions.  The Group ID (see below) MUST NOT be
  required to match in both directions.  The transported frame MAY be
  modified when it reaches the egress router.  If the header of the
  transported Layer 2 frame is modified, this MUST be done at the
  egress LSR only.  Note that the PW label must always be at the bottom
  of the packet's label stack, and labels MUST be allocated from the
  per-platform label space.

  This document does not specify a method for distributing the MPLS
  tunnel label or any other labels that may appear above the PW label
  on the stack.  Any acceptable method of MPLS label distribution will
  do.  This document specifies a protocol for assigning and
  distributing the PW label.  This protocol is LDP, extended as
  specified in the remainder of this document.  An LDP session must be
  set up between the pseudowire endpoints.  LDP MUST exchange PW FEC
  label bindings in downstream unsolicited mode, independent of the
  negotiated label advertisement mode of the LDP session according to
  the specifications in [RFC7358].  LDP's "liberal label retention"
  mode SHOULD be used.  However, all the LDP procedures that are
  specified in [RFC5036] and that are also applicable to this protocol
  specification MUST be implemented.

  This document requires that a receiving LSR MUST respond to a Label
  Request message with either a Label Mapping for the requested label
  or a Notification message that indicates why it cannot satisfy the
  request.  These procedures are specified in [RFC5036], Sections 3.5.7
  ("Label Mapping Message") and 3.5.8 ("Label Request Message").  Note
  that sending these responses is a stricter requirement than is
  specified in [RFC5036], but these response messages are REQUIRED to
  ensure correct operation of this protocol.

  In addition to the protocol specified herein, static assignment of PW
  labels may be used, and implementations of this protocol SHOULD
  provide support for static assignment.  PW encapsulation is always
  symmetrical in both directions of traffic along a specific PW,
  whether or not the PW uses an LDP control plane.

  This document specifies all the procedures necessary to set up and
  maintain the pseudowires needed to support "unswitched" point-to-
  point services, where each endpoint of the pseudowire is provisioned
  with the identity of the other endpoint.  There are also protocol
  mechanisms specified herein that can be used to support switched
  services and other provisioning models.  However, the use of the
  protocol mechanisms to support those other models and services is not
  described in this document.




Martini & Heron              Standards Track                    [Page 8]

RFC 8077                     PWE3 Using LDP                February 2017


5.  Details Specific to Particular Emulated Services

5.1.  IP Layer 2 Transport

  This mode carries IP packets over a pseudowire.  The encapsulation
  used is according to [RFC3032].  The PW control word MAY be inserted
  between the MPLS label stack and the IP payload.  The encapsulation
  of the IP packets for forwarding on the Attachment Circuit is
  implementation specific, is part of the native service processing
  (NSP) function [RFC3985], and is outside the scope of this document.

6.  LDP

  The PW label bindings are distributed using the LDP downstream
  unsolicited mode described in [RFC5036].  The PEs will establish an
  LDP session using the Extended Discovery mechanism described in
  Sections 2.4.2 and 2.5 of [RFC5036].

  An LDP Label Mapping message contains a FEC TLV, a Label TLV, and
  zero or more optional parameter TLVs.

  The FEC TLV is used to indicate the meaning of the label.  In the
  current context, the FEC TLV would be used to identify the particular
  pseudowire that a particular label is bound to.  In this
  specification, we define two new FEC TLVs to be used for identifying
  pseudowires.  When setting up a particular pseudowire, only one of
  these FEC TLVs is used.  The one to be used will depend on the
  particular service being emulated and on the particular provisioning
  model being supported.

  LDP allows each FEC TLV to consist of a set of FEC elements.  For
  setting up and maintaining pseudowires, however, each FEC TLV MUST
  contain exactly one FEC element.

  The LDP base specification has several kinds of label TLVs, including
  the Generic Label TLV, as specified in Section 3.4.2.1 of [RFC5036].
  For setting up and maintaining pseudowires, the Generic Label TLV
  MUST be used.

6.1.  The PWid FEC Element

  The PWid FEC Element may be used whenever both pseudowire endpoints
  have been provisioned with the same 32-bit identifier for the
  pseudowire.

  For this purpose, a new type of FEC element is defined.  The FEC
  element type is 0x80 and is defined as follows:




Martini & Heron              Standards Track                    [Page 9]

RFC 8077                     PWE3 Using LDP                February 2017


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  PWid (0x80)  |C|         PW type             |PW info length |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Group ID                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           PW ID                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                Interface Parameter Sub-TLV                    |
  |                              "                                |
  |                              "                                |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  -  Control word bit (C)

     The C-bit is used to flag the presence of a control word as
     follows:

        C = 1 control word present on this PW.
        C = 0 no control word present on this PW.

     Please see Section 7 ("Control Word") for further explanation.

  -  PW type

     A 15-bit quantity containing a value that represents the type of
     PW.  Assigned Values are specified in "IANA Allocations for
     Pseudowire Edge to Edge Emulation (PWE3)" [RFC4446].

  -  PW info length

     Length of the PW ID field and the Interface Parameter Sub-TLV
     field in octets.  If this value is 0, then it references all PWs
     using the specified Group ID, and there is no PW ID present, nor
     are there any Interface Parameter Sub-TLVs.

  -  Group ID

     An arbitrary 32-bit value that represents a group of PWs that is
     used to create groups in the PW space.  The Group ID is intended
     to be used as a port index or a virtual tunnel index.  To simplify
     configuration, a particular PW Group ID at ingress could be part
     of a Group ID assigned to the virtual tunnel for transport to the
     egress router.  The Group ID is very useful for sending wildcard
     label withdrawals or PW wildcard status Notification messages to
     remote PEs upon physical port failure.




Martini & Heron              Standards Track                   [Page 10]

RFC 8077                     PWE3 Using LDP                February 2017


  -  PW ID

     A non-zero, 32-bit connection ID that together with the PW type
     identifies a particular PW.  Note that the PW ID and the PW type
     MUST be the same at both endpoints.

  -  Interface Parameter Sub-TLV

     This variable length TLV is used to provide interface-specific
     parameters, such as Attachment Circuit MTU.

     Note that as the Interface Parameter Sub-TLV is part of the FEC,
     the rules of LDP make it impossible to change the interface
     parameters once the pseudowire has been set up.  Thus, the
     interface parameters field must not be used to pass information,
     such as status information, that may change during the life of the
     pseudowire.  Optional parameter TLVs should be used for that
     purpose.

  Using the PWid FEC, each of the two pseudowire endpoints
  independently initiates the setup of a unidirectional LSP.  An
  outgoing LSP and an incoming LSP are bound together into a single
  pseudowire if they have the same PW ID and PW type.

6.2.  The Generalized PWid FEC Element

  The PWid FEC Element can be used if a unique 32-bit value has been
  assigned to the PW and if each endpoint has been provisioned with
  that value.  The Generalized PWid FEC Element requires that the PW
  endpoints be uniquely identified; the PW itself is identified as a
  pair of endpoints.  In addition, the endpoint identifiers are
  structured to support applications where the identity of the remote
  endpoints needs to be auto-discovered rather than statically
  configured.

  The "Generalized PWid FEC Element" is FEC type 0x81.

  The Generalized PWid FEC Element does not contain anything
  corresponding to the Group ID of the PWid FEC Element.  The
  functionality of the Group ID is provided by a separate optional LDP
  TLV, the PW Group ID TLV, described in Section 6.2.2.2.  The
  interface parameters field of the PWid FEC Element is also absent;
  its functionality is replaced by the optional PW Interface Parameters
  TLV, described in Section 6.2.2.1.







Martini & Heron              Standards Track                   [Page 11]

RFC 8077                     PWE3 Using LDP                February 2017


6.2.1.  Attachment Identifiers

  As discussed in [RFC3985], a pseudowire can be thought of as
  connecting two "forwarders".  The protocol used to set up a
  pseudowire must allow the forwarder at one end of a pseudowire to
  identify the forwarder at the other end.  We use the term "Attachment
  Identifier", or "AI", to refer to the field that the protocol uses to
  identify the forwarders.  In the PWid FEC, the PWid field serves as
  the AI.  In this section, we specify a more general form of AI that
  is structured and of variable length.

  Every Forwarder in a PE must be associated with an Attachment
  Identifier (AI), either through configuration or through some
  algorithm.  The Attachment Identifier must be unique in the context
  of the PE router in which the Forwarder resides.  The combination <PE
  router IP address, AI> must be globally unique.

  It is frequently convenient to regard a set of Forwarders as being
  members of a particular "group", where PWs may only be set up among
  members of a group.  In such cases, it is convenient to identify the
  Forwarders relative to the group, so that an Attachment Identifier
  would consist of an Attachment Group Identifier (AGI) plus an
  Attachment Individual Identifier (AII).

  An Attachment Group Identifier may be thought of as a VPN-id, or a
  VLAN identifier, some attribute that is shared by all the Attachment
  PWs (or pools thereof) that are allowed to be connected.

  The details of how to construct the AGI and AII fields identifying
  the pseudowire endpoints are outside the scope of this specification.
  Different pseudowire applications, and different provisioning models,
  will require different sorts of AGI and AII fields.  The
  specification of each such application and/or model must include the
  rules for constructing the AGI and AII fields.

  As previously discussed, a (bidirectional) pseudowire consists of a
  pair of unidirectional LSPs, one in each direction.  If a particular
  pseudowire connects PE1 with PE2, the PW direction from PE1 to PE2
  can be identified as:

     <PE1, <AGI, AII1>, PE2, <AGI, AII2>>,

  and the PW direction from PE2 to PE1 can be identified by:

     <PE2, <AGI, AII2>, PE1, <AGI, AII1>>.






Martini & Heron              Standards Track                   [Page 12]

RFC 8077                     PWE3 Using LDP                February 2017


  Note that the AGI must be the same at both endpoints, but the AII
  will in general be different at each endpoint.  Thus, from the
  perspective of a particular PE, each pseudowire has a local or
  "Source AII", and a remote or "Target AII".  The pseudowire setup
  protocol can carry all three of these quantities:

  -  Attachment Group Identifier (AGI)

  -  Source Attachment Individual Identifier (SAII)

  -  Target Attachment Individual Identifier (TAII)

  If the AGI is non-null, then the Source AI (SAI) consists of the AGI
  together with the SAII, and the Target AI (TAI) consists of the TAII
  together with the AGI.  If the AGI is null, then the SAII and TAII
  are the SAI and TAI, respectively.

  The interpretation of the SAI and TAI is a local matter at the
  respective endpoint.

  The association of two unidirectional LSPs into a single
  bidirectional pseudowire depends on the SAI and the TAI.  Each
  application and/or provisioning model that uses the Generalized PWid
  FEC must specify the rules for performing this association.



























Martini & Heron              Standards Track                   [Page 13]

RFC 8077                     PWE3 Using LDP                February 2017


6.2.2.  Encoding the Generalized PWid FEC Element

  FEC element type 0x81 is used.  The FEC element is encoded as
  follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Gen PWid (0x81)|C|         PW Type             |PW info length |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   AGI Type    |    Length     |      Value                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                    AGI  Value (contd.)                        ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   AII Type    |    Length     |      Value                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                   SAII  Value (contd.)                        ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   AII Type    |    Length     |      Value                    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                   TAII Value (contd.)                         ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  This document does not specify the AII and AGI type field values;
  specification of the type field values to be used for a particular
  application is part of the specification of that application.  IANA
  has assigned these values using the method defined in [RFC4446].

  The SAII, TAII, and AGI are simply carried as octet strings.  The
  Length byte specifies the size of the Value field.  The null string
  can be sent by setting the Length byte to 0.  If a particular
  application does not need all three of these sub-elements, it MUST
  send all the sub-elements but set the Length to 0 for the unused sub-
  elements.

  The PW information length field contains the length of the SAII,
  TAII, and AGI, combined in octets.  If this value is 0, then it
  references all PWs using the specific Group ID (specified in the PW
  Group ID TLV).  In this case, there are no other FEC element fields
  (AGI, SAII, etc.) present, nor any PW Interface Parameters TLVs.

  Note that the interpretation of a particular field as AGI, SAII, or
  TAII depends on the order of its occurrence.  The Type field
  identifies the type of the AGI, SAII, or TAII.  When comparing two




Martini & Heron              Standards Track                   [Page 14]

RFC 8077                     PWE3 Using LDP                February 2017


  occurrences of an AGI (or SAII or TAII), the two occurrences are
  considered identical if the Type, Length, and Value fields of one are
  identical, respectively, to those of the other.

6.2.2.1.  PW Interface Parameters TLV

  This TLV MUST only be used when sending the Generalized PWid FEC.  It
  specifies interface-specific parameters.  Specific parameters, when
  applicable, MUST be used to validate that the PEs and the ingress and
  egress ports at the edges of the circuit have the necessary
  capabilities to interoperate with each other.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0|0|  PW Intf P. TLV (0x096B)  |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Sub-TLV Type  |    Length     |    Variable Length Value      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Variable Length Value                 |
   |                             "                                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  A more detailed description of this field can be found in Section 6.4
  ("Interface Parameter Sub-TLV").

6.2.2.2.  PW Group ID TLV

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0|0| PW Group ID TLV (0x096C)  |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                             Value                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The PW Group ID is an arbitrary 32-bit value that represents an
  arbitrary group of PWs.  It is used to create group PWs; for example,
  a PW Group ID can be used as a port index and assigned to all PWs
  that lead to that port.  Use of the PW Group ID enables a PE to send
  "wildcard" label withdrawals, or "wildcard" status Notification
  messages, to remote PEs upon physical port failure.

  Note Well: The PW Group ID is different from and has no relation to
  the Attachment Group Identifier.






Martini & Heron              Standards Track                   [Page 15]

RFC 8077                     PWE3 Using LDP                February 2017


  The PW Group ID TLV is not part of the FEC and will not be advertised
  except in the PW FEC advertisement.  The advertising PE MAY use the
  wildcard withdraw semantics, but the remote PEs MUST implement
  support for wildcard messages.  This TLV MUST only be used when
  sending the Generalized PWid FEC.

  To issue a wildcard command (status or withdraw):

  -  Set the PW Info Length to 0 in the Generalized PWid FEC Element.

  -  Send only the PW Group ID TLV with the FEC (no AGI/SAII/TAII is
     sent).

6.2.3.  Signaling Procedures

  In order for PE1 to begin signaling PE2, PE1 must know the address of
  the remote PE2 and a TAI.  This information may have been configured
  at PE1, or it may have been learned dynamically via some auto-
  discovery procedure.

  The egress PE (PE1), which has knowledge of the ingress PE, initiates
  the setup by sending a Label Mapping message to the ingress PE (PE2).
  The Label Mapping message contains the FEC TLV, carrying the
  Generalized PWid FEC Element (type 0x81).  The Generalized PWid FEC
  Element contains the AGI, SAII, and TAII information.

  Next, when PE2 receives such a Label Mapping message, PE2 interprets
  the message as a request to set up a PW whose endpoint (at PE2) is
  the Forwarder identified by the TAI.  From the perspective of the
  signaling protocol, exactly how PE2 maps AIs to Forwarders is a local
  matter.  In some Virtual Private Wire Service (VPWS) provisioning
  models, the TAI might, for example, be a string that identifies a
  particular Attachment Circuit, such as "ATM3VPI4VCI5", or it might,
  for example, be a string, such as "Fred", that is associated by
  configuration with a particular Attachment Circuit.  In Virtual
  Private LAN Service (VPLS), the AGI could be a VPN-id, identifying a
  particular VPLS instance.

  If PE2 cannot map the TAI to one of its Forwarders, then PE2 sends a
  Label Release message to PE1, with a Status Code of
  "Unassigned/Unrecognized TAI", and the processing of the Label
  Mapping message is complete.

  The FEC TLV sent in a Label Release message is the same as the FEC
  TLV received in the Label Mapping message being released (but without
  the interface parameter TLV).  More generally, the FEC TLV is the





Martini & Heron              Standards Track                   [Page 16]

RFC 8077                     PWE3 Using LDP                February 2017


  same in all LDP messages relating to the same PW.  In a Label Release
  message, this means that the SAII is the remote peer's AII and the
  TAII is the sender's local AII.

  If the Label Mapping message has a valid TAI, PE2 must decide whether
  to accept it.  The procedures for so deciding will depend on the
  particular type of Forwarder identified by the TAI.  Of course, the
  Label Mapping message may be rejected due to standard LDP error
  conditions as detailed in [RFC5036].

  If PE2 decides to accept the Label Mapping message, then it has to
  make sure that a PW LSP is set up in the opposite (PE1-->PE2)
  direction.  If it has already signaled for the corresponding PW LSP
  in that direction, nothing more needs to be done.  Otherwise, it must
  initiate such signaling by sending a Label Mapping message to PE1.
  This is very similar to the Label Mapping message PE2 received, but
  the SAI and TAI are reversed.

  Thus, a bidirectional PW consists of two LSPs, where the FEC of one
  has the SAII and TAII reversed with respect to the FEC of the other.

6.3.  Signaling of Pseudowire Status

6.3.1.  Use of Label Mapping Messages

  The PEs MUST send Label Mapping messages to their peers as soon as
  the PW is configured and administratively enabled, regardless of the
  Attachment Circuit state.  The PW label should not be withdrawn
  unless the operator administratively configures the pseudowire down
  (or the PW configuration is deleted entirely).  Using the procedures
  outlined in this section, a simple label withdraw method MAY also be
  supported as a legacy means of signaling PW status and AC status.  In
  any case, if the label-to-PW binding is not available, the PW MUST be
  considered in the down state.

  Once the PW status negotiation procedures are completed, if they
  result in the use of the label withdraw method for PW status
  communication, and this method is not supported by one of the PEs,
  then that PE must send a Label Release message to its peer with the
  following error:

  "Label Withdraw PW Status Method Not Supported"

  If the label withdraw method for PW status communication is selected
  for the PW, it will result in the Label Mapping message being
  advertised only if the Attachment Circuit is active.  The PW status
  signaling procedures described in this section MUST be fully
  implemented.



Martini & Heron              Standards Track                   [Page 17]

RFC 8077                     PWE3 Using LDP                February 2017


6.3.2.  Signaling PW Status

  The PE devices use an LDP TLV to indicate status to their remote
  peers.  This PW Status TLV contains more information than the
  alternative simple Label Withdraw message.

  The format of the PW Status TLV is:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |1|0|     PW Status (0x096A)    |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Status Code                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The status code is a 4-octet bit field as specified in "IANA
  Allocations for Pseudowire Edge to Edge Emulation (PWE3)" [RFC4446].
  The Length field specifies the length of the Status Code field in
  octets (equal to 4).

  Each bit in the Status Code field can be set individually to indicate
  more than a single failure at once.  Each fault can be cleared by
  sending an appropriate Notification message in which the respective
  bit is cleared.  The presence of the lowest bit (PW Not Forwarding)
  acts only as a generic failure indication when there is a link-down
  event for which none of the other bits apply.

  The Status TLV is transported to the remote PW peer via the LDP
  Notification message as described in [RFC5036].  The format of the
  Notification message for carrying the PW Status is as follows:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0|   Notification (0x0001)     |      Message Length           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Message ID                              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Status (TLV)                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                      PW Status TLV                            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           PWid FEC TLV or Generalized ID FEC TLV              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                PW Group ID TLV (Optional)                     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+




Martini & Heron              Standards Track                   [Page 18]

RFC 8077                     PWE3 Using LDP                February 2017


  The Status TLV status code is set to 0x00000028, "PW status", to
  indicate that PW status follows.  Since this notification does not
  refer to any particular message, the Message ID field is set to 0.

  The PW FEC TLV SHOULD NOT include the Interface Parameter Sub-TLVs,
  as they are ignored in the context of this message.  However, the PW
  FEC TLV MUST include the C-bit, where applicable, as it is part of
  the FEC.  When a PE's Attachment Circuit encounters an error, use of
  the PW Notification message allows the PE to send a single "wildcard"
  status message, using a PW FEC TLV with only the Group ID set, to
  denote this change in status for all affected PW connections.  This
  status message contains either the PW FEC TLV with only the Group ID
  set, or else it contains the Generalized FEC TLV with only the PW
  Group ID TLV.

  As mentioned above, the Group ID field of the PWid FEC Element, or
  the PW Group ID TLV used with the Generalized PWid FEC Element, can
  be used to send a status notification for all arbitrary sets of PWs.
  This procedure is OPTIONAL, and if it is implemented, the LDP
  Notification message should be as follows: If the PWid FEC Element is
  used, the PW information length field is set to 0, the PW ID field is
  not present, and the Interface Parameter Sub-TLVs are not present.
  If the Generalized FEC Element is used, the AGI, SAII, and TAII are
  not present, the PW information length field is set to 0, the PW
  Group ID TLV is included, and the PW Interface Parameters TLV is
  omitted.  For the purpose of this document, this is called the
  "wildcard PW status notification procedure", and all PEs implementing
  this design are REQUIRED to accept such a Notification message but
  are not required to send it.

6.3.3.  Pseudowire Status Negotiation Procedures

  When a PW is first set up, the PEs MUST attempt to negotiate the
  usage of the PW Status TLV.  This is accomplished as follows: A PE
  that supports the PW Status TLV MUST include it in the initial Label
  Mapping message following the PW FEC and the Interface Parameter Sub-
  TLVs.  The PW Status TLV will then be used for the lifetime of the
  pseudowire.  This is shown in the following diagram:













Martini & Heron              Standards Track                   [Page 19]

RFC 8077                     PWE3 Using LDP                February 2017


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   +                 PWid FEC or Generalized PWid FEC              +
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                       Interface Parameters                    |
   |                              "                                |
   |                              "                                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |0|0| Generic Label (0x0200)    |      Length                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Label                                                     |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |1|0|     PW Status (0x096A)    |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Status Code                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  If a PW Status TLV is included in the initial Label Mapping message
  for a PW, then if the Label Mapping message from the remote PE for
  that PW does not include a PW Status TLV, or if the remote PE does
  not support the PW Status TLV, the PW will revert to the label
  withdraw method of signaling PW status.  Note that if the PW Status
  TLV is not supported by the remote peer, the peer will automatically
  ignore it, since the I (ignore) bit is set in the TLV.  The PW Status
  TLV, therefore, will not be present in the corresponding FEC
  advertisement from the remote LDP peer, which results in exactly the
  above behavior.

  If the PW Status TLV is not present following the FEC TLV in the
  initial PW Label Mapping message received by a PE, then the PW Status
  TLV will not be used, and both PEs supporting the pseudowire will
  revert to the label withdraw procedure for signaling status changes.

  If the negotiation process results in the usage of the PW Status TLV,
  then the actual PW status is determined by the PW Status TLV that was
  sent within the initial PW Label Mapping message.  Subsequent updates
  of PW status are conveyed through the Notification message.

6.4.  Interface Parameter Sub-TLV

  This field specifies interface-specific parameters.  When applicable,
  it MUST be used to validate that the PEs and the ingress and egress
  ports at the edges of the circuit have the necessary capabilities to
  interoperate with each other.  The field structure is defined as
  follows:



Martini & Heron              Standards Track                   [Page 20]

RFC 8077                     PWE3 Using LDP                February 2017


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Sub-TLV Type  |    Length     |    Variable Length Value      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Variable Length Value                 |
   |                             "                                 |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Length field is defined as the length of the interface parameter
  including the Sub-TLV Type and Length field itself.  Processing of
  the interface parameters should continue when unknown interface
  parameters are encountered, and they MUST be silently ignored.

  The Interface Parameter Sub-TLV Type values are specified in "IANA
  Allocations for Pseudowire Edge to Edge Emulation (PWE3)" [RFC4446].

  -  Interface MTU sub-TLV type

     A 2-octet value indicating the MTU in octets.  This is the Maximum
     Transmission Unit, excluding encapsulation overhead, of the egress
     packet interface that will be transmitting the decapsulated PDU
     that is received from the MPLS-enabled network.  This parameter is
     applicable only to PWs transporting packets and is REQUIRED for
     these PW types.  If this parameter does not match in both
     directions of a specific PW, that PW MUST NOT be enabled.

  -  Optional Interface Description string sub-TLV type

     This arbitrary, and OPTIONAL, interface description string is used
     to send a human-readable administrative string describing the
     interface to the remote PE.  This parameter is OPTIONAL and is
     applicable to all PW types.  The interface description parameter
     string length is variable and can be from 0 to 80 octets.  Human-
     readable text MUST be provided in the UTF-8 charset using the
     Default Language [RFC2277].

6.5.  LDP Label Withdrawal Procedures

  As mentioned above, the Group ID field of the PWid FEC Element, or
  the PW Group ID TLV used with the Generalized PWid FEC Element, can
  be used to withdraw all PW labels associated with a particular PW
  group.  This procedure is OPTIONAL, and if it is implemented, the LDP
  Label Withdraw message should be as follows: If the PWid FEC Element
  is used, the PW information length field is set to 0, the PW ID field
  is not present, the Interface Parameter Sub-TLVs are not present, and
  the Label TLV is not present.  If the Generalized FEC Element is
  used, the AGI, SAII, and TAII are not present, the PW information



Martini & Heron              Standards Track                   [Page 21]

RFC 8077                     PWE3 Using LDP                February 2017


  length field is set to 0, the PW Group ID TLV is included, the PW
  Interface Parameters TLV is not present, and the Label TLV is not
  present.  For the purpose of this document, this is called the
  "wildcard withdraw procedure", and all PEs implementing this design
  are REQUIRED to accept such withdraw messages but are not required to
  send it.  Note that the PW Group ID TLV only applies to PWs using the
  Generalized ID FEC Element, while the Group ID only applies to PWid
  FEC Element.

  The Interface Parameter Sub-TLVs, or TLV, MUST NOT be present in any
  LDP PW Label Withdraw or Label Release message.  A wildcard Label
  Release message MUST include only the Group ID or PW Group ID TLV.  A
  Label Release message initiated by a PE router must always include
  the PW ID.

7.  Control Word

7.1.  PW Types for Which the Control Word Is REQUIRED

  The Label Mapping messages that are sent in order to set up these PWs
  MUST have C=1.  When a Label Mapping message for a PW of one of these
  types is received and C=0, a Label Release message MUST be sent, with
  an "Illegal C-bit" status code.  In this case, the PW will not be
  enabled.

7.2.  PW Types for Which the Control Word Is NOT Mandatory

  If a system is capable of sending and receiving the control word on
  PW types for which the control word is not mandatory, then each such
  PW endpoint MUST be configurable with a parameter that specifies
  whether the use of the control word is PREFERRED or NOT PREFERRED.
  For each PW, there MUST be a default value of this parameter.  This
  specification does NOT state what the default value should be.

  If a system is NOT capable of sending and receiving the control word
  on PW types for which the control word is not mandatory, then it
  behaves exactly as if it were configured for the use of the control
  word to be NOT PREFERRED.

  If a Label Mapping message for the PW has already been received but
  no Label Mapping message for the PW has yet been sent, then the
  procedure is as follows:

       -i. If the received Label Mapping message has C=0, send a Label
           Mapping message with C=0; the control word is not used.






Martini & Heron              Standards Track                   [Page 22]

RFC 8077                     PWE3 Using LDP                February 2017


      -ii. If the received Label Mapping message has C=1, and the PW is
           locally configured such that the use of the control word is
           preferred, then send a Label Mapping message with C=1; the
           control word is used.

     -iii. If the received Label Mapping message has C=1, and the PW is
           locally configured such that the use of the control word is
           not preferred or the control word is not supported, then act
           as if no Label Mapping message for the PW had been received
           (i.e., proceed to the next paragraph).

  If a Label Mapping message for the PW has not already been received
  (or if the received Label Mapping message had C=1 and either local
  configuration says that the use of the control word is not preferred
  or the control word is not supported), then send a Label Mapping
  message in which the C-bit is set to correspond to the locally
  configured preference for use of the control word.  (That is, set C=1
  if locally configured to prefer the control word, and set C=0 if
  locally configured to prefer not to use the control word or if the
  control word is not supported).

  The next action depends on what control message is next received for
  that PW.  The possibilities are as follows:

       -i. A Label Mapping message with the same C-bit value as
           specified in the Label Mapping message that was sent.  PW
           setup is now complete, and the control word is used if C=1
           but is not used if C=0.

      -ii. A Label Mapping message with C=1, but the Label Mapping
           message that was sent has C=0.  In this case, ignore the
           received Label Mapping message and continue to wait for the
           next control message for the PW.

     -iii. A Label Mapping message with C=0, but the Label Mapping
           message that was sent has C=1.  In this case, send a Label
           Withdraw message with a "Wrong C-bit" status code, followed
           by a Label Mapping message that has C=0.  PW setup is now
           complete, and the control word is not used.

      -iv. A Label Withdraw message with the "Wrong C-bit" status code.
           Treat as a normal Label Withdraw message, but do not
           respond.  Continue to wait for the next control message for
           the PW.







Martini & Heron              Standards Track                   [Page 23]

RFC 8077                     PWE3 Using LDP                February 2017


  If at any time after a Label Mapping message has been received a
  corresponding Label Withdraw or Release is received, the action taken
  is the same as for any Label Withdraw or Release messages that might
  be received at any time.

  If both endpoints prefer the use of the control word, this procedure
  will cause it to be used.  If either endpoint prefers not to use the
  control word or does not support the control word, this procedure
  will cause it not to be used.  If one endpoint prefers to use the
  control word but the other does not, the one that prefers not to use
  it has no extra protocol to execute; it just waits for a Label
  Mapping message that has C=0.

7.3.  Control-Word Renegotiation by Label Request Message

  It is possible that after the PW C-bit negotiation procedure
  described above is complete, the local PE is re-provisioned with a
  different control word preference.  Therefore, once the control-word
  negotiation procedures are complete, the procedure can be restarted
  as follows:

       -i. If the local PE previously sent a Label Mapping message, it
           MUST send a Label Withdraw message to the remote PE and wait
           until it has received a Label Release message from the
           remote PE.

      -ii. The local PE MUST send a Label Release message to the remote
           PE for the specific label associated with the FEC that was
           advertised for this specific PW.  Note: The above-mentioned
           steps of the Label Release message and Label Withdraw
           message are not required to be executed in any specific
           sequence.

     -iii. The local PE MUST send a Label Request message to the peer
           PE and then MUST wait until it receives a Label Mapping
           message containing the remote PE's currently configured
           preference for use of the control word.

  Once the remote PE has successfully processed the Label Withdraw
  message and Label Release messages, it will reset the C-bit
  negotiation state machine and its use of the control word with the
  locally configured preference.

  From this point on, the local and remote PEs will follow the C-bit
  negotiation procedures defined in the previous section.

  The above C-bit renegotiation process SHOULD NOT be interrupted until
  it is completed, or unpredictable results might occur.



Martini & Heron              Standards Track                   [Page 24]

RFC 8077                     PWE3 Using LDP                February 2017


7.4.  Sequencing Considerations

  In the case where the router considers the sequence number field in
  the control word, it is important to note the following details when
  advertising labels.

7.4.1.  Label Advertisements

  After a label has been withdrawn by the output router and/or released
  by the input router, care must be taken not to advertise (reuse) the
  same released label until the output router can be reasonably certain
  that old packets containing the released label no longer persist in
  the MPLS-enabled network.

  This precaution is required to prevent the imposition router from
  restarting packet forwarding with a sequence number of 1 when it
  receives a Label Mapping message that binds the same FEC to the same
  label if there are still older packets in the network with a sequence
  number between 1 and 32768.  For example, if there is a packet with
  sequence number=n, where n is in the interval [1,32768] traveling
  through the network, it would be possible for the disposition router
  to receive that packet after it re-advertises the label.  Since the
  label has been released by the imposition router, the disposition
  router SHOULD be expecting the next packet to arrive with a sequence
  number of 1.  Receipt of a packet with a sequence number equal to n
  will result in n packets potentially being rejected by the
  disposition router until the imposition router imposes a sequence
  number of n+1 into a packet.  Possible methods to avoid this are for
  the disposition router always to advertise a different PW label, or
  for the disposition router to wait for a sufficient time before
  attempting to re-advertise a recently released label.  This is only
  an issue when sequence number processing is enabled at the
  disposition router.

7.4.2.  Label Release

  In situations where the imposition router wants to restart forwarding
  of packets with sequence number 1, the router shall 1) send to the
  disposition router a Label Release message, and 2) send to the
  disposition router a Label Request message.  When sequencing is
  supported, advertisement of a PW label in response to a Label Request
  message MUST also consider the issues discussed in Section 7.4.1
  ("Label Advertisements").








Martini & Heron              Standards Track                   [Page 25]

RFC 8077                     PWE3 Using LDP                February 2017


8.  IANA Considerations

8.1.  LDP TLV TYPE

  This document uses several new LDP TLV types; IANA already maintains
  a registry titled "TLV Type Name Space", defined by RFC 5036.  The
  following values have been assigned from said registry:

    TLV Type  Description
    =====================================
    0x096A    PW Status TLV
    0x096B    PW Interface Parameters TLV
    0x096C    PW Group ID TLV

8.2.  LDP Status Codes

  This document uses several new LDP status codes; IANA already
  maintains a registry titled "Status Code Name Space", defined by RFC
  5036.  The following values have been assigned:

    Range/Value     E     Description                       Reference
    ------------- -----   ----------------------            ---------
    0x00000024      0     Illegal C-Bit                     [RFC8077]
    0x00000025      0     Wrong C-Bit                       [RFC8077]
    0x00000026      0     Incompatible bit-rate             [RFC8077]
    0x00000027      0     CEP-TDM mis-configuration         [RFC8077]
    0x00000028      0     PW Status                         [RFC8077]
    0x00000029      0     Unassigned/Unrecognized TAI       [RFC8077]
    0x0000002A      0     Generic Misconfiguration Error    [RFC8077]
    0x0000002B      0     Label Withdraw PW Status          [RFC8077]
                          Method Not Supported

8.3.  FEC Type Name Space

  This document uses two new FEC element types, 0x80 and 0x81, from the
  registry "Forwarding Equivalence Class (FEC) Type Name Space" for the
  Label Distribution Protocol (LDP) [RFC5036].

9.  Security Considerations

  This document specifies the LDP extensions that are needed for
  setting up and maintaining pseudowires.  The purpose of setting up
  pseudowires is to enable Layer 2 frames to be encapsulated in MPLS
  and transmitted from one end of a pseudowire to the other.
  Therefore, we address the security considerations for both the data
  plane and the control plane.





Martini & Heron              Standards Track                   [Page 26]

RFC 8077                     PWE3 Using LDP                February 2017


9.1.  Data-Plane Security

  With regard to the security of the data plane, the following areas
  must be considered:

     - MPLS PDU inspection
     - MPLS PDU spoofing
     - MPLS PDU alteration
     - MPLS PSN protocol security
     - Access Circuit security
     - Denial-of-service prevention on the PE routers

  When an MPLS PSN is used to provide pseudowire service, there is a
  perception that security must be at least equal to the currently
  deployed Layer 2 native protocol networks that the MPLS/PW network
  combination is emulating.  This means that the MPLS-enabled network
  SHOULD be isolated from outside packet insertion in such a way that
  it SHOULD NOT be possible to insert an MPLS packet into the network
  directly.  To prevent unwanted packet insertion, it is also important
  to prevent unauthorized physical access to the PSN, as well as
  unauthorized administrative access to individual network elements.

  As mentioned above, an MPLS-enabled network should not accept MPLS
  packets from its external interfaces (i.e., interfaces to CE devices
  or to other providers' networks) unless the top label of the packet
  was legitimately distributed to the system from which the packet is
  being received.  If the packet's incoming interface leads to a
  different Service Provider (SP) (rather than to a customer), an
  appropriate trust relationship must also be present, including the
  trust that the other SP also provides appropriate security measures.

  The three main security problems faced when using an MPLS-enabled
  network to transport PWs are spoofing, alteration, and inspection.
  First, there is a possibility that the PE receiving PW PDUs will get
  a PDU that appears to be from the PE transmitting the PW into the PSN
  but that was not actually transmitted by the PE originating the PW.
  (That is, the specified encapsulations do not by themselves enable
  the decapsulator to authenticate the encapsulator.)  A second problem
  is the possibility that the PW PDU will be altered between the time
  it enters the PSN and the time it leaves the PSN (i.e., the specified
  encapsulations do not by themselves assure the decapsulator of the
  packet's integrity.)  A third problem is the possibility that the
  PDU's contents will be seen while the PDU is in transit through the
  PSN (i.e., the specification encapsulations do not ensure privacy.)
  How significant these issues are in practice depends on the security
  requirements of the applications whose traffic is being sent through
  the tunnel and how secure the PSN itself is.




Martini & Heron              Standards Track                   [Page 27]

RFC 8077                     PWE3 Using LDP                February 2017


9.2.  Control-Plane Security

  General security considerations with regard to the use of LDP are
  specified in Section 5 of [RFC5036].  Those considerations also apply
  to the case where LDP is used to set up pseudowires.

  A pseudowire connects two Attachment Circuits.  It is important to
  make sure that LDP connections are not arbitrarily accepted from
  anywhere, or else a local Attachment Circuit might get connected to
  an arbitrary remote Attachment Circuit.  Therefore, an incoming LDP
  session request MUST NOT be accepted unless its IP source address is
  known to be the source of an "eligible" LDP peer.  The set of
  eligible peers could be preconfigured (either as a list of IP
  addresses or as a list of address/mask combinations), or it could be
  discovered dynamically via an auto-discovery protocol that is itself
  trusted.  (Obviously, if the auto-discovery protocol were not
  trusted, the set of eligible peers it produces could not be trusted.)

  Even if an LDP connection request appears to come from an eligible
  peer, its source address may have been spoofed.  Therefore, some
  means of preventing source address spoofing must be in place.  For
  example, if all the eligible peers are in the same network, source
  address filtering at the border routers of that network could
  eliminate the possibility of source address spoofing.

  The LDP MD5 authentication key option, as described in Section 2.9 of
  [RFC5036], MUST be implemented, and for a greater degree of security,
  it must be used.  This provides integrity and authentication for the
  LDP messages and eliminates the possibility of source address
  spoofing.  Use of the MD5 option does not provide privacy, but
  privacy of the LDP control messages is not usually considered
  important.  As the MD5 option relies on the configuration of pre-
  shared keys, it does not provide much protection against replay
  attacks.  In addition, its reliance on pre-shared keys may make it
  very difficult to deploy when the set of eligible neighbors is
  determined by an auto-configuration protocol.

  When the Generalized PWid FEC Element is used, it is possible that a
  particular LDP peer may be one of the eligible LDP peers but may not
  be the right one to connect to the particular Attachment Circuit
  identified by the particular instance of the Generalized PWid FEC
  Element.  However, given that the peer is known to be one of the
  eligible peers (as discussed above), this would be the result of a
  configuration error rather than a security problem.  Nevertheless, it
  may be advisable for a PE to associate each of its local Attachment
  Circuits with a set of eligible peers rather than have just a single
  set of eligible peers associated with the PE as a whole.




Martini & Heron              Standards Track                   [Page 28]

RFC 8077                     PWE3 Using LDP                February 2017


10.  Interoperability and Deployment

  Section 2.2 of [RFC6410] specifies four requirements that an Internet
  Standard must meet.  This section documents how this document meets
  those requirements.

  The pseudowire technology was first deployed in 2001 and has been
  widely deployed by many carriers.  [RFC7079] documents the results of
  a survey of PW implementations with specific emphasis on control-word
  usage.  [EANTC] documents a public multi-vendor interoperability test
  of MPLS and Carrier Ethernet equipment, which included testing of
  Ethernet, ATM, and TDM pseudowires.

  The errata against [RFC4447] are generally editorial in nature and
  have been addressed in this document.

  All features in this specification have been implemented by multiple
  vendors.

  No IPR disclosures have been made to the IETF related to this
  document, to RFCs 4447 or 6723, or to the Internet-Drafts that
  resulted in RFCs 4447 and 6723.

11.  References

11.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, DOI
             10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC5036]  Andersson, L., Ed., Minei, I., Ed., and B. Thomas, Ed.,
             "LDP Specification", RFC 5036, DOI 10.17487/RFC5036,
             October 2007, <http://www.rfc-editor.org/info/rfc5036>.

  [RFC3032]  Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
             Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
             Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001,
             <http://www.rfc-editor.org/info/rfc3032>.

  [RFC4446]  Martini, L., "IANA Allocations for Pseudowire Edge to Edge
             Emulation (PWE3)", BCP 116, RFC 4446, DOI
             10.17487/RFC4446, April 2006,
             <http://www.rfc-editor.org/info/rfc4446>.






Martini & Heron              Standards Track                   [Page 29]

RFC 8077                     PWE3 Using LDP                February 2017


  [RFC7358]  Raza, K., Boutros, S., Martini, L., and N. Leymann, "Label
             Advertisement Discipline for LDP Forwarding Equivalence
             Classes (FECs)", RFC 7358, DOI 10.17487/RFC7358, October
             2014, <http://www.rfc-editor.org/info/rfc7358>.

11.2.  Informative References

  [RFC2277]  Alvestrand, H., "IETF Policy on Character Sets and
             Languages", BCP 18, RFC 2277, DOI 10.17487/RFC2277,
             January 1998, <http://www.rfc-editor.org/info/rfc2277>.

  [RFC3985]  Bryant, S., Ed., and P. Pate, Ed., "Pseudo Wire Emulation
             Edge-to-Edge (PWE3) Architecture", RFC 3985, DOI
             10.17487/RFC3985, March 2005,
             <http://www.rfc-editor.org/info/rfc3985>.

  [RFC4842]  Malis, A., Pate, P., Cohen, R., Ed., and D. Zelig,
             "Synchronous Optical Network/Synchronous Digital Hierarchy
             (SONET/SDH) Circuit Emulation over Packet (CEP)", RFC
             4842, DOI 10.17487/RFC4842, April 2007,
             <http://www.rfc-editor.org/info/rfc4842>.

  [RFC4553]  Vainshtein, A., Ed., and YJ. Stein, Ed., "Structure-
             Agnostic Time Division Multiplexing (TDM) over Packet
             (SAToP)", RFC 4553, DOI 10.17487/RFC4553, June 2006,
             <http://www.rfc-editor.org/info/rfc4553>.

  [RFC4619]  Martini, L., Ed., Kawa, C., Ed., and A. Malis, Ed.,
             "Encapsulation Methods for Transport of Frame Relay over
             Multiprotocol Label Switching (MPLS) Networks", RFC 4619,
             DOI 10.17487/RFC4619, September 2006,
             <http://www.rfc-editor.org/info/rfc4619>.

  [RFC4717]  Martini, L., Jayakumar, J., Bocci, M., El-Aawar, N.,
             Brayley, J., and G. Koleyni, "Encapsulation Methods for
             Transport of Asynchronous Transfer Mode (ATM) over MPLS
             Networks", RFC 4717, DOI 10.17487/RFC4717, December 2006,
             <http://www.rfc-editor.org/info/rfc4717>.

  [RFC4618]  Martini, L., Rosen, E., Heron, G., and A. Malis,
             "Encapsulation Methods for Transport of PPP/High-Level
             Data Link Control (HDLC) over MPLS Networks", RFC 4618,
             DOI 10.17487/RFC4618, September 2006,
             <http://www.rfc-editor.org/info/rfc4618>.







Martini & Heron              Standards Track                   [Page 30]

RFC 8077                     PWE3 Using LDP                February 2017


  [RFC4448]  Martini, L., Ed., Rosen, E., El-Aawar, N., and G. Heron,
             "Encapsulation Methods for Transport of Ethernet over MPLS
             Networks", RFC 4448, DOI 10.17487/RFC4448, April 2006,
             <http://www.rfc-editor.org/info/rfc4448>.

  [RFC4447]  Martini, L., Ed., Rosen, E., El-Aawar, N., Smith, T., and
             G. Heron, "Pseudowire Setup and Maintenance Using the
             Label Distribution Protocol (LDP)", RFC 4447, DOI
             10.17487/RFC4447, April 2006,
             <http://www.rfc-editor.org/info/rfc4447>.

  [RFC6410]  Housley, R., Crocker, D., and E. Burger, "Reducing the
             Standards Track to Two Maturity Levels", BCP 9, RFC 6410,
             DOI 10.17487/RFC6410, October 2011,
             <http://www.rfc-editor.org/info/rfc6410>.

  [RFC6723]  Jin, L., Ed., Key, R., Ed., Delord, S., Nadeau, T., and S.
             Boutros, "Update of the Pseudowire Control-Word
             Negotiation Mechanism", RFC 6723, DOI 10.17487/RFC6723,
             September 2012, <http://www.rfc-editor.org/info/rfc6723>.

  [RFC7079]  Del Regno, N., Ed., and A. Malis, Ed., "The Pseudowire
             (PW) and Virtual Circuit Connectivity Verification (VCCV)
             Implementation Survey Results", RFC 7079, DOI
             10.17487/RFC7079, November 2013,
             <http://www.rfc-editor.org/info/rfc7079>.

  [ANSI]     American National Standards Institute, "Telecommunications
             - Synchronous Optical Network (SONET) - Basic Description
             Including Multiplex Structures, Rates, and Formats", ANSI
             T1.105, October 1995.

  [ITUG]     International Telecommunications Union, "Network node
             interface for the synchronous digital hierarchy (SDH)",
             ITU-T Recommendation G.707, May 1996.

  [EANTC]    European Advanced Networking Test Center, "MPLS and
             Carrier Ethernet: Service - Connect - Transport. Public
             Multi-Vendor Interoperability Test", February 2009.

Acknowledgments

  The authors wish to acknowledge the contributions of Vach Kompella,
  Vanson Lim, Wei Luo, Himanshu Shah, and Nick Weeds.  The authors wish
  to also acknowledge the contribution of the authors of RFC 6723,
  whose work has been incorporated in this document: Lizhong Jin,
  Raymond Key, Simon Delord, Tom Nadeau, and Sami Boutros.




Martini & Heron              Standards Track                   [Page 31]

RFC 8077                     PWE3 Using LDP                February 2017


Contributors

  The following individuals were either authors or contributing authors
  for RFC 4447.  They are listed here in recognition of their work on
  that document.

  Nasser El-Aawar
  Level 3 Communications, LLC.
  1025 Eldorado Blvd.
  Broomfield, CO 80021
  United States of America

  Email: [email protected]


  Eric C.  Rosen
  Cisco Systems, Inc.
  1414 Massachusetts Avenue
  Boxborough, MA 01719
  United States of America

  Email: [email protected]


  Dan Tappan
  Cisco Systems, Inc.
  1414 Massachusetts Avenue
  Boxborough, MA 01719
  United States of America

  Email: [email protected]


  Toby Smith
  Google
  6425 Penn Ave. #700
  Pittsburgh, PA 15206
  United States of America

  Email: [email protected]


  Dimitri Vlachos
  Riverbed Technology

  Email: [email protected]





Martini & Heron              Standards Track                   [Page 32]

RFC 8077                     PWE3 Using LDP                February 2017


  Jayakumar Jayakumar
  Cisco Systems Inc.
  3800 Zanker Road, MS-SJ02/2
  San Jose, CA 95134
  United States of America

  Email: [email protected]


  Alex Hamilton,
  Cisco Systems Inc.
  485 East Tasman Drive, MS-SJC07/3
  San Jose, CA 95134
  United States of America

  Email: [email protected]


  Steve Vogelsang
  ECI Telecom
  Omega Corporate Center
  1300 Omega Drive
  Pittsburgh, PA 15205
  United States of America

  Email: [email protected]


  John Shirron
  ECI Telecom
  Omega Corporate Center
  1300 Omega Drive
  Pittsburgh, PA 15205
  United States of America

  Email: [email protected]


  Andrew G. Malis
  Verizon
  60 Sylvan Rd.
  Waltham, MA 02451
  United States of America

  Email: [email protected]






Martini & Heron              Standards Track                   [Page 33]

RFC 8077                     PWE3 Using LDP                February 2017


  Vinai Sirkay
  Reliance Infocomm
  Dhirubai Ambani Knowledge City
  Navi Mumbai 400 709
  India

  Email: [email protected]


  Vasile Radoaca
  Nortel Networks
  600  Technology Park
  Billerica MA 01821
  United States of America

  Email: [email protected]


  Chris Liljenstolpe
  149 Santa Monica Way
  San Francisco, CA 94127
  United States of America

  Email: [email protected]


  Dave Cooper
  Global Crossing
  960 Hamlin Court
  Sunnyvale, CA 94089
  United States of America

  Email: [email protected]


  Kireeti Kompella
  Juniper Networks
  1194 N. Mathilda Ave
  Sunnyvale, CA 94089
  United States of America

  Email: [email protected]









Martini & Heron              Standards Track                   [Page 34]

RFC 8077                     PWE3 Using LDP                February 2017


Authors' Addresses

  Luca Martini (editor)
  Cisco Systems, Inc.
  1899 Wynkoop Street, Suite 600
  Denver, CO 80202
  United States of America

  Email: [email protected]


  Giles Heron (editor)
  Cisco Systems
  10 New Square
  Bedfont Lakes
  Feltham
  Middlesex
  TW14 8HA
  United Kingdom

  Email: [email protected]






























Martini & Heron              Standards Track                   [Page 35]