Internet Engineering Task Force (IETF)                            R. Pan
Request for Comments: 8033                                  P. Natarajan
Category: Experimental                                     Cisco Systems
ISSN: 2070-1721                                                 F. Baker
                                                           Unaffiliated
                                                               G. White
                                                              CableLabs
                                                          February 2017


           Proportional Integral Controller Enhanced (PIE):
   A Lightweight Control Scheme to Address the Bufferbloat Problem

Abstract

  Bufferbloat is a phenomenon in which excess buffers in the network
  cause high latency and latency variation.  As more and more
  interactive applications (e.g., voice over IP, real-time video
  streaming, and financial transactions) run in the Internet, high
  latency and latency variation degrade application performance.  There
  is a pressing need to design intelligent queue management schemes
  that can control latency and latency variation, and hence provide
  desirable quality of service to users.

  This document presents a lightweight active queue management design
  called "PIE" (Proportional Integral controller Enhanced) that can
  effectively control the average queuing latency to a target value.
  Simulation results, theoretical analysis, and Linux testbed results
  have shown that PIE can ensure low latency and achieve high link
  utilization under various congestion situations.  The design does not
  require per-packet timestamps, so it incurs very little overhead and
  is simple enough to implement in both hardware and software.



















Pan, et al.                   Experimental                      [Page 1]

RFC 8033                           PIE                     February 2017


Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for examination, experimental implementation, and
  evaluation.

  This document defines an Experimental Protocol for the Internet
  community.  This document is a product of the Internet Engineering
  Task Force (IETF).  It represents the consensus of the IETF
  community.  It has received public review and has been approved for
  publication by the Internet Engineering Steering Group (IESG).  Not
  all documents approved by the IESG are a candidate for any level of
  Internet Standard; see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc8033.

Copyright Notice

  Copyright (c) 2017 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.



















Pan, et al.                   Experimental                      [Page 2]

RFC 8033                           PIE                     February 2017


Table of Contents

  1. Introduction ....................................................3
  2. Terminology .....................................................5
  3. Design Goals ....................................................5
  4. The Basic PIE Scheme ............................................6
     4.1. Random Dropping ............................................7
     4.2. Drop Probability Calculation ...............................7
     4.3. Latency Calculation ........................................9
     4.4. Burst Tolerance ...........................................10
  5. Optional Design Elements of PIE ................................11
     5.1. ECN Support ...............................................11
     5.2. Dequeue Rate Estimation ...................................11
     5.3. Setting PIE Active and Inactive ...........................13
     5.4. Derandomization ...........................................14
     5.5. Cap Drop Adjustment .......................................15
  6. Implementation Cost ............................................15
  7. Scope of Experimentation .......................................17
  8. Incremental Deployment .........................................17
  9. Security Considerations ........................................18
  10. References ....................................................18
     10.1. Normative References .....................................18
     10.2. Informative References ...................................18
  Appendix A. The Basic PIE Pseudocode ..............................21
  Appendix B. Pseudocode for PIE with Optional Enhancement ..........24
  Contributors ......................................................29
  Authors' Addresses ................................................30

1.  Introduction

  The explosion of smart phones, tablets, and video traffic in the
  Internet brings about a unique set of challenges for congestion
  control.  To avoid packet drops, many service providers or
  data-center operators require vendors to put in as much buffer as
  possible.  Because of the rapid decrease in memory chip prices, these
  requests are easily accommodated to keep customers happy.  While this
  solution succeeds in assuring low packet loss and high TCP
  throughput, it suffers from a major downside.  TCP continuously
  increases its sending rate and causes network buffers to fill up.
  TCP cuts its rate only when it receives a packet drop or mark that is
  interpreted as a congestion signal.  However, drops and marks usually
  occur when network buffers are full or almost full.  As a result,
  excess buffers, initially designed to avoid packet drops, would lead
  to highly elevated queuing latency and latency variation.  Designing
  a queue management scheme is a delicate balancing act: it not only
  should allow short-term bursts to smoothly pass but also should
  control the average latency in the presence of long-running greedy
  flows.



Pan, et al.                   Experimental                      [Page 3]

RFC 8033                           PIE                     February 2017


  Active Queue Management (AQM) schemes could potentially solve the
  aforementioned problem.  AQM schemes, such as Random Early Detection
  (RED) [RED] as suggested in [RFC2309] (which is now obsoleted by
  [RFC7567]), have been around for well over a decade.  RED is
  implemented in a wide variety of network devices, both in hardware
  and software.  Unfortunately, due to the fact that RED needs careful
  tuning of its parameters for various network conditions, most network
  operators don't turn RED on.  In addition, RED is designed to control
  the queue length, which would affect latency implicitly.  It does not
  control latency directly.  Hence, the Internet today still lacks an
  effective design that can control buffer latency to improve the
  quality of experience to latency-sensitive applications.  The more
  recently published RFC 7567 calls for new methods of controlling
  network latency.

  New algorithms are beginning to emerge to control queuing latency
  directly to address the bufferbloat problem [CoDel].  Along these
  lines, Proportional Integral controller Enhanced (PIE) also aims to
  keep the benefits of RED, including easy implementation and
  scalability to high speeds.  Similar to RED, PIE randomly drops an
  incoming packet at the onset of congestion.  Congestion detection,
  however, is based on the queuing latency instead of the queue length
  (as with RED).  Furthermore, PIE also uses the derivative (rate of
  change) of the queuing latency to help determine congestion levels
  and an appropriate response.  The design parameters of PIE are chosen
  via control theory stability analysis.  While these parameters can be
  fixed to work in various traffic conditions, they could be made
  self-tuning to optimize system performance.

  Separately, it is assumed that any latency-based AQM scheme would be
  applied over a Fair Queuing (FQ) structure or one of its approximate
  designs, Flow Queuing or Class-Based Queuing (CBQ).  FQ is one of the
  most studied scheduling algorithms since it was first proposed in
  1985 [RFC970].  CBQ has been a standard feature in most network
  devices today [CBQ].  Any AQM scheme that is built on top of FQ or
  CBQ could benefit from these advantages.  Furthermore, these
  advantages, such as per-flow or per-class fairness, are orthogonal to
  the AQM design whose primary goal is to control latency for a given
  queue.  For flows that are classified into the same class and put
  into the same queue, one needs to ensure that their latency is better
  controlled and that their fairness is not worse than those under the
  standard DropTail or RED design.  More details about the relationship
  between FQ and AQM can be found in [RFC7806].

  In October 2013, CableLabs' Data-Over-Cable Service Interface
  Specification 3.1 (DOCSIS 3.1) specification [DOCSIS_3.1] mandated
  that cable modems implement a specific variant of the PIE design as
  the active queue management algorithm.  In addition to cable-specific



Pan, et al.                   Experimental                      [Page 4]

RFC 8033                           PIE                     February 2017


  improvements, the PIE design in DOCSIS 3.1 [RFC8034] has improved the
  original design in several areas, including derandomization of coin
  tosses and enhanced burst protection.

  This document describes the design of PIE and separates it into basic
  elements and optional components that may be implemented to enhance
  the performance of PIE.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

3.  Design Goals

  A queue management framework is designed to improve the performance
  of interactive and latency-sensitive applications.  It should follow
  the general guidelines set by the AQM working group document "IETF
  Recommendations Regarding Active Queue Management" [RFC7567].  More
  specifically, the PIE design has the following basic criteria.

  *  First, queuing latency, instead of queue length, is controlled.
     Queue sizes change with queue draining rates and various flows'
     round-trip times.  Latency bloat is the real issue that needs to
     be addressed, as it impairs real-time applications.  If latency
     can be controlled, bufferbloat is not an issue.  In fact, once
     latency is under control, it frees up buffers for sporadic bursts.

  *  Secondly, PIE aims to attain high link utilization.  The goal of
     low latency shall be achieved without suffering link
     underutilization or losing network efficiency.  An early
     congestion signal could cause TCP to back off and avoid queue
     buildup.  On the other hand, however, TCP's rate reduction could
     result in link underutilization.  There is a delicate balance
     between achieving high link utilization and low latency.

  *  Furthermore, the scheme should be simple to implement and easily
     scalable in both hardware and software.  PIE strives to maintain
     design simplicity similar to that of RED, which has been
     implemented in a wide variety of network devices.

  *  Finally, the scheme should ensure system stability for various
     network topologies and scale well across an arbitrary number of
     streams.  Design parameters shall be set automatically.  Users
     only need to set performance-related parameters such as target
     queue latency, not design parameters.




Pan, et al.                   Experimental                      [Page 5]

RFC 8033                           PIE                     February 2017


  In the following text, the design of PIE and its operation are
  described in detail.

4.  The Basic PIE Scheme

  As illustrated in Figure 1, PIE is comprised of three simple basic
  components: a) random dropping at enqueuing, b) periodic drop
  probability updates, and c) latency calculation.  When a packet
  arrives, a random decision is made regarding whether to drop the
  packet.  The drop probability is updated periodically based on how
  far the current latency is away from the target value and whether the
  queuing latency is currently trending up or down.  The queuing
  latency can be obtained using direct measurements or using
  estimations calculated from the queue length and the dequeue rate.

  The detailed definition of parameters can be found in Appendix A of
  this document ("The Basic PIE Pseudocode").  Any state variables that
  PIE maintains are noted using "PIE->".  For a full description of the
  algorithm, one can refer to the full paper [HPSR-PIE].

        Random Drop
             /               --------------
     -------/  -------------->    | | | | | -------------->
            /|\                   | | | | |
             |               --------------
             |             Queue Buffer   \
             |                     |       \
             |                     |Queue   \
             |                     |Length   \
             |                     |          \
             |                    \|/         \/
             |          -----------------    -------------------
             |          |     Drop      |    |                 |
             -----<-----|  Probability  |<---| Latency         |
                        |  Calculation  |    | Calculation     |
                        -----------------    -------------------

                       Figure 1: The PIE Structure













Pan, et al.                   Experimental                      [Page 6]

RFC 8033                           PIE                     February 2017


4.1.  Random Dropping

  PIE randomly drops a packet upon its arrival to a queue according to
  a drop probability, PIE->drop_prob_, that is obtained from the
  drop-probability-calculation component.  The random drop is triggered
  by a packet's arrival before enqueuing into a queue.

  *  Upon a packet enqueue:

     randomly drop the packet with a probability of PIE->drop_prob_.

  To ensure that PIE is "work conserving", we bypass the random drop if
  the latency sample, PIE->qdelay_old_, is smaller than half of the
  target latency value (QDELAY_REF) when the drop probability is not
  too high (i.e., PIE->drop_prob_ < 0.2), or if the queue has less than
  a couple of packets.

  *  Upon a packet enqueue, PIE does the following:

     //Safeguard PIE to be work conserving
     if ( (PIE->qdelay_old_ < QDELAY_REF/2 && PIE->drop_prob_ < 0.2)
           || (queue_.byte_length() <= 2 * MEAN_PKTSIZE) )
               return ENQUE;
     else
        randomly drop the packet with a probability of
        PIE->drop_prob_.

  PIE optionally supports Explicit Congestion Notification (ECN); see
  Section 5.1.

4.2.  Drop Probability Calculation

  The PIE algorithm periodically updates the drop probability based on
  the latency samples -- not only the current latency sample but also
  whether the latency is trending up or down.  This is the classical
  Proportional Integral (PI) controller method, which is known for
  eliminating steady-state errors.  This type of controller has been
  studied before for controlling the queue length [PI] [QCN].  PIE
  adopts the PI controller for controlling latency.  The algorithm also
  auto-adjusts the control parameters based on how heavy the congestion
  is, which is reflected in the current drop probability.  Note that
  the current drop probability is a direct measure of the current
  congestion level; there is no need to measure the arrival rate and
  dequeue rate mismatches.

  When a congestion period ends, we might be left with a high drop
  probability with light packet arrivals.  Hence, the PIE algorithm
  includes a mechanism by which the drop probability decays



Pan, et al.                   Experimental                      [Page 7]

RFC 8033                           PIE                     February 2017


  exponentially (rather than linearly) when the system is not
  congested.  This would help the drop probability converge to 0 more
  quickly, while the PI controller ensures that it would eventually
  reach zero.  The decay parameter of 2% gives us a time constant
  around 50 * T_UPDATE.

  Specifically, the PIE algorithm periodically adjusts the drop
  probability every T_UPDATE interval:

  *  calculate drop probability PIE->drop_prob_, and autotune it as
     follows:

        p = alpha * (current_qdelay - QDELAY_REF) +
               beta * (current_qdelay - PIE->qdelay_old_);

        if (PIE->drop_prob_ < 0.000001) {
            p /= 2048;
        } else if (PIE->drop_prob_ < 0.00001) {
            p /= 512;
        } else if (PIE->drop_prob_ < 0.0001) {
            p /= 128;
        } else if (PIE->drop_prob_ < 0.001) {
            p /= 32;
        } else if (PIE->drop_prob_ < 0.01) {
            p /= 8;
        } else if (PIE->drop_prob_ < 0.1) {
            p /= 2;
        } else {
            p = p;
        }
        PIE->drop_prob_ += p;

  *  decay the drop probability exponentially:

        if (current_qdelay == 0 && PIE->qdelay_old_ == 0) {
            PIE->drop_prob_ = PIE->drop_prob_ * 0.98;
                                                //1 - 1/64 is
                                                //sufficient
        }

  *  bound the drop probability:

        if (PIE->drop_prob_ < 0)
                 PIE->drop_prob_ = 0.0
        if (PIE->drop_prob_ > 1)
                 PIE->drop_prob_ = 1.0





Pan, et al.                   Experimental                      [Page 8]

RFC 8033                           PIE                     February 2017


  *  store the current latency value:

        PIE->qdelay_old_ = current_qdelay.

  The update interval, T_UPDATE, is defaulted to be 15 milliseconds.
  It MAY be reduced on high-speed links in order to provide smoother
  response.  The target latency value, QDELAY_REF, SHOULD be set to 15
  milliseconds.  The variables current_qdelay and PIE->qdelay_old_
  represent the current and previous samples of the queuing latency,
  which are calculated by the "latency calculation" component (see
  Section 4.3).  The variable current_qdelay is actually a temporary
  variable, while PIE->qdelay_old_ is a state variable that PIE keeps.
  The drop probability is a value between 0 and 1.  However,
  implementations can certainly use integers.

  The controller parameters, alpha and beta (expressed in Hz), are
  designed using feedback loop analysis, where TCP's behaviors are
  modeled using the results from well-studied prior art [TCP-Models].
  Note that the above adjustment of 'p' effectively scales the alpha
  and beta parameters based on the current congestion level indicated
  by the drop probability.

  The theoretical analysis of PIE can be found in [HPSR-PIE].  As a
  rule of thumb, to keep the same feedback loop dynamics, if we cut
  T_UPDATE in half, we should also cut alpha by half and increase beta
  by alpha/4.  If the target latency is reduced, e.g., for data-center
  use, the values of alpha and beta should be increased by the same
  order of magnitude by which the target latency is reduced.  For
  example, if QDELAY_REF is reduced and changed from 15 milliseconds to
  150 microseconds -- a reduction of two orders of magnitude -- then
  alpha and beta values should be increased to alpha * 100 and
  beta * 100.

4.3.  Latency Calculation

  The PIE algorithm uses latency to calculate drop probability in one
  of two ways:

  *  It estimates the current queuing latency using Little's law (see
     Section 5.2 for details):

        current_qdelay = queue_.byte_length()/dequeue_rate;

  *  It may use other techniques for calculating queuing latency, e.g.,
     time-stamp the packets at enqueue, and use the timestamps to
     calculate latency during dequeue.





Pan, et al.                   Experimental                      [Page 9]

RFC 8033                           PIE                     February 2017


4.4.  Burst Tolerance

  PIE does not penalize short-term packet bursts as suggested in
  [RFC7567].  PIE allows bursts of traffic that create finite-duration
  events in which current queuing latency exceeds QDELAY_REF without
  triggering packet drops.  This document introduces a parameter called
  "MAX_BURST"; MAX_BURST defines the burst duration that will be
  protected.  By default, the parameter SHOULD be set to 150
  milliseconds.  For simplicity, the PIE algorithm MAY effectively
  round MAX_BURST up to an integer multiple of T_UPDATE.

  To implement the burst tolerance function, two basic components of
  PIE are involved: "random dropping" and "drop probability
  calculation".  The PIE algorithm does the following:

  *  In the "random dropping" block and upon packet arrival, PIE checks
     the following:

     Upon a packet enqueue:
        if PIE->burst_allowance_ > 0
           enqueue packet;
        else
           randomly drop a packet with a probability of
           PIE->drop_prob_.

        if (PIE->drop_prob_ == 0 and current_qdelay < QDELAY_REF/2 and
            PIE->qdelay_old_ < QDELAY_REF/2)
            PIE->burst_allowance_ = MAX_BURST;

  *  In the "drop probability calculation" block, PIE additionally
     calculates:

     PIE->burst_allowance_ = max(0,PIE->burst_allowance_ - T_UPDATE);

  The burst allowance, noted by PIE->burst_allowance_, is initialized
  to MAX_BURST.  As long as PIE->burst_allowance_ is above zero, an
  incoming packet will be enqueued, bypassing the random drop process.
  During each update instance, the value of PIE->burst_allowance_ is
  decremented by the update period, T_UPDATE, and is bottomed at 0.
  When the congestion goes away -- defined here as PIE->drop_prob_
  equals 0 and both the current and previous samples of estimated
  latency are less than half of QDELAY_REF -- PIE->burst_allowance_ is
  reset to MAX_BURST.








Pan, et al.                   Experimental                     [Page 10]

RFC 8033                           PIE                     February 2017


5.  Optional Design Elements of PIE

  There are several enhancements that are added to further augment the
  performance of the basic algorithm.  For purposes of clarity, they
  are included in this section.

5.1.  ECN Support

  PIE MAY support ECN by marking (rather than dropping) ECN-capable
  packets [ECN].  This document introduces an additional threshold
  called "mark_ecnth", which acts as a safeguard: if the calculated
  drop probability exceeds mark_ecnth, PIE reverts to packet-dropping
  for ECN-capable packets.  The variable mark_ecnth SHOULD be set to
  0.1 (10%).

  *  To support ECN, the "random drop with a probability of
     PIE->drop_prob_" function in the "random dropping" block is
     changed to the following:

     *  Upon a packet enqueue:

        if rand() < PIE->drop_prob_:
         if PIE->drop_prob_ < mark_ecnth && ecn_capable_packet == TRUE:
            mark packet;
         else
            drop packet;

5.2.  Dequeue Rate Estimation

  Using timestamps, a latency sample can only be obtained when a packet
  reaches the head of a queue.  When a quick response time is desired
  or a direct latency sample is not available, one may obtain latency
  through measuring the dequeue rate.  The draining rate of a queue in
  the network often varies either because other queues are sharing the
  same link or because the link capacity fluctuates.  Rate fluctuation
  is particularly common in wireless networks.  One may measure
  directly at the dequeue operation.  Short, non-persistent bursts of
  packets result in empty queues from time to time; this would make the
  measurement less accurate.  PIE only measures latency when there is
  sufficient data in the buffer, i.e., when the queue length is over a











Pan, et al.                   Experimental                     [Page 11]

RFC 8033                           PIE                     February 2017


  certain threshold (DQ_THRESHOLD).  PIE measures how long it takes to
  drain DQ_THRESHOLD packets.  More specifically, the rate estimation
  can be implemented as follows:

     current_qdelay = queue_.byte_length() *
                      PIE->avg_dq_time_/DQ_THRESHOLD;

  *  Upon a packet dequeue:

     if PIE->in_measurement_ == FALSE and queue.byte_length() >=
     DQ_THRESHOLD:
        PIE->in_measurement_ = TRUE;
        PIE->measurement_start_ = now;
        PIE->dq_count_ = 0;

     if PIE->in_measurement_ == TRUE:
        PIE->dq_count_ = PIE->dq_count_ + deque_pkt_size;
        if PIE->dq_count_ >= DQ_THRESHOLD then
           weight = DQ_THRESHOLD/2^16
           PIE->avg_dq_time_ = (now - PIE->measurement_start_) *
                               weight + PIE->avg_dq_time_ *
                               (1 - weight);
           PIE->dq_count_ = 0;
           PIE->measurement_start_ = now
        else
           PIE->in_measurement_ = FALSE;

  The parameter PIE->dq_count_ represents the number of bytes departed
  since the last measurement.  Once PIE->dq_count_ is over
  DQ_THRESHOLD, a measurement sample is obtained.  It is recommended
  that the threshold be set to 16 KB, assuming a typical packet size of
  around 1 KB or 1.5 KB.  This threshold would allow sufficient data to
  obtain an average draining rate but would also be fast enough (< 64
  KB) to reflect sudden changes in the draining rate.  If DQ_THRESHOLD
  is smaller than 64 KB, a small weight is used to smooth out the
  dequeue time and obtain PIE->avg_dq_time_.  The dequeue rate is
  simply DQ_THRESHOLD divided by PIE->avg_dq_time_.  This threshold is
  not crucial for the system's stability.  Please note that the update
  interval for calculating the drop probability is different from the
  rate measurement cycle.  The drop probability calculation is done
  periodically per Section 4.2, and it is done even when the algorithm
  is not in a measurement cycle; in this case, the previously latched
  value of PIE->avg_dq_time_ is used.








Pan, et al.                   Experimental                     [Page 12]

RFC 8033                           PIE                     February 2017


           Random Drop
               /                     --------------
       -------/  -------------------->    | | | | | -------------->
              /|\             |           | | | | |
               |              |      --------------
               |              |       Queue Buffer
               |              |             |
               |              |             |Queue
               |              |             |Length
               |              |             |
               |             \|/           \|/
               |          ------------------------------
               |          |     Dequeue Rate           |
               -----<-----|  & Drop Probability        |
                          |        Calculation         |
                          ------------------------------

                Figure 2: The Enqueue-Based PIE Structure

  In some platforms, enqueuing and dequeuing functions belong to
  different modules that are independent of each other.  In such
  situations, a pure enqueue-based design can be developed.  An
  enqueue-based design is depicted in Figure 2.  The dequeue rate is
  deduced from the number of packets enqueued and the queue length.
  The design is based on the following key observation: over a certain
  time interval, the number of dequeued packets = the number of
  enqueued packets minus the number of remaining packets in the queue.
  In this design, everything can be triggered by packet arrival,
  including the background update process.  The design complexity here
  is similar to the original design.

5.3.  Setting PIE Active and Inactive

  Traffic naturally fluctuates in a network.  It would be preferable
  not to unnecessarily drop packets due to a spurious uptick in queuing
  latency.  PIE has an optional feature of automatically becoming
  active/inactive.  To implement this feature, PIE may choose to only
  become active (from inactive) when the buffer occupancy is over a
  certain threshold, which may be set to 1/3 of the tail drop
  threshold.  PIE becomes inactive when congestion ends; i.e., when the
  drop probability reaches 0, current and previous latency samples are
  all below half of QDELAY_REF.

  Ideally, PIE should become active/inactive based on latency.
  However, calculating latency when PIE is inactive would introduce
  unnecessary packet-processing overhead.  Weighing the trade-offs,
  we decided to compare against the tail drop threshold to keep things
  simple.



Pan, et al.                   Experimental                     [Page 13]

RFC 8033                           PIE                     February 2017


  When PIE optionally becomes active/inactive, the burst protection
  logic described in Section 4.4 is modified as follows:

  *  "Random dropping" block: PIE adds the following:

     Upon packet arrival:

     if PIE->active_ == FALSE && queue_length >= TAIL_DROP/3:
        PIE->active_ = TRUE;
        PIE->burst_allowance_ = MAX_BURST;

     if PIE->burst_allowance_ > 0
        enqueue packet;
     else
        randomly drop a packet with a probability of
        PIE->drop_prob_.

     if (PIE->drop_prob_ == 0 and current_qdelay < QDELAY_REF/2 and
         PIE->qdelay_old_ < QDELAY_REF/2)
         PIE->active_ = FALSE;
         PIE->burst_allowance_ = MAX_BURST;

  *  "Drop probability calculation" block: PIE does the following:
     if PIE->active_ == TRUE:
        PIE->burst_allowance_ =
           max(0,PIE->burst_allowance_ - T_UPDATE);

5.4.  Derandomization

  Although PIE adopts random dropping to achieve latency control,
  independent coin tosses could introduce outlier situations where
  packets are dropped too close to each other or too far from each
  other.  This would cause the real drop percentage to temporarily
  deviate from the intended value PIE->drop_prob_.  In certain
  scenarios, such as a small number of simultaneous TCP flows, these
  deviations can cause significant deviations in link utilization and
  queuing latency.  PIE may use a derandomization mechanism to avoid
  such situations.  A parameter called "PIE->accu_prob_" is reset to 0
  after a drop.  Upon packet arrival, PIE->accu_prob_ is incremented by
  the amount of drop probability, PIE->drop_prob_.  If PIE->accu_prob_
  is less than a low threshold, e.g., 0.85, the arriving packet is
  enqueued; on the other hand, if PIE->accu_prob_ is more than a high
  threshold, e.g., 8.5, and the queue is congested, the arrival packet
  is forced to be dropped.  A packet is only randomly dropped if
  PIE->accu_prob_ falls between the two thresholds.  Since
  PIE->accu_prob_ is reset to 0 after a drop, another drop will not
  happen until 0.85/PIE->drop_prob_ packets later.  This avoids packets
  being dropped too close to each other.  In the other extreme case



Pan, et al.                   Experimental                     [Page 14]

RFC 8033                           PIE                     February 2017


  where 8.5/PIE->drop_prob_ packets have been enqueued without
  incurring a drop, PIE would force a drop in order to prevent the
  drops from being spaced too far apart.  Further analysis can be found
  in [RFC8034].

5.5.  Cap Drop Adjustment

  In the case of a single TCP flow, during the slow-start phase the
  queue could quickly increase, which could result in a very rapid
  increase in drop probability.  In order to prevent an excessive
  ramp-up that could negatively impact the throughput in this scenario,
  PIE can cap the maximum drop probability increase in each step.

  *  "Drop probability calculation" block: PIE adds the following:

     if (PIE->drop_prob_ >= 0.1 && p > 0.02) {
         p = 0.02;
     }

6.  Implementation Cost

  PIE can be applied to existing hardware or software solutions.  There
  are three steps involved in PIE, as discussed in Section 4.  Their
  complexities are examined below.

  Upon packet arrival, the algorithm simply drops a packet randomly,
  based on the drop probability.  This step is straightforward and
  requires no packet header examination and manipulation.  If the
  implementation doesn't rely on packet timestamps for calculating
  latency, PIE does not require extra memory.  Furthermore, the input
  side of a queue is typically under software control while the output
  side of a queue is hardware based.  Hence, a drop at enqueuing can be
  readily retrofitted into existing or software implementations.

  The drop probability calculation is done in the background, and it
  occurs every T_UPDATE interval.  Given modern high-speed links, this
  period translates into once every tens, hundreds, or even thousands
  of packets.  Hence, the calculation occurs at a much slower time
  scale than the packet-processing time -- at least an order of
  magnitude slower.  The calculation of drop probability involves
  multiplications using alpha and beta.  Since PIE's control law is
  robust to minor changes in alpha and beta values, an implementation
  MAY choose these values to the closest multiples of 2 or 1/2 (e.g.,
  alpha = 1/8, beta = 1 + 1/4) such that the multiplications can be
  done using simple adds and shifts.  As no complicated functions are
  required, PIE can be easily implemented in both hardware and





Pan, et al.                   Experimental                     [Page 15]

RFC 8033                           PIE                     February 2017


  software.  The state requirement is only three variables per queue:
  burst_allowance_, PIE->drop_prob_, and PIE->qdelay_old_.  Hence, the
  memory overhead is small.

  If one chooses to implement the departure rate estimation, PIE uses a
  counter to keep track of the number of bytes departed for the current
  interval.  This counter is incremented per packet departure.  Every
  T_UPDATE, PIE calculates latency using the departure rate, which can
  be implemented using a single multiply operation.  Note that many
  network devices keep track of an interface's departure rate.  In this
  case, PIE might be able to reuse this information and simply skip the
  third step of the algorithm; hence, it would incur no extra cost.  If
  a platform already leverages packet timestamps for other purposes,
  PIE can make use of these packet timestamps for latency calculation
  instead of estimating the departure rate.

  Flow queuing can also be combined with PIE to provide isolation
  between flows.  In this case, it is preferable to have an independent
  value of drop probability per queue.  This allows each flow to
  receive the most appropriate level of congestion signal and ensures
  that sparse flows are protected from experiencing packet drops.
  However, running the entire PIE algorithm independently on each queue
  in order to calculate the drop probability may be overkill.
  Furthermore, in the case where departure rate estimation is used to
  predict queuing latency, it is not possible to calculate an accurate
  per-queue departure rate upon which to implement the PIE drop
  probability calculation.  Instead, it has been proposed [DOCSIS-AQM]
  that a single implementation of the PIE drop probability calculation
  based on the overall latency estimate be used, followed by a
  per-queue scaling of drop probability based on the ratio of
  queue depth between the queue in question and the current largest
  queue.  This scaling is reasonably simple and has a couple of nice
  properties:

  *  If a packet is arriving to an empty queue, it is given immunity
     from packet drops altogether, regardless of the state of the other
     queues.

  *  In the situation where only a single queue is in use, the
     algorithm behaves exactly like the single-queue PIE algorithm.

  In summary, PIE is simple enough to be implemented in both software
  and hardware.








Pan, et al.                   Experimental                     [Page 16]

RFC 8033                           PIE                     February 2017


7.  Scope of Experimentation

  The design of the PIE algorithm is presented in this document.  The
  PIE algorithm effectively controls the average queuing latency to a
  target value.  The following areas can be used for further study and
  experimentation:

  *  Autotuning of target latency without losing utilization.

  *  Autotuning for the average round-trip time of traffic.

  *  The proper threshold to transition smoothly between ECN marking
     and dropping.

  *  The enhancements described in Section 5, which can be used in
     experiments to see if they would be of more value in the real
     world.  If so, they will be incorporated into the basic PIE
     algorithm.

  *  The PIE design, which is separated into the data path and the
     control path.  The control path can be implemented in software.
     Field tests of other control laws can be performed to experiment
     with further improvements to PIE's performance.

  Although all network nodes cannot be changed altogether to adopt
  latency-based AQM schemes such as PIE, a gradual adoption would
  eventually lead to end-to-end low-latency service for all
  applications.

8.  Incremental Deployment

  From testbed experiments and large-scale simulations of PIE so far,
  PIE has been shown to be effective across a diverse range of network
  scenarios.  There is no indication that PIE would be harmful to
  deploy.

  The PIE scheme can be independently deployed and managed without a
  need for interoperability between different network devices.  In
  addition, any individual buffer queue can be incrementally upgraded
  to PIE, as it can coexist with existing AQM schemes such as
  Weighted RED (WRED).

  PIE is intended to be self-configuring.  Users should not need to
  configure any design parameters.  Upon installation, the two
  user-configurable parameters -- QDELAY_REF and MAX_BURST -- will be
  defaulted to 15 milliseconds and 150 milliseconds for non-data-center
  network devices and to 15 microseconds and 150 microseconds for
  data-center switches, respectively.



Pan, et al.                   Experimental                     [Page 17]

RFC 8033                           PIE                     February 2017


  Since the data path of the algorithm needs only a simple coin toss
  and the control-path calculation happens in a much slower time scale,
  we don't foresee any scaling issues associated with the algorithm as
  the link speed scales up.

9.  Security Considerations

  This document describes PIE, an active queue management algorithm
  based on implementations in different products.  The PIE algorithm
  introduces no specific security exposures.

10.  References

10.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

10.2.  Informative References

  [RFC970]   Nagle, J., "On Packet Switches With Infinite Storage",
             RFC 970, DOI 10.17487/RFC0970, December 1985,
             <http://www.rfc-editor.org/info/rfc970>.

  [RFC2309]  Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering,
             S., Estrin, D., Floyd, S., Jacobson, V., Minshall, G.,
             Partridge, C., Peterson, L., Ramakrishnan, K., Shenker,
             S., Wroclawski, J., and L. Zhang, "Recommendations on
             Queue Management and Congestion Avoidance in the
             Internet", RFC 2309, DOI 10.17487/RFC2309, April 1998,
             <http://www.rfc-editor.org/info/rfc2309>.

  [RFC7567]  Baker, F., Ed., and G. Fairhurst, Ed., "IETF
             Recommendations Regarding Active Queue Management",
             BCP 197, RFC 7567, DOI 10.17487/RFC7567, July 2015,
             <http://www.rfc-editor.org/info/rfc7567>.

  [RFC7806]  Baker, F. and R. Pan, "On Queuing, Marking, and Dropping",
             RFC 7806, DOI 10.17487/RFC7806, April 2016,
             <http://www.rfc-editor.org/info/rfc7806>.









Pan, et al.                   Experimental                     [Page 18]

RFC 8033                           PIE                     February 2017


  [RFC8034]  White, G. and R. Pan, "Active Queue Management (AQM) Based
             on Proportional Integral Controller Enhanced (PIE) for
             Data-Over-Cable Service Interface Specifications (DOCSIS)
             Cable Modems", RFC 8034, DOI 10.17487/RFC8034,
             February 2017, <http://www.rfc-editor.org/info/rfc8034>.

  [CBQ]      Cisco, "Class-Based Weighted Fair Queueing",
             <http://www.cisco.com/en/US/docs/ios/12_0t/12_0t5/
             feature/guide/cbwfq.html>.

  [CoDel]    Nichols, K. and V. Jacobson, "Controlling Queue Delay",
             Communications of the ACM, Volume 55, Issue 7, pp. 42-50,
             DOI 10.1145/2209249.2209264, July 2012.

  [DOCSIS_3.1]
             CableLabs, "MAC and Upper Layer Protocols Interface
             Specification", DOCSIS 3.1, January 2017,
             <https://apps.cablelabs.com/specification/
             CM-SP-MULPIv3.1>.

  [DOCSIS-AQM]
             White, G., "Active Queue Management in DOCSIS 3.x Cable
             Modems", May 2014, <http://www.cablelabs.com/wp-content/
             uploads/2014/06/DOCSIS-AQM_May2014.pdf>.

  [ECN]      Briscoe, B., Kaippallimalil, J., and P. Thaler,
             "Guidelines for Adding Congestion Notification to
             Protocols that Encapsulate IP", Work in Progress,
             draft-ietf-tsvwg-ecn-encap-guidelines-07, July 2016.

  [HPSR-PIE] Pan, R., Natarajan, P., Piglione, C., Prabhu, M.S.,
             Subramanian, V., Baker, F., and B. Ver Steeg, "PIE: A
             lightweight control scheme to address the bufferbloat
             problem", IEEE HPSR, DOI 10.1109/HPSR.2013.6602305, 2013,
             <https://www.researchgate.net/publication/
             261134127_PIE_A_lightweight_control_scheme_to_address_
             the_bufferbloat_problem?origin=mail>.

  [PI]       Hollot, C.V., Misra, V., Towsley, D., and W. Gong, "On
             designing improved controllers for AQM routers supporting
             TCP flows", INFOCOM 2001, DOI 10.1109/INFCOM.2001.916670,
             April 2001.

  [QCN]      IEEE, "IEEE Standard for Local and Metropolitan Area
             Networks--Virtual Bridged Local Area Networks -
             Amendment: 10: Congestion Notification", IEEE 802.1Qau,
             <http://www.ieee802.org/1/pages/802.1au.html>.




Pan, et al.                   Experimental                     [Page 19]

RFC 8033                           PIE                     February 2017


  [RED]      Floyd, S. and V. Jacobson, "Random Early Detection (RED)
             Gateways for Congestion Avoidance", IEEE/ACM Transactions
             on Networking, Volume 1, Issue 4, DOI 10.1109/90.251892,
             August 1993.

  [TCP-Models]
             Misra, V., Gong, W., and D. Towsley, "Fluid-based analysis
             of a network of AQM routers supporting TCP flows with an
             application to RED", SIGCOMM 2000, Volume 30, Issue 4,
             pp. 151-160, DOI 10.1145/347057.347421, October 2000.









































Pan, et al.                   Experimental                     [Page 20]

RFC 8033                           PIE                     February 2017


Appendix A.  The Basic PIE Pseudocode

  Configurable parameters:
     -  QDELAY_REF.  AQM Latency Target (default: 15 milliseconds)
     -  MAX_BURST.  AQM Max Burst Allowance (default: 150 milliseconds)

  Internal parameters:
     -  Weights in the drop probability calculation (1/s):
        alpha (default: 1/8), beta (default: 1 + 1/4)
     -  T_UPDATE: a period to calculate drop probability
        (default: 15 milliseconds)

  Table that stores status variables (ending with "_"):
     -  burst_allowance_: current burst allowance
     -  drop_prob_: The current packet drop probability.  Reset to 0
     -  qdelay_old_: The previous queue delay.  Reset to 0

  Public/system functions:
     -  queue_.  Holds the pending packets
     -  drop(packet).  Drops/discards a packet
     -  now().  Returns the current time
     -  random().  Returns a uniform r.v. in the range 0 ~ 1
     -  queue_.byte_length().  Returns current queue_ length in bytes
     -  queue_.enque(packet).  Adds packet to tail of queue_
     -  queue_.deque().  Returns the packet from the head of queue_
     -  packet.size().  Returns size of packet
     -  packet.timestamp_delay().  Returns timestamped packet latency

  ============================

  //Called on each packet arrival
    enque(Packet packet) {
         if (PIE->drop_prob_ == 0 && current_qdelay < QDELAY_REF/2
             && PIE->qdelay_old_ < QDELAY_REF/2) {
             PIE->burst_allowance_ = MAX_BURST;
         }
         if (PIE->burst_allowance_ == 0 && drop_early() == DROP) {
                  drop(packet);
         } else {
                  queue_.enque(packet);
         }
    }

  ============================







Pan, et al.                   Experimental                     [Page 21]

RFC 8033                           PIE                     February 2017


    drop_early() {

        //Safeguard PIE to be work conserving
        if ( (PIE->qdelay_old_ < QDELAY_REF/2 && PIE->drop_prob_ < 0.2)
              || (queue_.byte_length() <= 2 * MEAN_PKTSIZE) ) {
             return ENQUE;
        }

        double u = random();
        if (u < PIE->drop_prob_) {
             return DROP;
        } else {

             return ENQUE;
        }
     }

  ============================

  //We choose the timestamp option of obtaining latency for clarity
  //Rate estimation method can be found in the extended PIE pseudocode

    deque(Packet packet) {

      current_qdelay = packet.timestamp_delay();
    }

  ============================

  //Update periodically, T_UPDATE = 15 milliseconds

    calculate_drop_prob() {

         //Can be implemented using integer multiply

         p = alpha * (current_qdelay - QDELAY_REF) + \
             beta * (current_qdelay - PIE->qdelay_old_);

         if (PIE->drop_prob_ < 0.000001) {
             p /= 2048;
         } else if (PIE->drop_prob_ < 0.00001) {
             p /= 512;
         } else if (PIE->drop_prob_ < 0.0001) {
             p /= 128;
         } else if (PIE->drop_prob_ < 0.001) {
             p /= 32;
         } else if (PIE->drop_prob_ < 0.01) {
             p /= 8;



Pan, et al.                   Experimental                     [Page 22]

RFC 8033                           PIE                     February 2017


         } else if (PIE->drop_prob_ < 0.1) {
             p /= 2;
         } else {
             p = p;
         }

         PIE->drop_prob_ += p;

         //Exponentially decay drop prob when congestion goes away
         if (current_qdelay == 0 && PIE->qdelay_old_ == 0) {
             PIE->drop_prob_ *= 0.98;           //1 - 1/64 is
                                                //sufficient
         }

         //Bound drop probability
         if (PIE->drop_prob_ < 0)
                  PIE->drop_prob_ = 0.0
         if (PIE->drop_prob_ > 1)
                  PIE->drop_prob_ = 1.0

         PIE->qdelay_old_ = current_qdelay;

         PIE->burst_allowance_ =
            max(0,PIE->burst_allowance_ - T_UPDATE);
      }
  }

























Pan, et al.                   Experimental                     [Page 23]

RFC 8033                           PIE                     February 2017


Appendix B.  Pseudocode for PIE with Optional Enhancement

  Configurable parameters:
     -  QDELAY_REF.  AQM Latency Target (default: 15 milliseconds)
     -  MAX_BURST.  AQM Max Burst Allowance (default: 150 milliseconds)
     -  MAX_ECNTH.  AQM Max ECN Marking Threshold (default: 10%)

  Internal parameters:
     -  Weights in the drop probability calculation (1/s):
        alpha (default: 1/8), beta (default: 1 + 1/4)
     -  DQ_THRESHOLD: (in bytes, default: 2^14 (in a power of 2) )
     -  T_UPDATE: a period to calculate drop probability
        (default: 15 milliseconds)
     -  TAIL_DROP: the tail drop threshold (max allowed queue depth)
        for the queue

  Table that stores status variables (ending with "_"):
     -  active_: INACTIVE/ACTIVE
     -  burst_allowance_: current burst allowance
     -  drop_prob_: The current packet drop probability.  Reset to 0
     -  accu_prob_: Accumulated drop probability.  Reset to 0
     -  qdelay_old_: The previous queue delay estimate.  Reset to 0
     -  last_timestamp_: Timestamp of previous status update
     -  dq_count_, measurement_start_, in_measurement_, avg_dq_time_.
        Variables for measuring average dequeue rate

  Public/system functions:
     -  queue_.  Holds the pending packets
     -  drop(packet).  Drops/discards a packet
     -  mark(packet).  Marks ECN for a packet
     -  now().  Returns the current time
     -  random().  Returns a uniform r.v. in the range 0 ~ 1
     -  queue_.byte_length().  Returns current queue_ length in bytes
     -  queue_.enque(packet).  Adds packet to tail of queue_
     -  queue_.deque().  Returns the packet from the head of queue_
     -  packet.size().  Returns size of packet
     -  packet.ecn().  Returns whether packet is ECN capable or not

  ============================












Pan, et al.                   Experimental                     [Page 24]

RFC 8033                           PIE                     February 2017


  //Called on each packet arrival
    enque(Packet packet) {
         if (queue_.byte_length() + packet.size() > TAIL_DROP) {
                drop(packet);
                PIE->accu_prob_ = 0;
         } else if (PIE->active_ == TRUE && drop_early() == DROP
                    && PIE->burst_allowance_ == 0) {
                if (PIE->drop_prob_ < MAX_ECNTH && packet.ecn() ==
                    TRUE)
                      mark(packet);
                else
                      drop(packet);
                      PIE->accu_prob_ = 0;
         } else {
                queue_.enque(packet);
         }

         //If the queue is over a certain threshold, turn on PIE
         if (PIE->active_ == INACTIVE
             && queue_.byte_length() >= TAIL_DROP/3) {
              PIE->active_ = ACTIVE;
              PIE->qdelay_old_ = 0;
              PIE->drop_prob_ = 0;
              PIE->in_measurement_ = TRUE;
              PIE->dq_count_ = 0;
              PIE->avg_dq_time_ = 0;
              PIE->last_timestamp_ = now;
              PIE->burst_allowance_ = MAX_BURST;
              PIE->accu_prob_ = 0;
              PIE->measurement_start_ = now;
         }

         //If the queue has been idle for a while, turn off PIE
         //Reset counters when accessing the queue after some idle
         //period if PIE was active before
         if ( PIE->drop_prob_ == 0 && PIE->qdelay_old_ == 0
              && current_qdelay == 0) {
              PIE->active_ = INACTIVE;
              PIE->in_measurement_ = FALSE;
         }

    }

  ============================







Pan, et al.                   Experimental                     [Page 25]

RFC 8033                           PIE                     February 2017


    drop_early() {

        //PIE is active but the queue is not congested: return ENQUE
        if ( (PIE->qdelay_old_ < QDELAY_REF/2 && PIE->drop_prob_ < 0.2)
              || (queue_.byte_length() <= 2 * MEAN_PKTSIZE) ) {
             return ENQUE;
        }


        if (PIE->drop_prob_ == 0) {
                 PIE->accu_prob_ = 0;
        }

        //For practical reasons, drop probability can be further scaled
        //according to packet size, but one needs to set a bound to
        //avoid unnecessary bias

        //Random drop
        PIE->accu_prob_ += PIE->drop_prob_;
        if (PIE->accu_prob_ < 0.85)
            return ENQUE;
        if (PIE->accu_prob_ >= 8.5)
            return DROP;
                double u = random();
        if (u < PIE->drop_prob_) {
                     PIE->accu_prob_ = 0;
                     return DROP;
        } else {
                     return ENQUE;
        }
     }

  ============================


















Pan, et al.                   Experimental                     [Page 26]

RFC 8033                           PIE                     February 2017


   //Update periodically, T_UPDATE = 15 milliseconds
   calculate_drop_prob() {
       if ( (now - PIE->last_timestamp_) >= T_UPDATE &&
               PIE->active_ == ACTIVE) {

         //Can be implemented using integer multiply
         //DQ_THRESHOLD is power of 2 value
         current_qdelay = queue_.byte_length() *
         PIE->avg_dq_time_/DQ_THRESHOLD;

         p = alpha * (current_qdelay - QDELAY_REF) + \
             beta * (current_qdelay - PIE->qdelay_old_);

         if (PIE->drop_prob_ < 0.000001) {
             p /= 2048;
         } else if (PIE->drop_prob_ < 0.00001) {
             p /= 512;
         } else if (PIE->drop_prob_ < 0.0001) {
             p /= 128;
         } else if (PIE->drop_prob_ < 0.001) {
             p /= 32;
         } else if (PIE->drop_prob_ < 0.01) {
             p /= 8;
         } else if (PIE->drop_prob_ < 0.1) {
             p /= 2;
         } else {
             p = p;
         }

         if (PIE->drop_prob_ >= 0.1 && p > 0.02) {
             p = 0.02;
         }
         PIE->drop_prob_ += p;

         //Exponentially decay drop prob when congestion goes away
         if (current_qdelay < QDELAY_REF/2 && PIE->qdelay_old_ <
             QDELAY_REF/2) {
                PIE->drop_prob_ *= 0.98;        //1 - 1/64 is
                                                //sufficient
         }











Pan, et al.                   Experimental                     [Page 27]

RFC 8033                           PIE                     February 2017


         //Bound drop probability
         if (PIE->drop_prob_ < 0)
                  PIE->drop_prob_ = 0
         if (PIE->drop_prob_ > 1)
                  PIE->drop_prob_ = 1

         PIE->qdelay_old_ = current_qdelay;
         PIE->last_timestamp_ = now;
         PIE->burst_allowance_ = max(0,PIE->burst_allowance_ -
            T_UPDATE);
      }
  }

  ============================

  //Called on each packet departure
    deque(Packet packet) {

       //Dequeue rate estimation
       if (PIE->in_measurement_ == TRUE) {
            PIE->dq_count_ = packet.size() + PIE->dq_count_;
            //Start a new measurement cycle if we have enough packets
            if ( PIE->dq_count_ >= DQ_THRESHOLD) {
              dq_time = now - PIE->measurement_start_;
              if (PIE->avg_dq_time_ == 0) {
                  PIE->avg_dq_time_ = dq_time;
              } else {
                  weight = DQ_THRESHOLD/2^16
                  PIE->avg_dq_time_ = dq_time * weight +
                     PIE->avg_dq_time_ * (1 - weight);
              }
              PIE->in_measurement_ = FALSE;
            }
       }

       //Start a measurement if we have enough data in the queue
       if (queue_.byte_length() >= DQ_THRESHOLD &&
           PIE->in_measurement_ == FALSE) {
              PIE->in_measurement_ = TRUE;
              PIE->measurement_start_ = now;
              PIE->dq_count_ = 0;
       }
    }








Pan, et al.                   Experimental                     [Page 28]

RFC 8033                           PIE                     February 2017


Contributors

  Bill Ver Steeg
  Comcast Cable
  Email: [email protected]

  Mythili Prabhu*
  Akamai Technologies
  3355 Scott Blvd.
  Santa Clara, CA  95054
  United States of America
  Email: [email protected]

  Chiara Piglione*
  Broadcom Corporation
  3151 Zanker Road
  San Jose, CA  95134
  United States of America
  Email: [email protected]

  Vijay Subramanian*
  PLUMgrid, Inc.
  350 Oakmead Parkway
  Suite 250
  Sunnyvale, CA  94085
  United States of America
  Email: [email protected]
  * Formerly at Cisco Systems























Pan, et al.                   Experimental                     [Page 29]

RFC 8033                           PIE                     February 2017


Authors' Addresses

  Rong Pan
  Cisco Systems
  3625 Cisco Way
  San Jose, CA  95134
  United States of America

  Email: [email protected]


  Preethi Natarajan
  Cisco Systems
  725 Alder Drive
  Milpitas, CA  95035
  United States of America

  Email: [email protected]


  Fred Baker
  Santa Barbara, CA  93117
  United States of America

  Email: [email protected]


  Greg White
  CableLabs
  858 Coal Creek Circle
  Louisville, CO  80027
  United States of America

  Email: [email protected]

















Pan, et al.                   Experimental                     [Page 30]