Internet Engineering Task Force (IETF)                            Y. Nir
Request for Comments: 8031                                   Check Point
Category: Standards Track                                   S. Josefsson
ISSN: 2070-1721                                                      SJD
                                                          December 2016


                   Curve25519 and Curve448 for the
    Internet Key Exchange Protocol Version 2 (IKEv2) Key Agreement

Abstract

  This document describes the use of Curve25519 and Curve448 for
  ephemeral key exchange in the Internet Key Exchange Protocol Version
  2 (IKEv2).

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc8031.

Copyright Notice

  Copyright (c) 2016 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.







Nir & Josefsson              Standards Track                    [Page 1]

RFC 8031            Curve25519 and Curve448 for IKEv2      December 2016


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
    1.1.  Conventions Used in This Document . . . . . . . . . . . .   2
  2.  Curve25519 and Curve448 . . . . . . . . . . . . . . . . . . .   3
  3.  Use and Negotiation in IKEv2  . . . . . . . . . . . . . . . .   3
    3.1.  Key Exchange Payload  . . . . . . . . . . . . . . . . . .   4
    3.2.  Recipient Tests . . . . . . . . . . . . . . . . . . . . .   4
  4.  Security Considerations . . . . . . . . . . . . . . . . . . .   4
  5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   5
  6.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   5
    6.1.  Normative References  . . . . . . . . . . . . . . . . . .   5
    6.2.  Informative References  . . . . . . . . . . . . . . . . .   6
  Appendix A.  Numerical Example for Curve25519 . . . . . . . . . .   7
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .   8
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   8

1.  Introduction

  The "Elliptic Curves for Security" document [RFC7748] describes two
  elliptic curves, Curve25519 and Curve448, as well as the X25519 and
  X448 functions for performing key agreement using Diffie-Hellman
  operations with these curves.  The curves and functions are designed
  for both performance and security.

  Elliptic curve Diffie-Hellman [RFC5903] has been specified for the
  Internet Key Exchange Protocol Version 2 (IKEv2) [RFC7296] for almost
  ten years.  RFC 5903 and its predecessor specified the so-called NIST
  curves.  The state of the art has advanced since then.  More modern
  curves allow faster implementations while making it much easier to
  write constant-time implementations that are resilient to time-based
  side-channel attacks.  This document defines two such curves for use
  in IKEv2.  See [Curve25519] for details about the speed and security
  of the Curve25519 function.

1.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].











Nir & Josefsson              Standards Track                    [Page 2]

RFC 8031            Curve25519 and Curve448 for IKEv2      December 2016


2.  Curve25519 and Curve448

  Implementations of Curve25519 and Curve448 in IKEv2 SHALL follow the
  steps described in this section.  All cryptographic computations are
  done using the X25519 and X448 functions defined in [RFC7748].  All
  related parameters (for example, the base point) and the encoding (in
  particular, pruning the least/most significant bits and using little-
  endian encoding) are compliant with [RFC7748].

  An ephemeral Diffie-Hellman key exchange using Curve25519 or Curve448
  is performed as follows: each party picks a secret key d uniformly at
  random and computes the corresponding public key.  "X" is used below
  to denote either X25519 or X448, and "G" is used to denote the
  corresponding base point:

     pub_mine = X(d, G)

  Parties exchange their public keys (see Section 3.1) and compute a
  shared secret:

        SHARED_SECRET = X(d, pub_peer)

  This shared secret is used directly as the value denoted g^ir in
  Section 2.14 of RFC 7296.  It is 32 octets when Curve25519 is used
  and 56 octets when Curve448 is used.

3.  Use and Negotiation in IKEv2

  The use of Curve25519 and Curve448 in IKEv2 is negotiated using a
  Transform Type 4 (Diffie-Hellman group) in the Security Association
  (SA) payload of either an IKE_SA_INIT or a CREATE_CHILD_SA exchange.
  The value 31 is used for the group defined by Curve25519 and the
  value 32 is used for the group defined by Curve448.


















Nir & Josefsson              Standards Track                    [Page 3]

RFC 8031            Curve25519 and Curve448 for IKEv2      December 2016


3.1.  Key Exchange Payload

  The diagram for the Key Exchange payload from Section 3.4 of RFC 7296
  is copied below for convenience:

                          1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Next Payload  |C|  RESERVED   |         Payload Length        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Diffie-Hellman Group Num    |           RESERVED            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     ~                       Key Exchange Data                       ~
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  o  Payload Length - For Curve25519, the public key is 32 octets, so
     the Payload Length field will be 40.  For Curve448, the public key
     is 56 octets, so the Payload Length field will be 64.

  o  The Diffie-Hellman Group Num is 31 for Curve25519 or 32 for
     Curve448.

  o  The Key Exchange Data is the 32 or 56 octets as described in
     Section 6 of [RFC7748].

3.2.  Recipient Tests

  Receiving and handling of incompatible point formats MUST follow the
  considerations described in Section 5 of [RFC7748].  In particular,
  receiving entities MUST mask the most-significant bit in the final
  byte for X25519 (but not X448), and implementations MUST accept non-
  canonical values.

4.  Security Considerations

  Curve25519 and Curve448 are designed to facilitate the production of
  high-performance constant-time implementations.  Implementors are
  encouraged to use a constant-time implementation of the functions.
  This point is of crucial importance, especially if the implementation
  chooses to reuse its ephemeral key pair in many key exchanges for
  performance reasons.

  Curve25519 is intended for the ~128-bit security level, comparable to
  the 256-bit random ECP Groups (group 19) defined in RFC 5903, also
  known as NIST P-256 or secp256r1.  Curve448 is intended for the
  ~224-bit security level.



Nir & Josefsson              Standards Track                    [Page 4]

RFC 8031            Curve25519 and Curve448 for IKEv2      December 2016


  While the NIST curves are advertised as being chosen verifiably at
  random, there is no explanation for the seeds used to generate them.
  In contrast, the process used to pick Curve25519 and Curve448 is
  fully documented and rigid enough so that independent verification
  can and has been done.  This is widely seen as a security advantage
  because it prevents the generating party from maliciously
  manipulating the parameters.

  Another family of curves available in IKE that were generated in a
  fully verifiable way is the Brainpool curves [RFC6954].  For example,
  brainpoolP256 (group 28) is expected to provide a level of security
  comparable to Curve25519 and NIST P-256.  However, due to the use of
  pseudorandom prime, it is significantly slower than NIST P-256, which
  is itself slower than Curve25519.

5.  IANA Considerations

  IANA has assigned two values for the names "Curve25519" and
  "Curve448" in the IKEv2 "Transform Type 4 - Diffie-Hellman Group
  Transform IDs" and has listed this document as the reference.  The
  Recipient Tests field should also point to this document:

       +--------+------------+-----------------------+-----------+
       | Number |    Name    |    Recipient Tests    | Reference |
       +--------+------------+-----------------------+-----------+
       |   31   | Curve25519 | RFC 8031, Section 3.2 |  RFC 8031 |
       |   32   |  Curve448  | RFC 8031, Section 3.2 |  RFC 8031 |
       +--------+------------+-----------------------+-----------+

                  Table 1: New Transform Type 4 Values

6.  References

6.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC7296]  Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
             Kivinen, "Internet Key Exchange Protocol Version 2
             (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
             2014, <http://www.rfc-editor.org/info/rfc7296>.

  [RFC7748]  Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
             for Security", RFC 7748, DOI 10.17487/RFC7748, January
             2016, <http://www.rfc-editor.org/info/rfc7748>.



Nir & Josefsson              Standards Track                    [Page 5]

RFC 8031            Curve25519 and Curve448 for IKEv2      December 2016


6.2.  Informative References

  [Curve25519]
             Bernstein, J., "Curve25519: New Diffie-Hellman Speed
             Records", Public Key Cryptography - PKC 2006, Lecture
             Notes in Computer Science (LNCS), Vol. 3958, pp. 207-228,
             DOI 10.1007/11745853_14, February 2006,
             <http://dx.doi.org/10.1007/11745853_14>.

  [RFC5903]  Fu, D. and J. Solinas, "Elliptic Curve Groups modulo a
             Prime (ECP Groups) for IKE and IKEv2", RFC 5903,
             DOI 10.17487/RFC5903, June 2010,
             <http://www.rfc-editor.org/info/rfc5903>.

  [RFC6954]  Merkle, J. and M. Lochter, "Using the Elliptic Curve
             Cryptography (ECC) Brainpool Curves for the Internet Key
             Exchange Protocol Version 2 (IKEv2)", RFC 6954,
             DOI 10.17487/RFC6954, July 2013,
             <http://www.rfc-editor.org/info/rfc6954>.
































Nir & Josefsson              Standards Track                    [Page 6]

RFC 8031            Curve25519 and Curve448 for IKEv2      December 2016


Appendix A.  Numerical Example for Curve25519

  Suppose we have both the initiator and the responder generating
  private keys by generating 32 random octets.  As usual in IKEv2 and
  its extension, we will denote Initiator values with the suffix _i and
  responder values with the suffix _r:

    random_i = 75 1f b4 30 86 55 b4 76 b6 78 9b 73 25 f9 ea 8c
               dd d1 6a 58 53 3f f6 d9 e6 00 09 46 4a 5f 9d 94

    random_r = 0a 54 64 52 53 29 0d 60 dd ad d0 e0 30 ba cd 9e
               55 01 ef dc 22 07 55 a1 e9 78 f1 b8 39 a0 56 88

  These numbers need to be fixed by unsetting some bits as described in
  Section 5 of RFC 7748.  This affects only the first and last octets
  of each value:

    fixed_i =  70 1f b4 30 86 55 b4 76 b6 78 9b 73 25 f9 ea 8c
               dd d1 6a 58 53 3f f6 d9 e6 00 09 46 4a 5f 9d 54

    fixed_r =  08 54 64 52 53 29 0d 60 dd ad d0 e0 30 ba cd 9e
               55 01 ef dc 22 07 55 a1 e9 78 f1 b8 39 a0 56 48

  The actual private keys are considered to be encoded in little-endian
  format:

 d_i = 549D5F4A460900E6D9F63F53586AD1DD8CEAF925739B78B676B4558630B41F70

 d_r = 4856A039B8F178E9A1550722DCEF01559ECDBA30E0D0ADDD600D295352645408

  The public keys are generated from this using the formula in
  Section 2:

  pub_i = X25519(d_i, G) =
               48 d5 dd d4 06 12 57 ba 16 6f a3 f9 bb db 74 f1
               a4 e8 1c 08 93 84 fa 77 f7 90 70 9f 0d fb c7 66

  pub_r = X25519(d_r, G) =
               0b e7 c1 f5 aa d8 7d 7e 44 86 62 67 32 98 a4 43
               47 8b 85 97 45 17 9e af 56 4c 79 c0 ef 6e ee 25

  And this is the value of the Key Exchange Data field in the Key
  Exchange payload described in Section 3.1.  The shared value is
  calculated as in Section 2:

  SHARED_SECRET = X25519(d_i, pub_r) = X25519(d_r, pub_i) =
               c7 49 50 60 7a 12 32 7f-32 04 d9 4b 68 25 bf b0
               68 b7 f8 31 9a 9e 37 08-ed 3d 43 ce 81 30 c9 50



Nir & Josefsson              Standards Track                    [Page 7]

RFC 8031            Curve25519 and Curve448 for IKEv2      December 2016


Acknowledgements

  Curve25519 was designed by D. J. Bernstein and the parameters for
  Curve448 ("Goldilocks") were defined by Mike Hamburg.  The
  specification of algorithms, wire format, and other considerations
  are documented in RFC 7748 by Adam Langley, Mike Hamburg, and Sean
  Turner.

  The example in Appendix A was calculated using the master version of
  OpenSSL, retrieved on August 4th, 2016.

Authors' Addresses

  Yoav Nir
  Check Point Software Technologies Ltd.
  5 Hasolelim st.
  Tel Aviv  6789735
  Israel

  Email: [email protected]


  Simon Josefsson
  SJD AB

  Email: [email protected]

























Nir & Josefsson              Standards Track                    [Page 8]