Internet Engineering Task Force (IETF)                  K. Moriarty, Ed.
Request for Comments: 8018                                      Dell EMC
Obsoletes: 2898                                               B. Kaliski
Category: Informational                                         Verisign
ISSN: 2070-1721                                                 A. Rusch
                                                                    RSA
                                                           January 2017


          PKCS #5: Password-Based Cryptography Specification
                             Version 2.1

Abstract

  This document provides recommendations for the implementation of
  password-based cryptography, covering key derivation functions,
  encryption schemes, message authentication schemes, and ASN.1 syntax
  identifying the techniques.

  This document represents a republication of PKCS #5 v2.1 from RSA
  Laboratories' Public-Key Cryptography Standards (PKCS) series.  By
  publishing this RFC, change control is transferred to the IETF.

  This document also obsoletes RFC 2898.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc8018.











Moriarty, et al.              Informational                     [Page 1]

RFC 8018                      PKCS #5 v2.1                  January 2017


Copyright Notice

  Copyright (c) 2017 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.





































Moriarty, et al.              Informational                     [Page 2]

RFC 8018                      PKCS #5 v2.1                  January 2017


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
  2.  Notation  . . . . . . . . . . . . . . . . . . . . . . . . . .   4
  3.  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . .   5
  4.  Salt and Iteration Count  . . . . . . . . . . . . . . . . . .   7
    4.1.  Salt  . . . . . . . . . . . . . . . . . . . . . . . . . .   7
    4.2.  Iteration Count . . . . . . . . . . . . . . . . . . . . .   9
  5.  Key Derivation Functions  . . . . . . . . . . . . . . . . . .   9
    5.1.  PBKDF1  . . . . . . . . . . . . . . . . . . . . . . . . .  10
    5.2.  PBKDF2  . . . . . . . . . . . . . . . . . . . . . . . . .  11
  6.  Encryption Schemes  . . . . . . . . . . . . . . . . . . . . .  13
    6.1.  PBES1 . . . . . . . . . . . . . . . . . . . . . . . . . .  13
      6.1.1.  PBES1 Encryption Operation  . . . . . . . . . . . . .  13
      6.1.2.  PBES1 Decryption Operation  . . . . . . . . . . . . .  15
    6.2.  PBES2 . . . . . . . . . . . . . . . . . . . . . . . . . .  15
      6.2.1.  PBES2 Encryption Operation  . . . . . . . . . . . . .  16
      6.2.2.  PBES2 Decryption Operation  . . . . . . . . . . . . .  16
  7.  Message Authentication Schemes  . . . . . . . . . . . . . . .  17
    7.1.  PBMAC1  . . . . . . . . . . . . . . . . . . . . . . . . .  17
      7.1.1.  PBMAC1 Generation Operation . . . . . . . . . . . . .  17
      7.1.2.  PBMAC1 Verification Operation . . . . . . . . . . . .  18
  8.  Security Considerations . . . . . . . . . . . . . . . . . . .  18
  9.  Normative References  . . . . . . . . . . . . . . . . . . . .  19
  Appendix A.  ASN.1 Syntax . . . . . . . . . . . . . . . . . . . .  23
    A.1.  PBKDF1  . . . . . . . . . . . . . . . . . . . . . . . . .  23
    A.2.  PBKDF2  . . . . . . . . . . . . . . . . . . . . . . . . .  23
    A.3.  PBES1 . . . . . . . . . . . . . . . . . . . . . . . . . .  25
    A.4.  PBES2 . . . . . . . . . . . . . . . . . . . . . . . . . .  26
    A.5.  PBMAC1  . . . . . . . . . . . . . . . . . . . . . . . . .  26
  Appendix B.  Supporting Techniques  . . . . . . . . . . . . . . .  27
    B.1.  Pseudorandom Functions  . . . . . . . . . . . . . . . . .  28
      B.1.1.  HMAC-SHA-1  . . . . . . . . . . . . . . . . . . . . .  28
      B.1.2.  HMAC-SHA-2  . . . . . . . . . . . . . . . . . . . . .  29
    B.2.  Encryption Schemes  . . . . . . . . . . . . . . . . . . .  29
      B.2.1.  DES-CBC-Pad . . . . . . . . . . . . . . . . . . . . .  30
      B.2.2.  DES-EDE3-CBC-Pad  . . . . . . . . . . . . . . . . . .  30
      B.2.3.  RC2-CBC-Pad . . . . . . . . . . . . . . . . . . . . .  30
      B.2.4.  RC5-CBC-Pad . . . . . . . . . . . . . . . . . . . . .  31
      B.2.5.  AES-CBC-Pad . . . . . . . . . . . . . . . . . . . . .  32
    B.3.  Message Authentication Schemes  . . . . . . . . . . . . .  33
      B.3.1.  HMAC-SHA-1  . . . . . . . . . . . . . . . . . . . . .  33
      B.3.2.  HMAC-SHA-2  . . . . . . . . . . . . . . . . . . . . .  33
  Appendix C.  ASN.1 Module . . . . . . . . . . . . . . . . . . . .  34
  Appendix D.  Revision History of PKCS #5  . . . . . . . . . . . .  38
  Appendix E.  About PKCS . . . . . . . . . . . . . . . . . . . . .  39
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  40
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  40



Moriarty, et al.              Informational                     [Page 3]

RFC 8018                      PKCS #5 v2.1                  January 2017


1. Introduction

  This document provides recommendations for the implementation of
  password-based cryptography, covering the following aspects:

  -  key derivation functions
  -  encryption schemes
  -  message authentication schemes
  -  ASN.1 syntax identifying the techniques

  The recommendations are intended for general application within
  computer and communications systems and, as such, include a fair
  amount of flexibility.  They are particularly intended for the
  protection of sensitive information such as private keys as in
  PKCS #8 [PKCS8] [RFC5958].  It is expected that application standards
  and implementation profiles based on these specifications may include
  additional constraints.

  Other cryptographic techniques based on passwords, such as password-
  based key entity authentication and key establishment protocols
  [BELLOV] [JABLON] [WU] are outside the scope of this document.
  Guidelines for the selection of passwords are also outside the scope.
  This document supersedes PKCS #5 version 2.0 [RFC2898] but includes
  compatible techniques.

  This document represents a republication of PKCS #5 v2.1 [PKCS5_21]
  from RSA Laboratories' Public-Key Cryptography Standards (PKCS)
  series.

2.  Notation

  C       ciphertext, an octet string

  c       iteration count, a positive integer

  DK      derived key, an octet string

  dkLen   length in octets of derived key, a positive integer

  EM      encoded message, an octet string

  Hash    underlying hash function

  hLen    length in octets of pseudorandom function output, a positive
          integer

  l       length in blocks of derived key, a positive integer




Moriarty, et al.              Informational                     [Page 4]

RFC 8018                      PKCS #5 v2.1                  January 2017


  IV      initialization vector, an octet string

  K       encryption key, an octet string

  KDF     key derivation function

  M       message, an octet string

  P       password, an octet string

  PRF     underlying pseudorandom function

  PS      padding string, an octet string

  psLen   length in octets of padding string, a positive integer

  S       salt, an octet string

  T       message authentication code, an octet string

  T_1, ..., T_l, U_1, ..., U_c
          intermediate values, octet strings

  01, 02, ..., 08
          octets with value 1, 2, ..., 8

  \xor    bit-wise exclusive-or of two octet strings

  ||  ||  octet length operator

  ||      concatenation operator

  <i..j>  substring extraction operator: extracts octets i through j,
          0 <= i <= j

3.  Overview

  In many applications of public-key cryptography, user security is
  ultimately dependent on one or more secret text values or passwords.
  Since a password is not directly applicable as a key to any
  conventional cryptosystem, however, some processing of the password
  is required to perform cryptographic operations with it.  Moreover,
  as passwords are often chosen from a relatively small space, special
  care is required in that processing to defend against search attacks.

  A general approach to password-based cryptography, as described by
  Morris and Thompson [MORRIS] for the protection of password tables,
  is to combine a password with a salt to produce a key.  The salt can



Moriarty, et al.              Informational                     [Page 5]

RFC 8018                      PKCS #5 v2.1                  January 2017


  be viewed as an index into a large set of keys derived from the
  password and need not be kept secret.  Although it may be possible
  for an opponent to construct a table of possible passwords (a so-
  called "dictionary attack"), constructing a table of possible keys
  will be difficult, since there will be many possible keys for each
  password.  An opponent will thus be limited to searching through
  passwords separately for each salt.

  Another approach to password-based cryptography is to construct key
  derivation techniques that are relatively expensive, thereby
  increasing the cost of exhaustive search.  One way to do this is to
  include an iteration count in the key derivation technique,
  indicating how many times to iterate some underlying function by
  which keys are derived.  A modest number of iterations (say, 1000) is
  not likely to be a burden for legitimate parties when computing a
  key, but will be a significant burden for opponents.

  Salt and iteration count formed the basis for password-based
  encryption in PKCS #5 v2.0, and are adopted here as well for the
  various cryptographic operations.  Thus, password-based key
  derivation as defined here is a function of a password, a salt, and
  an iteration count, where the latter two quantities need not be kept
  secret.

  From a password-based key derivation function, it is straightforward
  to define password-based encryption and message authentication
  schemes.  As in PKCS #5 v2.0, the password-based encryption schemes
  here are based on an underlying, conventional encryption scheme,
  where the key for the conventional scheme is derived from the
  password.  Similarly, the password-based message authentication
  scheme is based on an underlying conventional scheme.  This
  two-layered approach makes the password-based techniques modular in
  terms of the underlying techniques they can be based on.

  It is expected that the password-based key derivation functions may
  find other applications than just the encryption and message
  authentication schemes defined here.  For instance, one might derive
  a set of keys with a single application of a key derivation function,
  rather than derive each key with a separate application of the
  function.  The keys in the set would be obtained as substrings of the
  output of the key derivation function.  This approach might be
  employed as part of key establishment in a session-oriented protocol.
  Another application is password checking, where the output of the key
  derivation function is stored (along with the salt and iteration
  count) for the purposes of subsequent verification of a password.

  Throughout this document, a password is considered to be an octet
  string of arbitrary length whose interpretation as a text string is



Moriarty, et al.              Informational                     [Page 6]

RFC 8018                      PKCS #5 v2.1                  January 2017


  unspecified.  In the interest of interoperability, however, it is
  recommended that applications follow some common text encoding rules.
  ASCII and UTF-8 [RFC3629] are two possibilities.  (ASCII is a subset
  of UTF-8.)

  Although the selection of passwords is outside the scope of this
  document, guidelines have been published [NISTSP63] that may well be
  taken into account.

4.  Salt and Iteration Count

  Inasmuch as salt and iteration count are central to the techniques
  defined in this document, some further discussion is warranted.

4.1.  Salt

  A salt in password-based cryptography has traditionally served the
  purpose of producing a large set of keys corresponding to a given
  password, one of which is selected at random according to the salt.
  An individual key in the set is selected by applying a key derivation
  function KDF, as

                             DK = KDF (P, S)

  where DK is the derived key, P is the password, and S is the salt.
  This has two benefits:

     1.  It is difficult for an opponent to precompute all the keys, or
         even the most likely keys, corresponding to a dictionary of
         passwords.  If the salt is 64 bits long, for instance, there
         will be as many as 2^64 keys for each password.  An opponent
         is thus limited to searching for passwords after a password-
         based operation has been performed and the salt is known.

     2.  It is unlikely that the same key will be selected twice.
         Again, if the salt is 64 bits long, the chance of "collision"
         between keys does not become significant until about 2^32 keys
         have been produced, according to the Birthday Paradox.  The
         fact that collisions are unlikely addresses some concerns
         about interactions between multiple uses of the same key that
         may arise when using some encryption and authentication
         techniques.

  In password-based encryption, the party encrypting a message can gain
  assurance that these benefits are realized simply by selecting a
  large and sufficiently random salt when deriving an encryption key
  from a password.  A party generating a message authentication code
  can gain such assurance in a similar fashion.



Moriarty, et al.              Informational                     [Page 7]

RFC 8018                      PKCS #5 v2.1                  January 2017


  The party decrypting a message or verifying a message authentication
  code, however, cannot be sure that a salt supplied by another party
  has actually been generated at random.  It is possible, for instance,
  that the salt may have been copied from another password-based
  operation in an attempt to exploit interactions between multiple uses
  of the same key.  For instance, suppose two legitimate parties
  exchange an encrypted message, where the encryption key is an 80-bit
  key derived from a shared password with some salt.  An opponent could
  take the salt from that encryption and provide it to one of the
  parties as though it were for a 40-bit key.  If the party reveals the
  result of decryption with the 40-bit key, the opponent may be able to
  solve for the 40-bit key.  In the case that 40-bit key is the first
  half of the 80-bit key, the opponent can then readily solve for the
  remaining 40 bits of the 80-bit key.

  To defend against such attacks, either the interaction between
  multiple uses of the same key should be carefully analyzed, or the
  salt should contain data that explicitly distinguishes between
  different operations.  For instance, the salt might have an
  additional, non-random octet that specifies whether the derived key
  is for encryption, for message authentication, or for some other
  operation.

  Based on this, the following is recommended for salt selection:

     1.  If there is no concern about interactions between multiple
         uses of the same key (or a prefix of that key) with the
         password-based encryption and authentication techniques
         supported for a given password, then the salt may be generated
         at random and need not be checked for a particular format by
         the party receiving the salt.  It should be at least eight
         octets (64 bits) long.

     2.  Otherwise, the salt should contain data that explicitly
         distinguishes between different operations and different key
         lengths, in addition to a random part that is at least eight
         octets long, and this data should be checked or regenerated by
         the party receiving the salt.  For instance, the salt could
         have an additional non-random octet that specifies the purpose
         of the derived key.  Alternatively, it could be the encoding
         of a structure that specifies detailed information about the
         derived key, such as the encryption or authentication
         technique and a sequence number among the different keys
         derived from the password.  The particular format of the
         additional data is left to the application.






Moriarty, et al.              Informational                     [Page 8]

RFC 8018                      PKCS #5 v2.1                  January 2017


  Note: If a random number generator or pseudorandom generator is not
  available, a deterministic alternative for generating the salt (or
  the random part of it) is to apply a password-based key derivation
  function to the password and the message M to be processed.  For
  instance, the salt could be computed with a key derivation function
  as S = KDF (P, M).  This approach is not recommended if the message M
  is known to belong to a small message space (e.g., "Yes" or "No"),
  however, since then there will only be a small number of possible
  salts.

4.2.  Iteration Count

  An iteration count has traditionally served the purpose of increasing
  the cost of producing keys from a password, thereby also increasing
  the difficulty of attack.  Mathematically, an iteration count of c
  will increase the security strength of a password by log2(c) bits
  against trial-based attacks like brute force or dictionary attacks.

  Choosing a reasonable value for the iteration count depends on
  environment and circumstances, and varies from application to
  application.  This document follows the recommendations made in FIPS
  Special Publication 800-132 [NISTSP132], which says

     The iteration count shall be  selected as large as possible, as
     long as the time required to generate the key using the entered
     password is acceptable for the users. [...] A minimum iteration
     count of 1,000 is recommended.  For especially critical keys, or
     for very powerful systems or systems where user-perceived
     performance is not critical, an iteration count of 10,000,000 may
     be appropriate.

5.  Key Derivation Functions

  A key derivation function produces a derived key from a base key and
  other parameters.  In a password-based key derivation function, the
  base key is a password, and the other parameters are a salt value and
  an iteration count, as outlined in Section 3.

  The primary application of the password-based key derivation
  functions defined here is in the encryption schemes in Section 6 and
  the message authentication scheme in Section 7.  Other applications
  are certainly possible, hence the independent definition of these
  functions.

  Two functions are specified in this section: PBKDF1 and PBKDF2.
  PBKDF2 is recommended for new applications; PBKDF1 is included only
  for compatibility with existing applications and is not recommended
  for new applications.



Moriarty, et al.              Informational                     [Page 9]

RFC 8018                      PKCS #5 v2.1                  January 2017


  A typical application of the key derivation functions defined here
  might include the following steps:

     1.  Select a salt S and an iteration count c, as outlined in
         Section 4.

     2.  Select a length in octets for the derived key, dkLen.

     3.  Apply the key derivation function to the password, the salt,
         the iteration count and the key length to produce a derived
         key.

     4.  Output the derived key.

  Any number of keys may be derived from a password by varying the
  salt, as described in Section 3.

5.1.  PBKDF1

  PBKDF1 applies a hash function, which shall be MD2 [RFC1319], MD5
  [RFC1321], or SHA-1 [NIST180], to derive keys.  The length of the
  derived key is bounded by the length of the hash function output,
  which is 16 octets for MD2 and MD5 and 20 octets for SHA-1.  PBKDF1
  is compatible with the key derivation process in PKCS #5 v1.5
  [PKCS5_15].

  PBKDF1 is recommended only for compatibility with existing
  applications since the keys it produces may not be large enough for
  some applications.

  PBKDF1 (P, S, c, dkLen)

  Options:        Hash       underlying hash function

  Input:          P          password, an octet string
                  S          salt, an octet string
                  c          iteration count, a positive integer
                  dkLen      intended length in octets of derived key,
                             a positive integer, at most 16 for MD2 or
                             MD5 and 20 for SHA-1
  Output:         DK         derived key, a dkLen-octet string

  Steps:

     1.  If dkLen > 16 for MD2 and MD5, or dkLen > 20 for SHA-1, output
         "derived key too long" and stop.





Moriarty, et al.              Informational                    [Page 10]

RFC 8018                      PKCS #5 v2.1                  January 2017


     2.  Apply the underlying hash function Hash for c iterations to
         the concatenation of the password P and the salt S, then
         extract the first dkLen octets to produce a derived key DK:

                           T_1 = Hash (P || S) ,
                           T_2 = Hash (T_1) ,
                           ...
                           T_c = Hash (T_{c-1}) ,
                           DK = T_c<0..dkLen-1>

     3.  Output the derived key DK.

5.2.  PBKDF2

  PBKDF2 applies a pseudorandom function (see Appendix B.1 for an
  example) to derive keys.  The length of the derived key is
  essentially unbounded.  (However, the maximum effective search space
  for the derived key may be limited by the structure of the underlying
  pseudorandom function.  See Appendix B.1 for further discussion.)
  PBKDF2 is recommended for new applications.

  PBKDF2 (P, S, c, dkLen)

  Options:        PRF        underlying pseudorandom function (hLen
                             denotes the length in octets of the
                             pseudorandom function output)

  Input:          P          password, an octet string
                  S          salt, an octet string
                  c          iteration count, a positive integer
                  dkLen      intended length in octets of the derived
                             key, a positive integer, at most
                             (2^32 - 1) * hLen

  Output:         DK         derived key, a dkLen-octet string

  Steps:

     1.  If dkLen > (2^32 - 1) * hLen, output "derived key too long"
         and stop.

     2.  Let l be the number of hLen-octet blocks in the derived key,
         rounding up, and let r be the number of octets in the last
         block:

                  l = CEIL (dkLen / hLen)
                  r = dkLen - (l - 1) * hLen




Moriarty, et al.              Informational                    [Page 11]

RFC 8018                      PKCS #5 v2.1                  January 2017


         Here, CEIL (x) is the "ceiling" function, i.e., the smallest
         integer greater than, or equal to, x.

     3.  For each block of the derived key apply the function F defined
         below to the password P, the salt S, the iteration count c,
         and the block index to compute the block:

                  T_1 = F (P, S, c, 1) ,
                  T_2 = F (P, S, c, 2) ,
                  ...
                  T_l = F (P, S, c, l) ,

         where the function F is defined as the exclusive-or sum of the
         first c iterates of the underlying pseudorandom function PRF
         applied to the password P and the concatenation of the salt S
         and the block index i:

                  F (P, S, c, i) = U_1 \xor U_2 \xor ... \xor U_c

         where
                  U_1 = PRF (P, S || INT (i)) ,
                  U_2 = PRF (P, U_1) ,
                  ...
                  U_c = PRF (P, U_{c-1}) .

         Here, INT (i) is a four-octet encoding of the integer i, most
         significant octet first.

     4.  Concatenate the blocks and extract the first dkLen octets to
         produce a derived key DK:

                  DK = T_1 || T_2 ||  ...  || T_l<0..r-1>

     5.  Output the derived key DK.

  Note: The construction of the function F follows a "belt-and-
  suspenders" approach.  The iterates U_i are computed recursively to
  remove a degree of parallelism from an opponent; they are exclusive-
  ored together to reduce concerns about the recursion degenerating
  into a small set of values.











Moriarty, et al.              Informational                    [Page 12]

RFC 8018                      PKCS #5 v2.1                  January 2017


6.  Encryption Schemes

  An encryption scheme, in the symmetric setting, consists of an
  encryption operation and a decryption operation, where the encryption
  operation produces a ciphertext from a message under a key, and the
  decryption operation recovers the message from the ciphertext under
  the same key.  In a password-based encryption scheme, the key is a
  password.

  A typical application of a password-based encryption scheme is a
  private-key protection method, where the message contains private-key
  information, as in PKCS #8.  The encryption schemes defined here
  would be suitable encryption algorithms in that context.

  Two schemes are specified in this section: PBES1 and PBES2.  PBES2 is
  recommended for new applications; PBES1 is included only for
  compatibility with existing applications and is not recommended for
  new applications.

6.1.  PBES1

  PBES1 combines the PBKDF1 function (Section 5.1) with an underlying
  block cipher, which shall be either DES [NIST46] or RC2 [RFC2268] in
  cipher block chaining (CBC) mode [NIST81].  PBES1 is compatible with
  the encryption scheme in PKCS #5 v1.5 [PKCS5_15].

  PBES1 is recommended only for compatibility with existing
  applications, since it supports only two underlying encryption
  schemes, each of which has a key size (56 or 64 bits) that may not be
  large enough for some applications.

6.1.1.  PBES1 Encryption Operation

  The encryption operation for PBES1 consists of the following steps,
  which encrypt a message M under a password P to produce a ciphertext
  C:

     1.  Select an eight-octet salt S and an iteration count c, as
         outlined in Section 4.

     2.  Apply the PBKDF1 key derivation function (Section 5.1) to the
         password P, the salt S, and the iteration count c to produce a
         derived key DK of length 16 octets:

                   DK = PBKDF1 (P, S, c, 16)






Moriarty, et al.              Informational                    [Page 13]

RFC 8018                      PKCS #5 v2.1                  January 2017


     3.  Separate the derived key DK into an encryption key K
         consisting of the first eight octets of DK and an
         initialization vector IV consisting of the next eight octets:

                   K   = DK<0..7>
                   IV  = DK<8..15>

     4.  Concatenate M and a padding string PS to form an encoded
         message EM:

                   EM = M || PS

         where the padding string PS consists of 8-(||M|| mod 8) octets
         each with value 8-(||M|| mod 8).  The padding string PS will
         satisfy one of the following statements:

                   PS = 01, if ||M|| mod 8 = 7 ;
                   PS = 02 02, if ||M|| mod 8 = 6 ;
                   ...
                   PS = 08 08 08 08 08 08 08 08, if ||M|| mod 8 = 0.

         The length in octets of the encoded message will be a multiple
         of eight, and it will be possible to recover the message M
         unambiguously from the encoded message.  (This padding rule is
         taken from RFC 1423 [RFC1423].)

     5.  Encrypt the encoded message EM with the underlying block
         cipher (DES or RC2) in CBC mode under the encryption key K
         with initialization vector IV to produce the ciphertext C.
         For DES, the key K shall be considered as a 64-bit encoding of
         a 56-bit DES key with parity bits ignored (see [NIST46]).  For
         RC2, the "effective key bits" shall be 64 bits.

     6.  Output the ciphertext C.

  The salt S and the iteration count c may be conveyed to the party
  performing decryption in an AlgorithmIdentifier value (see Appendix
  A.3).













Moriarty, et al.              Informational                    [Page 14]

RFC 8018                      PKCS #5 v2.1                  January 2017


6.1.2.  PBES1 Decryption Operation

  The decryption operation for PBES1 consists of the following steps,
  which decrypt a ciphertext C under a password P to recover a message
  M:

     1.  Obtain the eight-octet salt S and the iteration count c.

     2.  Apply the PBKDF1 key derivation function (Section 5.1) to the
         password P, the salt S, and the iteration count c to produce a
         derived key DK of length 16 octets:

                   DK = PBKDF1 (P, S, c, 16)

     3.  Separate the derived key DK into an encryption key K
         consisting of the first eight octets of DK and an
         initialization vector IV consisting of the next eight octets:

                    K = DK<0..7>
                    IV  = DK<8..15>

     4.  Decrypt the ciphertext C with the underlying block cipher (DES
         or RC2) in CBC mode under the encryption key K with
         initialization vector IV to recover an encoded message EM.  If
         the length in octets of the ciphertext C is not a multiple of
         eight, output "decryption error" and stop.

     5.  Separate the encoded message EM into a message M and a padding
         string PS:

                    EM = M || PS

         where the padding string PS consists of some number psLen
         octets each with value psLen, where psLen is between 1 and 8.
         If it is not possible to separate the encoded message EM in
         this manner, output "decryption error" and stop.

     6.  Output the recovered message M.

6.2.  PBES2

  PBES2 combines a password-based key derivation function, which shall
  be PBKDF2 (Section 5.2) for this version of PKCS #5, with an
  underlying encryption scheme (see Appendix B.2 for examples).  The
  key length and any other parameters for the underlying encryption
  scheme depend on the scheme.

  PBES2 is recommended for new applications.



Moriarty, et al.              Informational                    [Page 15]

RFC 8018                      PKCS #5 v2.1                  January 2017


6.2.1.  PBES2 Encryption Operation

  The encryption operation for PBES2 consists of the following steps,
  which encrypt a message M under a password P to produce a ciphertext
  C, applying a selected key derivation function KDF and a selected
  underlying encryption scheme:

     1.  Select a salt S and an iteration count c, as outlined in
         Section 4.

     2.  Select the length in octets, dkLen, for the derived key for
         the underlying encryption scheme.

     3.  Apply the selected key derivation function to the password P,
         the salt S, and the iteration count c to produce a derived key
         DK of length dkLen octets:

                    DK = KDF (P, S, c, dkLen)

     4.  Encrypt the message M with the underlying encryption scheme
         under the derived key DK to produce a ciphertext C.  (This
         step may involve selection of parameters such as an
         initialization vector and padding, depending on the underlying
         scheme.)

     5.  Output the ciphertext C.

  The salt S, the iteration count c, the key length dkLen, and
  identifiers for the key derivation function and the underlying
  encryption scheme may be conveyed to the party performing decryption
  in an AlgorithmIdentifier value (see Appendix A.4).

6.2.2.  PBES2 Decryption Operation

  The decryption operation for PBES2 consists of the following steps,
  which decrypt a ciphertext C under a password P to recover a message
  M:

     1.  Obtain the salt S for the operation.

     2.  Obtain the iteration count c for the key derivation function.

     3.  Obtain the key length in octets, dkLen, for the derived key
         for the underlying encryption scheme.







Moriarty, et al.              Informational                    [Page 16]

RFC 8018                      PKCS #5 v2.1                  January 2017


     4.  Apply the selected key derivation function to the password P,
         the salt S, and the iteration count c to produce a derived key
         DK of length dkLen octets:

                   DK = KDF (P, S, c, dkLen)

     5.  Decrypt the ciphertext C with the underlying encryption scheme
         under the derived key DK to recover a message M.  If the
         decryption function outputs "decryption error", then output
         "decryption error" and stop.

     6.  Output the recovered message M.

7.  Message Authentication Schemes

  A message authentication scheme consists of a MAC (Message
  Authentication Code) generation operation and a MAC verification
  operation, where the MAC generation operation produces a MAC from a
  message under a key, and the MAC verification operation verifies the
  message authentication code under the same key.  In a password-based
  message authentication scheme, the key is a password.

  One scheme is specified in this section: PBMAC1.

7.1.  PBMAC1

  PBMAC1 combines a password-based key derivation function, which shall
  be PBKDF2 (Section 5.2) for this version of PKCS #5, with an
  underlying message authentication scheme (see Appendix B.3 for an
  example).  The key length and any other parameters for the underlying
  message authentication scheme depend on the scheme.

7.1.1.  PBMAC1 Generation Operation

  The MAC generation operation for PBMAC1 consists of the following
  steps, which process a message M under a password P to generate a
  message authentication code T, applying a selected key derivation
  function KDF and a selected underlying message authentication scheme:

     1.  Select a salt S and an iteration count c, as outlined in
         Section 4.

     2.  Select a key length in octets, dkLen, for the derived key for
         the underlying message authentication function.







Moriarty, et al.              Informational                    [Page 17]

RFC 8018                      PKCS #5 v2.1                  January 2017


     3.  Apply the selected key derivation function to the password P,
         the salt S, and the iteration count c to produce a derived key
         DK of length dkLen octets:

                   DK = KDF (P, S, c, dkLen)

     4.  Process the message M with the underlying message
         authentication scheme under the derived key DK to generate a
         message authentication code T.

     5.  Output the message authentication code T.

  The salt S, the iteration count c, the key length dkLen, and
  identifiers for the key derivation function and underlying message
  authentication scheme may be conveyed to the party performing
  verification in an AlgorithmIdentifier value (see Appendix A.5).

7.1.2.  PBMAC1 Verification Operation

  The MAC verification operation for PBMAC1 consists of the following
  steps, which process a message M under a password P to verify a
  message authentication code T:

     1.  Obtain the salt S and the iteration count c.

     2.  Obtain the key length in octets, dkLen, for the derived key
         for the underlying message authentication scheme.

     3.  Apply the selected key derivation function to the password P,
         the salt S, and the iteration count c to produce a derived key
         DK of length dkLen octets:

                   DK = KDF (P, S, c, dkLen)

     4.  Process the message M with the underlying message
         authentication scheme under the derived key DK to verify the
         message authentication code T.

     5.  If the message authentication code verifies, output "correct";
         else output "incorrect".

8.  Security Considerations

  Password-based cryptography is generally limited in the security that
  it can provide, particularly for methods such as those defined in
  this document where offline password search is possible.  While the
  use of salt and iteration count can increase the complexity of attack
  (see Section 4 for recommendations), it is essential that passwords



Moriarty, et al.              Informational                    [Page 18]

RFC 8018                      PKCS #5 v2.1                  January 2017


  are selected well, and relevant guidelines (e.g., [NISTSP63]) should
  be taken into account.  It is also important that passwords be
  protected well if stored.

  In general, different keys should be derived from a password for
  different uses to minimize the possibility of unintended
  interactions.  For password-based encryption with a single algorithm,
  a random salt is sufficient to ensure that different keys will be
  produced.  In certain other situations, as outlined in Section 4, a
  structured salt is necessary.  The recommendations in Section 4
  should thus be taken into account when selecting the salt value.

  For information on security considerations for MD2 [RFC1319], see
  [RFC6149]; for MD5 [RFC1321], see [RFC6151]; and for SHA-1 [NIST180],
  see [RFC6194].

9.  Normative References

  [ANSIX952] ANSI, "Triple Data Encryption Algorithm Modes of
             Operation", Accredited Standards Committee X9, X9.52-1998,
             July 1998.

  [BELLOV]   Bellovin, S. and M. Merritt, "Encrypted Key Exchange:
             Password-based Protocols Secure against Dictionary
             Attacks", Proceedings of the IEEE Symposium on Research in
             Security and Privacy, pages 72-84, IEEE Computer Society,
             DOI 10.1109/RISP.1992.213269, 1992.

  [COCHRAN]  Cochran, M., "Notes on the Wang et al. 2^63 SHA-1
             Differential Path", Cryptology ePrint Archive: Report
             2007/474, August 2008, <http://eprint.iacr.org/2007/474>.

  [ISO8824-1]
             International Organization for Standardization,
             "Information technology - Abstract Syntax Notation One
             (ASN.1) - Specification of basic notation", ISO/IEC
             8824-1:2008, 2008.

  [ISO8824-2]
             International Organization for Standardization,
             "Information technology - Abstract Syntax Notation One
             (ASN.1) - Information object specification", ISO/IEC
             8824-2:2008, 2008.








Moriarty, et al.              Informational                    [Page 19]

RFC 8018                      PKCS #5 v2.1                  January 2017


  [ISO8824-3]
             International Organization for Standardization,
             "Information technology - Abstract Syntax Notation One
             (ASN.1) - Constraint specification", ISO/IEC 8824-3:2008,
             2008.

  [ISO8824-4]
             International Organization for Standardization,
             "Information technology - Abstract Syntax Notation One
             (ASN.1) - Parameterization of ASN.1 specifications",
             ISO/IEC 8824-4:2008, 2008.

  [JABLON]   Jablon, D., "Strong Password-Only Authenticated Key
             Exchange", ACM SIGCOMM Computer Communication Review,
             Volume 26, Issue 5, DOI 10.1145/242896.242897, October
             1996.

  [MORRIS]   Morris, R. and K. Thompson, "Password security: A case
             history", Communications of the ACM, Vol. 22, Issue 11,
             pages 594-597, DOI 10.1145/359168.359172, November 1979.

  [NIST46]   National Institute of Standards and Technology (NIST),
             "Data Encryption Standard", FIPS PUB 46-3, October 1999.

  [NIST81]   National Institute of Standards and Technology (NIST),
             "DES Modes of Operation", FIPS PUB 81, December 2, 1980.

  [NIST180]  National Institute of Standards and Technology, "Secure
             Hash Standard (SHS)", FIPS PUB 180-4,
             DOI 10.6028/NIST.FIPS.180-4, August 2015.

  [NIST197]  National Institute of Standards and Technology (NIST),
             "Advance Encryption Standard (AES)", FIPS PUB 197,
             November 2001.

  [NIST198]  National Institute of Standards and Technology (NIST),
             "The Keyed - Hash Message Authentication Code (HMAC)",
             FIPS PUB 198-1, July 2008.

  [NISTSP63] National Institute of Standards and Technology (NIST),
             "Electronic Authentication Guideline", NIST Special
             Publication 800-63-2, DOI 10.6028/NIST.SP.800-63-2, August
             2013.








Moriarty, et al.              Informational                    [Page 20]

RFC 8018                      PKCS #5 v2.1                  January 2017


  [NISTSP132]
             National Institute of Standards and Technology (NIST),
             "Recommendation for Password-Based Key Derivation, Part 1:
             Storage Applications", NIST Special Publication 800-132,
             DOI 10.6028/NIST.SP.800-132, December 2010.

  [PKCS5_15] RSA Laboratories, "PKCS #5: Password-Based Encryption
             Standard Version 1.5", November 1993.

  [PKCS5_21] RSA Laboratories, "PKCS #5: Password-Based Encryption
             Standard Version 2.1", October 2012.

  [PKCS8]    Kaliski, B., "Public-Key Cryptography Standards (PKCS) #8:
             Private-Key Information Syntax Specification Version 1.2",
             RFC 5208, DOI 10.17487/RFC5208, May 2008,
             <http://www.rfc-editor.org/info/rfc5208>.

  [RC5]      Rivest, R.L., "The RC5 encryption algorithm", In
             Proceedings of the Second International Workshop on Fast
             Software Encryption, pages 86-96, Springer-Verlag,
             DOI 10.1007/3-540-60590-8_7, 1994.

  [RFC1319]  Kaliski, B., "The MD2 Message-Digest Algorithm", RFC 1319,
             DOI 10.17487/RFC1319, April 1992,
             <http://www.rfc-editor.org/info/rfc1319>.

  [RFC1321]  Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
             DOI 10.17487/RFC1321, April 1992,
             <http://www.rfc-editor.org/info/rfc1321>.

  [RFC1423]  Balenson, D., "Privacy Enhancement for Internet Electronic
             Mail: Part III: Algorithms, Modes, and Identifiers",
             RFC 1423, DOI 10.17487/RFC1423, February 1993,
             <http://www.rfc-editor.org/info/rfc1423>.

  [RFC2040]  Baldwin, R. and R. Rivest, "The RC5, RC5-CBC, RC5-CBC-Pad,
             and RC5-CTS Algorithms", RFC 2040, DOI 10.17487/RFC2040,
             October 1996, <http://www.rfc-editor.org/info/rfc2040>.

  [RFC2104]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
             Hashing for Message Authentication", RFC 2104,
             DOI 10.17487/RFC2104, February 1997,
             <http://www.rfc-editor.org/info/rfc2104>.

  [RFC2268]  Rivest, R., "A Description of the RC2(r) Encryption
             Algorithm", RFC 2268, DOI 10.17487/RFC2268, March 1998,
             <http://www.rfc-editor.org/info/rfc2268>.




Moriarty, et al.              Informational                    [Page 21]

RFC 8018                      PKCS #5 v2.1                  January 2017


  [RFC2898]  Kaliski, B., "PKCS #5: Password-Based Cryptography
             Specification Version 2.0", RFC 2898,
             DOI 10.17487/RFC2898, September 2000,
             <http://www.rfc-editor.org/info/rfc2898>.

  [RFC3629]  Yergeau, F., "UTF-8, a transformation format of ISO
             10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
             2003, <http://www.rfc-editor.org/info/rfc3629>.

  [RFC5652]  Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
             RFC 5652, DOI 10.17487/RFC5652, September 2009,
             <http://www.rfc-editor.org/info/rfc5652>.

  [RFC5958]  Turner, S., "Asymmetric Key Packages", RFC 5958,
             DOI 10.17487/RFC5958, August 2010,
             <http://www.rfc-editor.org/info/rfc5958>.

  [RFC6149]  Turner, S. and L. Chen, "MD2 to Historic Status",
             RFC 6149, DOI 10.17487/RFC6149, March 2011,
             <http://www.rfc-editor.org/info/rfc6149>.

  [RFC6151]  Turner, S. and L. Chen, "Updated Security Considerations
             for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
             RFC 6151, DOI 10.17487/RFC6151, March 2011,
             <http://www.rfc-editor.org/info/rfc6151>.

  [RFC6194]  Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
             Considerations for the SHA-0 and SHA-1 Message-Digest
             Algorithms", RFC 6194, DOI 10.17487/RFC6194, March 2011,
             <http://www.rfc-editor.org/info/rfc6194>.

  [WANG]     Wang, X., Yao, A.C., and F. Yao, "Cryptanalysis on SHA-1",
             presented by Adi Shamir at the rump session of CRYPTO
             2005, <http://csrc.nist.gov/groups/ST/hash/documents/
             Wang_SHA1-New-Result.pdf>.

  [WU]       Wu, T., "The Secure Remote Password protocol", In
             Proceedings of the 1998 Internet Society Network and
             Distributed System Security Symposium, pages 97-111,
             Internet Society, 1998,
             <https://www.isoc.org/isoc/conferences/ndss/98/wu.pdf>.










Moriarty, et al.              Informational                    [Page 22]

RFC 8018                      PKCS #5 v2.1                  January 2017


Appendix A.  ASN.1 Syntax

  This section defines ASN.1 syntax for the key derivation functions,
  the encryption schemes, the message authentication scheme, and
  supporting techniques.  The intended application of these definitions
  includes PKCS #8 and other syntax for key management, encrypted data,
  and integrity-protected data.  (Various aspects of ASN.1 are
  specified in several ISO/IEC standards [ISO8824-1] [ISO8824-2]
  [ISO8824-3] [ISO8824-4].)

  The object identifier pkcs-5 identifies the arc of the OID tree from
  which the OIDs (specific to PKCS #5) in this section are derived:

  rsadsi OBJECT IDENTIFIER ::= {iso(1) member-body(2) us(840) 113549}
  pkcs OBJECT IDENTIFIER   ::= {rsadsi 1}
  pkcs-5 OBJECT IDENTIFIER ::= {pkcs 5}

A.1.  PBKDF1

  No object identifier is given for PBKDF1, as the object identifiers
  for PBES1 are sufficient for existing applications, and PBKDF2 is
  recommended for new applications.

A.2.  PBKDF2

  The object identifier id-PBKDF2 identifies the PBKDF2 key derivation
  function (Section 5.2).

     id-PBKDF2 OBJECT IDENTIFIER ::= {pkcs-5 12}

  The parameters field associated with this OID in an
  AlgorithmIdentifier shall have type PBKDF2-params:

  PBKDF2-params ::= SEQUENCE {
      salt CHOICE {
          specified OCTET STRING,
          otherSource AlgorithmIdentifier {{PBKDF2-SaltSources}}
      },
      iterationCount INTEGER (1..MAX),
      keyLength INTEGER (1..MAX) OPTIONAL,
      prf AlgorithmIdentifier {{PBKDF2-PRFs}} DEFAULT
      algid-hmacWithSHA1 }









Moriarty, et al.              Informational                    [Page 23]

RFC 8018                      PKCS #5 v2.1                  January 2017


  The fields of type PBKDF2-params have the following meanings:

     -  salt specifies the salt value or the source of the salt value.
        It shall either be an octet string or an algorithm ID with an
        OID in the set PBKDF2-SaltSources, which is reserved for future
        versions of PKCS #5.

        The salt-source approach is intended to indicate how the salt
        value is to be generated as a function of parameters in the
        algorithm ID, application data, or both.  For instance, it may
        indicate that the salt value is produced from the encoding of a
        structure that specifies detailed information about the derived
        key as suggested in Section 4.1.  Some of the information may
        be carried elsewhere, e.g., in the encryption algorithm ID.
        However, such facilities are deferred to a future version of
        PKCS #5.

        In this version, an application may achieve the benefits
        mentioned in Section 4.1 by choosing a particular
        interpretation of the salt value in the specified alternative.

     PBKDF2-SaltSources ALGORITHM-IDENTIFIER ::= { ... }

     -  iterationCount specifies the iteration count.  The maximum
        iteration count allowed depends on the implementation.  It is
        expected that implementation profiles may further constrain the
        bounds.

     -  keyLength, an optional field, is the length in octets of the
        derived key.  The maximum key length allowed depends on the
        implementation; it is expected that implementation profiles may
        further constrain the bounds.  The field is provided for
        convenience only; the key length is not cryptographically
        protected.  If there is concern about interaction between
        operations with different key lengths for a given salt (see
        Section 4.1), the salt should distinguish among the different
        key lengths.

     -  prf identifies the underlying pseudorandom function.  It shall
        be an algorithm ID with an OID in the set PBKDF2-PRFs, which
        for this version of PKCS #5 shall consist of id-hmacWithSHA1
        (see Appendix B.1.1) and any other OIDs defined by the
        application.








Moriarty, et al.              Informational                    [Page 24]

RFC 8018                      PKCS #5 v2.1                  January 2017


     PBKDF2-PRFs ALGORITHM-IDENTIFIER ::= {
       {NULL IDENTIFIED BY id-hmacWithSHA1},
       {NULL IDENTIFIED BY id-hmacWithSHA224},
       {NULL IDENTIFIED BY id-hmacWithSHA256},
       {NULL IDENTIFIED BY id-hmacWithSHA384},
       {NULL IDENTIFIED BY id-hmacWithSHA512},
       {NULL IDENTIFIED BY id-hmacWithSHA512-224},
       {NULL IDENTIFIED BY id-hmacWithSHA512-256},
       ...
     }

  The default pseudorandom function is HMAC-SHA-1:

        algid-hmacWithSHA1 AlgorithmIdentifier {{PBKDF2-PRFs}} ::=
            {algorithm id-hmacWithSHA1, parameters NULL : NULL}

A.3.  PBES1

  Different object identifiers identify the PBES1 encryption scheme
  (Section 6.1) according to the underlying hash function in the key
  derivation function and the underlying block cipher, as summarized in
  the following table:

          Hash Function  Block Cipher      OID
               MD2           DES         pkcs-5.1
               MD2           RC2         pkcs-5.4
               MD5           DES         pkcs-5.3
               MD5           RC2         pkcs-5.6
              SHA-1          DES         pkcs-5.10
              SHA-1          RC2         pkcs-5.11

     pbeWithMD2AndDES-CBC OBJECT IDENTIFIER  ::= {pkcs-5 1}
     pbeWithMD2AndRC2-CBC OBJECT IDENTIFIER  ::= {pkcs-5 4}
     pbeWithMD5AndDES-CBC OBJECT IDENTIFIER  ::= {pkcs-5 3}
     pbeWithMD5AndRC2-CBC OBJECT IDENTIFIER  ::= {pkcs-5 6}
     pbeWithSHA1AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 10}
     pbeWithSHA1AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 11}

  For each OID, the parameters field associated with the OID in an
  AlgorithmIdentifier shall have type PBEParameter:

  PBEParameter ::= SEQUENCE {
     salt OCTET STRING (SIZE(8)),
     iterationCount INTEGER }







Moriarty, et al.              Informational                    [Page 25]

RFC 8018                      PKCS #5 v2.1                  January 2017


  The fields of type PBEParameter have the following meanings:

     -  salt specifies the salt value, an eight-octet string.

     -  iterationCount specifies the iteration count.

A.4.  PBES2

  The object identifier id-PBES2 identifies the PBES2 encryption scheme
  (Section 6.2).

  id-PBES2 OBJECT IDENTIFIER ::= {pkcs-5 13}

  The parameters field associated with this OID in an
  AlgorithmIdentifier shall have type PBES2-params:

  PBES2-params ::= SEQUENCE {
     keyDerivationFunc AlgorithmIdentifier {{PBES2-KDFs}},
     encryptionScheme AlgorithmIdentifier {{PBES2-Encs}} }

  The fields of type PBES2-params have the following meanings:

     -  keyDerivationFunc identifies the underlying key derivation
        function.  It shall be an algorithm ID with an OID in the set
        PBES2-KDFs, which for this version of PKCS #5 shall consist of
        id-PBKDF2 (Appendix A.2).

  PBES2-KDFs ALGORITHM-IDENTIFIER ::=
     { {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ... }

     -  encryptionScheme identifies the underlying encryption scheme.
        It shall be an algorithm ID with an OID in the set PBES2-Encs,
        whose definition is left to the application.  Examples of
        underlying encryption schemes are given in Appendix B.2.

  PBES2-Encs ALGORITHM-IDENTIFIER ::= { ... }

A.5.  PBMAC1

  The object identifier id-PBMAC1 identifies the PBMAC1 message
  authentication scheme (Section 7.1).

  id-PBMAC1 OBJECT IDENTIFIER ::= {pkcs-5 14}








Moriarty, et al.              Informational                    [Page 26]

RFC 8018                      PKCS #5 v2.1                  January 2017


  The parameters field associated with this OID in an
  AlgorithmIdentifier shall have type PBMAC1-params:

  PBMAC1-params ::=  SEQUENCE {
     keyDerivationFunc AlgorithmIdentifier {{PBMAC1-KDFs}},
     messageAuthScheme AlgorithmIdentifier {{PBMAC1-MACs}} }

  The keyDerivationFunc field has the same meaning as the corresponding
  field of PBES2-params (Appendix A.4) except that the set of OIDs is
  PBMAC1-KDFs.

  PBMAC1-KDFs ALGORITHM-IDENTIFIER ::=
     { {PBKDF2-params IDENTIFIED BY id-PBKDF2}, ... }

  The messageAuthScheme field identifies the underlying message
  authentication scheme.  It shall be an algorithm ID with an OID in
  the set PBMAC1-MACs, whose definition is left to the application.
  Examples of underlying encryption schemes are given in Appendix B.3.

  PBMAC1-MACs ALGORITHM-IDENTIFIER ::= { ... }

Appendix B.  Supporting Techniques

  This section gives several examples of underlying functions and
  schemes supporting the password-based schemes in Sections 5, 6, and
  7.

  While these supporting techniques are appropriate for applications to
  implement, none of them is required to be implemented.  It is
  expected, however, that profiles for PKCS #5 will be developed that
  specify particular supporting techniques.

  This section also gives object identifiers for the supporting
  techniques.  The object identifiers digestAlgorithm and
  encryptionAlgorithm identify the arcs from which certain algorithm
  OIDs referenced in this section are derived:

  digestAlgorithm OBJECT IDENTIFIER ::= {rsadsi 2} encryptionAlgorithm
  OBJECT IDENTIFIER ::= {rsadsi 3}












Moriarty, et al.              Informational                    [Page 27]

RFC 8018                      PKCS #5 v2.1                  January 2017


B.1.  Pseudorandom Functions

  Examples of pseudorandom function for PBKDF2 (Section 5.2) include
  HMAC with SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and
  SHA-512/256.  Applications may employ other schemes as well.

B.1.1.  HMAC-SHA-1

  HMAC-SHA-1 is the pseudorandom function corresponding to the HMAC
  message authentication code [RFC2104] based on the SHA-1 hash
  function [NIST180].  The pseudorandom function is the same function
  by which the message authentication code is computed, with a full-
  length output.  (The first argument to the pseudorandom function PRF
  serves as HMAC's "key", and the second serves as HMAC's "text".  In
  the case of PBKDF2, the "key" is thus the password and the "text" is
  the salt.)  HMAC-SHA-1 has a variable key length and a 20-octet
  (160-bit) output value.

  Although the length of the key to HMAC-SHA-1 is essentially
  unbounded, the effective search space for pseudorandom function
  outputs may be limited by the structure of the function.  In
  particular, when the key is longer than 512 bits, HMAC-SHA-1 will
  first hash it to 160 bits.  Thus, even if a long derived key
  consisting of several pseudorandom function outputs is produced from
  a key, the effective search space for the derived key will be at most
  160 bits.  Although the specific limitation for other key sizes
  depends on details of the HMAC construction, one should assume, to be
  conservative, that the effective search space is limited to 160 bits
  for other key sizes as well.

  (The 160-bit limitation should not generally pose a practical
  limitation in the case of password-based cryptography, since the
  search space for a password is unlikely to be greater than 160 bits.)

  The object identifier id-hmacWithSHA1 identifies the HMAC-SHA-1
  pseudorandom function:

  id-hmacWithSHA1 OBJECT IDENTIFIER ::= {digestAlgorithm 7}

  The parameters field associated with this OID in an
  AlgorithmIdentifier shall have type NULL.  This object identifier is
  employed in the object set PBKDF2-PRFs (Appendix A.2).

  Note: Although HMAC-SHA-1 was designed as a message authentication
  code, its proof of security is readily modified to accommodate
  requirements for a pseudorandom function, under stronger assumptions.
  A hash function may also meet the requirements of a pseudorandom
  function under certain assumptions.  For instance, the direct



Moriarty, et al.              Informational                    [Page 28]

RFC 8018                      PKCS #5 v2.1                  January 2017


  application of a hash function to the concatenation of the "key" and
  the "text" may be appropriate, provided that "text" has appropriate
  structure to prevent certain attacks.  HMAC-SHA-1 is preferable,
  however, because it treats "key" and "text" as separate arguments and
  does not require "text" to have any structure.

  During 2004 and 2005, there were a number of attacks on SHA-1 that
  reduced its perceived effective strength against collision attacks to
  62 bits instead of the expected 80 bits (e.g., Wang et al. [WANG],
  confirmed by M. Cochran [COCHRAN]).  However, since these attacks
  centered on finding collisions between values, they are not a direct
  security consideration here because the collision-resistant property
  is not required by the HMAC authentication scheme.

B.1.2.  HMAC-SHA-2

  HMAC-SHA-2 refers to the set of pseudorandom functions corresponding
  to the HMAC message authentication code (now a FIPS standard
  [NIST198]) based on the new SHA-2 functions (FIPS 180-4 [NIST180]).
  HMAC-SHA-2 has a variable key length and variable output value
  depending on the hash function chosen (SHA-224, SHA-256, SHA-384,
  SHA-512, SHA-512/224, or SHA-512/256) -- that is, 28, 32, 48, or 64
  octets.

  Using the new hash functions extends the search space for the
  produced keys.  Where SHA-1 limits the search space to 20 octets,
  SHA-2 sets new limits of 28, 32, 48, and 64 octets.

  Object identifiers for HMAC are defined as follows:

  id-hmacWithSHA224 OBJECT IDENTIFIER ::= {digestAlgorithm 8}
  id-hmacWithSHA256 OBJECT IDENTIFIER ::= {digestAlgorithm 9}
  id-hmacWithSHA384 OBJECT IDENTIFIER ::= {digestAlgorithm 10}
  id-hmacWithSHA512 OBJECT IDENTIFIER ::= {digestAlgorithm 11}
  id-hmacWithSHA512-224 OBJECT IDENTIFIER ::= {digestAlgorithm 12}
  id-hmacWithSHA512-256 OBJECT IDENTIFIER ::= {digestAlgorithm 13}

B.2.  Encryption Schemes

  An example encryption scheme for PBES2 (Section 6.2) is AES-CBC-Pad.
  The schemes defined in PKCS #5 v2.0 [RFC2898], DES-CBC-Pad,
  DES-EDE3-CBC-Pad, RC2-CBC-Pad, and RC5-CBC-Pad, are still supported,
  but DES-CBC-Pad, DES-EDE3-CBC-Pad, RC2-CBC-Pad are now considered
  legacy and should only be used for backwards compatibility reasons.

  The object identifiers given in this section are intended to be
  employed in the object set PBES2-Encs (Appendix A.4).




Moriarty, et al.              Informational                    [Page 29]

RFC 8018                      PKCS #5 v2.1                  January 2017


B.2.1.  DES-CBC-Pad

  DES-CBC-Pad is single-key DES [NIST46] in CBC mode [NIST81] with the
  padding operation specified in RFC 1423 [RFC1423] (see Section 6.1.1
  of this document).  DES-CBC-Pad has an eight-octet encryption key and
  an eight-octet initialization vector.  The key is considered as a
  64-bit encoding of a 56-bit DES key with parity bits ignored.

  The object identifier desCBC (defined in the NIST/OSI Implementors'
  Workshop agreements) identifies the DES-CBC-Pad encryption scheme:

  desCBC OBJECT IDENTIFIER ::=
     {iso(1) identified-organization(3) oiw(14) secsig(3)
      algorithms(2) 7}

  The parameters field associated with this OID in an
  AlgorithmIdentifier shall have type OCTET STRING (SIZE(8)),
  specifying the initialization vector for CBC mode.

B.2.2.  DES-EDE3-CBC-Pad

  DES-EDE3-CBC-Pad is three-key triple-DES in CBC mode [ANSIX952] with
  the padding operation specified in RFC 1423 [RFC1423].
  DES-EDE3-CBC-Pad has a 24-octet encryption key and an eight-octet
  initialization vector.  The key is considered as the concatenation of
  three eight-octet keys, each of which is a 64-bit encoding of a
  56-bit DES key with parity bits ignored.

  The object identifier des-EDE3-CBC identifies the DES-EDE3-CBC-Pad
  encryption scheme:

  des-EDE3-CBC OBJECT IDENTIFIER ::= {encryptionAlgorithm 7}

  The parameters field associated with this OID in an
  AlgorithmIdentifier shall have type OCTET STRING (SIZE(8)),
  specifying the initialization vector for CBC mode.

  Note: An OID for DES-EDE3-CBC without padding is given in ANSI X9.52
  [ANSIX952]; the one given here is preferred since it specifies
  padding.

B.2.3.  RC2-CBC-Pad

  RC2-CBC-Pad is the RC2 encryption algorithm [RFC2268] in CBC mode
  with the padding operation specified in RFC 1423 [RFC1423].
  RC2-CBC-Pad has a variable key length, from one to 128 octets, a
  separate "effective key bits" parameter from one to 1024 bits that




Moriarty, et al.              Informational                    [Page 30]

RFC 8018                      PKCS #5 v2.1                  January 2017


  limits the effective search space independent of the key length, and
  an eight-octet initialization vector.

  The object identifier rc2CBC identifies the RC2-CBC-Pad encryption
  scheme:

  rc2CBC OBJECT IDENTIFIER ::= {encryptionAlgorithm 2}

  The parameters field associated with OID in an AlgorithmIdentifier
  shall have type RC2-CBC-Parameter:

  RC2-CBC-Parameter ::= SEQUENCE {
      rc2ParameterVersion INTEGER OPTIONAL,
      iv OCTET STRING (SIZE(8)) }

  The fields of type RC2-CBCParameter have the following meanings:

     -  rc2ParameterVersion is a proprietary RSA Security Inc. encoding
        of the "effective key bits" for RC2.  The following encodings
        are defined:

              Effective Key Bits         Encoding
                      40                    160
                      64                    120
                     128                     58
                    b >= 256                  b

  If the rc2ParameterVersion field is omitted, the "effective key bits"
  defaults to 32.  (This is for backward compatibility with certain
  very old implementations.)

     -  iv is the eight-octet initialization vector.

B.2.4.  RC5-CBC-Pad

  RC5-CBC-Pad is the RC5 encryption algorithm [RC5] in CBC mode with
  the padding operation specified in RFC 5652 [RFC5652], which is a
  generalization of the padding operation specified in RFC 1423
  [RFC1423].  The scheme is fully specified in [RFC2040].  RC5-CBC-Pad
  has a variable key length, from 0 to 256 octets, and supports both a
  64-bit block size and a 128-bit block size.  For the former, it has
  an eight-octet initialization vector, and for the latter, a 16-octet
  initialization vector.  RC5-CBC-Pad also has a variable number of
  "rounds" in the encryption operation, from 8 to 127.







Moriarty, et al.              Informational                    [Page 31]

RFC 8018                      PKCS #5 v2.1                  January 2017


  Note: For RC5 with a 64-bit block size, the padding string is as
  defined in RFC 1423 [RFC1423].  For RC5 with a 128-bit block size,
  the padding string consists of 16-(||M|| mod 16) octets each with
  value 16-(||M|| mod 16).

  The object identifier rc5-CBC-PAD [RFC2040] identifies the
  RC5-CBC-Pad encryption scheme:

  rc5-CBC-PAD OBJECT IDENTIFIER ::= {encryptionAlgorithm 9}

  The parameters field associated with this OID in an
  AlgorithmIdentifier shall have type RC5-CBC-Parameters:

  RC5-CBC-Parameters ::= SEQUENCE {
     version INTEGER {v1-0(16)} (v1-0),
     rounds INTEGER (8..127),
     blockSizeInBits INTEGER (64 | 128),
     iv OCTET STRING OPTIONAL }

  The fields of type RC5-CBC-Parameters have the following meanings:

     -  version is the version of the algorithm, which shall be v1-0.

     -  rounds is the number of rounds in the encryption operation,
        which shall be between 8 and 127.

     -  blockSizeInBits is the block size in bits, which shall be 64 or
        128.

     -  iv is the initialization vector, an eight-octet string for
        64-bit RC5 and a 16-octet string for 128-bit RC5.  The default
        is a string of the appropriate length consisting of zero
        octets.

B.2.5.  AES-CBC-Pad

  AES-CBC-Pad is the AES encryption algorithm [NIST197] in CBC mode
  with the padding operation specified in RFC 5652 [RFC5652].
  AES-CBC-Pad has a variable key length of 16, 24, or 32 octets and has
  a 16-octet block size.  It has a 16-octet initialization vector.

  Note: For AES, the padding string consists of 16-(||M|| mod 16)
  octets each with value 16-(||M|| mod 16).

  For AES, object identifiers are defined depending on key size and
  operation mode.  For example, the 16-octet (128-bit) key AES
  encryption scheme in CBC mode would be aes128-CBC-Pad identifying the
  AES-CBC-PAD encryption scheme using a 16-octet key:



Moriarty, et al.              Informational                    [Page 32]

RFC 8018                      PKCS #5 v2.1                  January 2017


  aes128-CBC-PAD OBJECT IDENTIFIER ::= {aes 2}

  The AES object identifier is defined in Appendix C.

  The parameters field associated with this OID in an
  AlgorithmIdentifier shall have type OCTET STRING (SIZE(16)),
  specifying the initialization vector for CBC mode.

B.3.  Message Authentication Schemes

  An example message authentication scheme for PBMAC1 (Section 7.1) is
  HMAC-SHA-1.

B.3.1.  HMAC-SHA-1

  HMAC-SHA-1 is the HMAC message authentication scheme [RFC2104] based
  on the SHA-1 hash function [NIST180].  HMAC-SHA-1 has a variable key
  length and a 20-octet (160-bit) message authentication code.

  The object identifier id-hmacWithSHA1 (see Appendix B.1.1) identifies
  the HMAC-SHA-1 message authentication scheme.  (The object identifier
  is the same for both the pseudorandom function and the message
  authentication scheme; the distinction is to be understood by
  context.)  This object identifier is intended to be employed in the
  object set PBMAC1-Macs (Appendix A.5).

B.3.2.  HMAC-SHA-2

  HMAC-SHA-2 refers to the set of HMAC message authentication schemes
  [NIST198] based on the SHA-2 functions [NIST180].  HMAC-SHA-2 has a
  variable key length and a message authentication code whose length is
  based on the hash function chosen (SHA-224, SHA-256, SHA-384,
  SHA-512, SHA-512/224, or SHA-512/256) -- that is, 28, 32, 48, or 64
  octets.

  The object identifiers id-hmacWithSHA224, id-hmacWithSHA256,
  id-hmacWithSHA384, id-hmacWithSHA512, id-hmacWithSHA512-224, and
  id-hmacWithSHA512-256 (see Appendix B.1.2) identify the HMAC-SHA-2
  schemes.  The object identifiers are the same for both the
  pseudorandom functions and the message authentication schemes; the
  distinction is to be understood by context.  These object identifiers
  are intended to be employed in the object set PBMAC1-Macs (Appendix
  A.5).








Moriarty, et al.              Informational                    [Page 33]

RFC 8018                      PKCS #5 v2.1                  January 2017


Appendix C.  ASN.1 Module

  For reference purposes, the ASN.1 syntax in the preceding sections is
  presented as an ASN.1 module here.

  -- PKCS #5 v2.1 ASN.1 Module
  -- Revised October 27, 2012

  -- This module has been checked for conformance with the
  -- ASN.1 standard by the OSS ASN.1 Tools

  PKCS5v2-1 {
     iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-5(5)
     modules(16) pkcs5v2-1(2)
  }

  DEFINITIONS EXPLICIT TAGS ::=

  BEGIN

  -- ========================
  -- Basic object identifiers
  -- ========================

  nistAlgorithms OBJECT IDENTIFIER ::= {joint-iso-itu-t(2) country(16)
                                        us(840) organization(1)
                                        gov(101) csor(3) 4}
  oiw    OBJECT IDENTIFIER ::= {iso(1) identified-organization(3) 14}
  rsadsi OBJECT IDENTIFIER ::= {iso(1) member-body(2) us(840) 113549}
  pkcs   OBJECT IDENTIFIER ::= {rsadsi 1}
  pkcs-5 OBJECT IDENTIFIER ::= {pkcs 5}

  -- =======================
  -- Basic types and classes
  -- =======================

  AlgorithmIdentifier { ALGORITHM-IDENTIFIER:InfoObjectSet } ::=
    SEQUENCE {
      algorithm ALGORITHM-IDENTIFIER.&id({InfoObjectSet}),
      parameters ALGORITHM-IDENTIFIER.&Type({InfoObjectSet}
      {@algorithm}) OPTIONAL
  }

  ALGORITHM-IDENTIFIER ::= TYPE-IDENTIFIER

  -- ======
  -- PBKDF2
  -- ======



Moriarty, et al.              Informational                    [Page 34]

RFC 8018                      PKCS #5 v2.1                  January 2017


  PBKDF2Algorithms ALGORITHM-IDENTIFIER ::= {
     {PBKDF2-params IDENTIFIED BY id-PBKDF2},
     ...
  }

  id-PBKDF2 OBJECT IDENTIFIER ::= {pkcs-5 12}

  algid-hmacWithSHA1 AlgorithmIdentifier {{PBKDF2-PRFs}} ::=
     {algorithm id-hmacWithSHA1, parameters NULL : NULL}

  PBKDF2-params ::= SEQUENCE {
      salt CHOICE {
        specified OCTET STRING,
        otherSource AlgorithmIdentifier {{PBKDF2-SaltSources}}
      },
      iterationCount INTEGER (1..MAX),
      keyLength INTEGER (1..MAX) OPTIONAL,
      prf AlgorithmIdentifier {{PBKDF2-PRFs}} DEFAULT
      algid-hmacWithSHA1
  }

  PBKDF2-SaltSources ALGORITHM-IDENTIFIER ::= { ... }

  PBKDF2-PRFs ALGORITHM-IDENTIFIER ::= {
    {NULL IDENTIFIED BY id-hmacWithSHA1},
    {NULL IDENTIFIED BY id-hmacWithSHA224},
    {NULL IDENTIFIED BY id-hmacWithSHA256},
    {NULL IDENTIFIED BY id-hmacWithSHA384},
    {NULL IDENTIFIED BY id-hmacWithSHA512},
    {NULL IDENTIFIED BY id-hmacWithSHA512-224},
    {NULL IDENTIFIED BY id-hmacWithSHA512-256},
    ...
  }

  -- =====
  -- PBES1
  -- =====

  PBES1Algorithms ALGORITHM-IDENTIFIER ::= {
     {PBEParameter IDENTIFIED BY pbeWithMD2AndDES-CBC}  |
     {PBEParameter IDENTIFIED BY pbeWithMD2AndRC2-CBC}  |
     {PBEParameter IDENTIFIED BY pbeWithMD5AndDES-CBC}  |
     {PBEParameter IDENTIFIED BY pbeWithMD5AndRC2-CBC}  |
     {PBEParameter IDENTIFIED BY pbeWithSHA1AndDES-CBC} |
     {PBEParameter IDENTIFIED BY pbeWithSHA1AndRC2-CBC},
     ...
  }




Moriarty, et al.              Informational                    [Page 35]

RFC 8018                      PKCS #5 v2.1                  January 2017


  pbeWithMD2AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 1}
  pbeWithMD2AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 4}
  pbeWithMD5AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 3}
  pbeWithMD5AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 6}
  pbeWithSHA1AndDES-CBC OBJECT IDENTIFIER ::= {pkcs-5 10}
  pbeWithSHA1AndRC2-CBC OBJECT IDENTIFIER ::= {pkcs-5 11}

  PBEParameter ::= SEQUENCE {
      salt OCTET STRING (SIZE(8)),
      iterationCount INTEGER
  }

  -- =====
  -- PBES2
  -- =====

  PBES2Algorithms ALGORITHM-IDENTIFIER ::= {
     {PBES2-params IDENTIFIED BY id-PBES2},
     ...
  }

  id-PBES2 OBJECT IDENTIFIER ::= {pkcs-5 13}

  PBES2-params ::= SEQUENCE {
     keyDerivationFunc AlgorithmIdentifier {{PBES2-KDFs}},
     encryptionScheme AlgorithmIdentifier {{PBES2-Encs}}
  }

  PBES2-KDFs ALGORITHM-IDENTIFIER ::= {
     {PBKDF2-params IDENTIFIED BY id-PBKDF2},
     ...
  }

  PBES2-Encs ALGORITHM-IDENTIFIER ::= { ... }

  -- ======
  -- PBMAC1
  -- ======

  PBMAC1Algorithms ALGORITHM-IDENTIFIER ::= {
     {PBMAC1-params IDENTIFIED BY id-PBMAC1},
     ...
  }

  id-PBMAC1 OBJECT IDENTIFIER ::= {pkcs-5 14}

  PBMAC1-params ::=  SEQUENCE {
      keyDerivationFunc AlgorithmIdentifier {{PBMAC1-KDFs}},



Moriarty, et al.              Informational                    [Page 36]

RFC 8018                      PKCS #5 v2.1                  January 2017


      messageAuthScheme AlgorithmIdentifier {{PBMAC1-MACs}}
  }

  PBMAC1-KDFs ALGORITHM-IDENTIFIER ::= {
     {PBKDF2-params IDENTIFIED BY id-PBKDF2},
     ...
  }

  PBMAC1-MACs ALGORITHM-IDENTIFIER ::= { ... }

  -- =====================
  -- Supporting techniques
  -- =====================

  digestAlgorithm OBJECT IDENTIFIER     ::= {rsadsi 2}
  encryptionAlgorithm OBJECT IDENTIFIER ::= {rsadsi 3}

  SupportingAlgorithms ALGORITHM-IDENTIFIER ::= {
     {NULL IDENTIFIED BY id-hmacWithSHA1}                   |
     {OCTET STRING (SIZE(8)) IDENTIFIED BY desCBC}          |
     {OCTET STRING (SIZE(8)) IDENTIFIED BY des-EDE3-CBC}    |
     {RC2-CBC-Parameter IDENTIFIED BY rc2CBC}               |
     {RC5-CBC-Parameters IDENTIFIED BY rc5-CBC-PAD},        |
     {OCTET STRING (SIZE(16)) IDENTIFIED BY aes128-CBC-PAD} |
     {OCTET STRING (SIZE(16)) IDENTIFIED BY aes192-CBC-PAD} |
     {OCTET STRING (SIZE(16)) IDENTIFIED BY aes256-CBC-PAD},
      ...
  }

  id-hmacWithSHA1 OBJECT IDENTIFIER ::= {digestAlgorithm 7}
  id-hmacWithSHA224 OBJECT IDENTIFIER ::= {digestAlgorithm 8}
  id-hmacWithSHA256 OBJECT IDENTIFIER ::= {digestAlgorithm 9}
  id-hmacWithSHA384 OBJECT IDENTIFIER ::= {digestAlgorithm 10}
  id-hmacWithSHA512 OBJECT IDENTIFIER ::= {digestAlgorithm 11}
  id-hmacWithSHA512-224 OBJECT IDENTIFIER ::= {digestAlgorithm 12}
  id-hmacWithSHA512-256 OBJECT IDENTIFIER ::= {digestAlgorithm 13}

  desCBC OBJECT IDENTIFIER ::= {oiw secsig(3) algorithms(2) 7}

  des-EDE3-CBC OBJECT IDENTIFIER ::= {encryptionAlgorithm 7}

  rc2CBC OBJECT IDENTIFIER ::= {encryptionAlgorithm 2}

  RC2-CBC-Parameter ::= SEQUENCE {
     rc2ParameterVersion INTEGER OPTIONAL,
     iv OCTET STRING (SIZE(8))
  }




Moriarty, et al.              Informational                    [Page 37]

RFC 8018                      PKCS #5 v2.1                  January 2017


  rc5-CBC-PAD OBJECT IDENTIFIER ::= {encryptionAlgorithm 9}

  RC5-CBC-Parameters ::= SEQUENCE {
     version INTEGER {v1-0(16)} (v1-0),
     rounds INTEGER (8..127),
     blockSizeInBits INTEGER (64 | 128),
     iv OCTET STRING OPTIONAL
  }

  aes OBJECT IDENTIFIER ::= { nistAlgorithms 1 }
  aes128-CBC-PAD OBJECT IDENTIFIER ::= { aes 2 }
  aes192-CBC-PAD OBJECT IDENTIFIER ::= { aes 22 }
  aes256-CBC-PAD OBJECT IDENTIFIER ::= { aes 42 }

  END

Appendix D.  Revision History of PKCS #5

  Versions 1.0 - 1.3

     Versions 1.0 - 1.3 were distributed to participants in RSA Data
     Security Inc.'s Public-Key Cryptography Standards meetings in
     February and March 1991.

  Version 1.4

     Version 1.4 was part of the June 3, 1991 initial public release of
     PKCS.  Version 1.4 was published as NIST/OSI Implementors'
     Workshop document SEC-SIG-91-20.

  Version 1.5

     Version 1.5 incorporated several editorial changes, including
     updates to the references and the addition of a revision history.

  Version 2.0

     Version 2.0 incorporates major editorial changes in terms of the
     document structure, and introduces the PBES2 encryption scheme,
     the PBMAC1 message authentication scheme, and independent
     password-based key derivation functions.  This version continues
     to support the encryption process in version 1.5.









Moriarty, et al.              Informational                    [Page 38]

RFC 8018                      PKCS #5 v2.1                  January 2017


  Version 2.1

     This document transfers PKCS #5 into the IETF and includes some
     minor changes from the authors for this submission.

     o  Introduces AES/CBC as an encryption scheme for PBES2 and HMAC
        with the hash functions SHA-224, SHA-256, SHA-384, SHA-512,
        SHA-512/224, and SHA-512/256 as pseudorandom functions for
        PBKDF2 and message authentication schemes for PBMAC1.

     o  Changes references for PKCS #5 to RFC 2898 and for PKCS #8 to
        RFCs 5208 and 5898.

     o  Incorporates corrections of two editorial errata reported on
        PKCS #5 [RFC2898].

     o  Added security considerations for MD2, MD5, and SHA-1.

Appendix E.  About PKCS

  The Public-Key Cryptography Standards are specifications produced by
  RSA Laboratories in cooperation with secure systems developers
  worldwide for the purpose of accelerating the deployment of public-
  key cryptography.  First published in 1991 as a result of meetings
  with a small group of early adopters of public-key technology, the
  PKCS documents have become widely referenced and implemented.
  Contributions from the PKCS series have become part of many formal
  and de facto standards, including ANSI X9 documents, PKIX, Secure
  Electronic Transaction (SET), S/MIME, and SSL.

  Further development of most PKCS documents occurs through the IETF.
  Suggestions for improvement are welcome.



















Moriarty, et al.              Informational                    [Page 39]

RFC 8018                      PKCS #5 v2.1                  January 2017


Acknowledgements

  This document is based on a contribution of RSA Laboratories, the
  research center of RSA Security Inc.

  RC2 and RC5 are trademarks of EMC Corporation.

Authors' Addresses

  Kathleen M. Moriarty (editor)
  Dell EMC
  176 South Street
  Hopkinton, MA  01748
  United States of America

  Email: [email protected]


  Burt Kaliski
  Verisign
  12061 Bluemont Way
  Reston, VA  20190
  United States of America

  Email: [email protected]
  URI:   http://verisignlabs.com


  Andreas Rusch
  RSA
  345 Queen Street
  Brisbane, QLD  4000
  Australia

  Email: [email protected]
















Moriarty, et al.              Informational                    [Page 40]