Internet Engineering Task Force (IETF)                        M. Jenkins
Request for Comments: 8009                      National Security Agency
Category: Informational                                          M. Peck
ISSN: 2070-1721                                    The MITRE Corporation
                                                              K. Burgin
                                                           October 2016


             AES Encryption with HMAC-SHA2 for Kerberos 5

Abstract

  This document specifies two encryption types and two corresponding
  checksum types for Kerberos 5.  The new types use AES in CTS mode
  (CBC mode with ciphertext stealing) for confidentiality and HMAC with
  a SHA-2 hash for integrity.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc8009.

Copyright Notice

  Copyright (c) 2016 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.




Jenkins, et al.               Informational                     [Page 1]

RFC 8009            AES-CTS HMAC-SHA2 For Kerberos 5        October 2016


Table of Contents

  1.  Introduction . . . . . . . . . . . . . . . . . . . . . . . . .  2
  2.  Protocol Key Representation  . . . . . . . . . . . . . . . . .  3
  3.  Key Derivation Function  . . . . . . . . . . . . . . . . . . .  3
  4.  Key Generation from Pass Phrases . . . . . . . . . . . . . . .  4
  5.  Kerberos Algorithm Protocol Parameters . . . . . . . . . . . .  5
  6.  Checksum Parameters  . . . . . . . . . . . . . . . . . . . . .  7
  7.  IANA Considerations  . . . . . . . . . . . . . . . . . . . . .  8
  8.  Security Considerations  . . . . . . . . . . . . . . . . . . .  8
    8.1.  Random Values in Salt Strings  . . . . . . . . . . . . . .  9
    8.2.  Algorithm Rationale  . . . . . . . . . . . . . . . . . . .  9
  9.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 10
    9.1.  Normative References . . . . . . . . . . . . . . . . . . . 10
    9.2.  Informative References . . . . . . . . . . . . . . . . . . 11
  Appendix A.  Test Vectors  . . . . . . . . . . . . . . . . . . . . 12
  Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 19
  Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 19

1.  Introduction

  This document defines two encryption types and two corresponding
  checksum types for Kerberos 5 using AES with 128-bit or 256-bit keys.

  To avoid ciphertext expansion, we use a variation of the CBC-CS3 mode
  defined in [SP800-38A+], also referred to as ciphertext stealing or
  CTS mode.  The new types conform to the framework specified in
  [RFC3961], but do not use the simplified profile, as the simplified
  profile is not compliant with modern cryptographic best practices
  such as calculating Message Authentication Codes (MACs) over
  ciphertext rather than plaintext.

  The encryption and checksum types defined in this document are
  intended to support environments that desire to use SHA-256 or
  SHA-384 (defined in [FIPS180]) as the hash algorithm.  Differences
  between the encryption and checksum types defined in this document
  and the pre-existing Kerberos AES encryption and checksum types
  specified in [RFC3962] are:

  *  The pseudorandom function (PRF) used by PBKDF2 is HMAC-SHA-256 or
     HMAC-SHA-384.  (HMAC is defined in [RFC2104].)

  *  A key derivation function from [SP800-108] using the SHA-256 or
     SHA-384 hash algorithm is used to produce keys for encryption,
     integrity protection, and checksum operations.






Jenkins, et al.               Informational                     [Page 2]

RFC 8009            AES-CTS HMAC-SHA2 For Kerberos 5        October 2016


  *  The HMAC is calculated over the cipher state concatenated with the
     AES output, instead of being calculated over the confounder and
     plaintext.  This allows the message receiver to verify the
     integrity of the message before decrypting the message.

  *  The HMAC algorithm uses the SHA-256 or SHA-384 hash algorithm for
     integrity protection and checksum operations.

2.  Protocol Key Representation

  The AES key space is dense, so we can use random or pseudorandom
  octet strings directly as keys.  The byte representation for the key
  is described in [FIPS197], where the first bit of the bit string is
  the high bit of the first byte of the byte string (octet string).

3.  Key Derivation Function

  We use a key derivation function from Section 5.1 of [SP800-108],
  which uses the HMAC algorithm as the PRF.

     function KDF-HMAC-SHA2(key, label, [context,] k):
        k-truncate(K1)

  where the value of K1 is computed as below.

  key: The source of entropy from which subsequent keys are derived.
  (This is known as "Ki" in [SP800-108].)

  label: An octet string describing the intended usage of the derived
  key.

  context: This parameter is optional.  An octet string containing the
  information related to the derived keying material.  This
  specification does not dictate a specific format for the context
  field.  The context field is only used by the pseudorandom function
  defined in Section 5, where it is set to the pseudorandom function's
  octet-string input parameter.  The content of the octet-string input
  parameter is defined by the application that uses it.

  k: Length in bits of the key to be outputted, expressed in big-endian
  binary representation in 4 bytes.  (This is called "L" in
  [SP800-108].)  Specifically, k=128 is represented as 0x00000080, 192
  as 0x000000C0, 256 as 0x00000100, and 384 as 0x00000180.

  When the encryption type is aes128-cts-hmac-sha256-128, k must be no
  greater than 256 bits.  When the encryption type is
  aes256-cts-hmac-sha384-192, k must be no greater than 384 bits.




Jenkins, et al.               Informational                     [Page 3]

RFC 8009            AES-CTS HMAC-SHA2 For Kerberos 5        October 2016


  The k-truncate function is defined in Section 5.1 of [RFC3961].  It
  returns the 'k' leftmost bits of the bit-string input.

  In all computations in this document, "|" indicates concatenation.

  When the encryption type is aes128-cts-hmac-sha256-128, then K1 is
  computed as follows:

    If the context parameter is not present:
    K1 = HMAC-SHA-256(key, 0x00000001 | label | 0x00 | k)

    If the context parameter is present:
    K1 = HMAC-SHA-256(key, 0x00000001 | label | 0x00 | context | k)

  When the encryption type is aes256-cts-hmac-sha384-192, then K1 is
  computed as follows:

    If the context parameter is not present:
    K1 = HMAC-SHA-384(key, 0x00000001 | label | 0x00 | k)

    If the context parameter is present:
    K1 = HMAC-SHA-384(key, 0x00000001 | label | 0x00 | context | k)

  In the definitions of K1 above, '0x00000001' is the i parameter (the
  iteration counter) from Section 5.1 of [SP800-108].

4.  Key Generation from Pass Phrases

  As defined below, the string-to-key function uses PBKDF2 [RFC2898]
  and KDF-HMAC-SHA2 to derive the base-key from a passphrase and salt.
  The string-to-key parameter string is 4 octets indicating an unsigned
  number in big-endian order, consistent with [RFC3962], except that
  the default is decimal 32768 if the parameter is not specified.

  To ensure that different long-term base-keys are used with different
  enctypes, we prepend the enctype name to the salt, separated by a
  null byte.  The enctype-name is "aes128-cts-hmac-sha256-128" or
  "aes256-cts-hmac-sha384-192" (without the quotes).













Jenkins, et al.               Informational                     [Page 4]

RFC 8009            AES-CTS HMAC-SHA2 For Kerberos 5        October 2016


  The user's long-term base-key is derived as follows:

     iter_count = string-to-key parameter, default is decimal 32768
     saltp = enctype-name | 0x00 | salt
     tkey = random-to-key(PBKDF2(passphrase, saltp,
                                 iter_count, keylength))
     base-key = random-to-key(KDF-HMAC-SHA2(tkey, "kerberos",
                                            keylength))

     where "kerberos" is the octet-string 0x6B65726265726F73.

  where PBKDF2 is the function of that name from RFC 2898, the
  pseudorandom function used by PBKDF2 is HMAC-SHA-256 when the enctype
  is "aes128-cts-hmac-sha256-128" and HMAC-SHA-384 when the enctype is
  "aes256-cts-hmac-sha384-192", the value for keylength is the AES key
  length (128 or 256 bits), and the algorithm KDF-HMAC-SHA2 is defined
  in Section 3.

5.  Kerberos Algorithm Protocol Parameters

  The cipher state defined in RFC 3961 that maintains cryptographic
  state across different encryption operations using the same key is
  used as the formal initialization vector (IV) input into CBC-CS3.
  The plaintext is prepended with a 16-octet random value generated by
  the message originator, known as a confounder.

  The ciphertext is a concatenation of the output of AES in CBC-CS3
  mode and the HMAC of the cipher state concatenated with the AES
  output.  The HMAC is computed using either SHA-256 or SHA-384
  depending on the encryption type.  The output of HMAC-SHA-256 is
  truncated to 128 bits, and the output of HMAC-SHA-384 is truncated to
  192 bits.  Sample test vectors are given in Appendix A.

  Decryption is performed by removing the HMAC, verifying the HMAC
  against the cipher state concatenated with the ciphertext, and then
  decrypting the ciphertext if the HMAC is correct.  Finally, the first
  16 octets of the decryption output (the confounder) is discarded, and
  the remainder is returned as the plaintext decryption output.

  The following parameters apply to the encryption types
  aes128-cts-hmac-sha256-128 and aes256-cts-hmac-sha384-192.

  protocol key format: as defined in Section 2.

  specific key structure: three derived keys: { Kc, Ke, Ki }.

  Kc: the checksum key, inputted into HMAC to provide the checksum
  mechanism defined in Section 6.



Jenkins, et al.               Informational                     [Page 5]

RFC 8009            AES-CTS HMAC-SHA2 For Kerberos 5        October 2016


  Ke: the encryption key, inputted into AES encryption and decryption
  as defined in "encryption function" and "decryption function" below.

  Ki: the integrity key, inputted into HMAC to provide authenticated
  encryption as defined in "encryption function" and "decryption
  function" below.

  required checksum mechanism: as defined in Section 6.

  key-generation seed length: key size (128 or 256 bits).

  string-to-key function: as defined in Section 4.

  default string-to-key parameters: iteration count of decimal 32768.

  random-to-key function: identity function.

  key-derivation function: KDF-HMAC-SHA2 as defined in Section 3.  The
  key usage number is expressed as 4 octets in big-endian order.

  If the enctype is aes128-cts-hmac-sha256-128:
  Kc = KDF-HMAC-SHA2(base-key, usage | 0x99, 128)
  Ke = KDF-HMAC-SHA2(base-key, usage | 0xAA, 128)
  Ki = KDF-HMAC-SHA2(base-key, usage | 0x55, 128)

  If the enctype is aes256-cts-hmac-sha384-192:
  Kc = KDF-HMAC-SHA2(base-key, usage | 0x99, 192)
  Ke = KDF-HMAC-SHA2(base-key, usage | 0xAA, 256)
  Ki = KDF-HMAC-SHA2(base-key, usage | 0x55, 192)

  cipher state: a 128-bit CBC initialization vector derived from a
  previous ciphertext (if any) using the same encryption key, as
  specified below.

  initial cipher state: all bits zero.

  encryption function: as follows, where E() is AES encryption in
  CBC-CS3 mode, and h is the size of truncated HMAC (128 bits or 192
  bits as described above).

     N = random value of length 128 bits (the AES block size)
     IV = cipher state
     C = E(Ke, N | plaintext, IV)
     H = HMAC(Ki, IV | C)
     ciphertext = C | H[1..h]






Jenkins, et al.               Informational                     [Page 6]

RFC 8009            AES-CTS HMAC-SHA2 For Kerberos 5        October 2016


     Steps to compute the 128-bit cipher state:
        L = length of C in bits
        portion C into 128-bit blocks, placing any remainder of less
        than 128 bits into a final block
        if L == 128: cipher state = C
        else if L mod 128 > 0: cipher state = last full (128-bit) block
                                            of C (the next-to-last
                                            block)
        else if L mod 128 == 0: cipher state = next-to-last block of C

        (Note that L will never be less than 128 because of the
        presence of N in the encryption input.)

  decryption function: as follows, where D() is AES decryption in
  CBC-CS3 mode, and h is the size of truncated HMAC.

     (C, H) = ciphertext
         (Note: H is the last h bits of the ciphertext.)
     IV = cipher state
     if H != HMAC(Ki, IV | C)[1..h]
         stop, report error
     (N, P) = D(Ke, C, IV)

     (Note: N is set to the first block of the decryption output; P is
     set to the rest of the output.)

     cipher state = same as described above in encryption function

  pseudorandom function:
     If the enctype is aes128-cts-hmac-sha256-128:
     PRF = KDF-HMAC-SHA2(input-key, "prf", octet-string, 256)

     If the enctype is aes256-cts-hmac-sha384-192:
     PRF = KDF-HMAC-SHA2(input-key, "prf", octet-string, 384)

     where "prf" is the octet-string 0x707266

6.  Checksum Parameters

  The following parameters apply to the checksum types
  hmac-sha256-128-aes128 and hmac-sha384-192-aes256, which are the
  associated checksums for aes128-cts-hmac-sha256-128 and
  aes256-cts-hmac-sha384-192, respectively.

  associated cryptosystem: aes128-cts-hmac-sha256-128 or
  aes256-cts-hmac-sha384-192 as appropriate.





Jenkins, et al.               Informational                     [Page 7]

RFC 8009            AES-CTS HMAC-SHA2 For Kerberos 5        October 2016


  get_mic: HMAC(Kc, message)[1..h].
     where h is 128 bits for checksum type hmac-sha256-128-aes128 and
     192 bits for checksum type hmac-sha384-192-aes256

  verify_mic: get_mic and compare.

7.  IANA Considerations

  IANA has assigned encryption type numbers as follows in the "Kerberos
  Encryption Type Numbers" registry.

     etype   encryption type              Reference
     -----   ---------------              ---------
     19      aes128-cts-hmac-sha256-128   RFC 8009
     20      aes256-cts-hmac-sha384-192   RFC 8009

  IANA has assigned checksum type numbers as follows in the "Kerberos
  Checksum Type Numbers" registry.

     sumtype   Checksum type            checksum  Reference
     value                              size
     -------   -------------            --------  ---------
     19        hmac-sha256-128-aes128   16        RFC 8009
     20        hmac-sha384-192-aes256   24        RFC 8009

8.  Security Considerations

  This specification requires implementations to generate random
  values.  The use of inadequate pseudorandom number generators (PRNGs)
  can result in little or no security.  The generation of quality
  random numbers is difficult.  [RFC4086] offers guidance on random
  number generation.

  This document specifies a mechanism for generating keys from
  passphrases or passwords.  The use of PBKDF2, a salt, and a large
  iteration count adds some resistance to offline dictionary attacks by
  passive eavesdroppers.  Salting prevents "rainbow table" attacks,
  while large iteration counts slow password-guess attempts.
  Nonetheless, computing power continues to rapidly improve, including
  the potential for use of graphics processing units (GPUs) in
  password-guess attempts.  It is important to choose strong
  passphrases.  Use of Kerberos extensions that protect against offline
  dictionary attacks should also be considered, as should the use of
  public key cryptography for initial Kerberos authentication [RFC4556]
  to eliminate the use of passwords or passphrases within the Kerberos
  protocol.





Jenkins, et al.               Informational                     [Page 8]

RFC 8009            AES-CTS HMAC-SHA2 For Kerberos 5        October 2016


  The NIST guidance in Section 5.3 of [SP800-38A], requiring that CBC
  initialization vectors be unpredictable, is satisfied by the use of a
  random confounder as the first block of plaintext.  The confounder
  fills the cryptographic role typically played by an initialization
  vector.  This approach was chosen to align with other Kerberos
  cryptosystem approaches.

8.1.  Random Values in Salt Strings

  The NIST guidance in Section 5.1 of [SP800-132] requires at least 128
  bits of the salt to be randomly generated.  The string-to-key
  function as defined in [RFC3961] requires the salt to be valid UTF-8
  strings [RFC3629].  Not every 128-bit random string will be valid
  UTF-8, so a UTF-8-compatible encoding would be needed to encapsulate
  the random bits.  However, using a salt containing a random portion
  may have the following issues with some implementations:

  *  Keys for cross-realm krbtgt services [RFC4120] are typically
     managed by entering the same password at two Key Distribution
     Centers (KDCs) to get the same keys.  If each KDC uses a random
     salt, they won't have the same keys.

  *  Random salts may interfere with checking of password history.

8.2.  Algorithm Rationale

  This document has been written to be consistent with common
  implementations of AES and SHA-2.  The encryption and hash algorithm
  sizes have been chosen to create a consistent level of protection,
  with consideration to implementation efficiencies.  So, for instance,
  SHA-384, which would normally be matched to AES-192, is instead
  matched to AES-256 to leverage the fact that there are efficient
  hardware implementations of AES-256.  Note that, as indicated by the
  enc-type name "aes256-cts-hmac-sha384-192", the truncation of the
  HMAC-SHA-384 output to 192 bits results in an overall 192-bit level
  of security.















Jenkins, et al.               Informational                     [Page 9]

RFC 8009            AES-CTS HMAC-SHA2 For Kerberos 5        October 2016


9.  References

9.1.  Normative References

  [FIPS180]    National Institute of Standards and Technology, "Secure
               Hash Standard", FIPS PUB 180-4,
               DOI 10.6028/NIST.FIPS.180-4, August 2015.

  [FIPS197]    National Institute of Standards and Technology,
               "Advanced Encryption Standard (AES)", FIPS PUB 197,
               November 2001.

  [RFC2104]    Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
               Hashing for Message Authentication", RFC 2104,
               DOI 10.17487/RFC2104, February 1997,
               <http://www.rfc-editor.org/info/rfc2104>.

  [RFC2898]    Kaliski, B., "PKCS #5: Password-Based Cryptography
               Specification Version 2.0", RFC 2898,
               DOI 10.17487/RFC2898, September 2000,
               <http://www.rfc-editor.org/info/rfc2898>.

  [RFC3629]    Yergeau, F., "UTF-8, a transformation format of ISO
               10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
               2003, <http://www.rfc-editor.org/info/rfc3629>.

  [RFC3961]    Raeburn, K., "Encryption and Checksum Specifications for
               Kerberos 5", RFC 3961, DOI 10.17487/RFC3961, February
               2005, <http://www.rfc-editor.org/info/rfc3961>.

  [RFC3962]    Raeburn, K., "Advanced Encryption Standard (AES)
               Encryption for Kerberos 5", RFC 3962,
               DOI 10.17487/RFC3962, February 2005,
               <http://www.rfc-editor.org/info/rfc3962>.

  [SP800-38A+] National Institute of Standards and Technology,
               "Recommendation for Block Cipher Modes of Operation:
               Three Variants of Ciphertext Stealing for CBC Mode",
               NIST Special Publication 800-38A Addendum, October 2010.

  [SP800-108]  National Institute of Standards and Technology,
               "Recommendation for Key Derivation Using Pseudorandom
               Functions", NIST Special Publication 800-108, October
               2009.







Jenkins, et al.               Informational                    [Page 10]

RFC 8009            AES-CTS HMAC-SHA2 For Kerberos 5        October 2016


9.2.  Informative References

  [RFC4086]    Eastlake 3rd, D., Schiller, J., and S. Crocker,
               "Randomness Requirements for Security", BCP 106,
               RFC 4086, DOI 10.17487/RFC4086, June 2005,
               <http://www.rfc-editor.org/info/rfc4086>.

  [RFC4120]    Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
               Kerberos Network Authentication Service (V5)", RFC 4120,
               DOI 10.17487/RFC4120, July 2005,
               <http://www.rfc-editor.org/info/rfc4120>.

  [RFC4556]    Zhu, L. and B. Tung, "Public Key Cryptography for
               Initial Authentication in Kerberos (PKINIT)", RFC 4556,
               DOI 10.17487/RFC4556, June 2006,
               <http://www.rfc-editor.org/info/rfc4556>.

  [SP800-38A]  National Institute of Standards and Technology,
               "Recommendation for Block Cipher Modes of Operation:
               Methods and Techniques", NIST Special Publication
               800-38A, December 2001.

  [SP800-132]  National Institute of Standards and Technology,
               "Recommendation for Password-Based Key Derivation, Part
               1: Storage Applications", NIST Special Publication
               800-132, June 2010.

























Jenkins, et al.               Informational                    [Page 11]

RFC 8009            AES-CTS HMAC-SHA2 For Kerberos 5        October 2016


Appendix A.  Test Vectors

  Sample results for string-to-key conversion:
  --------------------------------------------

  Iteration count = 32768
  Pass phrase = "password"
  Saltp for creating 128-bit base-key:
     61 65 73 31 32 38 2D 63 74 73 2D 68 6D 61 63 2D
     73 68 61 32 35 36 2D 31 32 38 00 10 DF 9D D7 83
     E5 BC 8A CE A1 73 0E 74 35 5F 61 41 54 48 45 4E
     41 2E 4D 49 54 2E 45 44 55 72 61 65 62 75 72 6E

  (The saltp is "aes128-cts-hmac-sha256-128" | 0x00 |
   random 16-byte valid UTF-8 sequence | "ATHENA.MIT.EDUraeburn")
  128-bit base-key:
     08 9B CA 48 B1 05 EA 6E A7 7C A5 D2 F3 9D C5 E7

  Saltp for creating 256-bit base-key:
     61 65 73 32 35 36 2D 63 74 73 2D 68 6D 61 63 2D
     73 68 61 33 38 34 2D 31 39 32 00 10 DF 9D D7 83
     E5 BC 8A CE A1 73 0E 74 35 5F 61 41 54 48 45 4E
     41 2E 4D 49 54 2E 45 44 55 72 61 65 62 75 72 6E
  (The saltp is "aes256-cts-hmac-sha384-192" | 0x00 |
   random 16-byte valid UTF-8 sequence | "ATHENA.MIT.EDUraeburn")
  256-bit base-key:
     45 BD 80 6D BF 6A 83 3A 9C FF C1 C9 45 89 A2 22
     36 7A 79 BC 21 C4 13 71 89 06 E9 F5 78 A7 84 67























Jenkins, et al.               Informational                    [Page 12]

RFC 8009            AES-CTS HMAC-SHA2 For Kerberos 5        October 2016


  Sample results for key derivation:
  ----------------------------------

  enctype aes128-cts-hmac-sha256-128:
  128-bit base-key:
     37 05 D9 60 80 C1 77 28 A0 E8 00 EA B6 E0 D2 3C
  Kc value for key usage 2 (label = 0x0000000299):
     B3 1A 01 8A 48 F5 47 76 F4 03 E9 A3 96 32 5D C3
  Ke value for key usage 2 (label = 0x00000002AA):
     9B 19 7D D1 E8 C5 60 9D 6E 67 C3 E3 7C 62 C7 2E
  Ki value for key usage 2 (label = 0x0000000255):
     9F DA 0E 56 AB 2D 85 E1 56 9A 68 86 96 C2 6A 6C

  enctype aes256-cts-hmac-sha384-192:
  256-bit base-key:
     6D 40 4D 37 FA F7 9F 9D F0 D3 35 68 D3 20 66 98
     00 EB 48 36 47 2E A8 A0 26 D1 6B 71 82 46 0C 52
  Kc value for key usage 2 (label = 0x0000000299):
     EF 57 18 BE 86 CC 84 96 3D 8B BB 50 31 E9 F5 C4
     BA 41 F2 8F AF 69 E7 3D
  Ke value for key usage 2 (label = 0x00000002AA):
     56 AB 22 BE E6 3D 82 D7 BC 52 27 F6 77 3F 8E A7
     A5 EB 1C 82 51 60 C3 83 12 98 0C 44 2E 5C 7E 49
  Ki value for key usage 2 (label = 0x0000000255):
     69 B1 65 14 E3 CD 8E 56 B8 20 10 D5 C7 30 12 B6
     22 C4 D0 0F FC 23 ED 1F

























Jenkins, et al.               Informational                    [Page 13]

RFC 8009            AES-CTS HMAC-SHA2 For Kerberos 5        October 2016


  Sample encryptions (all using the default cipher state):
  --------------------------------------------------------

  These sample encryptions use the above sample key derivation results,
  including use of the same base-key and key usage values.

  The following test vectors are for
  enctype aes128-cts-hmac-sha256-128:

  Plaintext: (empty)
  Confounder:
     7E 58 95 EA F2 67 24 35 BA D8 17 F5 45 A3 71 48
  128-bit AES key (Ke):
     9B 19 7D D1 E8 C5 60 9D 6E 67 C3 E3 7C 62 C7 2E
  128-bit HMAC key (Ki):
     9F DA 0E 56 AB 2D 85 E1 56 9A 68 86 96 C2 6A 6C
  AES Output:
     EF 85 FB 89 0B B8 47 2F 4D AB 20 39 4D CA 78 1D
  Truncated HMAC Output:
     AD 87 7E DA 39 D5 0C 87 0C 0D 5A 0A 8E 48 C7 18
  Ciphertext (AES Output | HMAC Output):
     EF 85 FB 89 0B B8 47 2F 4D AB 20 39 4D CA 78 1D
     AD 87 7E DA 39 D5 0C 87 0C 0D 5A 0A 8E 48 C7 18

  Plaintext: (length less than block size)
     00 01 02 03 04 05
  Confounder:
     7B CA 28 5E 2F D4 13 0F B5 5B 1A 5C 83 BC 5B 24
  128-bit AES key (Ke):
     9B 19 7D D1 E8 C5 60 9D 6E 67 C3 E3 7C 62 C7 2E
  128-bit HMAC key (Ki):
     9F DA 0E 56 AB 2D 85 E1 56 9A 68 86 96 C2 6A 6C
  AES Output:
     84 D7 F3 07 54 ED 98 7B AB 0B F3 50 6B EB 09 CF
     B5 54 02 CE F7 E6
  Truncated HMAC Output:
     87 7C E9 9E 24 7E 52 D1 6E D4 42 1D FD F8 97 6C
  Ciphertext:
     84 D7 F3 07 54 ED 98 7B AB 0B F3 50 6B EB 09 CF
     B5 54 02 CE F7 E6 87 7C E9 9E 24 7E 52 D1 6E D4
     42 1D FD F8 97 6C










Jenkins, et al.               Informational                    [Page 14]

RFC 8009            AES-CTS HMAC-SHA2 For Kerberos 5        October 2016


  Plaintext: (length equals block size)
     00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
  Confounder:
     56 AB 21 71 3F F6 2C 0A 14 57 20 0F 6F A9 94 8F
  128-bit AES key (Ke):
     9B 19 7D D1 E8 C5 60 9D 6E 67 C3 E3 7C 62 C7 2E
  128-bit HMAC key (Ki):
     9F DA 0E 56 AB 2D 85 E1 56 9A 68 86 96 C2 6A 6C
  AES Output:
     35 17 D6 40 F5 0D DC 8A D3 62 87 22 B3 56 9D 2A
     E0 74 93 FA 82 63 25 40 80 EA 65 C1 00 8E 8F C2
  Truncated HMAC Output:
     95 FB 48 52 E7 D8 3E 1E 7C 48 C3 7E EB E6 B0 D3
  Ciphertext:
     35 17 D6 40 F5 0D DC 8A D3 62 87 22 B3 56 9D 2A
     E0 74 93 FA 82 63 25 40 80 EA 65 C1 00 8E 8F C2
     95 FB 48 52 E7 D8 3E 1E 7C 48 C3 7E EB E6 B0 D3

  Plaintext: (length greater than block size)
     00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
     10 11 12 13 14
  Confounder:
     A7 A4 E2 9A 47 28 CE 10 66 4F B6 4E 49 AD 3F AC
  128-bit AES key (Ke):
     9B 19 7D D1 E8 C5 60 9D 6E 67 C3 E3 7C 62 C7 2E
  128-bit HMAC key (Ki):
     9F DA 0E 56 AB 2D 85 E1 56 9A 68 86 96 C2 6A 6C
  AES Output:
     72 0F 73 B1 8D 98 59 CD 6C CB 43 46 11 5C D3 36
     C7 0F 58 ED C0 C4 43 7C 55 73 54 4C 31 C8 13 BC
     E1 E6 D0 72 C1
  Truncated HMAC Output:
     86 B3 9A 41 3C 2F 92 CA 9B 83 34 A2 87 FF CB FC
  Ciphertext:
     72 0F 73 B1 8D 98 59 CD 6C CB 43 46 11 5C D3 36
     C7 0F 58 ED C0 C4 43 7C 55 73 54 4C 31 C8 13 BC
     E1 E6 D0 72 C1 86 B3 9A 41 3C 2F 92 CA 9B 83 34
     A2 87 FF CB FC













Jenkins, et al.               Informational                    [Page 15]

RFC 8009            AES-CTS HMAC-SHA2 For Kerberos 5        October 2016


  The following test vectors are for enctype
  aes256-cts-hmac-sha384-192:

  Plaintext: (empty)
  Confounder:
     F7 64 E9 FA 15 C2 76 47 8B 2C 7D 0C 4E 5F 58 E4
  256-bit AES key (Ke):
     56 AB 22 BE E6 3D 82 D7 BC 52 27 F6 77 3F 8E A7
     A5 EB 1C 82 51 60 C3 83 12 98 0C 44 2E 5C 7E 49
  192-bit HMAC key (Ki):
     69 B1 65 14 E3 CD 8E 56 B8 20 10 D5 C7 30 12 B6
     22 C4 D0 0F FC 23 ED 1F
  AES Output:
     41 F5 3F A5 BF E7 02 6D 91 FA F9 BE 95 91 95 A0
  Truncated HMAC Output:
     58 70 72 73 A9 6A 40 F0 A0 19 60 62 1A C6 12 74
     8B 9B BF BE 7E B4 CE 3C
  Ciphertext:
     41 F5 3F A5 BF E7 02 6D 91 FA F9 BE 95 91 95 A0
     58 70 72 73 A9 6A 40 F0 A0 19 60 62 1A C6 12 74
     8B 9B BF BE 7E B4 CE 3C

  Plaintext: (length less than block size)
     00 01 02 03 04 05
  Confounder:
     B8 0D 32 51 C1 F6 47 14 94 25 6F FE 71 2D 0B 9A
  256-bit AES key (Ke):
     56 AB 22 BE E6 3D 82 D7 BC 52 27 F6 77 3F 8E A7
     A5 EB 1C 82 51 60 C3 83 12 98 0C 44 2E 5C 7E 49
  192-bit HMAC key (Ki):
     69 B1 65 14 E3 CD 8E 56 B8 20 10 D5 C7 30 12 B6
     22 C4 D0 0F FC 23 ED 1F
  AES Output:
     4E D7 B3 7C 2B CA C8 F7 4F 23 C1 CF 07 E6 2B C7
     B7 5F B3 F6 37 B9
  Truncated HMAC Output:
     F5 59 C7 F6 64 F6 9E AB 7B 60 92 23 75 26 EA 0D
     1F 61 CB 20 D6 9D 10 F2
  Ciphertext:
     4E D7 B3 7C 2B CA C8 F7 4F 23 C1 CF 07 E6 2B C7
     B7 5F B3 F6 37 B9 F5 59 C7 F6 64 F6 9E AB 7B 60
     92 23 75 26 EA 0D 1F 61 CB 20 D6 9D 10 F2









Jenkins, et al.               Informational                    [Page 16]

RFC 8009            AES-CTS HMAC-SHA2 For Kerberos 5        October 2016


  Plaintext: (length equals block size)
     00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
  Confounder:
     53 BF 8A 0D 10 52 65 D4 E2 76 42 86 24 CE 5E 63
  256-bit AES key (Ke):
     56 AB 22 BE E6 3D 82 D7 BC 52 27 F6 77 3F 8E A7
     A5 EB 1C 82 51 60 C3 83 12 98 0C 44 2E 5C 7E 49
  192-bit HMAC key (Ki):
     69 B1 65 14 E3 CD 8E 56 B8 20 10 D5 C7 30 12 B6
     22 C4 D0 0F FC 23 ED 1F
  AES Output:
     BC 47 FF EC 79 98 EB 91 E8 11 5C F8 D1 9D AC 4B
     BB E2 E1 63 E8 7D D3 7F 49 BE CA 92 02 77 64 F6
  Truncated HMAC Output:
     8C F5 1F 14 D7 98 C2 27 3F 35 DF 57 4D 1F 93 2E
     40 C4 FF 25 5B 36 A2 66
  Ciphertext:
     BC 47 FF EC 79 98 EB 91 E8 11 5C F8 D1 9D AC 4B
     BB E2 E1 63 E8 7D D3 7F 49 BE CA 92 02 77 64 F6
     8C F5 1F 14 D7 98 C2 27 3F 35 DF 57 4D 1F 93 2E
     40 C4 FF 25 5B 36 A2 66

  Plaintext: (length greater than block size)
     00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
     10 11 12 13 14
  Confounder:
     76 3E 65 36 7E 86 4F 02 F5 51 53 C7 E3 B5 8A F1
  256-bit AES key (Ke):
     56 AB 22 BE E6 3D 82 D7 BC 52 27 F6 77 3F 8E A7
     A5 EB 1C 82 51 60 C3 83 12 98 0C 44 2E 5C 7E 49
  192-bit HMAC key (Ki):
     69 B1 65 14 E3 CD 8E 56 B8 20 10 D5 C7 30 12 B6
     22 C4 D0 0F FC 23 ED 1F
  AES Output:
     40 01 3E 2D F5 8E 87 51 95 7D 28 78 BC D2 D6 FE
     10 1C CF D5 56 CB 1E AE 79 DB 3C 3E E8 64 29 F2
     B2 A6 02 AC 86
  Truncated HMAC Output:
     FE F6 EC B6 47 D6 29 5F AE 07 7A 1F EB 51 75 08
     D2 C1 6B 41 92 E0 1F 62
  Ciphertext:
     40 01 3E 2D F5 8E 87 51 95 7D 28 78 BC D2 D6 FE
     10 1C CF D5 56 CB 1E AE 79 DB 3C 3E E8 64 29 F2
     B2 A6 02 AC 86 FE F6 EC B6 47 D6 29 5F AE 07 7A
     1F EB 51 75 08 D2 C1 6B 41 92 E0 1F 62






Jenkins, et al.               Informational                    [Page 17]

RFC 8009            AES-CTS HMAC-SHA2 For Kerberos 5        October 2016


  Sample checksums:
  -----------------

  These sample checksums use the above sample key derivation results,
  including use of the same base-key and key usage values.

  Checksum type: hmac-sha256-128-aes128
  128-bit HMAC key (Kc):
     B3 1A 01 8A 48 F5 47 76 F4 03 E9 A3 96 32 5D C3
  Plaintext:
     00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
     10 11 12 13 14
  Checksum:
     D7 83 67 18 66 43 D6 7B 41 1C BA 91 39 FC 1D EE

  Checksum type: hmac-sha384-192-aes256
  192-bit HMAC key (Kc):
     EF 57 18 BE 86 CC 84 96 3D 8B BB 50 31 E9 F5 C4
     BA 41 F2 8F AF 69 E7 3D
  Plaintext:
     00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
     10 11 12 13 14
  Checksum:
     45 EE 79 15 67 EE FC A3 7F 4A C1 E0 22 2D E8 0D
     43 C3 BF A0 66 99 67 2A


























Jenkins, et al.               Informational                    [Page 18]

RFC 8009            AES-CTS HMAC-SHA2 For Kerberos 5        October 2016


  Sample pseudorandom function (PRF) invocations:
  -----------------------------------------------

  PRF input octet-string: "test" (0x74657374)

  enctype aes128-cts-hmac-sha256-128:
  input-key value / HMAC-SHA-256 key:
     37 05 D9 60 80 C1 77 28 A0 E8 00 EA B6 E0 D2 3C
  HMAC-SHA-256 input message:
     00 00 00 01 70 72 66 00 74 65 73 74 00 00 01 00
  PRF output:
     9D 18 86 16 F6 38 52 FE 86 91 5B B8 40 B4 A8 86
     FF 3E 6B B0 F8 19 B4 9B 89 33 93 D3 93 85 42 95

  enctype aes256-cts-hmac-sha384-192:
  input-key value / HMAC-SHA-384 key:
     6D 40 4D 37 FA F7 9F 9D F0 D3 35 68 D3 20 66 98
     00 EB 48 36 47 2E A8 A0 26 D1 6B 71 82 46 0C 52
  HMAC-SHA-384 input message:
     00 00 00 01 70 72 66 00 74 65 73 74 00 00 01 80
  PRF output:
     98 01 F6 9A 36 8C 2B F6 75 E5 95 21 E1 77 D9 A0
     7F 67 EF E1 CF DE 8D 3C 8D 6F 6A 02 56 E3 B1 7D
     B3 C1 B6 2A D1 B8 55 33 60 D1 73 67 EB 15 14 D2

Acknowledgements

  Kelley Burgin was employed at the National Security Agency during
  much of the work on this document.

Authors' Addresses

  Michael J. Jenkins
  National Security Agency

  Email: [email protected]


  Michael A. Peck
  The MITRE Corporation

  Email: [email protected]


  Kelley W. Burgin

  Email: [email protected]




Jenkins, et al.               Informational                    [Page 19]