Internet Engineering Task Force (IETF)                H. Tschofenig, Ed.
Request for Comments: 7925                                      ARM Ltd.
Category: Standards Track                                     T. Fossati
ISSN: 2070-1721                                                    Nokia
                                                              July 2016


                   Transport Layer Security (TLS) /
               Datagram Transport Layer Security (DTLS)
                 Profiles for the Internet of Things

Abstract

  A common design pattern in Internet of Things (IoT) deployments is
  the use of a constrained device that collects data via sensors or
  controls actuators for use in home automation, industrial control
  systems, smart cities, and other IoT deployments.

  This document defines a Transport Layer Security (TLS) and Datagram
  Transport Layer Security (DTLS) 1.2 profile that offers
  communications security for this data exchange thereby preventing
  eavesdropping, tampering, and message forgery.  The lack of
  communication security is a common vulnerability in IoT products that
  can easily be solved by using these well-researched and widely
  deployed Internet security protocols.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7925.












Tschofenig & Fossati         Standards Track                    [Page 1]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


Copyright Notice

  Copyright (c) 2016 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.





































Tschofenig & Fossati         Standards Track                    [Page 2]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
  2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   4
  3.  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . .   5
    3.1.  TLS and DTLS  . . . . . . . . . . . . . . . . . . . . . .   5
    3.2.  Communication Models  . . . . . . . . . . . . . . . . . .   6
    3.3.  The Ciphersuite Concept . . . . . . . . . . . . . . . . .  20
  4.  Credential Types  . . . . . . . . . . . . . . . . . . . . . .  21
    4.1.  Preconditions . . . . . . . . . . . . . . . . . . . . . .  21
    4.2.  Pre-Shared Secret . . . . . . . . . . . . . . . . . . . .  23
    4.3.  Raw Public Key  . . . . . . . . . . . . . . . . . . . . .  25
    4.4.  Certificates  . . . . . . . . . . . . . . . . . . . . . .  27
  5.  Signature Algorithm Extension . . . . . . . . . . . . . . . .  32
  6.  Error Handling  . . . . . . . . . . . . . . . . . . . . . . .  32
  7.  Session Resumption  . . . . . . . . . . . . . . . . . . . . .  34
  8.  Compression . . . . . . . . . . . . . . . . . . . . . . . . .  35
  9.  Perfect Forward Secrecy . . . . . . . . . . . . . . . . . . .  35
  10. Keep-Alive  . . . . . . . . . . . . . . . . . . . . . . . . .  36
  11. Timeouts  . . . . . . . . . . . . . . . . . . . . . . . . . .  38
  12. Random Number Generation  . . . . . . . . . . . . . . . . . .  39
  13. Truncated MAC and Encrypt-then-MAC Extension  . . . . . . . .  40
  14. Server Name Indication (SNI)  . . . . . . . . . . . . . . . .  40
  15. Maximum Fragment Length Negotiation . . . . . . . . . . . . .  41
  16. Session Hash  . . . . . . . . . . . . . . . . . . . . . . . .  41
  17. Renegotiation Attacks . . . . . . . . . . . . . . . . . . . .  42
  18. Downgrading Attacks . . . . . . . . . . . . . . . . . . . . .  42
  19. Crypto Agility  . . . . . . . . . . . . . . . . . . . . . . .  43
  20. Key Length Recommendations  . . . . . . . . . . . . . . . . .  44
  21. False Start . . . . . . . . . . . . . . . . . . . . . . . . .  45
  22. Privacy Considerations  . . . . . . . . . . . . . . . . . . .  45
  23. Security Considerations . . . . . . . . . . . . . . . . . . .  46
  24. References  . . . . . . . . . . . . . . . . . . . . . . . . .  47
    24.1.  Normative References . . . . . . . . . . . . . . . . . .  47
    24.2.  Informative References . . . . . . . . . . . . . . . . .  48
  Appendix A.  Conveying DTLS over SMS  . . . . . . . . . . . . . .  56
    A.1.  Overview  . . . . . . . . . . . . . . . . . . . . . . . .  56
    A.2.  Message Segmentation and Reassembly . . . . . . . . . . .  57
    A.3.  Multiplexing Security Associations  . . . . . . . . . . .  57
    A.4.  Timeout . . . . . . . . . . . . . . . . . . . . . . . . .  58
  Appendix B.  DTLS Record Layer Per-Packet Overhead  . . . . . . .  59
  Appendix C.  DTLS Fragmentation . . . . . . . . . . . . . . . . .  60
  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  60
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  61







Tschofenig & Fossati         Standards Track                    [Page 3]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


1.  Introduction

  An engineer developing an Internet of Things (IoT) device needs to
  investigate the security threats and decide about the security
  services that can be used to mitigate these threats.

  Enabling IoT devices to exchange data often requires authentication
  of the two endpoints and the ability to provide integrity and
  confidentiality protection of exchanged data.  While these security
  services can be provided at different layers in the protocol stack,
  the use of Transport Layer Security (TLS) / Datagram Transport Layer
  Security (DTLS) has been very popular with many application
  protocols, and it is likely to be useful for IoT scenarios as well.

  Fitting Internet protocols into constrained devices can be difficult,
  but thanks to the standardization efforts, new profiles and protocols
  are available, such as the Constrained Application Protocol (CoAP)
  [RFC7252].  CoAP messages are mainly carried over UDP/DTLS, but other
  transports can be utilized, such as SMS (as described in Appendix A)
  or TCP (as currently being proposed with [COAP-TCP-TLS]).

  While the main goal for this document is to protect CoAP messages
  using DTLS 1.2 [RFC6347], the information contained in the following
  sections is not limited to CoAP nor to DTLS itself.

  Instead, this document defines a profile of DTLS 1.2 [RFC6347] and
  TLS 1.2 [RFC5246] that offers communication security services for IoT
  applications and is reasonably implementable on many constrained
  devices.  Profile thereby means that available configuration options
  and protocol extensions are utilized to best support the IoT
  environment.  This document does not alter TLS/DTLS specifications
  and does not introduce any new TLS/DTLS extension.

  The main target audience for this document is the embedded system
  developer configuring and using a TLS/DTLS stack.  This document may,
  however, also help those developing or selecting a suitable TLS/DTLS
  stack for an IoT product.  If you are familiar with (D)TLS, then skip
  ahead to Section 4.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in RFC
  2119 [RFC2119].

  This specification refers to TLS as well as DTLS and particularly to
  version 1.2, which is the most recent version at the time of writing.



Tschofenig & Fossati         Standards Track                    [Page 4]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  We refer to TLS/DTLS whenever the text is applicable to both versions
  of the protocol and to TLS or DTLS when there are differences between
  the two protocols.  Note that TLS 1.3 is being developed, but it is
  not expected that this profile will "just work" due to the
  significant changes being done to TLS for version 1.3.

  Note that "client" and "server" in this document refer to TLS/DTLS
  roles, where the client initiates the handshake.  This does not
  restrict the interaction pattern of the protocols on top of DTLS
  since the record layer allows bidirectional communication.  This
  aspect is further described in Section 3.2.

  RFC 7228 [RFC7228] introduces the notion of constrained-node
  networks, which are made of small devices with severe constraints on
  power, memory, and processing resources.  The terms constrained
  devices and IoT devices are used interchangeably.

  The terms "certification authority" (CA) and "distinguished name"
  (DN) are taken from [RFC5280].  The terms "trust anchor" and "trust
  anchor store" are defined in [RFC6024] as:

     A trust anchor represents an authoritative entity via a public key
     and associated data.  The public key is used to verify digital
     signatures, and the associated data is used to constrain the types
     of information for which the trust anchor is authoritative.

     A trust anchor store is a set of one or more trust anchors stored
     in a device.... A device may have more than one trust anchor
     store, each of which may be used by one or more applications.

3.  Overview

3.1.  TLS and DTLS

  The TLS protocol [RFC5246] provides authenticated, confidentiality-
  and integrity-protected communication between two endpoints.  The
  protocol is composed of two layers: the Record Protocol and the
  handshaking protocols.  At the lowest level, layered on top of a
  reliable transport protocol (e.g., TCP), is the Record Protocol.  It
  provides connection security by using symmetric cryptography for
  confidentiality, data origin authentication, and integrity
  protection.  The Record Protocol is used for encapsulation of various
  higher-level protocols.  The handshaking protocols consist of three
  subprotocols -- namely, the handshake protocol, the change cipher
  spec protocol, and the alert protocol.  The handshake protocol allows
  the server and client to authenticate each other and to negotiate an
  encryption algorithm and cryptographic keys before the application
  protocol transmits or receives data.



Tschofenig & Fossati         Standards Track                    [Page 5]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  The design of DTLS [RFC6347] is intentionally very similar to TLS.
  However, since DTLS operates on top of an unreliable datagram
  transport, it must explicitly cope with the absence of reliable and
  ordered delivery assumptions made by TLS.  RFC 6347 explains these
  differences in great detail.  As a short summary, for those not
  familiar with DTLS, the differences are:

  o  An explicit sequence number and an epoch field is included in the
     Record Protocol.  Section 4.1 of RFC 6347 explains the processing
     rules for these two new fields.  The value used to compute the
     Message Authentication Code (MAC) is the 64-bit value formed by
     concatenating the epoch and the sequence number.

  o  Stream ciphers must not be used with DTLS.  The only stream cipher
     defined for TLS 1.2 is RC4, and due to cryptographic weaknesses,
     it is not recommended anymore even for use with TLS [RFC7465].
     Note that the term "stream cipher" is a technical term in the TLS
     specification.  Section 4.7 of RFC 5246 defines stream ciphers in
     TLS as follows: "In stream cipher encryption, the plaintext is
     exclusive-ORed with an identical amount of output generated from a
     cryptographically secure keyed pseudorandom number generator."

  o  The TLS handshake protocol has been enhanced to include a
     stateless cookie exchange for Denial-of-Service (DoS) resistance.
     For this purpose, a new handshake message, the HelloVerifyRequest,
     was added to DTLS.  This handshake message is sent by the server
     and includes a stateless cookie, which is returned in a
     ClientHello message back to the server.  Although the exchange is
     optional for the server to execute, a client implementation has to
     be prepared to respond to it.  Furthermore, the handshake message
     format has been extended to deal with message loss, reordering,
     and fragmentation.

3.2.  Communication Models

  This document describes a profile of DTLS and, to be useful, it has
  to make assumptions about the envisioned communication architecture.

  Two communication architectures (and consequently two profiles) are
  described in this document.











Tschofenig & Fossati         Standards Track                    [Page 6]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


3.2.1.  Constrained TLS/DTLS Clients

  The communication architecture shown in Figure 1 assumes a unicast
  communication interaction with an IoT device utilizing a constrained
  TLS/DTLS client interacting with one or multiple TLS/DTLS servers.

  Before a client can initiate the TLS/DTLS handshake, it needs to know
  the IP address of that server and what credentials to use.
  Application-layer protocols, such as CoAP, which is conveyed on top
  of DTLS, may be configured with URIs of the endpoints to which CoAP
  needs to register and publish data.  This configuration information
  (including non-confidential credentials, like certificates) may be
  conveyed to clients as part of a firmware/software package or via a
  configuration protocol.  The following credential types are supported
  by this profile:

  o  For authentication based on the Pre-Shared Key (PSK) (see
     Section 4.2), this includes the paired "PSK identity" and shared
     secret to be used with each server.

  o  For authentication based on the raw public key (see Section 4.3),
     this includes either the server's public key or the hash of the
     server's public key.

  o  For certificate-based authentication (see Section 4.4), this
     includes a pre-populated trust anchor store that allows the DTLS
     stack to perform path validation for the certificate obtained
     during the handshake with the server.

  Figure 1 shows example configuration information stored at the
  constrained client for use with respective servers.

  This document focuses on the description of the DTLS client-side
  functionality but, quite naturally, the equivalent server-side
  support has to be available.
















Tschofenig & Fossati         Standards Track                    [Page 7]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


             +////////////////////////////////////+
             |          Configuration             |
             |////////////////////////////////////|
             | Server A --> PSK Identity, PSK     |
             |                                    |
             | Server B --> Public Key (Server B),|
             |              Public/Private Key    |
             |              (for Client)          |
             |                                    |
             | Server C --> Public/Private Key    |
             |              (for Client)          |
             |              Trust Anchor Store    |
             +------------------------------------+
               oo
         oooooo
        o
  +-----------+
  |Constrained|
  |TLS/DTLS   |
  |Client     |-
  +-----------+ \
                 \  ,-------.
                  ,'         `.            +------+
                 /  IP-Based   \           |Server|
                (    Network    )          |  A   |
                 \             /           +------+
                  `.         ,'
                    '---+---'                  +------+
                        |                      |Server|
                        |                      |  B   |
                        |                      +------+
                        |
                        |                  +------+
                        +----------------->|Server|
                                           |  C   |
                                           +------+

                  Figure 1: Constrained Client Profile













Tschofenig & Fossati         Standards Track                    [Page 8]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


3.2.1.1.  Examples of Constrained Client Exchanges

3.2.1.1.1.  Network Access Authentication Example

  Reuse is a recurring theme when considering constrained environments
  and is behind a lot of the directions taken in developments for
  constrained environments.  The corollary of reuse is to not add
  functionality if it can be avoided.  An example relevant to the use
  of TLS is network access authentication, which takes place when a
  device connects to a network and needs to go through an
  authentication and access control procedure before it is allowed to
  communicate with other devices or connect to the Internet.

  Figure 2 shows the network access architecture with the IoT device
  initiating the communication to an access point in the network using
  the procedures defined for a specific physical layer.  Since
  credentials may be managed and stored centrally, in the
  Authentication, Authorization, and Accounting (AAA) server, the
  security protocol exchange may need to be relayed via the
  Authenticator, i.e., functionality running on the access point to the
  AAA server.  The authentication and key exchange protocol itself is
  encapsulated within a container, the Extensible Authentication
  Protocol (EAP) [RFC3748], and messages are conveyed back and forth
  between the EAP endpoints, namely the EAP peer located on the IoT
  device and the EAP server located on the AAA server or the access
  point.  To route EAP messages from the access point, acting as a AAA
  client, to the AAA server requires an adequate protocol mechanism,
  namely RADIUS [RFC2865] or Diameter [RFC6733].

  More details about the concepts and a description about the
  terminology can be found in RFC 5247 [RFC5247].




















Tschofenig & Fossati         Standards Track                    [Page 9]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


                                               +--------------+
                                               |Authentication|
                                               |Authorization |
                                               |Accounting    |
                                               |Server        |
                                               |(EAP Server)  |
                                               |              |
                                               +-^----------^-+
                                                 * EAP      o RADIUS/
                                                 *          o Diameter
                                               --v----------v--
                                            ///                \\\
                                          //                      \\
                                         |        Federation        |
                                         |        Substrate         |
                                          \\                      //
                                            \\\                ///
                                               --^----------^--
                                                 * EAP      o RADIUS/
                                                 *          o Diameter
   +-------------+                             +-v----------v--+
   |             |      EAP/EAP Method         |               |
   | Internet of |<***************************>| Access Point  |
   | Things      |                             |(Authenticator)|
   | Device      |    EAP Lower Layer and      |(AAA Client)   |
   | (EAP Peer)  | Secure Association Protocol |               |
   |             |<--------------------------->|               |
   |             |                             |               |
   |             |      Physical Layer         |               |
   |             |<===========================>|               |
   +-------------+                             +---------------+
     Legend:

      <****>: Device-to-AAA-Server Exchange
      <---->: Device-to-Authenticator Exchange
      <oooo>: AAA-Client-to-AAA-Server Exchange
      <====>: Physical layer like IEEE 802.11/802.15.4

                  Figure 2: Network Access Architecture












Tschofenig & Fossati         Standards Track                   [Page 10]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  One standardized EAP method is EAP-TLS, defined in RFC 5216
  [RFC5216], which reuses the TLS-based protocol exchange and
  encapsulates it inside the EAP payload.  In terms of reuse, this
  allows many components of the TLS protocol to be shared between the
  network access security functionality and the TLS functionality
  needed for securing application-layer traffic.  In the EAP-TLS
  exchange shown in Figure 3, the IoT device as the EAP peer acts as a
  TLS client.

     Authenticating Peer     Authenticator
     -------------------     -------------
                             <- EAP-Request/
                             Identity
     EAP-Response/
     Identity (MyID) ->
                             <- EAP-Request/
                             EAP-Type=EAP-TLS
                             (TLS Start)
     EAP-Response/
     EAP-Type=EAP-TLS
     (TLS client_hello)->
                             <- EAP-Request/
                             EAP-Type=EAP-TLS
                             (TLS server_hello,
                              TLS certificate,
                              [TLS server_key_exchange,]
                              TLS certificate_request,
                              TLS server_hello_done)
     EAP-Response/
     EAP-Type=EAP-TLS
     (TLS certificate,
      TLS client_key_exchange,
      TLS certificate_verify,
      TLS change_cipher_spec,
      TLS finished) ->
                             <- EAP-Request/
                             EAP-Type=EAP-TLS
                             (TLS change_cipher_spec,
                              TLS finished)
     EAP-Response/
     EAP-Type=EAP-TLS ->
                             <- EAP-Success

                       Figure 3: EAP-TLS Exchange







Tschofenig & Fossati         Standards Track                   [Page 11]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  The guidance in this document also applies to the use of EAP-TLS for
  network access authentication.  An IoT device using a network access
  authentication solution based on TLS can reuse most parts of the code
  for the use of DTLS/TLS at the application layer, thereby saving a
  significant amount of flash memory.  Note, however, that the
  credentials used for network access authentication and those used for
  application-layer security are very likely different.

3.2.1.1.2.  CoAP-Based Data Exchange Example

  When a constrained client uploads sensor data to a server
  infrastructure, it may use CoAP by pushing the data via a POST
  message to a preconfigured endpoint on the server.  In certain
  circumstances, this might be too limiting and additional
  functionality is needed, as shown in Figures 4 and 5, where the IoT
  device itself runs a CoAP server hosting the resource that is made
  accessible to other entities.  Despite running a CoAP server on the
  IoT device, it is still the DTLS client on the IoT device that
  initiates the interaction with the non-constrained resource server in
  our scenario.

  Figure 4 shows a sensor starting a DTLS exchange with a resource
  directory and uses CoAP to register available resources in Figure 5.
  [CoRE-RD] defines the resource directory (RD) as a web entity that
  stores information about web resources and implements
  Representational State Transfer (REST) interfaces for registration
  and lookup of those resources.  Note that the described exchange is
  borrowed from the Open Mobile Alliance (OMA) Lightweight
  Machine-to-Machine (LWM2M) specification [LWM2M] that uses RD but
  adds proxy functionality.

  The initial DTLS interaction between the sensor, acting as a DTLS
  client, and the resource directory, acting as a DTLS server, will be
  a full DTLS handshake.  Once this handshake is complete, both parties
  have established the DTLS record layer.  Subsequently, the CoAP
  client can securely register at the resource directory.

  After some time (assuming that the client regularly refreshes its
  registration), the resource directory receives a request from an
  application to retrieve the temperature information from the sensor.
  This request is relayed by the resource directory to the sensor using
  a GET message exchange.  The already established DTLS record layer
  can be used to secure the message exchange.








Tschofenig & Fossati         Standards Track                   [Page 12]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


                                                   Resource
      Sensor                                       Directory
      ------                                       ---------

    +---
    |
    | ClientHello             -------->
    | #client_certificate_type#
   F| #server_certificate_type#
   U|
   L|                         <-------    HelloVerifyRequest
   L|
    | ClientHello             -------->
   D| #client_certificate_type#
   T| #server_certificate_type#
   L|
   S|                                            ServerHello
    |                               #client_certificate_type#
   H|                               #server_certificate_type#
   A|                                            Certificate
   N|                                      ServerKeyExchange
   D|                                     CertificateRequest
   S|                         <--------      ServerHelloDone
   H|
   A| Certificate
   K| ClientKeyExchange
   E| CertificateVerify
    | [ChangeCipherSpec]
    | Finished                -------->
    |
    |                                     [ChangeCipherSpec]
    |                         <--------             Finished
    +---

     Note: Extensions marked with "#" were introduced with
           RFC 7250.

         Figure 4: DTLS/CoAP Exchange Using Resource Directory:
                        Part 1 -- DTLS Handshake












Tschofenig & Fossati         Standards Track                   [Page 13]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  Figure 5 shows the DTLS-secured communication between the sensor and
  the resource directory using CoAP.

                                                   Resource
      Sensor                                       Directory
      ------                                       ---------

  [[==============DTLS-Secured Communication===================]]

    +---                                                  ///+
   C|                                                        \ D
   O| Req: POST coap://rd.example.com/rd?ep=node1            \ T
   A| Payload:                                               \ L
   P| </temp>;ct=41;                                         \ S
    |    rt="temperature-c";if="sensor",                     \
   R| </light>;ct=41;                                        \ R
   D|    rt="light-lux";if="sensor"                          \ E
    |                         -------->                      \ C
   R|                                                        \ O
   E|                                                        \ R
   G|                                     Res: 2.01 Created  \ D
    |                         <--------  Location: /rd/4521  \
    |                                                        \ L
    +---                                                     \ A
                                                             \ Y
                             *                               \ E
                             * (time passes)                 \ R
                             *                               \
    +---                                                     \ P
   C|                                                        \ R
   O|              Req: GET coaps://sensor.example.com/temp  \ O
   A|                         <--------                      \ T
   P|                                                        \ E
    | Res:  2.05 Content                                     \ C
   G| Payload:                                               \ T
   E| 25.5                     -------->                     \ E
   T|                                                        \ D
    +---                                                  ///+

         Figure 5: DTLS/CoAP Exchange Using Resource Directory:
                       Part 2 -- CoAP/RD Exchange

  Note that the CoAP GET message transmitted from the resource server
  is protected using the previously established DTLS record layer.







Tschofenig & Fossati         Standards Track                   [Page 14]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


3.2.2.  Constrained TLS/DTLS Servers

  Section 3.2.1 illustrates a deployment model where the TLS/DTLS
  client is constrained and efforts need to be taken to improve memory
  utilization, bandwidth consumption, reduce performance impacts, etc.
  In this section, we assume a scenario where constrained devices run
  TLS/DTLS servers to secure access to application-layer services
  running on top of CoAP, HTTP, or other protocols.  Figure 6
  illustrates a possible deployment whereby a number of constrained
  servers are waiting for regular clients to access their resources.
  The entire process is likely, but not necessarily, controlled by a
  third party, the authentication and authorization server.  This
  authentication and authorization server is responsible for holding
  authorization policies that govern the access to resources and
  distribution of keying material.




































Tschofenig & Fossati         Standards Track                   [Page 15]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


           +////////////////////////////////////+
           |          Configuration             |
           |////////////////////////////////////|
           | Credentials                        |
           |    Client A  -> Public Key         |
           |    Server S1 -> Symmetric Key      |
           |    Server S2 -> Certificate        |
           |    Server S3 -> Public Key         |
           | Trust Anchor Store                 |
           | Access Control Lists               |
           |    Resource X: Client A / GET      |
           |    Resource Y: Client A / PUT      |
           +------------------------------------+
               oo
         oooooo
        o
  +---------------+                +-----------+
  |Authentication |      +-------->|TLS/DTLS   |
  |& Authorization|      |         |Client A   |
  |Server         |      |         +-----------+
  +---------------+     ++
               ^        |                  +-----------+
                \       |                  |Constrained|
                 \  ,-------.              | Server S1 |
                  ,'         `.            +-----------+
                 /    Local    \
                (    Network    )
                 \             /        +-----------+
                  `.         ,'         |Constrained|
                    '---+---'           | Server S2 |
                        |               +-----------+
                        |
                        |                   +-----------+
                        +-----------------> |Constrained|
                                            | Server S3 |
                                            +-----------+

                  Figure 6: Constrained Server Profile

  A deployment with constrained servers has to overcome several
  challenges.  Below we explain how these challenges can be solved with
  CoAP, as an example.  Other protocols may offer similar capabilities.
  While the requirements for the TLS/DTLS protocol profile change only
  slightly when run on a constrained server (in comparison to running
  it on a constrained client), several other ecosystem factors will
  impact deployment.





Tschofenig & Fossati         Standards Track                   [Page 16]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  There are several challenges that need to be addressed:

  Discovery and Reachability:

     A client must first and foremost discover the server before
     initiating a connection to it.  Once it has been discovered,
     reachability to the device needs to be maintained.

     In CoAP, the discovery of resources offered by servers is
     accomplished by sending a unicast or multicast CoAP GET to a well-
     known URI.  The Constrained RESTful Environments (CoRE) Link
     Format specification [RFC6690] describes the use case (see
     Section 1.2.1) and reserves the URI (see Section 7.1).  Section 7
     of the CoAP specification [RFC7252] describes the discovery
     procedure.  [RFC7390] describes the use case for discovering CoAP
     servers using multicast (see Section 3.3) and specifies the
     protocol processing rules for CoAP group communications (see
     Section 2.7).

     The use of RD [CoRE-RD] is yet another possibility for discovering
     registered servers and their resources.  Since RD is usually not a
     proxy, clients can discover links registered with the RD and then
     access them directly.

  Authentication:

     The next challenge concerns the provisioning of authentication
     credentials to the clients as well as servers.  In Section 3.2.1,
     we assume that credentials (and other configuration information)
     are provisioned to the device, and that those can be used with the
     authorization servers.  Of course, this leads to a very static
     relationship between the clients and their server-side
     infrastructure but poses fewer challenges from a deployment point
     of view, as described in Section 2 of [RFC7452].  In any case,
     engineers and product designers have to determine how the relevant
     credentials are distributed to the respective parties.  For
     example, shared secrets may need to be provisioned to clients and
     the constrained servers for subsequent use of TLS/DTLS PSK.  In
     other deployments, certificates, private keys, and trust anchors
     for use with certificate-based authentication may need to be
     utilized.

     Practical solutions use either pairing (also called imprinting) or
     a trusted third party.  With pairing, two devices execute a
     special protocol exchange that is unauthenticated to establish a
     shared key (for example, using an unauthenticated Diffie-Hellman
     (DH) exchange).  To avoid man-in-the-middle attacks, an
     out-of-band channel is used to verify that nobody has tampered



Tschofenig & Fossati         Standards Track                   [Page 17]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


     with the exchanged protocol messages.  This out-of-band channel
     can come in many forms, including:

     *  Human involvement by comparing hashed keys, entering passkeys,
        and scanning QR codes

     *  The use of alternative wireless communication channels (e.g.,
        infrared communication in addition to Wi-Fi)

     *  Proximity-based information

     More details about these different pairing/imprinting techniques
     can be found in the Smart Object Security Workshop report
     [RFC7397] and various position papers submitted on that topic,
     such as [ImprintingSurvey].  The use of a trusted third party
     follows a different approach and is subject to ongoing
     standardization efforts in the Authentication and Authorization
     for Constrained Environments (ACE) working group [ACE-WG].

  Authorization

     The last challenge is the ability for the constrained server to
     make an authorization decision when clients access protected
     resources.  Pre-provisioning access control information to
     constrained servers may be one option but works only in a small
     scale, less dynamic environment.  For a finer-grained and more
     dynamic access control solution, the reader is referred to the
     ongoing work in the IETF ACE working group.

  Figure 7 shows an example interaction whereby a device, a thermostat
  in our case, searches in the local network for discoverable resources
  and accesses those.  The thermostat starts the procedure using a
  link-local discovery message using the "All CoAP Nodes" multicast
  address by utilizing the link format per RFC 6690 [RFC6690].  The
  IPv6 multicast address used for CoAP link-local discovery is
  FF02::FD.  As a result, a temperature sensor and a fan respond.
  These responses allow the thermostat to subsequently read temperature
  information from the temperature sensor with a CoAP GET request
  issued to the previously learned endpoint.  In this example we assume
  that accessing the temperature sensor readings and controlling the
  fan requires authentication and authorization of the thermostat and
  TLS is used to authenticate both endpoints and to secure the
  communication.








Tschofenig & Fossati         Standards Track                   [Page 18]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


                                Temperature
    Thermostat                     Sensor              Fan
    ----------                   ---------             ---

      Discovery
      -------------------->
      GET coap://[FF02::FD]/.well-known/core

                    CoAP 2.05 Content
     <-------------------------------
     </3303/0/5700>;rt="temperature";
                    if="sensor"

                                       CoAP 2.05 Content
     <--------------------------------------------------
                          </fan>;rt="fan";if="actuation"

  +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+
  \ Protocol steps to obtain access token or keying        /
  \ material for access to the temperature sensor and fan. /
  +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+

     Read Sensor Data
     (authenticated/authorized)
     ------------------------------->
     GET /3303/0/5700

                   CoAP 2.05 Content
    <-------------------------------
                              22.5 C

    Configure Actuator
    (authenticated/authorized)
    ------------------------------------------------->
    PUT /fan?on-off=true
                                     CoAP 2.04 Changed
    <-------------------------------------------------

              Figure 7: Local Discovery and Resource Access












Tschofenig & Fossati         Standards Track                   [Page 19]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


3.3.  The Ciphersuite Concept

  TLS (and consequently DTLS) support ciphersuites, and an IANA
  registry [IANA-TLS] was created to register the suites.  A
  ciphersuite (and the specification that defines it) contains the
  following information:

  o  Authentication and key exchange algorithm (e.g., PSK)

  o  Cipher and key length (e.g., Advanced Encryption Standard (AES)
     with 128-bit keys [AES])

  o  Mode of operation (e.g., Counter with CBC-MAC (CCM) mode for AES)
     [RFC3610]

  o  Hash algorithm for integrity protection, such as the Secure Hash
     Algorithm (SHA) in combination with Keyed-Hashing for Message
     Authentication (HMAC) (see [RFC2104] and [RFC6234])

  o  Hash algorithm for use with pseudorandom functions (e.g., HMAC
     with the SHA-256)

  o  Misc information (e.g., length of authentication tags)

  o  Information whether the ciphersuite is suitable for DTLS or only
     for TLS

  The TLS ciphersuite TLS_PSK_WITH_AES_128_CCM_8, for example, uses a
  pre-shared authentication and key exchange algorithm.  [RFC6655]
  defines this ciphersuite.  It uses the AES encryption algorithm,
  which is a block cipher.  Since the AES algorithm supports different
  key lengths (such as 128, 192, and 256 bits), this information has to
  be specified as well, and the selected ciphersuite supports 128-bit
  keys.  A block cipher encrypts plaintext in fixed-size blocks, and
  AES operates on a block size of 128 bits.  For messages exceeding 128
  bits, the message is partitioned into 128-bit blocks, and the AES
  cipher is applied to these input blocks with appropriate chaining,
  which is called mode of operation.

  TLS 1.2 introduced Authenticated Encryption with Associated Data
  (AEAD) ciphersuites (see [RFC5116] and [RFC6655]).  AEAD is a class
  of block cipher modes that encrypt (parts of) the message and
  authenticate the message simultaneously.  AES-CCM [RFC6655] is an
  example of such a mode.

  Some AEAD ciphersuites have shorter authentication tags (i.e.,
  message authentication codes) and are therefore more suitable for
  networks with low bandwidth where small message size matters.  The



Tschofenig & Fossati         Standards Track                   [Page 20]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  TLS_PSK_WITH_AES_128_CCM_8 ciphersuite that ends in "_8" has an
  8-octet authentication tag, while the regular CCM ciphersuites have,
  at the time of writing, 16-octet authentication tags.  The design of
  CCM and the security properties are described in [CCM].

  TLS 1.2 also replaced the combination of MD5/SHA-1 hash functions in
  the TLS pseudorandom function (PRF) used in earlier versions of TLS
  with ciphersuite-specified PRFs.  For this reason, authors of more
  recent TLS 1.2 ciphersuite specifications explicitly indicate the MAC
  algorithm and the hash functions used with the TLS PRF.

4.  Credential Types

  The mandatory-to-implement functionality will depend on the
  credential type used with IoT devices.  The subsections below
  describe the implications of three different credential types, namely
  pre-shared secrets, raw public keys, and certificates.

4.1.  Preconditions

  All exchanges described in the subsequent sections assume that some
  information has been distributed before the TLS/DTLS interaction
  starts.  The credentials are used to authenticate the client to the
  server, and vice versa.  What information items have to be
  distributed depends on the chosen credential types.  In all cases,
  the IoT device needs to know what algorithms to prefer, particularly
  if there are multiple algorithm choices available as part of the
  implemented ciphersuites, as well as information about the other
  communication endpoint (for example, in the form of a URI) a
  particular credential has to be used with.

  Pre-Shared Secrets:  In this case, a shared secret together with an
     identifier needs to be made available to the device as well as to
     the other communication party.

  Raw Public Keys:  A public key together with a private key are stored
     on the device and typically associated with some identifier.  To
     authenticate the other communication party, the appropriate
     credential has to be known.  If the other end uses raw public keys
     as well, then their public key needs to be provisioned (out of
     band) to the device.

  Certificates:  The use of certificates requires the device to store
     the public key (as part of the certificate) as well as the private
     key.  The certificate will contain the identifier of the device as
     well as various other attributes.  Both communication parties are
     assumed to be in possession of a trust anchor store that contains
     CA certificates and, in case of certificate pinning, end-entity



Tschofenig & Fossati         Standards Track                   [Page 21]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


     certificates.  Similar to the other credentials, the IoT device
     needs information about which entity to use which certificate
     with.  Without a trust anchor store on the IoT device, it will not
     be possible to perform certificate validation.

  We call the above-listed information "device credentials" and these
  device credentials may be provisioned to the device already during
  the manufacturing time or later in the process, depending on the
  envisioned business and deployment model.  These initial credentials
  are often called "root of trust".  Whatever process is chosen for
  generating these initial device credentials, it MUST be ensured that
  a different key pair is provisioned for each device and installed in
  as secure a manner as possible.  For example, it is preferable to
  generate public/private keys on the IoT device itself rather than
  generating them outside the device.  Since an IoT device is likely to
  interact with various other parties, the initial device credential
  may only be used with some dedicated entities, and configuring
  further configuration and credentials to the device is left to a
  separate interaction.  An example of a dedicated protocol used to
  distribute credentials, access control lists, and configure
  information is the LWM2M protocol [LWM2M].

  For all the credentials listed above, there is a chance that those
  may need to be replaced or deleted.  While separate protocols have
  been developed to check the status of these credentials and to manage
  these credentials, such as the Trust Anchor Management Protocol
  (TAMP) [RFC5934], their usage is, however, not envisioned in the IoT
  context so far.  IoT devices are assumed to have a software update
  mechanism built-in, and it will allow updates of low-level device
  information, including credentials and configuration parameters.
  This document does, however, not mandate a specific software/firmware
  update protocol.

  With all credentials used as input to TLS/DTLS authentication, it is
  important that these credentials have been generated with care.  When
  using a pre-shared secret, a critical consideration is using
  sufficient entropy during the key generation, as discussed in
  [RFC4086].  Deriving a shared secret from a password, some device
  identifiers, or other low-entropy sources is not secure.  A low-
  entropy secret, or password, is subject to dictionary attacks.
  Attention also has to be paid when generating public/private key
  pairs since the lack of randomness can result in the same key pair
  being used in many devices.  This topic is also discussed in
  Section 12 since keys are generated during the TLS/DTLS exchange
  itself as well, and the same considerations apply.






Tschofenig & Fossati         Standards Track                   [Page 22]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


4.2.  Pre-Shared Secret

  The use of pre-shared secrets is one of the most basic techniques for
  TLS/DTLS since it is both computationally efficient and bandwidth
  conserving.  Authentication based on pre-shared secrets was
  introduced to TLS in RFC 4279 [RFC4279].

  Figure 8 illustrates the DTLS exchange including the cookie exchange.
  While the server is not required to initiate a cookie exchange with
  every handshake, the client is required to implement and to react on
  it when challenged, as defined in RFC 6347 [RFC6347].  The cookie
  exchange allows the server to react to flooding attacks.

        Client                                               Server
        ------                                               ------
        ClientHello                 -------->

                                    <--------    HelloVerifyRequest
                                                  (contains cookie)

        ClientHello                  -------->
        (with cookie)
                                                        ServerHello
                                                 *ServerKeyExchange
                                     <--------      ServerHelloDone
        ClientKeyExchange
        ChangeCipherSpec
        Finished                     -------->
                                                   ChangeCipherSpec
                                     <--------             Finished

        Application Data             <------->     Application Data

  Legend:

  * indicates an optional message payload

     Figure 8: DTLS PSK Authentication Including the Cookie Exchange

  Note that [RFC4279] used the term "PSK identity" to refer to the
  identifier used to refer to the appropriate secret.  While
  "identifier" would be more appropriate in this context, we reuse the
  terminology defined in RFC 4279 to avoid confusion.  RFC 4279 does
  not mandate the use of any particular type of PSK identity, and the
  client and server have to agree on the identities and keys to be
  used.  The UTF-8 encoding of identities described in Section 5.1 of
  RFC 4279 aims to improve interoperability for those cases where the
  identity is configured by a human using some management interface



Tschofenig & Fossati         Standards Track                   [Page 23]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  provided by a web browser.  However, many IoT devices do not have a
  user interface, and most of their credentials are bound to the device
  rather than to the user.  Furthermore, credentials are often
  provisioned into hardware modules or provisioned alongside with
  firmware.  As such, the encoding considerations are not applicable to
  this usage environment.  For use with this profile, the PSK
  identities SHOULD NOT assume a structured format (such as domain
  names, distinguished names, or IP addresses), and a byte-by-byte
  comparison operation MUST be used by the server for any operation
  related to the PSK identity.  These types of identifiers are called
  "absolute" per RFC 6943 [RFC6943].

  Protocol-wise, the client indicates which key it uses by including a
  "PSK identity" in the ClientKeyExchange message.  As described in
  Section 3.2, clients may have multiple pre-shared keys with a single
  server, for example, in a hosting context.  The TLS Server Name
  Indication (SNI) extension allows the client to convey the name of
  the server it is contacting.  A server implementation needs to guide
  the selection based on a received SNI value from the client.

  RFC 4279 requires TLS implementations supporting PSK ciphersuites to
  support arbitrary PSK identities up to 128 octets in length and
  arbitrary PSKs up to 64 octets in length.  This is a useful
  assumption for TLS stacks used in the desktop and mobile environments
  where management interfaces are used to provision identities and
  keys.  Implementations in compliance with this profile MAY use PSK
  identities up to 128 octets in length and arbitrary PSKs up to 64
  octets in length.  The use of shorter PSK identities is RECOMMENDED.

  "The Constrained Application Protocol (CoAP)" [RFC7252] currently
  specifies TLS_PSK_WITH_AES_128_CCM_8 as the mandatory-to-implement
  ciphersuite for use with shared secrets.  This ciphersuite uses the
  AES algorithm with 128 bit keys and CCM as the mode of operation.
  The label "_8" indicates that an 8-octet authentication tag is used.
  Note that the shorted authentication tag increases the chance that an
  adversary with no knowledge of the secret key can present a message
  with a MAC that will pass the verification procedure.  The likelihood
  of accepting forged data is explained in Section 5.3.5 of
  [SP800-107-rev1] and depends on the lengths of the authentication tag
  and allowed numbers of MAC verifications using a given key.

  This ciphersuite makes use of the default TLS 1.2 PRF, which uses an
  HMAC with the SHA-256 hash function.  Note: Starting with TLS 1.2
  (and consequently DTLS 1.2), ciphersuites have to specify the PRF.
  RFC 5246 states that "New cipher suites MUST explicitly specify a PRF
  and, in general, SHOULD use the TLS PRF with SHA-256 or a stronger
  standard hash function."  The ciphersuites recommended in this
  document use the SHA-256 construct defined in Section 5 of RFC 5246.



Tschofenig & Fossati         Standards Track                   [Page 24]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  A device compliant with the profile in this section MUST implement
  TLS_PSK_WITH_AES_128_CCM_8 and follow the guidance from this section.

4.3.  Raw Public Key

  The use of raw public keys with TLS/DTLS, as defined in [RFC7250], is
  the first entry point into public key cryptography without having to
  pay the price of certificates and a public key infrastructure (PKI).
  The specification reuses the existing Certificate message to convey
  the raw public key encoded in the SubjectPublicKeyInfo structure.  To
  indicate support, two new extensions had been defined, as shown in
  Figure 9, namely the server_certificate_type and the
  client_certificate_type.

   Client                                          Server
   ------                                          ------

   ClientHello             -------->
   #client_certificate_type#
   #server_certificate_type#

                                              ServerHello
                                #client_certificate_type#
                                #server_certificate_type#
                                              Certificate
                                        ServerKeyExchange
                                       CertificateRequest
                           <--------      ServerHelloDone

   Certificate
   ClientKeyExchange
   CertificateVerify
   [ChangeCipherSpec]
   Finished                -------->

                                       [ChangeCipherSpec]
                           <--------             Finished

  Note: Extensions marked with "#" were introduced with
        RFC 7250.

                 Figure 9: DTLS Raw Public Key Exchange

  The CoAP-recommended ciphersuite for use with this credential type is
  TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 [RFC7251].  This AES-CCM TLS
  ciphersuite based on elliptic curve cryptography (ECC) uses the
  Ephemeral Elliptic Curve Diffie-Hellman (ECDHE) as the key
  establishment mechanism and an Elliptic Curve Digital Signature



Tschofenig & Fossati         Standards Track                   [Page 25]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  Algorithm (ECDSA) for authentication.  The named DH groups
  [FFDHE-TLS] are not applicable to this profile since it relies on the
  ECC-based counterparts.  This ciphersuite makes use of the AEAD
  capability in DTLS 1.2 and utilizes an 8-octet authentication tag.
  The use of a DH key exchange provides perfect forward secrecy (PFS).
  More details about PFS can be found in Section 9.

  [RFC6090] provides valuable information for implementing ECC
  algorithms, particularly for choosing methods that have been
  available in the literature for a long time (i.e., 20 years and
  more).

  A device compliant with the profile in this section MUST implement
  TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 and follow the guidance from this
  section.




































Tschofenig & Fossati         Standards Track                   [Page 26]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


4.4.  Certificates

  The use of mutual certificate-based authentication is shown in
  Figure 10, which makes use of the "cached_info" extension [RFC7924].
  Support of the "cached_info" extension is REQUIRED.  Caching
  certificate chains allows the client to reduce the communication
  overhead significantly, otherwise the server would provide the end-
  entity certificate and the certificate chain with every full DTLS
  handshake.

   Client                                          Server
   ------                                          ------

   ClientHello             -------->
   *cached_info*

                                              ServerHello
                                            *cached_info*
                                              Certificate
                                        ServerKeyExchange
                                       CertificateRequest
                           <--------      ServerHelloDone

   Certificate
   ClientKeyExchange
   CertificateVerify
   [ChangeCipherSpec]
   Finished                -------->

                                       [ChangeCipherSpec]
                           <--------             Finished

  Note: Extensions marked with "*" were introduced with
        RFC 7924.

         Figure 10: DTLS Mutual Certificate-Based Authentication

  TLS/DTLS offers a lot of choices when selecting ECC-based
  ciphersuites.  This document restricts the use to named curves
  defined in RFC 4492 [RFC4492].  At the time of writing, the
  recommended curve is secp256r1, and the use of uncompressed points
  follows the recommendation in CoAP.  Note that standardization for
  Curve25519 (for ECDHE) is ongoing (see [RFC7748]), and support for
  this curve will likely be required in the future.

  A device compliant with the profile in this section MUST implement
  TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 and follow the guidance from this
  section.



Tschofenig & Fossati         Standards Track                   [Page 27]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


4.4.1.  Certificates Used by Servers

  The algorithm for verifying the service identity, as described in RFC
  6125 [RFC6125], is essential for ensuring proper security when
  certificates are used.  As a summary, the algorithm contains the
  following steps:

  1.  The client constructs a list of acceptable reference identifiers
      based on the source domain and, optionally, the type of service
      to which the client is connecting.

  2.  The server provides its identifiers in the form of a PKIX
      certificate.

  3.  The client checks each of its reference identifiers against the
      presented identifiers for the purpose of finding a match.

  4.  When checking a reference identifier against a presented
      identifier, the client matches the source domain of the
      identifiers and, optionally, their application service type.

  For various terms used in the algorithm shown above, consult RFC
  6125.  It is important to highlight that comparing the reference
  identifier against the presented identifier obtained from the
  certificate is required to ensure the client is communicating with
  the intended server.

  It is worth noting that the algorithm description and the text in RFC
  6125 assumes that fully qualified DNS domain names are used.  If a
  server node is provisioned with a fully qualified DNS domain, then
  the server certificate MUST contain the fully qualified DNS domain
  name or "FQDN" as dNSName [RFC5280].  For CoAP, the coaps URI scheme
  is described in Section 6.2 of [RFC7252].  This FQDN is stored in the
  SubjectAltName or in the leftmost Common Name (CN) component of the
  subject name, as explained in Section 9.1.3.3 of [RFC7252], and used
  by the client to match it against the FQDN used during the lookup
  process, as described in [RFC6125].  For other protocols, the
  appropriate URI scheme specification has to be consulted.

  The following recommendation is provided:

  1.  Certificates MUST NOT use DNS domain names in the CN of
      certificates and instead use the subjectAltName attribute, as
      described in the previous paragraph.

  2.  Certificates MUST NOT contain domain names with wildcard
      characters.




Tschofenig & Fossati         Standards Track                   [Page 28]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  3.  Certificates MUST NOT contain multiple names (e.g., more than one
      dNSName field).

  Note that there will be servers that are not provisioned for use with
  DNS domain names, for example, IoT devices that offer resources to
  nearby devices in a local area network, as shown in Figure 7.  When
  such constrained servers are used, then the use of certificates as
  described in Section 4.4.2 is applicable.  Note that the SNI
  extension cannot be used in this case since SNI does not offer the
  ability to convey a 64-bit Extended Unique Identifier (EUI-64)
  [EUI64].  Note that this document does not recommend use of IP
  addresses in certificates nor does it discuss the implications of
  placing IP addresses in certificates.

4.4.2.  Certificates Used by Clients

  For client certificates, the identifier used in the SubjectAltName or
  in the leftmost CN component of subject name MUST be an EUI-64.

4.4.3.  Certificate Revocation

  For certificate revocation, neither the Online Certificate Status
  Protocol (OCSP) nor Certificate Revocation Lists (CRLs) are used.
  Instead, this profile relies on a software update mechanism to
  provision information about revoked certificates.  While multiple
  OCSP stapling [RFC6961] has recently been introduced as a mechanism
  to piggyback OCSP request/responses inside the DTLS/TLS handshake (to
  avoid the cost of a separate protocol handshake), further
  investigations are needed to determine its suitability for the IoT
  environment.

  As stated earlier in this section, modifications to the trust anchor
  store depends on a software update mechanism as well.  There are
  limitations to the use of a software update mechanism because of the
  potential inability to change certain types of keys, such as those
  provisioned during manufacturing.  For this reason, manufacturer-
  provisioned credentials are typically employed only to obtain further
  certificates (for example, via a key distribution server) for use
  with servers the IoT device is finally communicating with.

4.4.4.  Certificate Content

  All certificate elements listed in Table 1 MUST be implemented by
  clients and servers claiming support for certificate-based
  authentication.  No other certificate elements are used by this
  specification.





Tschofenig & Fossati         Standards Track                   [Page 29]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  When using certificates, IoT devices MUST provide support for a
  server certificate chain of at least 3, not including the trust
  anchor, and MAY reject connections from servers offering chains
  longer than 3.  IoT devices MAY have client certificate chains of any
  length.  Obviously, longer chains require more digital signature
  verification operations to perform and lead to larger certificate
  messages in the TLS handshake.

  Table 1 provides a summary of the elements in a certificate for use
  with this profile.

  +----------------------+--------------------------------------------+
  |       Element        |                   Notes                    |
  +----------------------+--------------------------------------------+
  |       version        |  This profile uses X.509 v3 certificates   |
  |                      |                 [RFC5280].                 |
  |                      |                                            |
  |     serialNumber     |  Positive integer unique per certificate.  |
  |                      |                                            |
  |      signature       |     This field contains the signature      |
  |                      |  algorithm, and this profile uses ecdsa-   |
  |                      |     with-SHA256 or stronger [RFC5758].     |
  |                      |                                            |
  |        issuer        |     Contains the DN of the issuing CA.     |
  |                      |                                            |
  |       validity       | Values expressed as UTC time in notBefore  |
  |                      |  and notAfter fields.  No validity period  |
  |                      |                 mandated.                  |
  |                      |                                            |
  |       subject        |    See rules outlined in this section.     |
  |                      |                                            |
  | subjectPublicKeyInfo |     The SubjectPublicKeyInfo structure     |
  |                      | indicates the algorithm and any associated |
  |                      |  parameters for the ECC public key.  This  |
  |                      | profile uses the id-ecPublicKey algorithm  |
  |                      |  identifier for ECDSA signature keys, as   |
  |                      |    defined and specified in [RFC5480].     |
  |                      |                                            |
  |  signatureAlgorithm  | The ECDSA signature algorithm with ecdsa-  |
  |                      |          with-SHA256 or stronger.          |
  |                      |                                            |
  |    signatureValue    |     Bit string containing the digital      |
  |                      |                 signature.                 |
  |                      |                                            |







Tschofenig & Fossati         Standards Track                   [Page 30]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  |      Extension:      |    See rules outlined in this section.     |
  |    subjectAltName    |                                            |
  |                      |                                            |
  |      Extension:      |    Indicates whether the subject of the    |
  |   BasicConstraints   | certificate is a CA and the maximum depth  |
  |                      | of valid certification paths that include  |
  |                      | this certificate.  This extension is used  |
  |                      |  for CA certs only, and then the value of  |
  |                      |    the "cA" field is set to TRUE.  The     |
  |                      |             default is FALSE.              |
  |                      |                                            |
  | Extension: Key Usage | The KeyUsage field MAY have the following  |
  |                      |   values in the context of this profile:   |
  |                      |     digitalSignature or keyAgreement,      |
  |                      |  keyCertSign for verifying signatures on   |
  |                      |          public key certificates.          |
  |                      |                                            |
  | Extension: Extended  |  The ExtKeyUsageSyntax field MAY have the  |
  |      Key Usage       |    following values in context of this     |
  |                      |    profile: id-kp-serverAuth for server    |
  |                      |    authentication, id-kp-clientAuth for    |
  |                      |  client authentication, id-kp-codeSigning  |
  |                      |   for code signing (for software update    |
  |                      |   mechanism), and id-kp-OCSPSigning for    |
  |                      |         future OCSP usage in TLS.          |
  +----------------------+--------------------------------------------+

                      Table 1: Certificate Content

  There are various cryptographic algorithms available to sign digital
  certificates; those algorithms include RSA, the Digital Signature
  Algorithm (DSA), and ECDSA.  As Table 1 shows, certificates are
  signed using ECDSA in this profile.  This is not only true for the
  end-entity certificates but also for all other certificates in the
  chain, including CA certificates.  This profiling reduces the amount
  of flash memory needed on an IoT device to store the code of several
  algorithm implementations due to the smaller number of options.

  Further details about X.509 certificates can be found in
  Section 9.1.3.3 of [RFC7252].

4.4.5.  Client Certificate URLs

  RFC 6066 [RFC6066] allows the sending of client-side certificates to
  be avoided and uses URLs instead.  This reduces the over-the-air
  transmission.  Note that the TLS "cached_info" extension does not
  provide any help with caching client certificates.




Tschofenig & Fossati         Standards Track                   [Page 31]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  TLS/DTLS clients MUST implement support for client certificate URLs
  for those environments where client-side certificates are used and
  the server-side is not constrained.  For constrained servers this
  functionality is NOT RECOMMENDED since it forces the server to
  execute an additional protocol exchange, potentially using a protocol
  it does not even support.  The use of this extension also increases
  the risk of a DoS attack against the constrained server due to the
  additional workload.

4.4.6.  Trusted CA Indication

  RFC 6066 [RFC6066] allows clients to indicate what trust anchor they
  support.  With certificate-based authentication, a DTLS server
  conveys its end-entity certificate to the client during the DTLS
  handshake.  Since the server does not necessarily know what trust
  anchors the client has stored, to facilitate certification path
  construction and validation, it includes intermediate CA certs in the
  certificate payload.

  Today, in most IoT deployments there is a fairly static relationship
  between the IoT device (and the software running on them) and the
  server-side infrastructure.  For these deployments where IoT devices
  interact with a fixed, preconfigured set of servers, this extension
  is NOT RECOMMENDED.

  In cases where clients interact with dynamically discovered TLS/DTLS
  servers, for example, in the use cases described in Section 3.2.2,
  the use of this extension is RECOMMENDED.

5.  Signature Algorithm Extension

  The "signature_algorithms" extension, defined in Section 7.4.1.4.1 of
  RFC 5246 [RFC5246], allows the client to indicate to the server which
  signature/hash algorithm pairs may be used in digital signatures.
  The client MUST send this extension to select the use of SHA-256,
  otherwise if this extension is absent, RFC 5246 defaults to SHA-1 /
  ECDSA for the ECDH_ECDSA and the ECDHE_ECDSA key exchange algorithms.

  The "signature_algorithms" extension is not applicable to the PSK-
  based ciphersuite described in Section 4.2.

6.  Error Handling

  TLS/DTLS uses the alert protocol to convey errors and specifies a
  long list of error types.  However, not all error messages defined in
  the TLS/DTLS specification are applicable to this profile.  In
  general, there are two categories of errors (as defined in
  Section 7.2 of RFC 5246), namely fatal errors and warnings.  Alert



Tschofenig & Fossati         Standards Track                   [Page 32]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  messages with a level of "fatal" result in the immediate termination
  of the connection.  If possible, developers should try to develop
  strategies to react to those fatal errors, such as restarting the
  handshake or informing the user using the (often limited) user
  interface.  Warnings may be ignored by the application since many IoT
  devices will have either limited ways to log errors or no ability at
  all.  In any case, implementers have to carefully evaluate the impact
  of errors and ways to remedy the situation since a commonly used
  approach for delegating decision making to users is difficult (or
  impossible) to accomplish in a timely fashion.

  All error messages marked as RESERVED are only supported for
  backwards compatibility with the Secure Socket Layer (SSL) and MUST
  NOT be used with this profile.  Those include
  decryption_failed_RESERVED, no_certificate_RESERVED, and
  export_restriction_RESERVED.

  A number of the error messages MUST only be used for certificate-
  based ciphersuites.  Hence, the following error messages MUST NOT be
  used with PSK and raw public key authentication:

  o  bad_certificate,

  o  unsupported_certificate,

  o  certificate_revoked,

  o  certificate_expired,

  o  certificate_unknown,

  o  unknown_ca, and

  o  access_denied.

  Since this profile does not make use of compression at the TLS layer,
  the decompression_failure error message MUST NOT be used either.

  RFC 4279 introduced the new alert message "unknown_psk_identity" for
  PSK ciphersuites.  As stated in Section 2 of RFC 4279, the
  decrypt_error error message may also be used instead.  For this
  profile, the TLS server MUST return the decrypt_error error message
  instead of the unknown_psk_identity since the two mechanisms exist
  and provide the same functionality.







Tschofenig & Fossati         Standards Track                   [Page 33]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  Furthermore, the following errors should not occur with devices and
  servers supporting this specification, but implementations MUST be
  prepared to process these errors to deal with servers that are not
  compliant to the profiles in this document:

  protocol_version:  While this document focuses only on one version of
     the TLS/DTLS protocol, namely version 1.2, ongoing work on TLS/
     DTLS 1.3 is in progress at the time of writing.

  insufficient_security:  This error message indicates that the server
     requires ciphers to be more secure.  This document specifies only
     one ciphersuite per profile, but it is likely that additional
     ciphersuites will get added over time.

  user_canceled:  Many IoT devices are unattended and hence this error
     message is unlikely to occur.

7.  Session Resumption

  Session resumption is a feature of the core TLS/DTLS specifications
  that allows a client to continue with an earlier established session
  state.  The resulting exchange is shown in Figure 11.  In addition,
  the server may choose not to do a cookie exchange when a session is
  resumed.  Still, clients have to be prepared to do a cookie exchange
  with every handshake.  The cookie exchange is not shown in the
  figure.

        Client                                               Server
        ------                                               ------

        ClientHello                   -------->
                                                         ServerHello
                                                  [ChangeCipherSpec]
                                      <--------             Finished
        [ChangeCipherSpec]
        Finished                      -------->
        Application Data              <------->     Application Data

                   Figure 11: DTLS Session Resumption

  Constrained clients MUST implement session resumption to improve the
  performance of the handshake.  This will lead to a reduced number of
  message exchanges, lower computational overhead (since only symmetric
  cryptography is used during a session resumption exchange), and
  session resumption requires less bandwidth.

  For cases where the server is constrained (but not the client), the
  client MUST implement RFC 5077 [RFC5077].  Note that the constrained



Tschofenig & Fossati         Standards Track                   [Page 34]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  server refers to a device that has limitations in terms of RAM and
  flash memory, which place restrictions on the amount of TLS/DTLS
  security state information that can be stored on such a device.  RFC
  5077 specifies a version of TLS/DTLS session resumption that does not
  require per-session state information to be maintained by the
  constrained server.  This is accomplished by using a ticket-based
  approach.

  If both the client and the server are constrained devices, both
  devices SHOULD implement RFC 5077 and MUST implement basic session
  resumption.  Clients that do not want to use session resumption are
  always able to send a ClientHello message with an empty session_id to
  revert to a full handshake.

8.  Compression

  Section 3.3 of [RFC7525] recommends disabling TLS-/DTLS-level
  compression due to attacks, such as CRIME [CRIME].  For IoT
  applications, compression at the TLS/DTLS layer is not needed since
  application-layer protocols are highly optimized, and the compression
  algorithms at the DTLS layer increases code size and complexity.

  TLS/DTLS layer compression is NOT RECOMMENDED by this TLS/DTLS
  profile.

9.  Perfect Forward Secrecy

  PFS is a property that preserves the confidentiality of past protocol
  interactions even in situations where the long-term secret is
  compromised.

  The PSK ciphersuite recommended in Section 4.2 does not offer this
  property since it does not utilize a DH exchange.  New ciphersuites
  that support PFS for PSK-based authentication, such as proposed in
  [PSK-AES-CCM-TLS], might become available as a standardized
  ciphersuite in the (near) future.  The recommended PSK-based
  ciphersuite offers excellent performance, a very small memory
  footprint, and has the lowest on the wire overhead at the expense of
  not using any public cryptography.  For deployments where public key
  cryptography is acceptable, the use of raw public keys might offer a
  middle ground between the PSK ciphersuite in terms of out-of-band
  validation and the functionality offered by asymmetric cryptography.

  Physical attacks create additional opportunities to gain access to
  the crypto material stored on IoT devices.  A PFS ciphersuite
  prevents an attacker from obtaining the communication content
  exchanged prior to a successful long-term key compromise; however, an
  implementation that (for performance or energy efficiency reasons)



Tschofenig & Fossati         Standards Track                   [Page 35]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  has been reusing the same ephemeral DH keys over multiple different
  sessions partially defeats PFS, thus increasing the damage extent.
  For this reason, implementations SHOULD NOT reuse ephemeral DH keys
  over multiple protocol exchanges.

  The impact of the disclosure of past communication interactions and
  the desire to increase the cost for pervasive monitoring (as demanded
  by [RFC7258]) has to be taken into account when selecting a
  ciphersuite that does not support the PFS property.

  Client implementations claiming support of this profile MUST
  implement the ciphersuites listed in Section 4 according to the
  selected credential type.

10.  Keep-Alive

  Application-layer communication may create state at the endpoints,
  and this state may expire at some time.  For this reason,
  applications define ways to refresh state, if necessary.  While the
  application-layer exchanges are largely outside the scope of the
  underlying TLS/DTLS exchange, similar state considerations also play
  a role at the level of TLS/DTLS.  While TLS/DTLS also creates state
  in the form of a security context (see the security parameter
  described in Appendix A.6 in RFC 5246) at the client and the server,
  this state information does not expire.  However, network
  intermediaries may also allocate state and require this state to be
  kept alive.  Failure to keep state alive at a stateful packet
  filtering firewall or at a NAT may result in the inability for one
  node to reach the other since packets will get blocked by these
  middleboxes.  Periodic keep-alive messages exchanged between the TLS/
  DTLS client and server keep state at these middleboxes alive.
  According to measurements described in [HomeGateway], there is some
  variance in state management practices used in residential gateways,
  but the timeouts are heavily impacted by the choice of the transport-
  layer protocol: timeouts for UDP are typically much shorter than
  those for TCP.

  RFC 6520 [RFC6520] defines a heartbeat mechanism to test whether the
  other peer is still alive.  As an additional feature, the same
  mechanism can also be used to perform Path Maximum Transmission Unit
  (MTU) Discovery.

  A recommendation about the use of RFC 6520 depends on the type of
  message exchange an IoT device performs and the number of messages
  the application needs to exchange as part of their application
  functionality.  There are three types of exchanges that need to be
  analyzed:




Tschofenig & Fossati         Standards Track                   [Page 36]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  Client-Initiated, One-Shot Messages

     This is a common communication pattern where IoT devices upload
     data to a server on the Internet on an irregular basis.  The
     communication may be triggered by specific events, such as opening
     a door.

     The DTLS handshake may need to be restarted (ideally using session
     resumption, if possible) in case of an IP address change.

     In this case, there is no use for a keep-alive extension for this
     scenario.

  Client-Initiated, Regular Data Uploads

     This is a variation of the previous case whereby data gets
     uploaded on a regular basis, for example, based on frequent
     temperature readings.  If neither NAT bindings nor IP address
     changes occurred, then the record layer will not notice any
     changes.  For the case where the IP address and port number
     changes, it is necessary to recreate the record layer using
     session resumption.

     In this scenario, there is no use for a keep-alive extension.  It
     is also very likely that the device will enter a sleep cycle in
     between data transmissions to keep power consumption low.

  Server-Initiated Messages

     In the two previous scenarios, the client initiates the protocol
     interaction and maintains it.  Since messages to the client may
     get blocked by middleboxes, the initial connection setup is
     triggered by the client and then kept alive by the server.

     For this message exchange pattern, the use of DTLS heartbeat
     messages is quite useful but may have to be coordinated with
     application exchanges (for example, when the CoAP resource
     directory is used) to avoid redundant keep-alive message
     exchanges.  The MTU discovery mechanism, which is also part of
     [RFC6520], is less likely to be relevant since for many IoT
     deployments, the most constrained link is the wireless interface
     between the IoT device and the network itself (rather than some
     links along the end-to-end path).  Only in more complex network
     topologies, such as multi-hop mesh networks, path MTU discovery
     might be appropriate.  It also has to be noted that DTLS itself
     already provides a basic path discovery mechanism (see
     Section 4.1.1.1 of RFC 6347) by using the fragmentation capability
     of the handshake protocol.



Tschofenig & Fossati         Standards Track                   [Page 37]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  For server-initiated messages, the heartbeat extension is
  RECOMMENDED.

11.  Timeouts

  A variety of wired and wireless technologies are available to connect
  devices to the Internet.  Many of the low-power radio technologies,
  such as IEEE 802.15.4 or Bluetooth Smart, only support small frame
  sizes (e.g., 127 bytes in case of IEEE 802.15.4 as explained in
  [RFC4919]).  Other radio technologies, such as the Global System for
  Mobile Communications (GSM) using the short messaging service (SMS),
  have similar constraints in terms of payload sizes, such as 140 bytes
  without the optional segmentation and reassembly scheme known as
  "Concatenated SMS", but show higher latency.

  The DTLS handshake protocol adds a fragmentation and reassembly
  mechanism to the TLS handshake protocol since each DTLS record must
  fit within a single transport layer datagram, as described in
  Section 4.2.3 of [RFC6347].  Since handshake messages are potentially
  bigger than the maximum record size, the mechanism fragments a
  handshake message over a number of DTLS records, each of which can be
  transmitted separately.

  To deal with the unreliable message delivery provided by UDP, DTLS
  adds timeouts and "per-flight" retransmissions, as described in
  Section 4.2.4 of [RFC6347].  Although the timeout values are
  implementation specific, recommendations are provided in
  Section 4.2.4.1 of [RFC6347], with an initial timer value of 1 second
  and double the value at each retransmission, up to no less than 60
  seconds.

  TLS protocol steps can take longer due to higher processing time on
  the constrained side.  On the other hand, the way DTLS handles
  retransmission, which is per-flight instead of per-segment, tends to
  interact poorly with low-bandwidth networks.

  For these reasons, it's essential that the probability of a spurious
  retransmit is minimized and, on timeout, the sending endpoint does
  not react too aggressively.  The latter is particularly relevant when
  the Wireless Sensor Network (WSN) is temporarily congested: if lost
  packets are reinjected too quickly, congestion worsens.

  An initial timer value of 9 seconds with exponential back off up to
  no less then 60 seconds is therefore RECOMMENDED.

  This value is chosen big enough to absorb large latency variance due
  to either slow computation on constrained endpoints or intrinsic
  network characteristics (e.g., GSM-SMS), as well as to produce a low



Tschofenig & Fossati         Standards Track                   [Page 38]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  number of retransmission events and relax the pacing between them.
  Its worst case wait time is the same as using 1s timeout (i.e., 63s),
  while triggering less than half of the retransmissions (2 instead of
  5).

  In order to minimize the wake time during DTLS handshake, sleepy
  nodes might decide to select a lower threshold and, consequently, a
  smaller initial timeout value.  If this is the case, the
  implementation MUST keep into account the considerations about
  network stability described in this section.

12.  Random Number Generation

  The TLS/DTLS protocol requires random numbers to be available during
  the protocol run.  For example, during the ClientHello and the
  ServerHello exchange, the client and the server exchange random
  numbers.  Also, the use of the DH exchange requires random numbers
  during the key pair generation.

  It is important to note that sources contributing to the randomness
  pool on laptops or desktop PCs are not available on many IoT devices,
  such as mouse movement, timing of keystrokes, air turbulence on the
  movement of hard drive heads, etc.  Other sources have to be found or
  dedicated hardware has to be added.

  Lacking sources of randomness in an embedded system may lead to the
  same keys generated again and again.

  The ClientHello and the ServerHello messages contain the "Random"
  structure, which has two components: gmt_unix_time and a sequence of
  28 random bytes. gmt_unix_time holds the current time and date in
  standard UNIX 32-bit format (seconds since the midnight starting Jan
  1, 1970, GMT).  Since many IoT devices do not have access to an
  accurate clock, it is RECOMMENDED that the receiver of a ClientHello
  or ServerHello does not assume that the value in
  "Random.gmt_unix_time" is an accurate representation of the current
  time and instead treats it as an opaque random string.

  When TLS is used with certificate-based authentication, the
  availability of time information is needed to check the validity of a
  certificate.  Higher-layer protocols may provide secure time
  information.  The gmt_unix_time component of the ServerHello is not
  used for this purpose.

  IoT devices using TLS/DTLS must offer ways to generate quality random
  numbers.  There are various implementation choices for integrating a
  hardware-based random number generator into a product: an
  implementation inside the microcontroller itself is one option, but



Tschofenig & Fossati         Standards Track                   [Page 39]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  dedicated crypto chips are also reasonable choices.  The best choice
  will depend on various factors outside the scope of this document.
  Guidelines and requirements for random number generation can be found
  in RFC 4086 [RFC4086] and in the NIST Special Publication 800-90a
  [SP800-90A].

  Chip manufacturers are highly encouraged to provide sufficient
  documentation of their design for random number generators so that
  customers can have confidence about the quality of the generated
  random numbers.  The confidence can be increased by providing
  information about the procedures that have been used to verify the
  randomness of numbers generated by the hardware modules.  For
  example, NIST Special Publication 800-22b [SP800-22b] describes
  statistical tests that can be used to verify random number
  generators.

13.  Truncated MAC and Encrypt-then-MAC Extension

  The truncated MAC extension was introduced in RFC 6066 [RFC6066] with
  the goal to reduce the size of the MAC used at the record layer.
  This extension was developed for TLS ciphersuites that used older
  modes of operation where the MAC and the encryption operation were
  performed independently.

  The recommended ciphersuites in this document use the newer AEAD
  construct, namely the CCM mode with 8-octet authentication tags, and
  are therefore not applicable to the truncated MAC extension.

  RFC 7366 [RFC7366] introduced the encrypt-then-MAC extension (instead
  of the previously used MAC-then-encrypt) since the MAC-then-encrypt
  mechanism has been the subject of a number of security
  vulnerabilities.  RFC 7366 is, however, also not applicable to the
  AEAD ciphers recommended in this document.

  Implementations conformant to this specification MUST use AEAD
  ciphers.  RFC 7366 ("encrypt-then-MAC") and RFC 6066 ("truncated MAC
  extension") are not applicable to this specification and MUST NOT be
  used.

14.  Server Name Indication (SNI)

  The SNI extension [RFC6066] defines a mechanism for a client to tell
  a TLS/DTLS server the name of the server it wants to contact.  This
  is a useful extension for many hosting environments where multiple
  virtual servers are run on a single IP address.






Tschofenig & Fossati         Standards Track                   [Page 40]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  Implementing the Server Name Indication extension is REQUIRED unless
  it is known that a TLS/DTLS client does not interact with a server in
  a hosting environment.

15.  Maximum Fragment Length Negotiation

  This RFC 6066 extension lowers the maximum fragment length support
  needed for the record layer from 2^14 bytes to 2^9 bytes.

  This is a very useful extension that allows the client to indicate to
  the server how much maximum memory buffers it uses for incoming
  messages.  Ultimately, the main benefit of this extension is to allow
  client implementations to lower their RAM requirements since the
  client does not need to accept packets of large size (such as 16K
  packets as required by plain TLS/DTLS).

  Client implementations MUST support this extension.

16.  Session Hash

  In order to begin connection protection, the Record Protocol requires
  specification of a suite of algorithms, a master secret, and the
  client and server random values.  The algorithm for computing the
  master secret is defined in Section 8.1 of RFC 5246, but it only
  includes a small number of parameters exchanged during the handshake
  and does not include parameters like the client and server
  identities.  This can be utilized by an attacker to mount a
  man-in-the-middle attack since the master secret is not guaranteed to
  be unique across sessions, as discovered in the "triple handshake"
  attack [Triple-HS].

  [RFC7627] defines a TLS extension that binds the master secret to a
  log of the full handshake that computes it, thus preventing such
  attacks.

  Client implementations SHOULD implement this extension even though
  the ciphersuites recommended by this profile are not vulnerable to
  this attack.  For DH-based ciphersuites, the keying material is
  contributed by both parties and in case of the pre-shared secret key
  ciphersuite, both parties need to be in possession of the shared
  secret to ensure that the handshake completes successfully.  It is,
  however, possible that some application-layer protocols will tunnel
  other authentication protocols on top of DTLS making this attack
  relevant again.







Tschofenig & Fossati         Standards Track                   [Page 41]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


17.  Renegotiation Attacks

  TLS/DTLS allows a client and a server that already have a TLS/DTLS
  connection to negotiate new parameters, generate new keys, etc., by
  using the renegotiation feature.  Renegotiation happens in the
  existing connection, with the new handshake packets being encrypted
  along with application data.  Upon completion of the renegotiation
  procedure, the new channel replaces the old channel.

  As described in RFC 5746 [RFC5746], there is no cryptographic binding
  between the two handshakes, although the new handshake is carried out
  using the cryptographic parameters established by the original
  handshake.

  To prevent the renegotiation attack [RFC5746], this specification
  REQUIRES the TLS renegotiation feature to be disabled.  Clients MUST
  respond to server-initiated renegotiation attempts with an alert
  message (no_renegotiation), and clients MUST NOT initiate them.

18.  Downgrading Attacks

  When a client sends a ClientHello with a version higher than the
  highest version known to the server, the server is supposed to reply
  with ServerHello.version equal to the highest version known to the
  server, and then the handshake can proceed.  This behavior is known
  as version tolerance.  Version intolerance is when the server (or a
  middlebox) breaks the handshake when it sees a ClientHello.version
  higher than what it knows about.  This is the behavior that leads
  some clients to rerun the handshake with a lower version.  As a
  result, a potential security vulnerability is introduced when a
  system is running an old TLS/SSL version (e.g., because of the need
  to integrate with legacy systems).  In the worst case, this allows an
  attacker to downgrade the protocol handshake to SSL 3.0.  SSL 3.0 is
  so broken that there is no secure cipher available for it (see
  [RFC7568]).

  The above-described downgrade vulnerability is solved by the TLS
  Fallback Signaling Cipher Suite Value (SCSV) [RFC7507] extension.
  However, the solution is not applicable to implementations conforming
  to this profile since the version negotiation MUST use TLS/DTLS
  version 1.2 (or higher).  More specifically, this implies:

  o  Clients MUST NOT send a TLS/DTLS version lower than version 1.2 in
     the ClientHello.

  o  Clients MUST NOT retry a failed negotiation offering a TLS/DTLS
     version lower than 1.2.




Tschofenig & Fossati         Standards Track                   [Page 42]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  o  Servers MUST fail the handshake by sending a protocol_version
     fatal alert if a TLS/DTLS version >= 1.2 cannot be negotiated.
     Note that the aborted connection is non-resumable.

19.  Crypto Agility

  This document recommends that software and chip manufacturers
  implement AES and the CCM mode of operation.  This document
  references the CoAP-recommended ciphersuite choices, which have been
  selected based on implementation and deployment experience from the
  IoT community.  Over time, the preference for algorithms will,
  however, change.  Not all components of a ciphersuite are likely to
  change at the same speed.  Changes are more likely expected for
  ciphers, the mode of operation, and the hash algorithms.  The
  recommended key lengths have to be adjusted over time as well.  Some
  deployment environments will also be impacted by local regulation,
  which might dictate a certain algorithm and key size combination.
  Ongoing discussions regarding the choice of specific ECC curves will
  also likely impact implementations.  Note that this document does not
  recommend or mandate a specific ECC curve.

  The following recommendations can be made to chip manufacturers:

  o  Make any AES hardware-based crypto implementation accessible to
     developers working on security implementations at higher layers in
     the protocol stack.  Sometimes hardware implementations are added
     to microcontrollers to offer support for functionality needed at
     the link layer and are only available to the on-chip link-layer
     protocol implementation.  Such a setup does not allow application
     developers to reuse the hardware-based AES implementation.

  o  Provide flexibility for the use of the crypto function with future
     extensibility in mind.  For example, making an AES-CCM
     implementation available to developers is a first step but such an
     implementation may not be usable due to parameter differences
     between an AES-CCM implementation.  AES-CCM in IEEE 802.15.4 and
     Bluetooth Smart use a nonce length of 13 octets while DTLS uses a
     nonce length of 12 octets.  Hardware implementations of AES-CCM
     for IEEE 802.15.4 and Bluetooth Smart are therefore not reusable
     by a DTLS stack.

  o  Offer access to building blocks in addition (or as an alternative)
     to the complete functionality.  For example, a chip manufacturer
     who gives developers access to the AES crypto function can use it
     to build an efficient AES-GCM implementation.  Another example is
     to make a special instruction available that increases the speed
     of speed-up carryless multiplications.




Tschofenig & Fossati         Standards Track                   [Page 43]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  As a recommendation for developers and product architects, we suggest
  that sufficient headroom is provided to allow an upgrade to a newer
  cryptographic algorithm over the lifetime of the product.  As an
  example, while AES-CCM is recommended throughout this specification,
  future products might use the ChaCha20 cipher in combination with the
  Poly1305 authenticator [RFC7539].  The assumption is made that a
  robust software update mechanism is offered.

20.  Key Length Recommendations

  RFC 4492 [RFC4492] gives approximate comparable key sizes for
  symmetric- and asymmetric-key cryptosystems based on the best-known
  algorithms for attacking them.  While other publications suggest
  slightly different numbers, such as [Keylength], the approximate
  relationship still holds true.  Figure 12 illustrates the comparable
  key sizes in bits.

                      Symmetric  |   ECC   |  DH/DSA/RSA
                     ------------+---------+-------------
                          80     |   163   |     1024
                         112     |   233   |     2048
                         128     |   283   |     3072
                         192     |   409   |     7680
                         256     |   571   |    15360

       Figure 12: Comparable Key Sizes (in Bits) Based on RFC 4492

  At the time of writing, the key size recommendations for use with
  TLS-based ciphers found in [RFC7525] recommend DH key lengths of at
  least 2048 bits, which corresponds to a 112-bit symmetric key and a
  233-bit ECC key.  These recommendations are roughly in line with
  those from other organizations, such as the National Institute of
  Standards and Technology (NIST) or the European Network and
  Information Security Agency (ENISA).  The authors of
  [ENISA-Report2013] add that a 80-bit symmetric key is sufficient for
  legacy applications for the coming years, but a 128-bit symmetric key
  is the minimum requirement for new systems being deployed.  The
  authors further note that one needs to also take into account the
  length of time data needs to be kept secure for.  The use of 80-bit
  symmetric keys for transactional data may be acceptable for the near
  future while one has to insist on 128-bit symmetric keys for long-
  lived data.

  Note that the recommendations for 112-bit symmetric keys are chosen
  conservatively under the assumption that IoT devices have a long
  expected lifetime (such as 10+ years) and that this key length
  recommendation refers to the long-term keys used for device
  authentication.  Keys, which are provisioned dynamically, for the



Tschofenig & Fossati         Standards Track                   [Page 44]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  protection of transactional data (such as ephemeral DH keys used in
  various TLS/DTLS ciphersuites) may be shorter considering the
  sensitivity of the exchanged data.

21.  False Start

  A full TLS handshake as specified in [RFC5246] requires two full
  protocol rounds (four flights) before the handshake is complete and
  the protocol parties may begin to send application data.

  An abbreviated handshake (resuming an earlier TLS session) is
  complete after three flights, thus adding just one round-trip time if
  the client sends application data first.

  If the conditions outlined in [TLS-FALSESTART] are met, application
  data can be transmitted when the sender has sent its own
  "ChangeCipherSpec" and "Finished" messages.  This achieves an
  improvement of one round-trip time for full handshakes if the client
  sends application data first and for abbreviated handshakes if the
  server sends application data first.

  The conditions for using the TLS False Start mechanism are met by the
  public-key-based ciphersuites in this document.  In summary, the
  conditions are:

  o  Modern symmetric ciphers with an effective key length of 128 bits,
     such as AES-128-CCM

  o  Client certificate types, such as ecdsa_sign

  o  Key exchange methods, such as ECDHE_ECDSA

  Based on the improvement over a full round-trip for the full TLS/DTLS
  exchange, this specification RECOMMENDS the use of the False Start
  mechanism when clients send application data first.

22.  Privacy Considerations

  The DTLS handshake exchange conveys various identifiers, which can be
  observed by an on-path eavesdropper.  For example, the DTLS PSK
  exchange reveals the PSK identity, the supported extensions, the
  session ID, algorithm parameters, etc.  When session resumption is
  used, then individual TLS sessions can be correlated by an on-path
  adversary.  With many IoT deployments, it is likely that keying
  material and their identifiers are persistent over a longer period of
  time due to the cost of updating software on these devices.





Tschofenig & Fossati         Standards Track                   [Page 45]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  User participation poses a challenge in many IoT deployments since
  many of the IoT devices operate unattended, even though they are
  initially provisioned by a human.  The ability to control data
  sharing and to configure preferences will have to be provided at a
  system level rather than at the level of the DTLS exchange itself,
  which is the scope of this document.  Quite naturally, the use of
  DTLS with mutual authentication will allow a TLS server to collect
  authentication information about the IoT device (likely over a long
  period of time).  While this strong form of authentication will
  prevent misattribution, it also allows strong identification.
  Device-related data collection (e.g., sensor recordings) associated
  with other data types will prove to be truly useful, but this extra
  data might include personal information about the owner of the device
  or data about the environment it senses.  Consequently, the data
  stored on the server side will be vulnerable to stored data
  compromise.  For the communication between the client and the server,
  this specification prevents eavesdroppers from gaining access to the
  communication content.  While the PSK-based ciphersuite does not
  provide PFS, the asymmetric versions do.  This prevents an adversary
  from obtaining past communication content when access to a long-term
  secret has been gained.  Note that no extra effort to make traffic
  analysis more difficult is provided by the recommendations made in
  this document.

  Note that the absence or presence of communication itself might
  reveal information to an adversary.  For example, a presence sensor
  may initiate messaging when a person enters a building.  While TLS/
  DTLS would offer confidentiality protection of the transmitted
  information, it does not help to conceal all communication patterns.
  Furthermore, the IP header, which is not protected by TLS/DTLS,
  additionally reveals information about the other communication
  endpoint.  For applications where such privacy concerns exist,
  additional safeguards are required, such as injecting dummy traffic
  and onion routing.  A detailed treatment of such solutions is outside
  the scope of this document and requires a system-level view.

23.  Security Considerations

  This entire document is about security.

  We would also like to point out that designing a software update
  mechanism into an IoT system is crucial to ensure that both
  functionality can be enhanced and that potential vulnerabilities can
  be fixed.  This software update mechanism is important for changing
  configuration information, for example, trust anchors and other
  keying-related information.  Such a suitable software update
  mechanism is available with the LWM2M protocol published by the OMA
  [LWM2M].



Tschofenig & Fossati         Standards Track                   [Page 46]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


24.  References

24.1.  Normative References

  [EUI64]    IEEE, "Guidelines for 64-bit Global Identifier (EUI-64)",
             Registration Authority,
             <https://standards.ieee.org/regauth/
             oui/tutorials/EUI64.html>.

  [GSM-SMS]  ETSI, "3rd Generation Partnership Project; Technical
             Specification Group Core Network and Terminals; Technical
             realization of the Short Message Service (SMS) (Release
             13)", 3GPP TS 23.040 V13.1.0, March 2016.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC4279]  Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
             Ciphersuites for Transport Layer Security (TLS)",
             RFC 4279, DOI 10.17487/RFC4279, December 2005,
             <http://www.rfc-editor.org/info/rfc4279>.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246,
             DOI 10.17487/RFC5246, August 2008,
             <http://www.rfc-editor.org/info/rfc5246>.

  [RFC5746]  Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
             "Transport Layer Security (TLS) Renegotiation Indication
             Extension", RFC 5746, DOI 10.17487/RFC5746, February 2010,
             <http://www.rfc-editor.org/info/rfc5746>.

  [RFC6066]  Eastlake 3rd, D., "Transport Layer Security (TLS)
             Extensions: Extension Definitions", RFC 6066,
             DOI 10.17487/RFC6066, January 2011,
             <http://www.rfc-editor.org/info/rfc6066>.

  [RFC6125]  Saint-Andre, P. and J. Hodges, "Representation and
             Verification of Domain-Based Application Service Identity
             within Internet Public Key Infrastructure Using X.509
             (PKIX) Certificates in the Context of Transport Layer
             Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
             2011, <http://www.rfc-editor.org/info/rfc6125>.






Tschofenig & Fossati         Standards Track                   [Page 47]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  [RFC6347]  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
             Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
             January 2012, <http://www.rfc-editor.org/info/rfc6347>.

  [RFC6520]  Seggelmann, R., Tuexen, M., and M. Williams, "Transport
             Layer Security (TLS) and Datagram Transport Layer Security
             (DTLS) Heartbeat Extension", RFC 6520,
             DOI 10.17487/RFC6520, February 2012,
             <http://www.rfc-editor.org/info/rfc6520>.

  [RFC7250]  Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
             Weiler, S., and T. Kivinen, "Using Raw Public Keys in
             Transport Layer Security (TLS) and Datagram Transport
             Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
             June 2014, <http://www.rfc-editor.org/info/rfc7250>.

  [RFC7251]  McGrew, D., Bailey, D., Campagna, M., and R. Dugal, "AES-
             CCM Elliptic Curve Cryptography (ECC) Cipher Suites for
             TLS", RFC 7251, DOI 10.17487/RFC7251, June 2014,
             <http://www.rfc-editor.org/info/rfc7251>.

  [RFC7627]  Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
             Langley, A., and M. Ray, "Transport Layer Security (TLS)
             Session Hash and Extended Master Secret Extension",
             RFC 7627, DOI 10.17487/RFC7627, September 2015,
             <http://www.rfc-editor.org/info/rfc7627>.

  [RFC7924]  Santesson, S. and H. Tschofenig, "Transport Layer Security
             (TLS) Cached Information Extension", RFC 7924,
             DOI 10.17487/RFC7924, July 2016,
             <http://www.rfc-editor.org/info/rfc7924>.

  [WAP-WDP]  Open Mobile Alliance, "Wireless Datagram Protocol",
             Wireless Application Protocol, WAP-259-WDP, June 2001.

24.2.  Informative References

  [ACE-WG]   IETF, "Authentication and Authorization for Constrained
             Environments (ACE) Working Group",
             <https://datatracker.ietf.org/wg/ace/charter>.

  [AES]      National Institute of Standards and Technology, "Advanced
             Encryption Standard (AES)", NIST FIPS PUB 197, November
             2001, <http://csrc.nist.gov/publications/fips/fips197/
             fips-197.pdf>.






Tschofenig & Fossati         Standards Track                   [Page 48]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  [CCM]      National Institute of Standards and Technology,
             "Recommendation for Block Cipher Modes of Operation: The
             CCM Mode for Authentication and Confidentiality", NIST
             Special Publication 800-38C, May 2004,
             <http://csrc.nist.gov/publications/nistpubs/800-38C/
             SP800-38C_updated-July20_2007.pdf>.

  [COAP-TCP-TLS]
             Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
             Silverajan, B., and B. Raymor, "CoAP (Constrained
             Application Protocol) over TCP, TLS, and WebSockets", Work
             in Progress, draft-ietf-core-coap-tcp-tls-03, July 2016.

  [CoRE-RD]  Shelby, Z., Koster, M., Bormann, C., and P. Stok, "CoRE
             Resource Directory", Work in Progress, draft-ietf-core-
             resource-directory-08, July 2016.

  [CRIME]    Wikipedia, "CRIME", May 2016, <https://en.wikipedia.org/w/
             index.php?title=CRIME&oldid=721665716>.

  [ENISA-Report2013]
             ENISA, "Algorithms, Key Sizes and Parameters Report -
             2013", October 2013, <https://www.enisa.europa.eu/
             activities/identity-and-trust/library/deliverables/
             algorithms-key-sizes-and-parameters-report>.

  [FFDHE-TLS]
             Gillmor, D., "Negotiated Finite Field Diffie-Hellman
             Ephemeral Parameters for TLS", Work in Progress,
             draft-ietf-tls-negotiated-ff-dhe-10, June 2015.

  [HomeGateway]
             Eggert, L., Hatoen, S., Kojo, M., Nyrhinen, A., Sarolahti,
             P., and S. Strowes, "An Experimental Study of Home Gateway
             Characteristics", In Proceedings of the 10th ACM SIGCOMM
             conference on Internet measurement,
             DOI 10.1145/1879141.1879174, 2010,
             <http://conferences.sigcomm.org/imc/2010/papers/p260.pdf>.

  [IANA-TLS] IANA, "Transport Layer Security (TLS) Parameters",
             <https://www.iana.org/assignments/tls-parameters>.










Tschofenig & Fossati         Standards Track                   [Page 49]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  [ImprintingSurvey]
             Chilton, E., "A Brief Survey of Imprinting Options for
             Constrained Devices", March 2012,
             <http://www.lix.polytechnique.fr/hipercom/
             SmartObjectSecurity/papers/EricRescorla.pdf>.

  [Keylength]
             Giry, D., "Cryptographic Key Length Recommendations",
             September 2015, <http://www.keylength.com>.

  [LWM2M]    Open Mobile Alliance, "Lightweight Machine-to-Machine
             Requirements", Candidate Version 1.0, OMA-RD-
             LightweightM2M-V1_0-20131210-C, December 2013,
             <http://openmobilealliance.org/about-oma/work-program/
             m2m-enablers>.

  [PSK-AES-CCM-TLS]
             Schmertmann, L. and C. Bormann, "ECDHE-PSK AES-CCM Cipher
             Suites with Forward Secrecy for Transport Layer Security
             (TLS)", Work in Progress, draft-schmertmann-dice-ccm-
             psk-pfs-01, August 2014.

  [RFC1981]  McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
             for IP version 6", RFC 1981, DOI 10.17487/RFC1981, August
             1996, <http://www.rfc-editor.org/info/rfc1981>.

  [RFC2104]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
             Hashing for Message Authentication", RFC 2104,
             DOI 10.17487/RFC2104, February 1997,
             <http://www.rfc-editor.org/info/rfc2104>.

  [RFC2865]  Rigney, C., Willens, S., Rubens, A., and W. Simpson,
             "Remote Authentication Dial In User Service (RADIUS)",
             RFC 2865, DOI 10.17487/RFC2865, June 2000,
             <http://www.rfc-editor.org/info/rfc2865>.

  [RFC3610]  Whiting, D., Housley, R., and N. Ferguson, "Counter with
             CBC-MAC (CCM)", RFC 3610, DOI 10.17487/RFC3610, September
             2003, <http://www.rfc-editor.org/info/rfc3610>.

  [RFC3748]  Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
             Levkowetz, Ed., "Extensible Authentication Protocol
             (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
             <http://www.rfc-editor.org/info/rfc3748>.







Tschofenig & Fossati         Standards Track                   [Page 50]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  [RFC4086]  Eastlake 3rd, D., Schiller, J., and S. Crocker,
             "Randomness Requirements for Security", BCP 106, RFC 4086,
             DOI 10.17487/RFC4086, June 2005,
             <http://www.rfc-editor.org/info/rfc4086>.

  [RFC4492]  Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
             Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
             for Transport Layer Security (TLS)", RFC 4492,
             DOI 10.17487/RFC4492, May 2006,
             <http://www.rfc-editor.org/info/rfc4492>.

  [RFC4821]  Mathis, M. and J. Heffner, "Packetization Layer Path MTU
             Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,
             <http://www.rfc-editor.org/info/rfc4821>.

  [RFC4919]  Kushalnagar, N., Montenegro, G., and C. Schumacher, "IPv6
             over Low-Power Wireless Personal Area Networks (6LoWPANs):
             Overview, Assumptions, Problem Statement, and Goals",
             RFC 4919, DOI 10.17487/RFC4919, August 2007,
             <http://www.rfc-editor.org/info/rfc4919>.

  [RFC5077]  Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
             "Transport Layer Security (TLS) Session Resumption without
             Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
             January 2008, <http://www.rfc-editor.org/info/rfc5077>.

  [RFC5116]  McGrew, D., "An Interface and Algorithms for Authenticated
             Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
             <http://www.rfc-editor.org/info/rfc5116>.

  [RFC5216]  Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS
             Authentication Protocol", RFC 5216, DOI 10.17487/RFC5216,
             March 2008, <http://www.rfc-editor.org/info/rfc5216>.

  [RFC5247]  Aboba, B., Simon, D., and P. Eronen, "Extensible
             Authentication Protocol (EAP) Key Management Framework",
             RFC 5247, DOI 10.17487/RFC5247, August 2008,
             <http://www.rfc-editor.org/info/rfc5247>.

  [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
             Housley, R., and W. Polk, "Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
             <http://www.rfc-editor.org/info/rfc5280>.







Tschofenig & Fossati         Standards Track                   [Page 51]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  [RFC5288]  Salowey, J., Choudhury, A., and D. McGrew, "AES Galois
             Counter Mode (GCM) Cipher Suites for TLS", RFC 5288,
             DOI 10.17487/RFC5288, August 2008,
             <http://www.rfc-editor.org/info/rfc5288>.

  [RFC5480]  Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
             "Elliptic Curve Cryptography Subject Public Key
             Information", RFC 5480, DOI 10.17487/RFC5480, March 2009,
             <http://www.rfc-editor.org/info/rfc5480>.

  [RFC5758]  Dang, Q., Santesson, S., Moriarty, K., Brown, D., and T.
             Polk, "Internet X.509 Public Key Infrastructure:
             Additional Algorithms and Identifiers for DSA and ECDSA",
             RFC 5758, DOI 10.17487/RFC5758, January 2010,
             <http://www.rfc-editor.org/info/rfc5758>.

  [RFC5934]  Housley, R., Ashmore, S., and C. Wallace, "Trust Anchor
             Management Protocol (TAMP)", RFC 5934,
             DOI 10.17487/RFC5934, August 2010,
             <http://www.rfc-editor.org/info/rfc5934>.

  [RFC6024]  Reddy, R. and C. Wallace, "Trust Anchor Management
             Requirements", RFC 6024, DOI 10.17487/RFC6024, October
             2010, <http://www.rfc-editor.org/info/rfc6024>.

  [RFC6090]  McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
             Curve Cryptography Algorithms", RFC 6090,
             DOI 10.17487/RFC6090, February 2011,
             <http://www.rfc-editor.org/info/rfc6090>.

  [RFC6234]  Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
             (SHA and SHA-based HMAC and HKDF)", RFC 6234,
             DOI 10.17487/RFC6234, May 2011,
             <http://www.rfc-editor.org/info/rfc6234>.

  [RFC6655]  McGrew, D. and D. Bailey, "AES-CCM Cipher Suites for
             Transport Layer Security (TLS)", RFC 6655,
             DOI 10.17487/RFC6655, July 2012,
             <http://www.rfc-editor.org/info/rfc6655>.

  [RFC6690]  Shelby, Z., "Constrained RESTful Environments (CoRE) Link
             Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
             <http://www.rfc-editor.org/info/rfc6690>.

  [RFC6733]  Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
             Ed., "Diameter Base Protocol", RFC 6733,
             DOI 10.17487/RFC6733, October 2012,
             <http://www.rfc-editor.org/info/rfc6733>.



Tschofenig & Fossati         Standards Track                   [Page 52]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  [RFC6943]  Thaler, D., Ed., "Issues in Identifier Comparison for
             Security Purposes", RFC 6943, DOI 10.17487/RFC6943, May
             2013, <http://www.rfc-editor.org/info/rfc6943>.

  [RFC6961]  Pettersen, Y., "The Transport Layer Security (TLS)
             Multiple Certificate Status Request Extension", RFC 6961,
             DOI 10.17487/RFC6961, June 2013,
             <http://www.rfc-editor.org/info/rfc6961>.

  [RFC7228]  Bormann, C., Ersue, M., and A. Keranen, "Terminology for
             Constrained-Node Networks", RFC 7228,
             DOI 10.17487/RFC7228, May 2014,
             <http://www.rfc-editor.org/info/rfc7228>.

  [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
             Application Protocol (CoAP)", RFC 7252,
             DOI 10.17487/RFC7252, June 2014,
             <http://www.rfc-editor.org/info/rfc7252>.

  [RFC7258]  Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
             Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
             2014, <http://www.rfc-editor.org/info/rfc7258>.

  [RFC7366]  Gutmann, P., "Encrypt-then-MAC for Transport Layer
             Security (TLS) and Datagram Transport Layer Security
             (DTLS)", RFC 7366, DOI 10.17487/RFC7366, September 2014,
             <http://www.rfc-editor.org/info/rfc7366>.

  [RFC7390]  Rahman, A., Ed. and E. Dijk, Ed., "Group Communication for
             the Constrained Application Protocol (CoAP)", RFC 7390,
             DOI 10.17487/RFC7390, October 2014,
             <http://www.rfc-editor.org/info/rfc7390>.

  [RFC7397]  Gilger, J. and H. Tschofenig, "Report from the Smart
             Object Security Workshop", RFC 7397, DOI 10.17487/RFC7397,
             December 2014, <http://www.rfc-editor.org/info/rfc7397>.

  [RFC7400]  Bormann, C., "6LoWPAN-GHC: Generic Header Compression for
             IPv6 over Low-Power Wireless Personal Area Networks
             (6LoWPANs)", RFC 7400, DOI 10.17487/RFC7400, November
             2014, <http://www.rfc-editor.org/info/rfc7400>.

  [RFC7452]  Tschofenig, H., Arkko, J., Thaler, D., and D. McPherson,
             "Architectural Considerations in Smart Object Networking",
             RFC 7452, DOI 10.17487/RFC7452, March 2015,
             <http://www.rfc-editor.org/info/rfc7452>.





Tschofenig & Fossati         Standards Track                   [Page 53]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  [RFC7465]  Popov, A., "Prohibiting RC4 Cipher Suites", RFC 7465,
             DOI 10.17487/RFC7465, February 2015,
             <http://www.rfc-editor.org/info/rfc7465>.

  [RFC7507]  Moeller, B. and A. Langley, "TLS Fallback Signaling Cipher
             Suite Value (SCSV) for Preventing Protocol Downgrade
             Attacks", RFC 7507, DOI 10.17487/RFC7507, April 2015,
             <http://www.rfc-editor.org/info/rfc7507>.

  [RFC7525]  Sheffer, Y., Holz, R., and P. Saint-Andre,
             "Recommendations for Secure Use of Transport Layer
             Security (TLS) and Datagram Transport Layer Security
             (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
             2015, <http://www.rfc-editor.org/info/rfc7525>.

  [RFC7539]  Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
             Protocols", RFC 7539, DOI 10.17487/RFC7539, May 2015,
             <http://www.rfc-editor.org/info/rfc7539>.

  [RFC7568]  Barnes, R., Thomson, M., Pironti, A., and A. Langley,
             "Deprecating Secure Sockets Layer Version 3.0", RFC 7568,
             DOI 10.17487/RFC7568, June 2015,
             <http://www.rfc-editor.org/info/rfc7568>.

  [RFC7748]  Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
             for Security", RFC 7748, DOI 10.17487/RFC7748, January
             2016, <http://www.rfc-editor.org/info/rfc7748>.

  [SP800-107-rev1]
             National Institute of Standards and Technology,
             "Recommendation for Applications Using Approved Hash
             Algorithms", NIST Special Publication 800-107, Revision 1,
             DOI 10.6028/NIST.SP.800-107r1, August 2012,
             <http://csrc.nist.gov/publications/nistpubs/800-107-rev1/
             sp800-107-rev1.pdf>.

  [SP800-22b]
             National Institute of Standards and Technology, "A
             Statistical Test Suite for Random and Pseudorandom Number
             Generators for Cryptographic Applications", NIST Special
             Publication 800-22, Revision 1a, April 2010,
             <http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/
             SP800-22rev1a.pdf>.








Tschofenig & Fossati         Standards Track                   [Page 54]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  [SP800-90A]
             National Institute of Standards and Technology,
             "Recommendation for Random Number Generation Using
             Deterministic Random Bit Generators", NIST Special
             Publication 800-90A Revision 1,
             DOI 10.6028/NIST.SP.800-90Ar1, June 2015,
             <http://csrc.nist.gov/publications/drafts/800-90/
             sp800-90a_r1_draft_november2014_ver.pdf>.

  [TLS-FALSESTART]
             Langley, A., Modadugu, N., and B. Moeller, "Transport
             Layer Security (TLS) False Start", Work in Progress,
             draft-ietf-tls-falsestart-02, May 2016.

  [Triple-HS]
             Bhargavan, K., Delignat-Lavaud, C., Pironti, A., and P.
             Yves Strub, "Triple Handshakes and Cookie Cutters:
             Breaking and Fixing Authentication over TLS", In
             Proceedings of the IEEE Symposium on Security and Privacy,
             Pages 98-113, DOI 10.1109/SP.2014.14, 2014.































Tschofenig & Fossati         Standards Track                   [Page 55]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


Appendix A.  Conveying DTLS over SMS

  This section is normative for the use of DTLS over SMS.  Timer
  recommendations are already outlined in Section 11 and also
  applicable to the transport of DTLS over SMS.

  This section requires readers to be familiar with the terminology and
  concepts described in [GSM-SMS] and [WAP-WDP].

  The remainder of this section assumes Mobile Stations are capable of
  producing and consuming Transport Protocol Data Units (TPDUs) encoded
  as 8-bit binary data.

A.1.  Overview

  DTLS adds an additional round-trip to the TLS [RFC5246] handshake to
  serve as a return-routability test for protection against certain
  types of DoS attacks.  Thus, a full-blown DTLS handshake comprises up
  to 6 "flights" (i.e., logical message exchanges), each of which is
  then mapped on to one or more DTLS records using the segmentation and
  reassembly (SaR) scheme described in Section 4.2.3 of [RFC6347].  The
  overhead for said scheme is 6 bytes per handshake message which,
  given a realistic 10+ messages handshake, would amount to around 60
  bytes across the whole handshake sequence.

  Note that the DTLS SaR scheme is defined for handshake messages only.
  In fact, DTLS records are never fragmented and MUST fit within a
  single transport layer datagram.

  SMS provides an optional segmentation and reassembly scheme as well,
  known as Concatenated short messages (see Section 9.2.3.24.1 of
  [GSM-SMS]).  However, since the SaR scheme in DTLS cannot be
  circumvented, the Concatenated short messages mechanism SHOULD NOT be
  used during handshake to avoid redundant overhead.  Before starting
  the handshake phase (either actively or passively), the DTLS
  implementation MUST be explicitly configured with the Path MTU (PMTU)
  of the SMS transport in order to correctly instrument its SaR
  function.  The PMTU SHALL be 133 bytes if multiplexing based on the
  Wireless Datagram Protocol (WDP) is used (see Appendix A.3); 140
  bytes otherwise.

  It is RECOMMENDED that the established security context over the
  longest possible period be used (possibly until a Closure Alert
  message is received or after a very long inactivity timeout) to avoid
  the expensive re-establishment of the security association.






Tschofenig & Fossati         Standards Track                   [Page 56]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


A.2.  Message Segmentation and Reassembly

  The content of an SMS message is carried in the TP-UserData field,
  and its size may be up to 140 bytes.  As already mentioned in
  Appendix A.1, longer (i.e., up to 34170 bytes) messages can be sent
  using Concatenated SMS.

  This scheme consumes 6-7 bytes (depending on whether the short or
  long segmentation format is used) of the TP-UserData field, thus
  reducing the space available for the actual content of the SMS
  message to 133-134 bytes per TPDU.

  Though in principle a PMTU value higher than 140 bytes could be used,
  which may look like an appealing option given its more efficient use
  of the transport, there are disadvantages to consider.  First, there
  is an additional overhead of 7 bytes per TPDU to be paid to the SaR
  function (which is in addition to the overhead introduced by the DTLS
  SaR mechanism.  Second, some networks only partially support the
  Concatenated SMS function, and others do not support it at all.

  For these reasons, the Concatenated short messages mechanism SHOULD
  NOT be used, and it is RECOMMENDED to leave the same PMTU settings
  used during the handshake phase, i.e., 133 bytes if WDP-based
  multiplexing is enabled; 140 bytes otherwise.

  Note that, after the DTLS handshake has completed, any fragmentation
  and reassembly logic that pertains the application layer (e.g.,
  segmenting CoAP messages into DTLS records and reassembling them
  after the crypto operations have been successfully performed) needs
  to be handled by the application that uses the established DTLS
  tunnel.

A.3.  Multiplexing Security Associations

  Unlike IPsec Encapsulating Security Payload (ESP) / Authentication
  Header (AH), DTLS records do not contain any association identifiers.
  Applications must arrange to multiplex between associations on the
  same endpoint which, when using UDP/IP, is usually done with the
  host/port number.

  If the DTLS server allows more than one client to be active at any
  given time, then the Wireless Application Protocol (WAP) User
  Datagram Protocol [WAP-WDP] can be used to achieve multiplexing of
  the different security associations.  (The use of WDP provides the
  additional benefit that upper-layer protocols can operate
  independently of the underlying wireless network, hence achieving
  application-agnostic transport handover.)




Tschofenig & Fossati         Standards Track                   [Page 57]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


  The total overhead cost for encoding the WDP source and destination
  ports is either 5 or 7 bytes out of the total available for the SMS
  content depending on if 1-byte or 2-byte port identifiers are used,
  as shown in Figures 13 and 14.

  0        1        2        3        4
  +--------+--------+--------+--------+--------+
  | ...    | 0x04   | 2      | ...    | ...    |
  +--------+--------+--------+--------+--------+
    UDH      IEI      IE       Dest     Source
    Length            Length   Port     Port

  Legend:
  UDH = user data header
  IEI = information element identifier

      Figure 13: Application Port Addressing Scheme (8-Bit Address)

  0        1        2        3        4        5        6
  +--------+--------+--------+--------+--------+--------+--------+
  | ...    | 0x05   | 4      |       ...       |       ...       |
  +--------+--------+--------+--------+--------+--------+--------+
    UDH      IEI      IE       Dest              Source
    Length            Length   Port              Port

     Figure 14: Application Port Addressing Scheme (16-Bit Address)

  The receiving side of the communication gets the source address from
  the originator address (TP-OA) field of the SMS-DELIVER TPDU.  This
  way, a unique 4-tuple identifying the security association can be
  reconstructed at both ends.  (When replying to its DTLS peer, the
  sender will swap the TP-OA and destination address (TP-DA) parameters
  and the source and destination ports in the WDP.)

A.4.  Timeout

  If SMS-STATUS-REPORT messages are enabled, their receipt is not to be
  interpreted as the signal that the specific handshake message has
  been acted upon by the receiving party.  Therefore, it MUST NOT be
  taken into account by the DTLS timeout and retransmission function.

  Handshake messages MUST carry a validity period (TP-VP parameter in a
  SMS-SUBMIT TPDU) that is not less than the current value of the
  retransmission timeout.  In order to avoid persisting messages in the
  network that will be discarded by the receiving party, handshake
  messages SHOULD carry a validity period that is the same as, or just
  slightly higher than, the current value of the retransmission
  timeout.



Tschofenig & Fossati         Standards Track                   [Page 58]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


Appendix B.  DTLS Record Layer Per-Packet Overhead

  Figure 15 shows the overhead for the DTLS record layer for protecting
  data traffic when AES-128-CCM with an 8-octet Integrity Check Value
  (ICV) is used.

  DTLS Record Layer Header................13 bytes
  Nonce (Explicit).........................8 bytes
  ICV..................................... 8 bytes
  ------------------------------------------------
  Overhead................................29 bytes
  ------------------------------------------------

     Figure 15: AES-128-CCM-8 DTLS Record Layer Per-Packet Overhead

  The DTLS record layer header has 13 octets and consists of:

  o  1-octet content type field,

  o  2-octet version field,

  o  2-octet epoch field,

  o  6-octet sequence number, and

  o  2-octet length field.

  The "nonce" input to the AEAD algorithm is exactly that of [RFC5288],
  i.e., 12 bytes long.  It consists of two values, namely a 4-octet
  salt and an 8-octet nonce_explicit:

     The salt is the "implicit" part and is not sent in the packet.
     Instead, the salt is generated as part of the handshake process.

     The nonce_explicit value is 8 octets long and it is chosen by the
     sender and carried in each TLS record.  RFC 6655 [RFC6655] allows
     the nonce_explicit to be a sequence number or something else.
     This document makes this use more restrictive for use with DTLS:
     the 64-bit none_explicit value MUST be the 16-bit epoch
     concatenated with the 48-bit seq_num.  The sequence number
     component of the nonce_explicit field at the AES-CCM layer is an
     exact copy of the sequence number in the record layer header
     field.  This leads to a duplication of 8-bytes per record.

     To avoid this 8-byte duplication, RFC 7400 [RFC7400] provides help
     with the use of the generic header compression technique for IPv6
     over Low-Power Wireless Personal Area Networks (6LoWPANs).  Note
     that this header compression technique is not available when DTLS



Tschofenig & Fossati         Standards Track                   [Page 59]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


     is exchanged over transports that do not use IPv6 or 6LoWPAN, such
     as the SMS transport described in Appendix A of this document.

Appendix C.  DTLS Fragmentation

  Section 4.2.3 of [RFC6347] advises DTLS implementations to not
  produce overlapping fragments.  However, it requires receivers to be
  able to cope with them.  The need for the latter requisite is
  explained in Section 4.1.1.1 of [RFC6347]: accurate PMTU estimation
  may be traded for shorter handshake completion time.

  In many cases, the cost of handling fragment overlaps has proved to
  be unaffordable for constrained implementations, particularly because
  of the increased complexity in buffer management.

  In order to reduce the likelihood of producing different fragment
  sizes and consequent overlaps within the same handshake, this
  document RECOMMENDs:

  o  clients (handshake initiators) to use reliable PMTU information
     for the intended destination; and

  o  servers to mirror the fragment size selected by their clients.

  The PMTU information comes from either a "fresh enough" discovery
  performed by the client [RFC1981] [RFC4821] or some other reliable
  out-of-band channel.

Acknowledgments

  Thanks to Derek Atkins, Paul Bakker, Olaf Bergmann, Carsten Bormann,
  Ben Campbell, Brian Carpenter, Robert Cragie, Spencer Dawkins, Russ
  Housley, Rene Hummen, Jayaraghavendran K, Sye Loong Keoh, Matthias
  Kovatsch, Sandeep Kumar, Barry Leiba, Simon Lemay, Alexey Melnikov,
  Gabriel Montenegro, Manuel Pegourie-Gonnard, Akbar Rahman, Eric
  Rescorla, Michael Richardson, Ludwig Seitz, Zach Shelby, Michael
  StJohns, Rene Struik, Tina Tsou, and Sean Turner for their helpful
  comments and discussions that have shaped the document.

  A big thanks also to Klaus Hartke, who wrote the initial draft
  version of this document.

  Finally, we would like to thank our area director (Stephen Farrell)
  and our working group chairs (Zach Shelby and Dorothy Gellert) for
  their support.






Tschofenig & Fossati         Standards Track                   [Page 60]

RFC 7925                  TLS/DTLS IoT Profiles                July 2016


Authors' Addresses

  Hannes Tschofenig (editor)
  ARM Ltd.
  110 Fulbourn Rd
  Cambridge  CB1 9NJ
  United Kingdom

  Email: [email protected]
  URI:   http://www.tschofenig.priv.at


  Thomas Fossati
  Nokia
  3 Ely Road
  Milton, Cambridge  CB24 6DD
  United Kingdom

  Email: [email protected]
































Tschofenig & Fossati         Standards Track                   [Page 61]