Internet Engineering Task Force (IETF)                      S. Santesson
Request for Comments: 7924                               3xA Security AB
Category: Standards Track                                  H. Tschofenig
ISSN: 2070-1721                                                 ARM Ltd.
                                                              July 2016


     Transport Layer Security (TLS) Cached Information Extension

Abstract

  Transport Layer Security (TLS) handshakes often include fairly static
  information, such as the server certificate and a list of trusted
  certification authorities (CAs).  This information can be of
  considerable size, particularly if the server certificate is bundled
  with a complete certificate chain (i.e., the certificates of
  intermediate CAs up to the root CA).

  This document defines an extension that allows a TLS client to inform
  a server of cached information, thereby enabling the server to omit
  already available information.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7924.
















Santesson & Tschofenig       Standards Track                    [Page 1]

RFC 7924            TLS Cached Information Extension           July 2016


Copyright Notice

  Copyright (c) 2016 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
  2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
  3.  Cached Information Extension  . . . . . . . . . . . . . . . .   3
  4.  Exchange Specification  . . . . . . . . . . . . . . . . . . .   5
    4.1.  Server Certificate Message  . . . . . . . . . . . . . . .   6
    4.2.  CertificateRequest Message  . . . . . . . . . . . . . . .   7
  5.  Fingerprint Calculation . . . . . . . . . . . . . . . . . . .   7
  6.  Example . . . . . . . . . . . . . . . . . . . . . . . . . . .   8
  7.  Security Considerations . . . . . . . . . . . . . . . . . . .  10
  8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  10
    8.1.  New Entry to the TLS ExtensionType Registry . . . . . . .  10
    8.2.  New Registry for CachedInformationType  . . . . . . . . .  11
  9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  11
    9.1.  Normative References  . . . . . . . . . . . . . . . . . .  11
    9.2.  Informative References  . . . . . . . . . . . . . . . . .  12
  Appendix A.  Example  . . . . . . . . . . . . . . . . . . . . . .  13
  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  18
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  19
















Santesson & Tschofenig       Standards Track                    [Page 2]

RFC 7924            TLS Cached Information Extension           July 2016


1.  Introduction

  Reducing the amount of information exchanged during a Transport Layer
  Security handshake to a minimum helps to improve performance in
  environments where devices are connected to a network with a low
  bandwidth and lossy radio technology.  With the Internet of Things,
  such environments exist, for example, when devices use IEEE 802.15.4,
  Bluetooth Low Energy, or low power wide area networks.  For more
  information about the challenges with smart object deployments,
  please see [RFC6574].

  This specification defines a TLS extension that allows a client and a
  server to exclude transmission information cached in an earlier TLS
  handshake.

  A typical example exchange may therefore look as follows.  First, the
  client and the server execute the full TLS handshake.  The client
  then caches the certificate provided by the server.  When the TLS
  client connects to the TLS server some time in the future, without
  using session resumption, it then attaches the "cached_info"
  extension defined in this document to the ClientHello message to
  indicate that it has cached the certificate, and it provides the
  fingerprint of it.  If the server's certificate has not changed, then
  the TLS server does not need to send its certificate and the
  corresponding certificate chain again.  In case information has
  changed, which can be seen from the fingerprint provided by the
  client, the certificate payload is transmitted to the client to allow
  the client to update the cache.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "MUST", "MUST NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

  This document refers to the TLS protocol, but the description is
  equally applicable to Datagram Transport Layer Security (DTLS) as
  well.

3.  Cached Information Extension

  This document defines a new extension type (cached_info(25)), which
  is used in ClientHello and ServerHello messages.  The extension type
  is specified as follows.

        enum {
             cached_info(25), (65535)
        } ExtensionType;



Santesson & Tschofenig       Standards Track                    [Page 3]

RFC 7924            TLS Cached Information Extension           July 2016


  The extension_data field of this extension, when included in the
  ClientHello, MUST contain the CachedInformation structure.  The
  client MAY send multiple CachedObjects of the same
  CachedInformationType.  This may, for example, be the case when the
  client has cached multiple certificates from a server.

        enum {
             cert(1), cert_req(2) (255)
        } CachedInformationType;

        struct {
             select (type) {
               case client:
                 CachedInformationType type;
                 opaque hash_value<1..255>;
               case server:
                 CachedInformationType type;
             } body;
        } CachedObject;

        struct {
             CachedObject cached_info<1..2^16-1>;
        } CachedInformation;

  This document defines the following two types:

  'cert' type for not sending the complete server certificate message:

     With the type field set to 'cert', the client MUST include the
     fingerprint of the Certificate message in the hash_value field.
     For this type, the fingerprint MUST be calculated using the
     procedure described in Section 5 with the Certificate message as
     input data.

  'cert_req' Type for not sending the complete CertificateRequest
     Message:

     With the type set to 'cert_req', the client MUST include the
     fingerprint of the CertificateRequest message in the hash_value
     field.  For this type, the fingerprint MUST be calculated using
     the procedure described in Section 5 with the CertificateRequest
     message as input data.

  New cached info types can be added following the policy described in
  the IANA Considerations (Section 8).  New message digest algorithms
  for use with these types can also be added by registering a new type
  that makes use of the updated message digest algorithm.  For
  practical reasons, we recommend reusing hash algorithms already



Santesson & Tschofenig       Standards Track                    [Page 4]

RFC 7924            TLS Cached Information Extension           July 2016


  available with TLS ciphersuites.  To avoid additional code and to
  keep the collision probability low, new hash algorithms MUST NOT have
  a collision resistance worse than SHA-256.

4.  Exchange Specification

  Clients supporting this extension MAY include the "cached_info"
  extension in the (extended) ClientHello.  If the client includes the
  extension, then it MUST contain one or more CachedObject attributes.

  A server supporting this extension MAY include the "cached_info"
  extension in the (extended) ServerHello.  By returning the
  "cached_info" extension, the server indicates that it supports the
  cached info types.  For each indicated cached info type, the server
  MUST alter the transmission of respective payloads, according to the
  rules outlined with each type.  If the server includes the extension,
  it MUST only include CachedObjects of a type also supported by the
  client (as expressed in the ClientHello).  For example, if a client
  indicates support for 'cert' and 'cert_req', then the server cannot
  respond with a "cached_info" attribute containing support for
  ('foo-bar').

  Since the client includes a fingerprint of information it cached (for
  each indicated type), the server is able to determine whether cached
  information is stale.  If the server supports this specification and
  notices a mismatch between the data cached by the client and its own
  information, then the server MUST include the information in full and
  MUST NOT list the respective type in the "cached_info" extension.

  Note: If a server is part of a hosting environment, then the client
  may have cached multiple data items for a single server.  To allow
  the client to select the appropriate information from the cache, it
  is RECOMMENDED that the client utilizes the Server Name Indication
  (SNI) extension [RFC6066].

  Following a successful exchange of the "cached_info" extension in the
  ClientHello and ServerHello, the server alters sending the
  corresponding handshake message.  How information is altered from the
  handshake messages and for the types defined in this specification is
  defined in Sections 4.1 and 4.2, respectively.

  Appendix A shows an example hash calculation, and Section 6
  illustrates an example protocol exchange.








Santesson & Tschofenig       Standards Track                    [Page 5]

RFC 7924            TLS Cached Information Extension           July 2016


4.1.  Server Certificate Message

  When a ClientHello message contains the "cached_info" extension with
  a type set to 'cert', then the server MAY send the Certificate
  message shown in Figure 1 under the following conditions:

  o  The server software implements the "cached_info" extension defined
     in this specification.

  o  The 'cert' "cached_info" extension is enabled (for example, a
     policy allows the use of this extension).

  o  The server compared the value in the hash_value field of the
     client-provided "cached_info" extension with the fingerprint of
     the Certificate message it normally sends to clients.  This check
     ensures that the information cached by the client is current.  The
     procedure for calculating the fingerprint is described in
     Section 5.

  The original certificate handshake message syntax is defined in
  [RFC5246] and has been extended with [RFC7250].  RFC 7250 allows the
  certificate payload to contain only the SubjectPublicKeyInfo instead
  of the full information typically found in a certificate.  Hence,
  when this specification is used in combination with [RFC7250] and the
  negotiated certificate type is a raw public key, then the TLS server
  omits sending a certificate payload that contains an ASN.1
  certificate structure with the included SubjectPublicKeyInfo rather
  than the full certificate chain.  As such, this extension is
  compatible with the raw public key extension defined in RFC 7250.
  Note: We assume that the server implementation is able to select the
  appropriate certificate or SubjectPublicKeyInfo from the received
  hash value.  If the SNI extension is used by the client, then the
  server has additional information to guide the selection of the
  appropriate cached info.

  When the cached info specification is used, then a modified version
  of the Certificate message is exchanged.  The modified structure is
  shown in Figure 1.

        struct {
            opaque hash_value<1..255>;
        } Certificate;

                Figure 1: Cached Info Certificate Message







Santesson & Tschofenig       Standards Track                    [Page 6]

RFC 7924            TLS Cached Information Extension           July 2016


4.2.  CertificateRequest Message

  When a fingerprint for an object of type 'cert_req' is provided in
  the ClientHello, the server MAY send the CertificateRequest message
  shown in Figure 2 under the following conditions:

  o  The server software implements the "cached_info" extension defined
     in this specification.

  o  The 'cert_req' "cached_info" extension is enabled (for example, a
     policy allows the use of this extension).

  o  The server compared the value in the hash_value field of the
     client-provided "cached_info" extension with the fingerprint of
     the CertificateRequest message it normally sends to clients.  This
     check ensures that the information cached by the client is
     current.  The procedure for calculating the fingerprint is
     described in Section 5.

  o  The server wants to request a certificate from the client.

  The original CertificateRequest handshake message syntax is defined
  in [RFC5246].  The modified structure of the CertificateRequest
  message is shown in Figure 2.

        struct {
            opaque hash_value<1..255>;
        } CertificateRequest;

            Figure 2: Cached Info CertificateRequest Message

  The CertificateRequest payload is the input parameter to the
  fingerprint calculation described in Section 5.

5.  Fingerprint Calculation

  The fingerprint for the two cached info objects defined in this
  document MUST be computed as follows:

  1.  Compute the SHA-256 [RFC6234] hash of the input data.  The input
      data depends on the cached info type.  This document defines two
      cached info types, described in Sections 4.1 and in 4.2.  Note
      that the computed hash only covers the input data structure (and
      not any type and length information of the record layer).
      Appendix A shows an example.

  2.  Use the output of the SHA-256 hash.




Santesson & Tschofenig       Standards Track                    [Page 7]

RFC 7924            TLS Cached Information Extension           July 2016


  The purpose of the fingerprint provided by the client is to help the
  server select the correct information.  For example, in case of a
  Certificate message, the fingerprint identifies the server
  certificate (and the corresponding private key) for use with the rest
  of the handshake.  Servers may have more than one certificate, and
  therefore a hash needs to be long enough to keep the probably of hash
  collisions low.  On the other hand, the cached info design aims to
  reduce the amount of data being exchanged.  The security of the
  handshake depends on the private key and not on the size of the
  fingerprint.  Hence, the fingerprint is a way to prevent the server
  from accidentally selecting the wrong information.  If an attacker
  injects an incorrect fingerprint, then two outcomes are possible: (1)
  the fingerprint does not relate to any cached state and the server
  has to fall back to a full exchange, and (2) if the attacker manages
  to inject a fingerprint that refers to data the client has not
  cached, then the exchange will fail later when the client continues
  with the handshake and aims to verify the digital signature.  The
  signature verification will fail since the public key cached by the
  client will not correspond to the private key that was used by the
  server to sign the message.

6.  Example

  In the regular, full TLS handshake exchange, shown in Figure 3, the
  TLS server provides its certificate in the certificate payload to the
  client; see step (1).  This allows the client to store the
  certificate for future use.  After some time, the TLS client again
  interacts with the same TLS server and makes use of the TLS
  "cached_info" extension, as shown in Figure 4.  The TLS client
  indicates support for this specification via the "cached_info"
  extension, see step (2), and indicates that it has stored the
  certificate from the earlier exchange (by indicating the 'cert'
  type).  With step (3), the TLS server acknowledges the support of the
  'cert' type and by including the value in the ServerHello, it informs
  the client that the content of the certificate payload contains the
  fingerprint of the certificate instead of the payload, defined in RFC
  5246, of the Certificate message; see step (4).














Santesson & Tschofenig       Standards Track                    [Page 8]

RFC 7924            TLS Cached Information Extension           July 2016


  ClientHello            ->
                         <-  ServerHello
                             Certificate* // (1)
                             ServerKeyExchange*
                             CertificateRequest*
                             ServerHelloDone

  Certificate*
  ClientKeyExchange
  CertificateVerify*
  [ChangeCipherSpec]
  Finished               ->

                         <- [ChangeCipherSpec]
                            Finished

  Application Data <-------> Application Data

       Figure 3: Example Message Exchange: Initial (Full) Exchange


  ClientHello
  cached_info=(cert)     -> // (2)
                         <-  ServerHello
                             cached_info=(cert) (3)
                             Certificate (4)
                             ServerKeyExchange*
                             ServerHelloDone

  ClientKeyExchange
  CertificateVerify*
  [ChangeCipherSpec]
  Finished               ->

                         <- [ChangeCipherSpec]
                            Finished

  Application Data <-------> Application Data

     Figure 4: Example Message Exchange: TLS Cached Extension Usage











Santesson & Tschofenig       Standards Track                    [Page 9]

RFC 7924            TLS Cached Information Extension           July 2016


7.  Security Considerations

  This specification defines a mechanism to reference stored state
  using a fingerprint.  Sending a fingerprint of cached information in
  an unencrypted handshake, as the ClientHello and ServerHello does,
  may allow an attacker or observer to correlate independent TLS
  exchanges.  While some information elements used in this
  specification, such as server certificates, are public objects and
  usually do not contain sensitive information, other types that are
  not yet defined may.  Those who implement and deploy this
  specification should therefore make an informed decision whether the
  cached information is in line with their security and privacy goals.
  In case of concerns, it is advised to avoid sending the fingerprint
  of the data objects in clear.

  The use of the "cached_info" extension allows the server to send
  significantly smaller TLS messages.  Consequently, these omitted
  parts of the messages are not included in the transcript of the
  handshake in the TLS Finish message.  However, since the client and
  the server communicate the hash values of the cached data in the
  initial handshake messages, the fingerprints are included in the TLS
  Finish message.

  Clients MUST ensure that they only cache information from legitimate
  sources.  For example, when the client populates the cache from a TLS
  exchange, then it must only cache information after the successful
  completion of a TLS exchange to ensure that an attacker does not
  inject incorrect information into the cache.  Failure to do so allows
  for man-in-the-middle attacks.

  Security considerations for the fingerprint calculation are discussed
  in Section 5.

8.  IANA Considerations

8.1.  New Entry to the TLS ExtensionType Registry

  IANA has added an entry to the existing TLS "ExtensionType Values"
  registry, defined in [RFC5246], for cached_info(25) defined in this
  document.











Santesson & Tschofenig       Standards Track                   [Page 10]

RFC 7924            TLS Cached Information Extension           July 2016


8.2.  New Registry for CachedInformationType

  IANA has established a registry titled "TLS CachedInformationType
  Values".  The entries in the registry are:

  Value    Description
  -----    -----------
    0      Reserved
    1      cert
    2      cert_req
  224-255  Reserved for Private Use

  The policy for adding new values to this registry, following the
  terminology defined in [RFC5226], is as follows:

  o  0-63 (decimal): Standards Action

  o  64-223 (decimal): Specification Required

9.  References

9.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246,
             DOI 10.17487/RFC5246, August 2008,
             <http://www.rfc-editor.org/info/rfc5246>.

  [RFC6066]  Eastlake 3rd, D., "Transport Layer Security (TLS)
             Extensions: Extension Definitions", RFC 6066,
             DOI 10.17487/RFC6066, January 2011,
             <http://www.rfc-editor.org/info/rfc6066>.

  [RFC6234]  Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
             (SHA and SHA-based HMAC and HKDF)", RFC 6234,
             DOI 10.17487/RFC6234, May 2011,
             <http://www.rfc-editor.org/info/rfc6234>.









Santesson & Tschofenig       Standards Track                   [Page 11]

RFC 7924            TLS Cached Information Extension           July 2016


9.2.  Informative References

  [ASN.1-Dump]
             Gutmann, P., "ASN.1 Object Dump Program", November 2010,
             <http://manpages.ubuntu.com/manpages/precise/man1/
             dumpasn1.1.html>.

  [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 5226,
             DOI 10.17487/RFC5226, May 2008,
             <http://www.rfc-editor.org/info/rfc5226>.

  [RFC6574]  Tschofenig, H. and J. Arkko, "Report from the Smart Object
             Workshop", RFC 6574, DOI 10.17487/RFC6574, April 2012,
             <http://www.rfc-editor.org/info/rfc6574>.

  [RFC7250]  Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
             Weiler, S., and T. Kivinen, "Using Raw Public Keys in
             Transport Layer Security (TLS) and Datagram Transport
             Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
             June 2014, <http://www.rfc-editor.org/info/rfc7250>.






























Santesson & Tschofenig       Standards Track                   [Page 12]

RFC 7924            TLS Cached Information Extension           July 2016


Appendix A.  Example

  Consider a certificate containing a NIST P256 elliptic curve public
  key displayed using Peter Gutmann's ASN.1 decoder [ASN.1-Dump] in
  Figure 5.

   0 556: SEQUENCE {
   4 434:   SEQUENCE {
   8   3:     [0] {
  10   1:       INTEGER 2
        :       }
  13   1:     INTEGER 13
  16  10:     SEQUENCE {
  18   8:      OBJECT IDENTIFIER ecdsaWithSHA256 (1 2 840 10045 4 3 2)
        :       }
  28  62:     SEQUENCE {
  30  11:       SET {
  32   9:         SEQUENCE {
  34   3:           OBJECT IDENTIFIER countryName (2 5 4 6)
  39   2:           PrintableString 'NL'
        :           }
        :         }
  43  17:       SET {
  45  15:         SEQUENCE {
  47   3:           OBJECT IDENTIFIER organizationName (2 5 4 10)
  52   8:           PrintableString 'PolarSSL'
        :           }
        :         }
  62  28:       SET {
  64  26:         SEQUENCE {
  66   3:           OBJECT IDENTIFIER commonName (2 5 4 3)
  71  19:           PrintableString 'Polarssl Test EC CA'
        :           }
        :         }
        :       }
  92  30:     SEQUENCE {
  94  13:       UTCTime 24/09/2013 15:52:04 GMT
 109  13:       UTCTime 22/09/2023 15:52:04 GMT
        :       }
 124  65:     SEQUENCE {
 126  11:       SET {
 128   9:         SEQUENCE {
 130   3:           OBJECT IDENTIFIER countryName (2 5 4 6)
 135   2:           PrintableString 'NL'
        :           }
        :         }





Santesson & Tschofenig       Standards Track                   [Page 13]

RFC 7924            TLS Cached Information Extension           July 2016


 139  17:       SET {
 141  15:         SEQUENCE {
 143   3:           OBJECT IDENTIFIER organizationName (2 5 4 10)
 148   8:           PrintableString 'PolarSSL'
        :           }
        :         }
 158  31:       SET {
 160  29:         SEQUENCE {
 162   3:           OBJECT IDENTIFIER commonName (2 5 4 3)
 167  22:           PrintableString 'PolarSSL Test Client 2'
        :           }
        :         }
        :       }
 191  89:     SEQUENCE {
 193  19:       SEQUENCE {
 195   7:         OBJECT IDENTIFIER ecPublicKey (1 2 840 10045 2 1)
 204   8:         OBJECT IDENTIFIER prime256v1 (1 2 840 10045 3 1 7)
        :         }
 214  66:       BIT STRING
        :         04 57 E5 AE B1 73 DF D3 AC BB 93 B8 81 FF 12 AE
        :         EE E6 53 AC CE 55 53 F6 34 0E CC 2E E3 63 25 0B
        :         DF 98 E2 F3 5C 60 36 96 C0 D5 18 14 70 E5 7F 9F
        :         D5 4B 45 18 E5 B0 6C D5 5C F8 96 8F 87 70 A3 E4
        :         C7
        :       }
 282 157:     [3] {
 285 154:       SEQUENCE {
 288   9:         SEQUENCE {
 290   3:           OBJECT IDENTIFIER basicConstraints (2 5 29 19)
 295   2:           OCTET STRING, encapsulates {
 297   0:             SEQUENCE {}
        :             }
        :           }
 299  29:         SEQUENCE {
 301   3:           OBJECT IDENTIFIER subjectKeyIdentifier (2 5 29 14)
 306  22:           OCTET STRING, encapsulates {
 308  20:             OCTET STRING
        :              7A 00 5F 86 64 FC E0 5D E5 11 10 3B B2 E6 3B C4
        :              26 3F CF E2
        :             }
        :           }
 330 110:         SEQUENCE {
 332   3:          OBJECT IDENTIFIER authorityKeyIdentifier (2 5 29 35)
 337 103:          OCTET STRING, encapsulates {
 339 101:             SEQUENCE {






Santesson & Tschofenig       Standards Track                   [Page 14]

RFC 7924            TLS Cached Information Extension           July 2016


 341  20:               [0]
        :               9D 6D 20 24 49 01 3F 2B CB 78 B5 19 BC 7E 24
        :               C9 DB FB 36 7C
 363  66:               [1] {
 365  64:                 [4] {
 367  62:                   SEQUENCE {
 369  11:                     SET {
 371   9:                      SEQUENCE {
 373   3:                       OBJECT IDENTIFIER countryName (2 5 4 6)
 378   2:                       PrintableString 'NL'
        :                       }
        :                      }
 382  17:                     SET {
 384  15:                      SEQUENCE {
 386   3:                        OBJECT IDENTIFIER organizationName
        :                               (2 5 4 10)
 391   8:                        PrintableString 'PolarSSL'
        :                        }
        :                      }
 401  28:                     SET {
 403  26:                      SEQUENCE {
 405   3:                       OBJECT IDENTIFIER commonName (2 5 4 3)
 410  19:                       PrintableString 'Polarssl Test EC CA'
        :                        }
        :                      }
        :                     }
        :                   }
        :                 }
 431   9:               [2] 00 C1 43 E2 7E 62 43 CC E8
        :               }
        :             }
        :           }
        :         }
        :       }
        :     }
 442  10:   SEQUENCE {
 444   8:     OBJECT IDENTIFIER ecdsaWithSHA256 (1 2 840 10045 4 3 2)
        :     }
 454 104:   BIT STRING, encapsulates {
 457 101:     SEQUENCE {
 459  48:       INTEGER
        :         4A 65 0D 7B 20 83 A2 99 B9 A8 0F FC 8D EE 8F 3D
        :         BB 70 4C 96 03 AC 8E 78 70 DD F2 0E A0 B2 16 CB
        :         65 8E 1A C9 3F 2C 61 7E F8 3C EF AD 1C EE 36 20







Santesson & Tschofenig       Standards Track                   [Page 15]

RFC 7924            TLS Cached Information Extension           July 2016


 509  49:       INTEGER
        :         00 9D F2 27 A6 D5 74 B8 24 AE E1 6A 3F 31 A1 CA
        :         54 2F 08 D0 8D EE 4F 0C 61 DF 77 78 7D B4 FD FC
        :         42 49 EE E5 B2 6A C2 CD 26 77 62 8E 28 7C 9E 57
        :         45
        :       }
        :     }
        :   }

               Figure 5: ASN.1-Based Certificate: Example

  To include the certificate shown in Figure 5 in a TLS/DTLS
  Certificate message, it is prepended with a message header.  This
  Certificate message header in our example is 0b 00 02 36 00 02 33 00
  02 00 02 30, which indicates:

  Message Type:  0b -- 1-byte type field indicating a Certificate
     message

  Length:  00 02 36 -- 3-byte length field indicating a 566-byte
     payload

  Certificates Length:  00 02 33 -- 3-byte length field indicating 563
     bytes for the entire certificates_list structure, which may
     contain multiple certificates.  In our example, only one
     certificate is included.

  Certificate Length:  00 02 30 -- 3-byte length field indicating 560
     bytes of the actual certificate following immediately afterwards.
     In our example, this is the certificate content with 30 82 02 ....
     9E 57 45 shown in Figure 6.




















Santesson & Tschofenig       Standards Track                   [Page 16]

RFC 7924            TLS Cached Information Extension           July 2016


  The hex encoding of the ASN.1-encoded certificate payload shown in
  Figure 5 leads to the following encoding.

            30 82 02 2C 30 82 01 B2  A0 03 02 01 02 02 01 0D
            30 0A 06 08 2A 86 48 CE  3D 04 03 02 30 3E 31 0B
            30 09 06 03 55 04 06 13  02 4E 4C 31 11 30 0F 06
            03 55 04 0A 13 08 50 6F  6C 61 72 53 53 4C 31 1C
            30 1A 06 03 55 04 03 13  13 50 6F 6C 61 72 73 73
            6C 20 54 65 73 74 20 45  43 20 43 41 30 1E 17 0D
            31 33 30 39 32 34 31 35  35 32 30 34 5A 17 0D 32
            33 30 39 32 32 31 35 35  32 30 34 5A 30 41 31 0B
            30 09 06 03 55 04 06 13  02 4E 4C 31 11 30 0F 06
            03 55 04 0A 13 08 50 6F  6C 61 72 53 53 4C 31 1F
            30 1D 06 03 55 04 03 13  16 50 6F 6C 61 72 53 53
            4C 20 54 65 73 74 20 43  6C 69 65 6E 74 20 32 30
            59 30 13 06 07 2A 86 48  CE 3D 02 01 06 08 2A 86
            48 CE 3D 03 01 07 03 42  00 04 57 E5 AE B1 73 DF
            D3 AC BB 93 B8 81 FF 12  AE EE E6 53 AC CE 55 53
            F6 34 0E CC 2E E3 63 25  0B DF 98 E2 F3 5C 60 36
            96 C0 D5 18 14 70 E5 7F  9F D5 4B 45 18 E5 B0 6C
            D5 5C F8 96 8F 87 70 A3  E4 C7 A3 81 9D 30 81 9A
            30 09 06 03 55 1D 13 04  02 30 00 30 1D 06 03 55
            1D 0E 04 16 04 14 7A 00  5F 86 64 FC E0 5D E5 11
            10 3B B2 E6 3B C4 26 3F  CF E2 30 6E 06 03 55 1D
            23 04 67 30 65 80 14 9D  6D 20 24 49 01 3F 2B CB
            78 B5 19 BC 7E 24 C9 DB  FB 36 7C A1 42 A4 40 30
            3E 31 0B 30 09 06 03 55  04 06 13 02 4E 4C 31 11
            30 0F 06 03 55 04 0A 13  08 50 6F 6C 61 72 53 53
            4C 31 1C 30 1A 06 03 55  04 03 13 13 50 6F 6C 61
            72 73 73 6C 20 54 65 73  74 20 45 43 20 43 41 82
            09 00 C1 43 E2 7E 62 43  CC E8 30 0A 06 08 2A 86
            48 CE 3D 04 03 02 03 68  00 30 65 02 30 4A 65 0D
            7B 20 83 A2 99 B9 A8 0F  FC 8D EE 8F 3D BB 70 4C
            96 03 AC 8E 78 70 DD F2  0E A0 B2 16 CB 65 8E 1A
            C9 3F 2C 61 7E F8 3C EF  AD 1C EE 36 20 02 31 00
            9D F2 27 A6 D5 74 B8 24  AE E1 6A 3F 31 A1 CA 54
            2F 08 D0 8D EE 4F 0C 61  DF 77 78 7D B4 FD FC 42
            49 EE E5 B2 6A C2 CD 26  77 62 8E 28 7C 9E 57 45

            Figure 6: Hex Encoding of the Example Certificate

  Applying the SHA-256 hash function to the Certificate message, which
  starts with 0b 00 02 and ends with 9E 57 45, produces
  0x086eefb4859adfe977defac494fff6b73033b4ce1f86b8f2a9fc0c6bf98605af.







Santesson & Tschofenig       Standards Track                   [Page 17]

RFC 7924            TLS Cached Information Extension           July 2016


Acknowledgments

  We would like to thank the following persons for your detailed
  document reviews:

  o  Paul Wouters and Nikos Mavrogiannopoulos (December 2011)

  o  Rob Stradling (February 2012)

  o  Ondrej Mikle (March 2012)

  o  Ilari Liusvaara, Adam Langley, and Eric Rescorla (July 2014)

  o  Sean Turner (August 2014)

  o  Martin Thomson (August 2015)

  o  Jouni Korhonen (November 2015)

  o  Dave Garrett (December 2015)

  o  Matt Miller (December 2015)

  o  Anirudh Ramachandran (March 2016)

  We would also to thank Martin Thomson, Karthikeyan Bhargavan, Sankalp
  Bagaria, and Eric Rescorla for their feedback regarding the
  fingerprint calculation.

  Finally, we would like to thank the TLS working group chairs, Sean
  Turner and Joe Salowey, as well as the responsible Security Area
  Director, Stephen Farrell, for their support and their reviews.



















Santesson & Tschofenig       Standards Track                   [Page 18]

RFC 7924            TLS Cached Information Extension           July 2016


Authors' Addresses

  Stefan Santesson
  3xA Security AB
  Forskningsbyn Ideon
  Lund  223 70
  Sweden

  Email: [email protected]


  Hannes Tschofenig
  ARM Ltd.
  Hall in Tirol  6060
  Austria

  Email: [email protected]
  URI:   http://www.tschofenig.priv.at

































Santesson & Tschofenig       Standards Track                   [Page 19]