Internet Engineering Task Force (IETF)                          D. Dhody
Request for Comments: 7898                                      U. Palle
Category: Experimental                                      V. Kondreddy
ISSN: 2070-1721                                      Huawei Technologies
                                                            R. Casellas
                                                                   CTTC
                                                              June 2016


                          Domain Subobjects
  for Resource Reservation Protocol - Traffic Engineering (RSVP-TE)

Abstract

  The Resource Reservation Protocol - Traffic Engineering (RSVP-TE)
  specification and the Generalized Multiprotocol Label Switching
  (GMPLS) extensions to RSVP-TE allow abstract nodes and resources to
  be explicitly included in a path setup.  Further, Exclude Route
  extensions to RSVP-TE allow abstract nodes and resources to be
  explicitly excluded in a path setup.

  This document specifies new subobjects to include or exclude
  Autonomous Systems (ASes), which are identified by a 4-byte AS
  number, and Interior Gateway Protocol (IGP) areas during path setup.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for examination, experimental implementation, and
  evaluation.

  This document defines an Experimental Protocol for the Internet
  community.  This document is a product of the Internet Engineering
  Task Force (IETF).  It represents the consensus of the IETF
  community.  It has received public review and has been approved for
  publication by the Internet Engineering Steering Group (IESG).  Not
  all documents approved by the IESG are a candidate for any level of
  Internet Standard; see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7898.









Dhody, et al.                 Experimental                      [Page 1]

RFC 7898              Domain Subobjects for RSVP-TE            June 2016


Copyright Notice

  Copyright (c) 2016 IETF Trust and the persons identified as the
  document authors.  All rights reserved.  This document is subject to
  BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
  Documents (http://trustee.ietf.org/license-info) in effect on the
  date of publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
    1.1.  Scope . . . . . . . . . . . . . . . . . . . . . . . . . .   3
    1.2.  Requirements Language . . . . . . . . . . . . . . . . . .   4
  2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   4
  3.  Subobjects for Domains  . . . . . . . . . . . . . . . . . . .   5
    3.1.  Domains . . . . . . . . . . . . . . . . . . . . . . . . .   5
    3.2.  Explicit Route Object (ERO) Subobjects  . . . . . . . . .   6
      3.2.1.  Autonomous System . . . . . . . . . . . . . . . . . .   6
      3.2.2.  IGP Area  . . . . . . . . . . . . . . . . . . . . . .   7
      3.2.3.  Mode of Operation . . . . . . . . . . . . . . . . . .   8
    3.3.  Exclude Route Object (XRO) Subobjects . . . . . . . . . .   9
      3.3.1.  Autonomous System . . . . . . . . . . . . . . . . . .   9
      3.3.2.  IGP Area  . . . . . . . . . . . . . . . . . . . . . .   9
      3.3.3.  Mode of Operation . . . . . . . . . . . . . . . . . .  10
    3.4.  Explicit Exclusion Route Subobject  . . . . . . . . . . .  10
  4.  Interaction with Path Computation Element (PCE) . . . . . . .  10
  5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  11
    5.1.  New Subobjects  . . . . . . . . . . . . . . . . . . . . .  11
  6.  Security Considerations . . . . . . . . . . . . . . . . . . .  11
  7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  12
    7.1.  Normative References  . . . . . . . . . . . . . . . . . .  12
    7.2.  Informative References  . . . . . . . . . . . . . . . . .  13
  Appendix A.  Examples . . . . . . . . . . . . . . . . . . . . . .  14
    A.1.  Inter-Area LSP Path Setup . . . . . . . . . . . . . . . .  14
    A.2.  Inter-AS LSP Path Setup . . . . . . . . . . . . . . . . .  15
      A.2.1.  Example 1 . . . . . . . . . . . . . . . . . . . . . .  15
      A.2.2.  Example 2 . . . . . . . . . . . . . . . . . . . . . .  16
  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  17
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  18







Dhody, et al.                 Experimental                      [Page 2]

RFC 7898              Domain Subobjects for RSVP-TE            June 2016


1.  Introduction

  The RSVP-TE specification [RFC3209] and the GMPLS extensions to
  RSVP-TE [RFC3473] allow abstract nodes and resources to be explicitly
  included in a path setup using the Explicit Route Object (ERO).
  Further, Exclude Route extensions [RFC4874] allow abstract nodes or
  resources to be excluded from the whole path using the Exclude Route
  Object (XRO).  To exclude certain abstract nodes or resources between
  a specific pair of abstract nodes present in an ERO, an Explicit
  Exclusion Route subobject (EXRS) is used.

  [RFC3209] already describes the notion of abstract nodes, where an
  abstract node is a group of nodes whose internal topology is opaque
  to the ingress node of the Label Switched Path (LSP).  It further
  defines a subobject for AS, but with a 2-byte AS number only.

  This document extends the notion of abstract nodes by adding new
  subobjects for IGP areas and 4-byte AS numbers (as per [RFC6793]).
  These subobjects can be included in ERO, XRO, or EXRS.

  In case of per-domain path computation [RFC5152], where the full path
  of an inter-domain TE LSP cannot be or is not determined at the
  ingress node, the signaling message could use domain identifiers.
  The use of these new subobjects is illustrated in Appendix A.

  Further, the domain identifier could simply act as a delimiter to
  specify where the domain boundary starts and ends.

  This is a companion document to Path Computation Element Protocol
  (PCEP) extensions for the domain sequence [RFC7897].

1.1.  Scope

  The procedures described in this document are experimental.  The
  experiment is intended to enable research for the usage of domain
  subobjects for inter-domain path setup.  For this purpose, this
  document specifies new domain subobjects as well as how they
  incorporate with existing subobjects.

  The experiment will end two years after the RFC is published.  At
  that point, the RFC authors will attempt to determine how widely this
  has been implemented and deployed.

  This document does not change the procedures for handling subobjects
  in RSVP-TE.






Dhody, et al.                 Experimental                      [Page 3]

RFC 7898              Domain Subobjects for RSVP-TE            June 2016


  The new subobjects introduced by this document will not be understood
  by legacy implementations.  If a legacy implementation receives one
  of the subobjects that it does not understand in an RSVP-TE object,
  the legacy implementation will behave as described in [RFC3209] and
  [RFC4874].  Therefore, it is assumed that this experiment will be
  conducted only when all nodes processing the new subobject form part
  of the experiment.

  When the result of implementation and deployment are available, this
  document will be updated and refined, and then it will be moved from
  Experimental to Standards Track.

  It should be noted that there are other ways such as the use of a
  boundary node to identify the domain (instead of a domain
  identifier); the mechanism defined in this document is just another
  tool in the toolkit for the operator.

1.2.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

2.  Terminology

  The following terminology is used in this document.

  AS:  Autonomous System

  Domain:  As per [RFC4655], any collection of network elements within
     a common sphere of address management or path computational
     responsibility.  Examples of domains include IGP areas and ASes.

  ERO:  Explicit Route Object

  EXRS:  Explicit Exclusion Route subobject

  IGP:  Interior Gateway Protocol.  Either of the two routing
     protocols: Open Shortest Path First (OSPF) or Intermediate System
     to Intermediate System (IS-IS).

  IS-IS:  Intermediate System to Intermediate System

  OSPF:  Open Shortest Path First







Dhody, et al.                 Experimental                      [Page 4]

RFC 7898              Domain Subobjects for RSVP-TE            June 2016


  PCE:  Path Computation Element.  An entity (component, application,
     or network node) that is capable of computing a network path or
     route based on a network graph and applying computational
     constraints.

  PCEP:  Path Computation Element Protocol

  RSVP:  Resource Reservation Protocol

  TE LSP:  Traffic Engineering Label Switched Path

  XRO:  Exclude Route Object

3.  Subobjects for Domains

3.1.  Domains

  [RFC4726] and [RFC4655] define domain as a separate administrative or
  geographic environment within the network.  A domain could be further
  defined as a zone of routing or computational ability.  Under these
  definitions, a domain might be categorized as an AS or an IGP area.

  As per [RFC3209], an abstract node is a group of nodes whose internal
  topology is opaque to the ingress node of the LSP.  Using this
  concept of abstraction, an explicitly routed LSP can be specified as
  a sequence of IP prefixes or a sequence of ASes.  In this document,
  we extend the notion to include the IGP area and 4-byte AS number.

  These subobjects appear in RSVP-TE, notably in:

  o  Explicit Route Object (ERO): As per [RFC3209], an explicit route
     is a particular path in the network topology including abstract
     nodes (including domains).

  o  Exclude Route Object (XRO): As per [RFC4874], an Exclude Route
     identifies a list of abstract nodes (including domains) that
     should not be traversed along the path of the LSP being
     established.

  o  Explicit Exclusion Route Subobject (EXRS): As per [RFC4874], used
     to specify exclusion of certain abstract nodes between a specific
     pair of nodes.  EXRS is a subobject carried inside the ERO.  These
     subobjects can be used to specify the domains to be excluded
     between two abstract nodes.







Dhody, et al.                 Experimental                      [Page 5]

RFC 7898              Domain Subobjects for RSVP-TE            June 2016


3.2.  Explicit Route Object (ERO) Subobjects

  As stated in [RFC3209], an explicit route is a particular path in the
  network topology.  In addition to the ability to identify specific
  nodes along the path, an explicit route can identify a group of nodes
  (abstract nodes) to be traversed along the path.

  Some subobjects are defined in [RFC3209], [RFC3473], [RFC3477],
  [RFC4874], and [RFC5553], but new subobjects related to domains are
  needed.

  This document extends the support for 4-byte AS numbers and IGP
  areas.

                Value   Description
                -----   ---------
                5       4-byte AS number
                6       OSPF Area ID
                7       IS-IS Area ID

3.2.1.  Autonomous System

  [RFC3209] already defines 2-byte AS numbers.

  To support 4-byte AS numbers as per [RFC6793], the following
  subobject is defined:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |L|    Type     |     Length    |         Reserved              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                      AS Number (4 bytes)                      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  L: The L bit is an attribute of the subobject as defined in
     [RFC3209], i.e., it's set if the subobject represents a loose hop
     in the explicit route.  If the bit is not set, the subobject
     represents a strict hop in the explicit route.

  Type:  5 (indicating a 4-byte AS number).

  Length:  8 (total length of the subobject in bytes).

  Reserved:  Zero at transmission; ignored at receipt.






Dhody, et al.                 Experimental                      [Page 6]

RFC 7898              Domain Subobjects for RSVP-TE            June 2016


  AS Number:  The 4-byte AS number.  Note that if 2-byte AS numbers are
     in use, the low-order bits (16 through 31) MUST be used, and the
     high-order bits (0 through 15) MUST be set to zero.  For the
     purpose of this experiment, it is advised to use a 4-byte AS
     number subobject as the default.

3.2.2.  IGP Area

  Since the length and format of Area ID is different for OSPF and
  IS-IS, the following two subobjects are defined:

  For OSPF, the Area ID is a 32-bit number.  The subobject is encoded
  as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |L|    Type     |     Length    |         Reserved              |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                    OSPF Area ID (4 bytes)                     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  L: The L bit is an attribute of the subobject as defined in
     [RFC3209].

  Type:  6 (indicating a 4-byte OSPF Area ID).

  Length:  8 (total length of the subobject in bytes).

  Reserved:  Zero at transmission; ignored at receipt.

  OSPF Area ID:  The 4-byte OSPF Area ID.



















Dhody, et al.                 Experimental                      [Page 7]

RFC 7898              Domain Subobjects for RSVP-TE            June 2016


  For IS-IS, the Area ID is of variable length; thus, the length of the
  subobject is variable.  The Area ID is as described in IS-IS by the
  ISO standard [ISO10589].  The subobject is encoded as follows:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |L|    Type     |     Length    |  Area-Len     |  Reserved     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    //                        IS-IS Area ID                        //
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  L: The L bit is an attribute of the subobject as defined in
     [RFC3209].

  Type:  7 (indicating the IS-IS Area ID).

  Length:  Variable.  The length MUST be at least 8 and MUST be a
     multiple of 4.

  Area-Len:  Variable (length of the actual (non-padded) IS-IS area
     identifier in octets; valid values are from 1 to 13, inclusive).

  Reserved:  Zero at transmission; ignored at receipt.

  IS-IS Area ID:  The variable-length IS-IS area identifier.  Padded
     with trailing zeroes to a 4-byte boundary.

3.2.3.  Mode of Operation

  The new subobjects to support 4-byte AS numbers and the IGP (OSPF /
  IS-IS) area could be used in the ERO to specify an abstract node (a
  group of nodes whose internal topology is opaque to the ingress node
  of the LSP).

  All the rules of processing (for example, next-hop selection, L bit
  processing, unrecognized subobjects, etc.) are as per the [RFC3209].
  Note that if a node is called upon to process subobjects defined in
  this document that it does not recognize, it will behave as described
  in [RFC3209] when an unrecognized ERO subobject is encountered.  This
  means that this node will return a PathErr with error code "Routing
  Error" and error value "Bad EXPLICIT_ROUTE object" with the
  EXPLICIT_ROUTE object included, truncated (on the left) to the
  offending subobject.





Dhody, et al.                 Experimental                      [Page 8]

RFC 7898              Domain Subobjects for RSVP-TE            June 2016


3.3.  Exclude Route Object (XRO) Subobjects

  As stated in [RFC4874], the Exclude Route identifies a list of
  abstract nodes to exclude (not be traversed) along the path of the
  LSP being established.

  Some subobjects are defined in [RFC3209], [RFC3477], [RFC4874], and
  [RFC6001], but new subobjects related to domains are needed.

  This document extends the support for 4-byte AS numbers and IGP
  areas.

                Value   Description
                -----   ---------
                5       4-byte AS number
                6       OSPF Area ID
                7       IS-IS Area ID

3.3.1.  Autonomous System

  [RFC3209] and [RFC4874] already define a 2-byte AS number.

  To support 4-byte AS numbers as per [RFC6793], a subobject has the
  same format as defined in Section 3.2.1 with the following
  difference:

  The meaning of the L bit is as per [RFC4874], where:

  0: indicates that the abstract node specified MUST be excluded.

  1: indicates that the abstract node specified SHOULD be avoided.

3.3.2.  IGP Area

  Since the length and format of Area ID is different for OSPF and IS-
  IS, the following two subobjects are defined:

  For OSPF, the Area ID is a 32-bit number.  Subobjects for OSPF and
  IS-IS are of the same format as defined in Section 3.2.2 with the
  following difference:

  The meaning of the L bit is as per [RFC4874].









Dhody, et al.                 Experimental                      [Page 9]

RFC 7898              Domain Subobjects for RSVP-TE            June 2016


3.3.3.  Mode of Operation

  The new subobjects to support 4-byte AS numbers and the IGP (OSPF /
  IS-IS) area could also be used in the XRO to specify exclusion of an
  abstract node (a group of nodes whose internal topology is opaque to
  the ingress node of the LSP).

  All the rules of processing are as per [RFC4874].

  Note that if a node is called upon to process a subobject defined in
  this document that it does not recognize, it will behave as described
  in [RFC4874] when an unrecognized XRO subobject is encountered, i.e.,
  ignore it.  In this case, the desired exclusion will not be carried
  out.

  IGP area subobjects in the XRO are local to the current AS.  In case
  of multi-AS path computation that excludes an IGP area in a different
  AS, an IGP area subobject should be part of EXRS in the ERO to
  specify the AS in which the IGP area is to be excluded.  Further,
  policy may be applied to prune/ignore area subobjects in XRO at the
  AS boundary.

3.4.  Explicit Exclusion Route Subobject

  As per [RFC4874], the Explicit Exclusion Route is used to specify
  exclusion of certain abstract nodes between a specific pair of nodes
  or resources in the explicit route.  EXRS is an ERO subobject that
  contains one or more subobjects of its own, called EXRS subobjects.

  The EXRS subobject could carry any of the subobjects defined for XRO;
  thus, the new subobjects to support 4-byte AS numbers and the IGP
  (OSPF / IS-IS) area can also be used in the EXRS.  The meanings of
  the fields of the new XRO subobjects are unchanged when the
  subobjects are included in an EXRS, except that the scope of the
  exclusion is limited to the single hop between the previous and
  subsequent elements in the ERO.

  All the rules of processing are as per [RFC4874].

4.  Interaction with Path Computation Element (PCE)

  The domain subobjects to be used in PCEP are referred to in
  [RFC7897].  Note that the new domain subobjects follow the principle
  that subobjects used in PCEP [RFC5440] are identical to the
  subobjects used in RSVP-TE and thus are interchangeable between PCEP
  and RSVP-TE.





Dhody, et al.                 Experimental                     [Page 10]

RFC 7898              Domain Subobjects for RSVP-TE            June 2016


5.  IANA Considerations

5.1.  New Subobjects

  IANA maintains the "Resource Reservation Protocol (RSVP) Parameters"
  registry at <http://www.iana.org/assignments/rsvp-parameters>.
  Within this registry, IANA maintains two sub-registries:

  o  EXPLICIT_ROUTE subobjects (see "Sub-object type - 20
     EXPLICIT_ROUTE - Type 1 Explicit Route")

  o  EXCLUDE_ROUTE subobjects (see "Sub-object types of Class Types or
     C-Types - 232 EXCLUDE_ROUTE")

  IANA has made identical additions to these registries as follows, in
  sync with [RFC7897]:

  Value   Description         Reference
  -----   ----------------    -------------------
  5       4-byte AS number    [RFC7897], RFC 7898
  6       OSPF Area ID        [RFC7897], RFC 7898
  7       IS-IS Area ID       [RFC7897], RFC 7898

  Further, IANA has added a reference to this document to the new PCEP
  numbers that are registered by [RFC7897], as shown on
  <http://www.iana.org/assignments/pcep>.

6.  Security Considerations

  Security considerations for RSVP-TE and GMPLS signaling RSVP-TE
  extensions are covered in [RFC3209] and [RFC3473].  This document
  does not introduce any new messages or any substantive new
  processing, so those security considerations continue to apply.
  Further, general considerations for securing RSVP-TE in MPLS-TE and
  GMPLS networks can be found in [RFC5920].  Section 8 of [RFC5920]
  describes the inter-provider security considerations, which continue
  to apply.

  The route exclusion security considerations are covered in [RFC4874]
  and continue to apply.











Dhody, et al.                 Experimental                     [Page 11]

RFC 7898              Domain Subobjects for RSVP-TE            June 2016


7.  References

7.1.  Normative References

  [ISO10589]
             International Organization for Standardization,
             "Information technology -- Telecommunications and
             information exchange between systems -- Intermediate
             System to Intermediate System intra-domain routeing
             information exchange protocol for use in conjunction with
             the protocol for providing the connectionless-mode network
             service (ISO 8473)", ISO/IEC 10589:2002, Second Edition,
             November 2002.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC3209]  Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
             and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
             Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
             <http://www.rfc-editor.org/info/rfc3209>.

  [RFC3473]  Berger, L., Ed., "Generalized Multi-Protocol Label
             Switching (GMPLS) Signaling Resource ReserVation Protocol-
             Traffic Engineering (RSVP-TE) Extensions", RFC 3473,
             DOI 10.17487/RFC3473, January 2003,
             <http://www.rfc-editor.org/info/rfc3473>.

  [RFC3477]  Kompella, K. and Y. Rekhter, "Signalling Unnumbered Links
             in Resource ReSerVation Protocol - Traffic Engineering
             (RSVP-TE)", RFC 3477, DOI 10.17487/RFC3477, January 2003,
             <http://www.rfc-editor.org/info/rfc3477>.

  [RFC4874]  Lee, CY., Farrel, A., and S. De Cnodder, "Exclude Routes -
             Extension to Resource ReserVation Protocol-Traffic
             Engineering (RSVP-TE)", RFC 4874, DOI 10.17487/RFC4874,
             April 2007, <http://www.rfc-editor.org/info/rfc4874>.

  [RFC7897]  Dhody, D., Palle, U., and R. Casellas, "Domain Subobjects
             for the Path Computation Element Communication Protocol
             (PCEP)", RFC 7897, DOI 10.17487/RFC7897, June 2016,
             <http://www.rfc-editor.org/info/rfc7897>.







Dhody, et al.                 Experimental                     [Page 12]

RFC 7898              Domain Subobjects for RSVP-TE            June 2016


7.2.  Informative References

  [RFC4655]  Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
             Element (PCE)-Based Architecture", RFC 4655,
             DOI 10.17487/RFC4655, August 2006,
             <http://www.rfc-editor.org/info/rfc4655>.

  [RFC4726]  Farrel, A., Vasseur, J., and A. Ayyangar, "A Framework for
             Inter-Domain Multiprotocol Label Switching Traffic
             Engineering", RFC 4726, DOI 10.17487/RFC4726, November
             2006, <http://www.rfc-editor.org/info/rfc4726>.

  [RFC5152]  Vasseur, JP., Ed., Ayyangar, A., Ed., and R. Zhang, "A
             Per-Domain Path Computation Method for Establishing Inter-
             Domain Traffic Engineering (TE) Label Switched Paths
             (LSPs)", RFC 5152, DOI 10.17487/RFC5152, February 2008,
             <http://www.rfc-editor.org/info/rfc5152>.

  [RFC5440]  Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
             Element (PCE) Communication Protocol (PCEP)", RFC 5440,
             DOI 10.17487/RFC5440, March 2009,
             <http://www.rfc-editor.org/info/rfc5440>.

  [RFC5553]  Farrel, A., Ed., Bradford, R., and JP. Vasseur, "Resource
             Reservation Protocol (RSVP) Extensions for Path Key
             Support", RFC 5553, DOI 10.17487/RFC5553, May 2009,
             <http://www.rfc-editor.org/info/rfc5553>.

  [RFC5920]  Fang, L., Ed., "Security Framework for MPLS and GMPLS
             Networks", RFC 5920, DOI 10.17487/RFC5920, July 2010,
             <http://www.rfc-editor.org/info/rfc5920>.

  [RFC6001]  Papadimitriou, D., Vigoureux, M., Shiomoto, K., Brungard,
             D., and JL. Le Roux, "Generalized MPLS (GMPLS) Protocol
             Extensions for Multi-Layer and Multi-Region Networks (MLN/
             MRN)", RFC 6001, DOI 10.17487/RFC6001, October 2010,
             <http://www.rfc-editor.org/info/rfc6001>.

  [RFC6793]  Vohra, Q. and E. Chen, "BGP Support for Four-Octet
             Autonomous System (AS) Number Space", RFC 6793,
             DOI 10.17487/RFC6793, December 2012,
             <http://www.rfc-editor.org/info/rfc6793>.









Dhody, et al.                 Experimental                     [Page 13]

RFC 7898              Domain Subobjects for RSVP-TE            June 2016


Appendix A.  Examples

  These examples are for illustration purposes only to show how the new
  subobjects could be encoded.  They are not meant to be an exhaustive
  list of all possible use cases and combinations.

A.1.  Inter-Area LSP Path Setup

  In an inter-area LSP path setup where the ingress and the egress
  belong to different IGP areas within the same AS, the domain
  subobjects could be represented using an ordered list of IGP area
  subobjects in an ERO.

                                  D2 Area D
                                  |
                                  |
                                  D1
                                  |
                                  |
                          ********BD1******
                          *       |       *
                          *       |       *                Area C
    Area A                *       |       *
                          *       |       *
    Ingress------A1-----ABF1------B1------BC1------C1------Egress
                        / *       |       *
                      /   *       |       *
                    /     * Area  | B     *
                  F1      *       |       *
                /         ********BE1******
              /                   |
            /                     |
           F2                     E1
                                  |
   Area F                         |
                                  E2 Area E

    * All IGP areas in one AS (AS 100)

               Figure 1: Domain Corresponding to IGP Area

  As per Figure 1, the signaling at the ingress could be:

  ERO:(A1, ABF1, area B, area C, egress)

  It should be noted that there are other ways to achieve the desired
  signaling; the area subobject provides another tool in the toolkit
  and can have operational benefits when:



Dhody, et al.                 Experimental                     [Page 14]

RFC 7898              Domain Subobjects for RSVP-TE            June 2016


  o  Use of PCEP-like domain sequence [RFC7897] configurations in the
     explicit path is such that area subobjects can be used to signal
     the loose path.

  o  Alignment of subobjects and registries is between PCEP and RSVP-
     TE, thus allowing easier interworking between path computation and
     signaling, i.e., subobjects are able to switch between signaling
     and path computation (if need be).

A.2.  Inter-AS LSP Path Setup

A.2.1.  Example 1

  In an inter-AS LSP path setup where the ingress and the egress belong
  to a different AS, the domain subobjects (ASes) could be used in an
  ERO.

             AS A                AS E                AS C
        <------------->      <---------->      <------------->

                 A4----------E1---E2---E3---------C4
                /           /                       \
              /            /                          \
            /            /       AS B                   \
          /            /      <---------->                \
    Ingress------A1---A2------B1---B2---B3------C1---C2------Egress
          \                                    /          /
            \                                /          /
              \                            /          /
                \                        /          /
                 A3----------D1---D2---D3---------C3

                             <---------->
                                 AS D

    * All ASes have one area (area 0)

                  Figure 2: Domain Corresponding to AS

  As per Figure 2, the signaling at the ingress could be:

  ERO:(A1, A2, AS B, AS C, egress); or

  ERO:(A1, A2, AS B, area 0, AS C, area 0, egress).

  Each AS has a single IGP area (area 0); the area subobject is
  optional.




Dhody, et al.                 Experimental                     [Page 15]

RFC 7898              Domain Subobjects for RSVP-TE            June 2016


  Note that to get a domain disjoint path, the ingress could also
  signal the backup path with:

  XRO:(AS B)

A.2.2.  Example 2

  As shown in Figure 3, where AS 200 is made up of multiple areas, the
  signaling can include both an AS and area subobject to uniquely
  identify a domain.

        Ingress                *
           |                 *
           |               *
           |             *
           X1          *
           \\        *
            \ \    *
             \  \*   Inter-AS
     AS 100   \*  \  Link
             * \    \
           *    \     \
         *       \      \
                  \       \          D2 Area D
        AS 200     \        \        |
                    \         \      |
             Inter-  \          \    D1
                AS    \           \  |
              Link     \            \|
                        \    ********BD1******
                         \   *       |       *
                          \  *       |       *                Area C
               Area A      \ *       |       *
                            \*       |       *
           A2------A1------AB1------B1------BC1------C1------Egress
                             *       |       *
                             *       |       *
                             *       |       *
                             * Area  | B     *
                             ********BE1******
                                     |
                                     |
                                     E1
                                     |
                                     |
                                     E2 Area E

              Figure 3: Domain Corresponding to AS and Area



Dhody, et al.                 Experimental                     [Page 16]

RFC 7898              Domain Subobjects for RSVP-TE            June 2016


  As per Figure 3, the signaling at the ingress could be:

  ERO:(X1, AS 200, area B, area C, egress).

Acknowledgments

  We would like to thank Adrian Farrel, Lou Berger, George Swallow,
  Chirag Shah, Reeja Paul, Sandeep Boina, and Avantika for their useful
  comments and suggestions.

  Thanks to Vishnu Pavan Beeram for shepherding this document.

  Thanks to Deborah Brungard for being the responsible AD.

  Thanks to Amanda Baber for the IANA review.

  Thanks to Brian Carpenter for the Gen-ART review.

  Thanks to Liang Xia (Frank) for the SecDir review.

  Thanks to Spencer Dawkins and Barry Leiba for comments during the
  IESG review.





























Dhody, et al.                 Experimental                     [Page 17]

RFC 7898              Domain Subobjects for RSVP-TE            June 2016


Authors' Addresses

  Dhruv Dhody
  Huawei Technologies
  Divyashree Techno Park, Whitefield
  Bangalore, Karnataka  560066
  India

  Email: [email protected]


  Udayasree Palle
  Huawei Technologies
  Divyashree Techno Park, Whitefield
  Bangalore, Karnataka  560066
  India

  Email: [email protected]


  Venugopal Reddy Kondreddy
  Huawei Technologies
  Divyashree Techno Park, Whitefield
  Bangalore, Karnataka  560066
  India

  Email: [email protected]


  Ramon Casellas
  CTTC
  Av. Carl Friedrich Gauss n7
  Castelldefels, Barcelona    08860
  Spain

  Email: [email protected]















Dhody, et al.                 Experimental                     [Page 18]