Internet Engineering Task Force (IETF)                          D. Bryan
Request for Comments: 7890                             Cogent Force, LLC
Category: Informational                                      P. Matthews
ISSN: 2070-1721                                                    Nokia
                                                                E. Shim
                                          Samsung Electronics Co., Ltd.
                                                              D. Willis
                                                      Softarmor Systems
                                                             S. Dawkins
                                                           Huawei (USA)
                                                              June 2016


        Concepts and Terminology for Peer-to-Peer SIP (P2PSIP)

Abstract

  This document defines concepts and terminology for using the Session
  Initiation Protocol in a peer-to-peer environment where the
  traditional proxy-registrar and message-routing functions are
  replaced by a distributed mechanism.  These mechanisms may be
  implemented using a Distributed Hash Table or other distributed data
  mechanism with similar external properties.  This document includes a
  high-level view of the functional relationships between the network
  elements defined herein, a conceptual model of operations, and an
  outline of the related problems addressed by the P2PSIP working
  group, the REsource LOcation And Discovery (RELOAD) protocol, and the
  SIP usage document defined by the working group.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7890.







Bryan, et al.                 Informational                     [Page 1]

RFC 7890             P2PSIP Concepts and Terminology           June 2016


Copyright Notice

  Copyright (c) 2016 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Background  . . . . . . . . . . . . . . . . . . . . . . . . .   3
  2.  High-Level Description  . . . . . . . . . . . . . . . . . . .   4
    2.1.  Services  . . . . . . . . . . . . . . . . . . . . . . . .   4
    2.2.  Clients . . . . . . . . . . . . . . . . . . . . . . . . .   4
    2.3.  Relationship between P2PSIP and RELOAD  . . . . . . . . .   5
    2.4.  Relationship between P2PSIP and SIP . . . . . . . . . . .   5
    2.5.  Relationship between P2PSIP and Other AoR-Dereferencing
          Approaches  . . . . . . . . . . . . . . . . . . . . . . .   6
    2.6.  NAT Issues  . . . . . . . . . . . . . . . . . . . . . . .   6
  3.  Reference Model . . . . . . . . . . . . . . . . . . . . . . .   6
  4.  Definitions . . . . . . . . . . . . . . . . . . . . . . . . .   8
  5.  Discussion  . . . . . . . . . . . . . . . . . . . . . . . . .  12
    5.1.  The Distributed Database Function . . . . . . . . . . . .  12
    5.2.  Using the Distributed Database Function . . . . . . . . .  13
    5.3.  NAT Traversal . . . . . . . . . . . . . . . . . . . . . .  14
    5.4.  Locating and Joining an Overlay . . . . . . . . . . . . .  14
    5.5.  Clients and Connecting Unmodified SIP Devices . . . . . .  15
    5.6.  Architecture  . . . . . . . . . . . . . . . . . . . . . .  16
  6.  Security Considerations . . . . . . . . . . . . . . . . . . .  16
  7.  Informative References  . . . . . . . . . . . . . . . . . . .  16
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  19













Bryan, et al.                 Informational                     [Page 2]

RFC 7890             P2PSIP Concepts and Terminology           June 2016


1.  Background

  One of the fundamental problems in multimedia communication between
  Internet nodes is the rendezvous problem, or discovering the host at
  which a given user can be reached.  In the Session Initiation
  Protocol (SIP) [RFC3261], this problem is expressed as the problem of
  mapping an Address of Record (AoR) for a user into one or more
  Contact URIs [RFC3986].  The AoR is a name for the user that is
  independent of the host or hosts where the user can be contacted,
  while a Contact URI indicates the host where the user can be
  contacted.

  In the common SIP-using architectures that we refer to as
  "Conventional SIP" or "Client/Server SIP", there is a relatively
  fixed hierarchy of SIP routing proxies and SIP user agents.  To
  deliver a SIP INVITE to the host or hosts at which the user can be
  contacted, a SIP UA follows the procedures specified in [RFC3263] to
  determine the IP address of a SIP proxy, and then sends the INVITE to
  that proxy.  The proxy will then, in turn, deliver the SIP INVITE to
  the hosts where the user can be contacted.

  This document gives a high-level description of an alternative
  solution to this problem.  In this alternative solution, the
  relatively fixed hierarchy of Client/Server SIP is replaced by a
  peer-to-peer overlay network.  In this peer-to-peer overlay network,
  the various mappings of AoRs to Contact URIs are not centralized at
  proxy/registrar nodes but are instead distributed amongst the peers
  in the overlay.

  The details of this alternative solution are specified by the RELOAD
  protocol [RFC6940], which defines a mechanism for distribution using
  a Distributed Hash Table (DHT) and specifies the wire protocol,
  security, and authentication mechanisms needed to convey this
  information.  This DHT protocol was designed specifically with the
  purpose of enabling a distributed SIP registrar in mind.  While
  designing the protocol, other applications were considered, and then
  design decisions were made that allow RELOAD to be used in other
  instances where a DHT is desirable, but only when such decisions did
  not add undue complexity to the RELOAD protocol.  The RELOAD SIP
  document [P2PSIP] specifies how RELOAD is used with the SIP protocol
  to enable a distributed, server-less SIP solution.










Bryan, et al.                 Informational                     [Page 3]

RFC 7890             P2PSIP Concepts and Terminology           June 2016


2.  High-Level Description

  A Peer-to-Peer SIP (P2PSIP) Overlay is a collection of nodes
  organized in a peer-to-peer fashion for the purpose of enabling real-
  time communication using the Session Initiation Protocol (SIP).
  Collectively, the nodes in the Overlay provide a distributed
  mechanism for mapping names to Overlay locations.  This provides for
  the mapping of Addresses of Record (AoRs) to Contact URIs, thereby
  providing the "location server" function of [RFC3261].  An Overlay
  also provides a transport function by which SIP messages can be
  transported between any two nodes in the Overlay.

  A P2PSIP Overlay consists of one or more nodes called "Peers".  The
  nodes in the Overlay collectively run a distributed database
  algorithm.  This distributed database algorithm allows data to be
  stored on nodes and retrieved in an efficient manner.  It may also
  ensure that a copy of a data item is stored on more than one node, so
  that the loss of a node does not result in the loss of the data item
  to the Overlay.

  One use of this distributed database is to store the information
  required to provide the mapping between AoRs and Contact URIs for the
  distributed location function.  This provides a location function
  within each Overlay that is an alternative to the location functions
  described in [RFC3263].  However, the model of [RFC3263] is used
  between Overlays.

2.1.  Services

  The nature of peer-to-peer computing is that each peer offers
  services to other peers to allow the overlay to collectively provide
  larger functions.  In P2PSIP, Peers offer both distributed storage
  and distributed message-routing services, allowing these functions to
  be implemented across the Overlay.  Additionally, the RELOAD protocol
  offers a simplistic discovery mechanism specific to the Traversal
  Using Relays around NAT (TURN) [RFC5766] protocol used for NAT
  traversal.  Individual Peers may also offer other services as an
  enhancement to P2PSIP functionality (for example, to support
  voicemail) or to support other applications beyond SIP.  To support
  these additional services, Peers may need to store additional
  information in the Overlay.  [RFC7374] describes the mechanism used
  in P2PSIP for resource discovery.

2.2.  Clients

  An Overlay may or may not also include one or more nodes called
  "Clients".  Clients are supported in the RELOAD protocol as peers
  that have not joined the Overlay, and therefore do not route messages



Bryan, et al.                 Informational                     [Page 4]

RFC 7890             P2PSIP Concepts and Terminology           June 2016


  or store information.  Clients access the services of the RELOAD
  protocol by connecting to a Peer that performs operations on the
  behalf of the Client.  Note that in RELOAD, there is no distinct
  client protocol.  Instead, a Client connects using the same protocol,
  but never joins the Overlay as a Peer.  For more information, see
  [RFC6940].

  A special Peer may also be a member of the P2PSIP Overlay and may
  present the functionality of one or all of a SIP registrar, proxy, or
  redirect server to conventional SIP devices (i.e., unmodified SIP
  user agent (UA) or client).  In this way, existing, unmodified SIP
  clients may connect to the P2PSIP network.  Note that in the context
  of P2PSIP, the unmodified SIP client is also sometimes referred to as
  a "client".  These unmodified SIP devices do not speak the RELOAD
  protocol, and this is a distinct concept from the notion of "Client"
  discussed in the previous paragraph.

2.3.  Relationship between P2PSIP and RELOAD

  The RELOAD protocol defined by the P2PSIP working group implements a
  DHT primarily for use by server-less, peer-to-peer SIP deployments.
  However, the RELOAD protocol could be used for other applications as
  well.  As such, a "P2PSIP" deployment is generally assumed to be a
  use of RELOAD to implement distributed SIP, but it is possible that
  RELOAD is used as a mechanism to distribute other applications,
  completely unrelated to SIP.

2.4.  Relationship between P2PSIP and SIP

  Since P2PSIP is about peer-to-peer networks for real-time
  communication, it is expected that most Peers and Clients will be
  coupled with SIP entities (although RELOAD may be used for other
  applications than P2PSIP).  For example, one Peer might be coupled
  with a SIP UA, another might be coupled with a SIP proxy, while a
  third might be coupled with a SIP-to-PSTN gateway.  For such nodes,
  the Peer or Client portion of the node is logically distinct from the
  SIP entity portion.  However, there is no hard requirement that every
  P2PSIP node (Peer or Client) be coupled to a SIP entity.  As an
  example, additional Peers could be placed in the Overlay to provide
  additional storage or redundancy for the RELOAD Overlay, but might
  not have any direct SIP capabilities.










Bryan, et al.                 Informational                     [Page 5]

RFC 7890             P2PSIP Concepts and Terminology           June 2016


2.5.  Relationship between P2PSIP and Other AoR-Dereferencing Approaches

  As noted above, the fundamental task of P2PSIP is to turn an AoR into
  a Contact.  This task might be approached using zero configuration
  techniques such as multicast DNS (mDNS) and DNS Service Discovery
  (DNS-SD) [RFC6762] [RFC6763], Link-Local Multicast Name Resolution
  [RFC4795], and dynamic DNS [RFC2136].

  These alternatives were discussed in the P2PSIP working group, and
  not pursued as a general solution for a number of reasons related to
  scalability, the ability to work in a disconnected state, partition
  recovery, and so on.  However, there does seem to be some continuing
  interest in the possibility of using mDNS and DNS-SD for the
  bootstrapping of P2PSIP overlays.

2.6.  NAT Issues

  Network Address Translators (NATs) are impediments to establishing
  and maintaining peer-to-peer networks, since NATs hinder direct
  communication between nodes.  Some peer-to-peer network architectures
  avoid this problem by insisting that all nodes exist in the same
  address space.  However, RELOAD provides capabilities that allow
  nodes to be located in multiple address spaces interconnected by
  NATs, to allow RELOAD messages to traverse NATs, and to assist in
  transmitting application-level messages (for example, SIP messages)
  across NATs.

3.  Reference Model

  The following diagram shows a P2PSIP Overlay consisting of a number
  of Peers, one Client, and an ordinary SIP UA.  It illustrates a
  typical P2PSIP Overlay but does not limit other compositions or
  variations; for example, Proxy Peer P might also talk to an ordinary
  SIP proxy as well.  The figure is not intended to cover all possible
  architecture variations, but simply to show a deployment with many
  common P2PSIP elements.















Bryan, et al.                 Informational                     [Page 6]

RFC 7890             P2PSIP Concepts and Terminology           June 2016


                                                 --->PSTN
    +------+    N     +------+     +---------+  /
    |      |    A     |      |     | Gateway |-/
    |  UA  |####T#####|  UA  |#####|   Peer  |########
    | Peer |    N     | Peer |     |    G    |       #   RELOAD
    |  E   |    A     |  F   |     +---------+       #   P2PSIP
    |      |    T     |      |                       #   Protocol
    +------+    N     +------+                       #    |
       #        A                                    #    |
     NATNATNATNAT                                    #    |
       #                                             #    |   \__/
     NATNATNATNAT                              +-------+  v   /  \
       #        N                              |       |#####/ UA \
    +------+    A       P2PSIP Overlay         | Peer  |    /Client\
    |      |    T                              |   Q   |    |___C__|
    |  UA  |    N                              |       |
    | Peer |    A                              +-------+
    |  D   |    T                                    #
    |      |    N                                    #
    +------+    A                                    # RELOAD
       #        T                                    # P2PSIP
       #        N    +-------+        +-------+      # Protocol
       #        A    |       |        |       |      #
       #########T####| Proxy |########| Redir |#######
                N    | Peer  |        | Peer  |
                A    |   P   |        |   R   |
                T    +-------+        +-------+
                       |                 /
                       | SIP            /
                 \__/  /               /
                  /\  / ______________/ SIP
                 /  \/ /
                / UA \/
               /______\
               SIP UA A

                Figure 1: P2PSIP Overlay Reference Model

  Here, the large perimeter depicted by "#" represents a stylized view
  of the Overlay (the actual connections could be a mesh, a ring, or
  some other structure).  Around the periphery of the Overlay
  rectangle, we have a number of Peers.  Each Peer is labeled with its
  coupled SIP entity -- for example, "Proxy Peer P" means that Peer P
  is coupled with a SIP proxy.  In some cases, a Peer or Client might
  be coupled with two or more SIP entities.  In this diagram, we have a
  Public Switched Telephone Network (PSTN) gateway coupled with Peer
  "G", three Peers ("D", "E", and "F") that are each coupled with a UA,
  a Peer "P" that is coupled with a SIP proxy, an ordinary Peer "Q"



Bryan, et al.                 Informational                     [Page 7]

RFC 7890             P2PSIP Concepts and Terminology           June 2016


  with no SIP capabilities, and one Peer "R" that is coupled with a SIP
  redirector.  Note that because these are all Peers, each is
  responsible for storing Resource Records and transporting messages
  around the Overlay.

  To the left, two of the Peers ("D" and "E") are behind network
  address translators (NATs).  These Peers are included in the P2PSIP
  Overlay, and thus participate in storing resource records and routing
  messages, despite being behind the NATs.

  On the right side, we have a Client "C", which uses the RELOAD
  Protocol to communicate with Proxy Peer "Q".  The Client "C" uses
  RELOAD to obtain information from the Overlay, but has not inserted
  itself into the Overlay, and therefore does not participate in
  routing messages or storing information.

  Below the Overlay, we have a conventional SIP UA "A" that is not part
  of the Overlay, either directly as a Peer or indirectly as a Client.
  It does not speak the RELOAD P2PSIP protocol and is not participating
  in the Overlay as a Peer or a Client.  Instead, it uses SIP to
  interact with the Overlay via an adapter Peer or Peers that
  communicate with the Overlay using RELOAD.

  Both the SIP proxy coupled with Peer "P" and the SIP redirector
  coupled with Peer "R" can serve as adapters between ordinary SIP
  devices and the Overlay.  Each accepts standard SIP requests and
  resolves the next hop by using the P2PSIP protocol to interact with
  the routing knowledge of the Overlay, and then processes the SIP
  requests as appropriate (proxying or redirecting towards the next
  hop).  Note that proxy operation is bidirectional -- the proxy may be
  forwarding a request from an ordinary SIP device to the Overlay, or
  from the P2PSIP Overlay to an ordinary SIP device.

  The PSTN Gateway at Peer "G" provides a similar sort of adaptation to
  and from the PSTN.

4.  Definitions

  This section defines a number of concepts that are key to
  understanding the P2PSIP work.

  Overlay Network:  An overlay network is a computer network that is
     built on top of another network.  Nodes in the overlay can be
     thought of as being connected by virtual or logical links, each of
     which corresponds to a path, perhaps through many physical links,
     in the underlying network.  For example, many peer-to-peer





Bryan, et al.                 Informational                     [Page 8]

RFC 7890             P2PSIP Concepts and Terminology           June 2016


     networks are overlay networks because they run on top of the
     Internet.  Dial-up Internet is an overlay upon the telephone
     network.

  P2P Network:  A peer-to-peer (or P2P) computer network is a network
     that relies primarily on the computing power and bandwidth of the
     participants in the network rather than concentrating it in a
     relatively low number of servers.  P2P networks are typically used
     for connecting nodes via largely ad hoc connections.  Such
     networks are useful for many purposes.  Sharing content files
     containing audio, video, data, or anything in digital format is
     very common, and real-time data, such as telephony traffic, is
     also exchanged using P2P technology.  A P2P Network may also be
     called a "P2P Overlay", a "P2P Overlay Network", or a "P2P Network
     Overlay", since its organization is not at the physical layer, but
     is instead "on top of" an existing Internet Protocol network.

  P2PSIP:  A suite of communications protocols related to the Session
     Initiation Protocol (SIP) [RFC3261] that enable SIP to use peer-
     to-peer techniques for resolving the targets of SIP requests,
     providing SIP message transport, and providing other SIP-related
     functions.  At present, these protocols include [RFC6940],
     [RFC7363], [RFC7374], [RFC7851] and [P2PSIP].

  User:  A human that interacts with the Overlay through SIP UAs
     located on Peers and Clients (and perhaps in other ways).

  The following terms are defined here only within the scope of P2PSIP.
  These terms may have conflicting definitions in other bodies of
  literature.  Some draft versions of this document prefixed each term
  with "P2PSIP" to clarify the term's scope.  This prefixing has been
  eliminated from the text; however, the scoping still applies.

  Overlay Name:  A human-friendly name that identifies a specific
     P2PSIP Overlay.  This is in the format of (a portion of) a URI,
     but may or may not have a related record in the DNS.

  Peer:  A node participating in a P2PSIP Overlay that provides storage
     and transport services to other nodes in that P2PSIP Overlay.
     Each Peer has a unique identifier, known as a Peer-ID, within the
     Overlay.  Each Peer may be coupled to one or more SIP entities.
     Within the Overlay, the Peer is capable of performing several
     different operations, including: joining and leaving the Overlay,
     transporting SIP messages within the Overlay, storing information
     on behalf of the Overlay, putting information into the Overlay,
     and getting information from the Overlay.





Bryan, et al.                 Informational                     [Page 9]

RFC 7890             P2PSIP Concepts and Terminology           June 2016


  Node-ID:  Information that uniquely identifies each Node within a
     given Overlay.  This value is not human-friendly -- in a DHT
     approach, this is a numeric value in the hash space.  These Node-
     IDs are completely independent of the identifier of any user of a
     user agent associated with a Peer.

  Client:  A node that participates in a P2PSIP Overlay but does not
     store information or forward messages.  A Client can also be
     thought of as a peer that has not joined the Overlay.  Clients can
     store and retrieve information from the Overlay.

  User Name:  A human-friendly name for a user.  This name must be
     unique within the Overlay, but may be unique in a wider scope.
     User Names are formatted so that they can be used within a URI
     (likely a SIP URI), perhaps in combination with the Overlay Name.

  Service:  A capability contributed by a Peer to an Overlay or to the
     members of an Overlay.  Not all Peers and Clients will offer the
     same set of services, and P2PSIP provides service discovery
     mechanisms to locate services.

  Service Name:  A unique, human-friendly name for a service.

  Resource:  Anything about which information can be stored in the
     Overlay.  Both Users and Services are examples of Resources.

  Resource-ID:  A non-human-friendly value that uniquely identifies a
     resource and that is used as a key for storing and retrieving data
     about the resource.  One way to generate a Resource-ID is by
     applying a mapping function to some other unique name (e.g., User
     Name or Service Name) for the resource.  The Resource-ID is used
     by the distributed database algorithm to determine the Peer or
     Peers that are responsible for storing data for the Overlay.

  Resource Record:  A block of data, stored using the distributed
     database mechanism of the Overlay, that includes information
     relevant to a specific resource.  We presume that there may be
     multiple types of resource records.  Some may hold data about
     Users, and others may hold data about Services, and the working
     group may define other types.  The types, usages, and formats of
     the records are a question for future study.

  Responsible Peer  The Peer that is responsible for storing the
     Resource Record for a Resource.  In the literature, the term "Root
     Peer" is also used for this concept.






Bryan, et al.                 Informational                    [Page 10]

RFC 7890             P2PSIP Concepts and Terminology           June 2016


  Peer Protocol:  The protocol spoken between P2PSIP Overlay Peers to
     share information and organize the P2PSIP Overlay Network.  In
     P2PSIP, this is implemented using the RELOAD protocol [RFC6940].

  Client Protocol:  The protocol spoken between Clients and Peers.  In
     P2PSIP and RELOAD, this is syntactically the same protocol as the
     Peer Protocol.  The only difference is that Clients are not
     routing messages or routing information, and have not (or cannot)
     insert themselves into the Overlay.

  Peer Protocol Connection / P2PSIP Client Protocol Connection:
     The Transport Layer Security (TLS), Datagram Transport Layer
     Security (DTLS), TCP, UDP, or other transport-layer protocol
     connection over which the RELOAD Peer Protocol messages are
     transported.

  Neighbors:  The set of P2PSIP Peers that a Peer or Client know of
     directly and can reach without further lookups.

  Joining Peer:  A node that is attempting to become a Peer in a
     particular Overlay.

  Bootstrap Peer:  A Peer in the Overlay that is the first point of
     contact for a Joining Peer.  It selects the Peer that will serve
     as the Admitting Peer and helps the Joining Peer contact the
     Admitting Peer.

  Admitting Peer:  A Peer in the Overlay that helps the Joining Peer
     join the Overlay.  The choice of the Admitting Peer may depend on
     the Joining Peer (e.g., depend on the Joining Peer's Peer-ID).
     For example, the Admitting Peer might be chosen as the Peer which
     is "closest" in the logical structure of the Overlay to the future
     position of the Joining Peer.  The selection of the Admitting Peer
     is typically done by the Bootstrap Peer.  It is allowable for the
     Bootstrap Peer to select itself as the Admitting Peer.

  Bootstrap Server:  A network node used by Joining Peers to locate a
     Bootstrap Peer.  A Bootstrap Server may act as a proxy for
     messages between the Joining Peer and the Bootstrap Peer.  The
     Bootstrap Server itself is typically a stable host with a DNS name
     that is somehow communicated (for example, through configuration,
     specification on a web page, or using DHCP) to Peers that want to
     join the Overlay.  A Bootstrap Server is NOT required to be a Peer
     or Client, though it may be if desired.







Bryan, et al.                 Informational                    [Page 11]

RFC 7890             P2PSIP Concepts and Terminology           June 2016


  Peer Admission:  The act of admitting a node (the "Joining Peer")
     into an Overlay as a Peer.  After the admission process is over,
     the Joining Peer is a fully functional Peer of the Overlay.
     During the admission process, the Joining Peer may need to present
     credentials to prove that it has sufficient authority to join the
     Overlay.

  Resource Record Insertion:  The act of inserting a P2PSIP Resource
     Record into the distributed database.  Following insertion, the
     data will be stored at one or more Peers.  The data can be
     retrieved or updated using the Resource-ID as a key.

5.  Discussion

5.1.  The Distributed Database Function

  A P2PSIP Overlay functions as a distributed database.  The database
  serves as a way to store information about Resources.  A piece of
  information, called a "Resource Record", can be stored by and
  retrieved from the database using a key associated with the Resource
  Record called its "Resource-ID".  Each Resource must have a unique
  Resource-ID.  In addition to uniquely identifying the Resource, the
  Resource-ID is also used by the distributed database algorithm to
  determine the Peer or Peers that store the Resource Record in the
  Overlay.

  Users are humans that can use the Overlay to do things like making
  and receiving calls.  Information stored in the resource record
  associated with a user can include things like the full name of the
  user and the location of the UAs that the user is using (the user's
  SIP AoR).  Full details of how this is implemented using RELOAD are
  provided in [P2PSIP].

  Before information about a user can be stored in the Overlay, a user
  needs a User Name.  The User Name is a human-friendly identifier that
  uniquely identifies the user within the Overlay.  In RELOAD, users
  are issued certificates, which in the case of centrally signed
  certificates, identify the User Name as well as a certain number of
  Resource-IDs where the user may store their information.  For more
  information, see [RFC6940].

  The P2PSIP suite of protocols also standardizes information about how
  to locate services.  Services represent actions that a Peer (and
  perhaps a Client) can do to benefit other Peers and Clients in the
  Overlay.  Information that might be stored in the resource record
  associated with a service might include the Peers (and perhaps
  Clients) offering the service.  Service discovery for P2PSIP is
  defined in [RFC7374].



Bryan, et al.                 Informational                    [Page 12]

RFC 7890             P2PSIP Concepts and Terminology           June 2016


  Each service has a human-friendly Service Name that uniquely
  identifies the service.  Like User Names, the Service Name is not a
  Resource-ID, rather the Resource-ID is derived from the service name
  using some function defined by the distributed database algorithm
  used by the Overlay.

  A class of algorithms known as Distributed Hash Tables (DHTs) are one
  way to implement the distributed database.  The RELOAD protocol is
  extensible and allows many different DHTs to be implemented, but
  specifies a mandatory-to-implement DHT in the form of a modified
  Chord DHT.  For more information, see [Chord].

5.2.  Using the Distributed Database Function

  While there are a number of ways the distributed database described
  in the previous section can be used to establish multimedia sessions
  using SIP, the basic mechanism defined in the RELOAD protocol and SIP
  usage is summarized below.  This is a very simplistic overview.  For
  more detailed information, please see the RELOAD protocol [RFC6940].

  Contact information for a user is stored in the resource record for
  that user.  Assume that a user is using a device, here called "Peer
  A", that serves as the contact point for this user.  The user adds
  contact information to this resource record, as authorized by the
  RELOAD certificate mechanism.  The resource record itself is stored
  with Peer Z in the network, where Peer Z is chosen by the particular
  distributed database algorithm in use by the Overlay.

  When the SIP entity coupled with Peer B has an INVITE message
  addressed to this user, it retrieves the resource record from Peer Z.
  It then extracts the contact information for the various Peers that
  are a contact point for the user, including Peer A, and uses the
  Overlay to establish a connection to Peer A, including any
  appropriate NAT traversal (the details of which are not shown).

  Note that RELOAD is used only to establish the connection.  Once the
  connection is established, messages between the Peers are sent using
  ordinary SIP.

  This exchange is illustrated in the following figure.  The notation
  "Store(U@A)" is used to show the distributed database operation of
  updating the resource record for user U with the contract A, and
  "Fetch(U)" illustrates the distributed database operation of
  retrieving the resource record for user U.  Note that the messages
  between the Peers A, B, and Z may actually travel via intermediate
  Peers (not shown) as part of the distributed lookup process or so as
  to traverse intervening NATs.




Bryan, et al.                 Informational                    [Page 13]

RFC 7890             P2PSIP Concepts and Terminology           June 2016


        Peer B           Peer Z           Peer A
        |                    |                   |
        |                    |         Store(U@A)|
        |                    |<------------------|
        |                    |Store-Resp(OK)     |
        |                    |------------------>|
        |                    |                   |
        |Fetch(U)            |                   |
        |------------------->|                   |
        |     Fetch-Resp(U@A)|                   |
        |<-------------------|                   |
        |                    |                   |
         (RELOAD IS USED TO ESTABLISH CONNECTION)
        |                    |                   |
        | SIP INVITE(To:U)   |                   |
        |--------------------------------------->|
        |                    |                   |

       Figure 2: SIP Exchange Using Distributed Database Function

5.3.  NAT Traversal

  NAT traversal in P2PSIP using RELOAD treats all Peers as equal and
  establishes a partial mesh of connections between them.  Messages
  from one Peer to another are routed along the edges in the mesh of
  connections until they reach their destination.  To make the routing
  efficient and to avoid the use of standard Internet routing
  protocols, the partial mesh is organized in a structured manner.  If
  the structure is based on any one of a number of common DHT
  algorithms, then the maximum number of hops between any two Peers is
  log N, where N is the number of peers in the overlay.  Existing
  connections, along with the Interactive Connectivity Establishment
  (ICE) NAT traversal techniques [RFC5245], are used to establish new
  connections between Peers, and also to allow the applications running
  on Peers to establish a connection to communicate with one another.

5.4.  Locating and Joining an Overlay

  Before a Peer can attempt to join a P2PSIP Overlay, it must first
  obtain a Node-ID, configuration information, and optionally a set of
  credentials.  The Node-ID is an identifier that uniquely identifies
  the Peer within the Overlay, while the credentials show that the Peer
  is allowed to join the Overlay.








Bryan, et al.                 Informational                    [Page 14]

RFC 7890             P2PSIP Concepts and Terminology           June 2016


  The P2PSIP WG does not impose a particular mechanism for how the
  Peer-ID and the credentials are obtained, but the RELOAD protocol
  does specify the format for the configuration information and how
  this information may be obtained, along with credentials and a
  Node-ID, from an offline enrollment server.

  Once the configuration information is obtained, RELOAD specifies a
  mechanism whereby a Peer may obtain a multicast-bootstrap address in
  the configuration file and broadcast to this address to attempt
  locating a Bootstrap Peer.  Additionally, the Peer may store previous
  Peers it has seen and attempt using these as Bootstrap Peers, or it
  may obtain an address for a Bootstrap Peer by some other mechanism.
  For more information, see the RELOAD protocol.

  The job of the Bootstrap Peer is simple: refer the Joining Peer to a
  Peer (called the "Admitting Peer") that will help the Joining Peer
  join the network.  The choice of the Admitting Peer will often depend
  on the Joining Peer -- for example, the Admitting Peer may be a Peer
  that will become a neighbor of the Joining Peer in the Overlay.  It
  is possible that the Bootstrap Peer might also serve as the Admitting
  Peer.

  The Admitting Peer will help the Joining Peer learn about other Peers
  in the Overlay and establish connections to them as appropriate.  The
  Admitting Peer and/or the other Peers in the Overlay will also do
  whatever else is required to help the Joining Peer become a fully
  functional Peer.  The details of how this is done will depend on the
  distributed database algorithm used by the Overlay.

  At various stages in this process, the Joining Peer may be asked to
  present its credentials to show that it is authorized to join the
  Overlay.  Similarly, the various Peers contacted may be asked to
  present their credentials so the Joining Peer can verify that it is
  really joining the Overlay it wants to.

5.5.  Clients and Connecting Unmodified SIP Devices

  As mentioned above, in RELOAD, from the perspective of the protocol,
  Clients are simply peers that do not store information, do not route
  messages, and have not inserted themselves into the Overlay.  The
  same protocol is used for the actual message exchanged.  Note that
  while the protocol is the same, the Client need not implement all the
  capabilities of a Peer.  If, for example, it never routes messages,
  it will not need to be capable of processing such messages or
  understanding a DHT.






Bryan, et al.                 Informational                    [Page 15]

RFC 7890             P2PSIP Concepts and Terminology           June 2016


  For SIP devices, another way to realize this functionality is for a
  Peer to behave as a proxy/registrar as specified in [RFC3261].  SIP
  devices then use standard SIP mechanisms to add, update, and remove
  registrations and to send SIP messages to Peers and other Clients.
  The authors here refer to these devices simply as a "SIP UA", not a
  "P2PSIP Client", to distinguish it from the concept described above.

5.6.  Architecture

  The architecture adopted by RELOAD to implement P2PSIP is shown
  below.  An application (for example, SIP or another application using
  RELOAD) uses RELOAD to locate other Peers and (optionally) to
  establish connections to those Peers, potentially across NATs.
  Messages may still be exchanged directly between the Peers.  The
  overall block diagram for the architecture is as follows:

                      __________________________
                     |                          |
                     |    SIP, other apps...    |
                     |       ___________________|
                     |      |   RELOAD Layer    |
                     |______|___________________|
                     |     Transport Layer      |
                     |__________________________|

             Figure 3: Architecture for Implementing P2PSIP

6.  Security Considerations

  This specification is an overview of existing specifications and does
  not introduce any security considerations on its own.  Please refer
  to the security considerations of the respective specifications,
  particularly the RELOAD protocol specification ([RFC6940]) for
  further details.

7.  Informative References

  [Chord]    Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.,
             Kaashoek, M., Dabek, F., and H. Balakrishnan, "Chord: A
             scalable peer-to-peer lookup protocol for internet
             applications", IEEE/ACM Transactions on Networking,
             Volume 11, Issue 1, pp. 17-32,
             DOI 10.1109/TNET.2002.808407, February 2003.

  [P2PSIP]   Jennings, C., Lowekamp, B., Rescorla, E., Baset, S.,
             Schulzrinne, H., and T. Schmidt, "A SIP Usage for RELOAD",
             Work in Progress, draft-ietf-p2psip-sip-21, April 2016.




Bryan, et al.                 Informational                    [Page 16]

RFC 7890             P2PSIP Concepts and Terminology           June 2016


  [RFC2136]  Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
             "Dynamic Updates in the Domain Name System (DNS UPDATE)",
             RFC 2136, DOI 10.17487/RFC2136, April 1997,
             <http://www.rfc-editor.org/info/rfc2136>.

  [RFC3261]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
             A., Peterson, J., Sparks, R., Handley, M., and E.
             Schooler, "SIP: Session Initiation Protocol", RFC 3261,
             DOI 10.17487/RFC3261, June 2002,
             <http://www.rfc-editor.org/info/rfc3261>.

  [RFC3263]  Rosenberg, J. and H. Schulzrinne, "Session Initiation
             Protocol (SIP): Locating SIP Servers", RFC 3263,
             DOI 10.17487/RFC3263, June 2002,
             <http://www.rfc-editor.org/info/rfc3263>.

  [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
             Resource Identifier (URI): Generic Syntax", STD 66,
             RFC 3986, DOI 10.17487/RFC3986, January 2005,
             <http://www.rfc-editor.org/info/rfc3986>.

  [RFC4795]  Aboba, B., Thaler, D., and L. Esibov, "Link-local
             Multicast Name Resolution (LLMNR)", RFC 4795,
             DOI 10.17487/RFC4795, January 2007,
             <http://www.rfc-editor.org/info/rfc4795>.

  [RFC5245]  Rosenberg, J., "Interactive Connectivity Establishment
             (ICE): A Protocol for Network Address Translator (NAT)
             Traversal for Offer/Answer Protocols", RFC 5245,
             DOI 10.17487/RFC5245, April 2010,
             <http://www.rfc-editor.org/info/rfc5245>.

  [RFC5766]  Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
             Relays around NAT (TURN): Relay Extensions to Session
             Traversal Utilities for NAT (STUN)", RFC 5766,
             DOI 10.17487/RFC5766, April 2010,
             <http://www.rfc-editor.org/info/rfc5766>.

  [RFC6762]  Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
             DOI 10.17487/RFC6762, February 2013,
             <http://www.rfc-editor.org/info/rfc6762>.

  [RFC6763]  Cheshire, S. and M. Krochmal, "DNS-Based Service
             Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
             <http://www.rfc-editor.org/info/rfc6763>.






Bryan, et al.                 Informational                    [Page 17]

RFC 7890             P2PSIP Concepts and Terminology           June 2016


  [RFC6940]  Jennings, C., Lowekamp, B., Ed., Rescorla, E., Baset, S.,
             and H. Schulzrinne, "REsource LOcation And Discovery
             (RELOAD) Base Protocol", RFC 6940, DOI 10.17487/RFC6940,
             January 2014, <http://www.rfc-editor.org/info/rfc6940>.

  [RFC7363]  Maenpaa, J. and G. Camarillo, "Self-Tuning Distributed
             Hash Table (DHT) for REsource LOcation And Discovery
             (RELOAD)", RFC 7363, DOI 10.17487/RFC7363, September 2014,
             <http://www.rfc-editor.org/info/rfc7363>.

  [RFC7374]  Maenpaa, J. and G. Camarillo, "Service Discovery Usage for
             REsource LOcation And Discovery (RELOAD)", RFC 7374,
             DOI 10.17487/RFC7374, October 2014,
             <http://www.rfc-editor.org/info/rfc7374>.

  [RFC7851]  Song, H., Jiang, X., Even, R., Bryan, D., and Y. Sun,
             "Peer-to-Peer (P2P) Overlay Diagnostics", RFC 7851,
             DOI 10.17487/RFC7851, May 2016,
             <http://www.rfc-editor.org/info/rfc7851>.
































Bryan, et al.                 Informational                    [Page 18]

RFC 7890             P2PSIP Concepts and Terminology           June 2016


Authors' Addresses

  David A. Bryan
  Cogent Force, LLC
  Cedar Park, Texas
  United States

  Email: [email protected]


  Philip Matthews
  Nokia
  600 March Road
  Ottawa, Ontario  K2K 2E6
  Canada

  Phone: +1 613 784 3139
  Email: [email protected]


  Eunsoo Shim
  Samsung Electronics Co., Ltd.
  San 14, Nongseo-dong, Giheung-gu
  Yongin-si, Gyeonggi-do  446-712
  South Korea

  Email: [email protected]


  Dean Willis
  Softarmor Systems
  3100 Independence Pkwy #311-164
  Plano, Texas  75075
  United States

  Phone: +1 214 504 1987
  Email: [email protected]


  Spencer Dawkins
  Huawei Technologies (USA)

  Phone: +1 214 755 3870
  Email: [email protected]







Bryan, et al.                 Informational                    [Page 19]