Independent Submission                                         D. Savage
Request for Comments: 7868                                         J. Ng
Category: Informational                                         S. Moore
ISSN: 2070-1721                                            Cisco Systems
                                                               D. Slice
                                                       Cumulus Networks
                                                              P. Paluch
                                                   University of Zilina
                                                               R. White
                                                               LinkedIn
                                                               May 2016


      Cisco's Enhanced Interior Gateway Routing Protocol (EIGRP)

Abstract

  This document describes the protocol design and architecture for
  Enhanced Interior Gateway Routing Protocol (EIGRP).  EIGRP is a
  routing protocol based on Distance Vector technology.  The specific
  algorithm used is called "DUAL", a Diffusing Update Algorithm as
  referenced in "Loop-Free Routing Using Diffusing Computations"
  (Garcia-Luna-Aceves 1993).  The algorithm and procedures were
  researched, developed, and simulated by SRI International.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This is a contribution to the RFC Series, independently of any other
  RFC stream.  The RFC Editor has chosen to publish this document at
  its discretion and makes no statement about its value for
  implementation or deployment.  Documents approved for publication by
  the RFC Editor are not a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7868.











Savage, et al.                Informational                     [Page 1]

RFC 7868                      Cisco's EIGRP                     May 2016


Copyright Notice

  Copyright (c) 2016 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.

  This document may not be modified, and derivative works of it may not
  be created, except to format it for publication as an RFC or to
  translate it into languages other than English.

Table of Contents

  1. Introduction ....................................................5
  2. Conventions .....................................................5
     2.1. Requirements Language ......................................5
     2.2. Terminology ................................................5
  3. The Diffusing Update Algorithm (DUAL) ...........................9
     3.1. Algorithm Description ......................................9
     3.2. Route States ..............................................10
     3.3. Feasibility Condition .....................................11
     3.4. DUAL Message Types ........................................13
     3.5. DUAL Finite State Machine (FSM) ...........................13
     3.6. DUAL Operation -- Example Topology ........................18
  4. EIGRP Packets ..................................................20
     4.1. UPDATE Packets ............................................21
     4.2. QUERY Packets .............................................21
     4.3. REPLY Packets .............................................22
     4.4. Exception Handling ........................................22
          4.4.1. Active Duration (SIA) ..............................22
                 4.4.1.1. SIA-QUERY .................................23
                 4.4.1.2. SIA-REPLY .................................24
  5. EIGRP Operation ................................................25
     5.1. Finite State Machine ......................................25
     5.2. Reliable Transport Protocol ...............................25
          5.2.1. Bandwidth on Low-Speed Links .......................32
     5.3. Neighbor Discovery/Recovery ...............................32
          5.3.1. Neighbor Hold Time .................................32
          5.3.2. HELLO Packets ......................................33
          5.3.3. UPDATE Packets .....................................33
          5.3.4. Initialization Sequence ............................34
          5.3.5. Neighbor Formation .................................35
          5.3.6. QUERY Packets during Neighbor Formation ............35



Savage, et al.                Informational                     [Page 2]

RFC 7868                      Cisco's EIGRP                     May 2016


     5.4. Topology Table ............................................36
          5.4.1. Route Management ...................................36
                 5.4.1.1. Internal Routes ...........................37
                 5.4.1.2. External Routes ...........................37
          5.4.2. Split Horizon and Poison Reverse ...................38
                 5.4.2.1. Startup Mode ..............................38
                 5.4.2.2. Advertising Topology Table Change .........39
                 5.4.2.3. Sending a QUERY/UPDATE ....................39
     5.5. EIGRP Metric Coefficients .................................39
          5.5.1. Coefficients K1 and K2 .............................40
          5.5.2. Coefficient K3 .....................................40
          5.5.3. Coefficients K4 and K5 .............................40
          5.5.4. Coefficient K6 .....................................41
                 5.5.4.1. Jitter ....................................41
                 5.5.4.2. Energy ....................................41
     5.6. EIGRP Metric Calculations .................................41
          5.6.1. Classic Metrics ....................................41
                 5.6.1.1. Classic Composite Formulation .............42
                 5.6.1.2. Cisco Interface Delay Compatibility .......43
          5.6.2. Wide Metrics .......................................43
                 5.6.2.1. Wide Metric Vectors .......................44
                 5.6.2.2. Wide Metric Conversion Constants ..........45
                 5.6.2.3. Throughput Calculation ....................45
                 5.6.2.4. Latency Calculation .......................46
                 5.6.2.5. Composite Calculation .....................46
  6. EIGRP Packet Formats ...........................................46
     6.1. Protocol Number ...........................................46
     6.2. Protocol Assignment Encoding ..............................47
     6.3. Destination Assignment Encoding ...........................47
     6.4. EIGRP Communities Attribute ...............................48
     6.5. EIGRP Packet Header .......................................49
     6.6. EIGRP TLV Encoding Format .................................51
          6.6.1. Type Field Encoding ................................52
          6.6.2. Length Field Encoding ..............................52
          6.6.3. Value Field Encoding ...............................52
     6.7. EIGRP Generic TLV Definitions .............................52
          6.7.1. 0x0001 - PARAMETER_TYPE ............................53
          6.7.2. 0x0002 - AUTHENTICATION_TYPE .......................53
                 6.7.2.1. 0x02 - MD5 Authentication Type ............54
                 6.7.2.2. 0x03 - SHA2 Authentication Type ...........54
          6.7.3. 0x0003 - SEQUENCE_TYPE .............................54
          6.7.4. 0x0004 - SOFTWARE_VERSION_TYPE .....................55
          6.7.5. 0x0005 - MULTICAST_SEQUENCE_TYPE ...................55
          6.7.6. 0x0006 - PEER_INFORMATION_TYPE .....................55
          6.7.7. 0x0007 - PEER_ TERMINATION_TYPE ....................56
          6.7.8. 0x0008 - TID_LIST_TYPE .............................56
     6.8. Classic Route Information TLV Types .......................57
          6.8.1. Classic Flag Field Encoding ........................57



Savage, et al.                Informational                     [Page 3]

RFC 7868                      Cisco's EIGRP                     May 2016


          6.8.2. Classic Metric Encoding ............................57
          6.8.3. Classic Exterior Encoding ..........................58
          6.8.4. Classic Destination Encoding .......................59
          6.8.5. IPv4-Specific TLVs .................................59
                 6.8.5.1. IPv4 INTERNAL_TYPE ........................60
                 6.8.5.2. IPv4 EXTERNAL_TYPE ........................60
                 6.8.5.3. IPv4 COMMUNITY_TYPE .......................62
          6.8.6. IPv6-Specific TLVs .................................62
                 6.8.6.1. IPv6 INTERNAL_TYPE ........................63
                 6.8.6.2. IPv6 EXTERNAL_TYPE ........................63
                 6.8.6.3. IPv6 COMMUNITY_TYPE .......................65
     6.9. Multiprotocol Route Information TLV Types .................66
          6.9.1. TLV Header Encoding ................................66
          6.9.2. Wide Metric Encoding ...............................67
          6.9.3. Extended Metrics ...................................68
                 6.9.3.1. 0x00 - NoOp ...............................69
                 6.9.3.2. 0x01 - Scaled Metric ......................70
                 6.9.3.3. 0x02 - Administrator Tag ..................70
                 6.9.3.4. 0x03 - Community List .....................71
                 6.9.3.5. 0x04 - Jitter .............................71
                 6.9.3.6. 0x05 - Quiescent Energy ...................71
                 6.9.3.7. 0x06 - Energy .............................72
                 6.9.3.8. 0x07 - AddPath ............................72
                          6.9.3.8.1. AddPath with IPv4 Next Hop .....73
                          6.9.3.8.2. AddPath with IPv6 Next Hop .....74
          6.9.4. Exterior Encoding ..................................75
          6.9.5. Destination Encoding ...............................76
          6.9.6. Route Information ..................................76
                 6.9.6.1. INTERNAL TYPE .............................76
                 6.9.6.2. EXTERNAL TYPE .............................76
  7. Security Considerations ........................................77
  8. IANA Considerations ............................................77
  9. References .....................................................77
     9.1. Normative References ......................................77
     9.2. Informative References ....................................78
  Acknowledgments ...................................................79
  Authors' Addresses ................................................80














Savage, et al.                Informational                     [Page 4]

RFC 7868                      Cisco's EIGRP                     May 2016


1.  Introduction

  This document describes the Enhanced Interior Gateway Routing
  Protocol (EIGRP), a routing protocol designed and developed by Cisco
  Systems, Inc.  DUAL, the algorithm used to converge the control plane
  to a single set of loop-free paths is based on research conducted at
  SRI International [3].  The Diffusing Update Algorithm (DUAL) is the
  algorithm used to obtain loop freedom at every instant throughout a
  route computation [2].  This allows all routers involved in a
  topology change to synchronize at the same time; the routers not
  affected by topology changes are not involved in the recalculation.
  This document describes the protocol that implements these functions.

2.  Conventions

2.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [1].

2.2.  Terminology

  The following is a list of abbreviations and terms used throughout
  this document:

  ACTIVE State:
     The local state of a route on a router triggered by any event that
     causes all neighbors providing the current least-cost path to fail
     the Feasibility Condition check.  A route in Active state is
     considered unusable.  During Active state, the router is actively
     attempting to compute the least-cost loop-free path by explicit
     coordination with its neighbors using Query and Reply messages.

  Address Family Identifier (AFI):
     Identity of the network-layer protocol reachability information
     being advertised [12].

  Autonomous System (AS):
     A collection of routers exchanging routes under the control of one
     or more network administrators on behalf of a single
     administrative entity.









Savage, et al.                Informational                     [Page 5]

RFC 7868                      Cisco's EIGRP                     May 2016


  Base Topology:
     A routing domain representing a physical (non-virtual) view of the
     network topology consisting of attached devices and network
     segments EIGRP uses to form neighbor relationships.  Destinations
     exchanged within the Base Topology are identified with a Topology
     Identifier value of zero (0).

  Computed Distance (CD):
     Total distance (metric) along a path from the current router to a
     destination network through a particular neighbor computed using
     that neighbor's Reported Distance (RD) and the cost of the link
     between the two routers.  Exactly one CD is computed and
     maintained per the [Destination, Advertising Neighbor] pair.

  CR-Mode
     Conditionally Received Mode

  Diffusing Computation:
     A distributed computation in which a single starting node
     commences the computation by delegating subtasks of the
     computation to its neighbors that may, in turn, recursively
     delegate sub-subtasks further, including a signaling scheme
     allowing the starting node to detect that the computation has
     finished while avoiding false terminations.  In DUAL, the task of
     coordinated updates of routing tables and resulting best path
     computation is performed as a diffusing computation.

  Diffusing Update Algorithm (DUAL):
     A loop-free routing algorithm used with distance vectors or link
     states that provides a diffused computation of a routing table.
     It works very well in the presence of multiple topology changes
     with low overhead.  The technology was researched and developed at
     SRI International [3].

  Downstream Router:
     A router that is one or more hops away from the router in question
     in the direction of the destination.

  EIGRP:
     Enhanced Interior Gateway Routing Protocol.

  Feasibility Condition:
     The Feasibility Condition is a sufficient condition used by a
     router to verify whether a neighboring router provides a loop-free
     path to a destination.  EIGRP uses the Source Node Condition
     stating that a neighboring router meets the Feasibility Condition
     if the neighbor's RD is less than this router's Feasible Distance.




Savage, et al.                Informational                     [Page 6]

RFC 7868                      Cisco's EIGRP                     May 2016


  Feasible Distance (FD):
     Defined as the least-known total metric to a destination from the
     current router since the last transition from ACTIVE to PASSIVE
     state.  Being effectively a record of the smallest known metric
     since the last time the network entered the PASSIVE state, the FD
     is not necessarily a metric of the current best path.  Exactly one
     FD is computed per destination network.

  Feasible Successor:
     A neighboring router that meets the Feasibility Condition for a
     particular destination, hence, providing a guaranteed loop-free
     path.

  Neighbor/Peer:
     For a particular router, another router toward which an EIGRP
     session, also known as an "adjacency", is established.  The
     ability of two routers to become neighbors depends on their mutual
     connectivity and compatibility of selected EIGRP configuration
     parameters.  Two neighbors with interfaces connected to a common
     subnet are known as adjacent neighbors.  Two neighbors that are
     multiple hops apart are known as remote neighbors.

  PASSIVE state:
     The local state of a route in which at least one neighbor
     providing the current least-cost path passes the Feasibility
     Condition check.  A route in PASSIVE state is considered usable
     and not in need of a coordinated re-computation.

  Network Layer Reachability Information (NLRI):
     Information a router uses to calculate the global routing table to
     make routing and forwarding decisions.

  Reported Distance (RD):
     For a particular destination, the value representing the router's
     distance to the destination as advertised in all messages carrying
     routing information.  RD is not equivalent to the current distance
     of the router to the destination and may be different from it
     during the process of path re-computation.  Exactly one RD is
     computed and maintained per destination network.

  Sub-Topology:
     For a given Base Topology, a sub-topology is characterized by an
     independent set of routers and links in a network for which EIGRP
     performs an independent path calculation.  This allows each sub-
     topology to implement class-specific topologies to carry class-
     specific traffic.





Savage, et al.                Informational                     [Page 7]

RFC 7868                      Cisco's EIGRP                     May 2016


  Successor:
     For a particular destination, a neighboring router that meets the
     Feasibility Condition and, at the same time, provides the least-
     cost path.

  Stuck In Active (SIA):
     A destination that has remained in the ACTIVE State in excess of a
     predefined time period at the local router (Cisco implements this
     as 3 minutes).

  Successor-Directed Acyclic Graph (SDAG):
     For a particular destination, a graph defined by routing table
     contents of individual routers in the topology, such that nodes of
     this graph are the routers themselves and a directed edge from
     router X to router Y exists if and only if router Y is router X's
     successor.  After the network has converged, in the absence of
     topological changes, SDAG is a tree.

  Topology Change / Topology-Change Event:
     Any event that causes the CD for a destination through a neighbor
     to be added, modified, or removed.  As an example, detecting a
     link-cost change, receiving any EIGRP message from a neighbor
     advertising an updated neighbor's RD.

  Topology Identifier (TID):
     A number that is used to mark prefixes as belonging to a specific
     sub-topology.

  Topology Table:
     A data structure used by EIGRP to store information about every
     known destination including, but not limited to, network prefix /
     prefix length, FD, RD of each neighbor advertising the
     destination, CD over the corresponding neighbor, and route state.

  Type, Length, Value (TLV):
     An encoding format for information elements used in EIGRP messages
     to exchange information.  Each TLV-formatted information element
     consists of three generic fields: Type identifying the nature of
     information carried in this element, Length describing the length
     of the entire TLV triplet, and Value carrying the actual
     information.  The Value field may, itself, be internally
     structured; this depends on the actual type of the information
     element.  This format allows for extensibility and backward
     compatibility.

  Upstream Router:
     A router that is one or more hops away from the router in
     question, in the direction of the source of the information.



Savage, et al.                Informational                     [Page 8]

RFC 7868                      Cisco's EIGRP                     May 2016


  VID:
     VLAN Identifier

  Virtual Routing and Forwarding (VRF):
     Independent Virtual Private Network (VPN) routing/forwarding
     tables that coexist within the same router at the same time.

3.  The Diffusing Update Algorithm (DUAL)

  The Diffusing Update Algorithm (DUAL) constructs least-cost paths to
  all reachable destinations in a network consisting of nodes and edges
  (routers and links).  DUAL guarantees that each constructed path is
  loop free at every instant including periods of topology changes and
  network reconvergence.  This is accomplished by all routers, which
  are affected by a topology change, computing the new best path in a
  coordinated (diffusing) way and using the Feasibility Condition to
  verify prospective paths for loop freedom.  Routers that are not
  affected by topology changes are not involved in the recalculation.
  The convergence time with DUAL rivals that of any other existing
  routing protocol.

3.1.  Algorithm Description

  DUAL is used by EIGRP to achieve fast loop-free convergence with
  little overhead, allowing EIGRP to provide convergence rates
  comparable, and in some cases better than, most common link state
  protocols [10].  Only nodes that are affected by a topology change
  need to propagate and act on information about the topology change,
  allowing EIGRP to have good scaling properties, reduced overhead, and
  lower complexity than many other interior gateway protocols.

  Distributed routing algorithms are required to propagate information
  as well as coordinate information among all nodes in the network.
  Unlike basic Bellman-Ford distance vector protocols that rely on
  uncoordinated updates when a topology change occurs, DUAL uses a
  coordinated procedure to involve the affected part of the network
  into computing a new least-cost path, known as a "diffusing
  computation".  A diffusing computation grows by querying additional
  routers for their current RD to the affected destination, and it
  shrinks by receiving replies from them.  Unaffected routers send
  replies immediately, terminating the growth of the diffusing
  computation over them.  These intrinsic properties cause the
  diffusing computation to self-adjust in scope and terminate as soon
  as possible.

  One attribute of DUAL is its ability to control the point at which
  the diffusion of a route calculation terminates by managing the
  distribution of reachability information through the network.



Savage, et al.                Informational                     [Page 9]

RFC 7868                      Cisco's EIGRP                     May 2016


  Controlling the scope of the diffusing process is accomplished by
  hiding reachability information through aggregation (summarization),
  filtering, or other means.  This provides the ability to create
  effective failure domains within a single AS, and allows the network
  administrator to manage the convergence and processing
  characteristics of the network.

3.2.  Route States

  A route to a destination can be in one of two states: PASSIVE or
  ACTIVE.  These states describe whether the route is guaranteed to be
  both loop free and the shortest available (the PASSIVE state) or
  whether such a guarantee cannot be given (the ACTIVE state).
  Consequently, in PASSIVE state, the router does not perform any route
  recalculation in coordination with its neighbors because no such
  recalculation is needed.

  In ACTIVE state, the router is actively involved in re-computing the
  least-cost loop-free path in coordination with its neighbors.  The
  state is reevaluated and possibly changed every time a topology
  change is detected.  A topology change is any event that causes the
  CD to the destination over any neighbor to be added, changed, or
  removed from EIGRP's topology table.

  More exactly, the two states are defined as follows:

  o Passive

     A route is considered to be in the Passive state when at least one
     neighbor that provides the current least-total-cost path passes
     the Feasibility Condition check that guarantees loop freedom.  A
     route in the PASSIVE state is usable and its next hop is perceived
     to be a downstream router.

  o Active

     A route is considered to be in the ACTIVE state if neighbors that
     do not pass the Feasibility Condition check provide lowest-cost
     path, and therefore the path cannot be guaranteed loop free.  A
     route in the ACTIVE state is considered unusable and this router
     must coordinate with its neighbors in the search for the new loop-
     free least-total-cost path.

  In other words, for a route to be in PASSIVE state, at least one
  neighbor that provides the least-total-cost path must be a Feasible
  Successor.  Feasible Successors providing the least-total-cost path
  are also called "successors".  For a route to be in PASSIVE state, at
  least one successor must exist.



Savage, et al.                Informational                    [Page 10]

RFC 7868                      Cisco's EIGRP                     May 2016


  Conversely, if the path with the least total cost is provided by
  routers that are not Feasible Successors (and thus not successors),
  the route is in the ACTIVE state, requiring re-computation.

  Notably, for the definition of PASSIVE and ACTIVE states, it does not
  matter if there are Feasible Successors providing a worse-than-least-
  total-cost path.  While these neighbors are guaranteed to provide a
  loop-free path, that path is potentially not the shortest available.

  The fact that the least-total-cost path can be provided by a neighbor
  that fails the Feasibility Condition check may not be intuitive.
  However, such a situation can occur during topology changes when the
  current least-total-cost path fails and the next-least-total-cost
  path traverses a neighbor that is not a Feasible Successor.

  While a router has a route in the ACTIVE state, it must not change
  its successor (i.e., modify the current SDAG) nor modify its own
  Feasible Distance or RD until the route enters the PASSIVE state
  again.  Any updated information about this route received during
  ACTIVE state is reflected only in CDs.  Any updates to the successor,
  FD, and RD are postponed until the route returns to PASSIVE state.
  The state transitions from PASSIVE to ACTIVE and from ACTIVE to
  PASSIVE are controlled by the DUAL FSM and are described in detail in
  Section 3.5.

3.3.  Feasibility Condition

  The Feasibility Condition is a criterion used to verify loop freedom
  of a particular path.  The Feasibility Condition is a sufficient but
  not a necessary condition, meaning that every path meeting the
  Feasibility Condition is guaranteed to be loop free; however, not all
  loop-free paths meet the Feasibility Condition.

  The Feasibility Condition is used as an integral part of DUAL
  operation: every path selection in DUAL is subject to the Feasibility
  Condition check.  Based on the result of the Feasibility Condition
  check after a topology change is detected, the route may either
  remain PASSIVE (if, after the topology change, the neighbor providing
  the least cost path meets the Feasibility Condition) or it needs to
  enter the ACTIVE state (if the topology change resulted in none of
  the neighbors providing the least cost path to meet the Feasibility
  Condition).

  The Feasibility Condition is a part of DUAL that allows the diffused
  computation to terminate as early as possible.  Nodes that are not
  affected by the topology change are not required to perform a DUAL
  computation and may not be aware a topology change occurred.  This
  can occur in two cases:



Savage, et al.                Informational                    [Page 11]

RFC 7868                      Cisco's EIGRP                     May 2016


  First, if informed about a topology change, a router may keep a route
  in PASSIVE state if it is aware of other paths that are downstream
  towards the destination (routes meeting the Feasibility Condition).
  A route that meets the Feasibility Condition is determined to be loop
  free and downstream along the path between the router and the
  destination.

  Second, if informed about a topology change for which it does not
  currently have reachability information, a router is not required to
  enter into the ACTIVE state, nor is it required to participate in the
  DUAL process.

  In order to facilitate describing the Feasibility Condition, a few
  definitions are in order.

  o  A successor for a given route is the next hop used to forward data
     traffic for a destination.  Typically, the successor is chosen
     based on the least-cost path to reach the destination.

  o  A Feasible Successor is a neighbor that meets the Feasibility
     Condition.  A Feasible Successor is regarded as a downstream
     neighbor towards the destination, but it may not be the least-cost
     path but could still be used for forwarding data packets in the
     event equal or unequal cost load sharing was active.  A Feasible
     Successor can become a successor when the current successor
     becomes unreachable.

  o  The Feasibility Condition is met when a neighbor's advertised
     cost, (RD) to a destination is less than the FD for that
     destination, or in other words, the Feasibility Condition is met
     when the neighbor is closer to the destination than the router
     itself has ever been since the destination has entered the PASSIVE
     state for the last time.

  o  The FD is the lowest distance to the destination since the last
     time the route went from ACTIVE to PASSIVE state.  It should be
     noted it is not necessarily the current best distance; rather, it
     is a historical record of the best distance known since the last
     diffusing computation for the destination has finished.  Thus, the
     value of the FD can either be the same as the current best
     distance, or it can be lower.

  A neighbor that advertises a route with a cost that does not meet the
  Feasibility Condition may be upstream and thus cannot be guaranteed
  to be the next hop for a loop-free path.  Routes advertised by
  upstream neighbors are not recorded in the routing table but saved in
  the topology table.




Savage, et al.                Informational                    [Page 12]

RFC 7868                      Cisco's EIGRP                     May 2016


3.4.  DUAL Message Types

  DUAL operates with three basic message types: QUERY, UPDATE, and
  REPLY.

  o  UPDATE - sent to indicate a change in metric or an addition of a
     destination.

  o  QUERY - sent when the Feasibility Condition fails, which can
     happen for reasons like a destination becoming unreachable or the
     metric increasing to a value greater than its current FD.

  o REPLY - sent in response to a QUERY or SIA-QUERY

  In addition to these three basic types, two additional sub-types have
  been added to EIGRP:

  o  SIA-QUERY - sent when a REPLY has not been received within one-
     half of the SIA interval (90 seconds as implemented by Cisco).

  o  SIA-REPLY - sent in response to an SIA-QUERY indicating the route
     is still in ACTIVE state.  This response does not stratify the
     original QUERY; it is only used to indicate that the sending
     neighbor is still in the ACTIVE state for the given destination.

  When in the PASSIVE state, a received QUERY may be propagated if
  there is no Feasible Successor found.  If a Feasible Successor is
  found, the QUERY is not propagated and a REPLY is sent for the
  destination with a metric equal to the current routing table metric.
  When a QUERY is received from a non-successor in ACTIVE state, a
  REPLY is sent and the QUERY is not propagated.  The REPLY for the
  destination contains a metric equal to the current routing table
  metric.

3.5.  DUAL Finite State Machine (FSM)

  The DUAL FSM embodies the decision process for all route
  computations.  It tracks all routes advertised by all neighbors.  The
  distance information, known as a metric, is used by DUAL to select
  efficient loop-free paths.  DUAL selects routes to be inserted into a
  routing table based on Feasible Successors.  A successor is a
  neighboring router used for packet forwarding that has a least-cost
  path to a destination that is guaranteed not to be part of a routing
  loop.

  When there are no Feasible Successors but there are neighbors
  advertising the destination, a recalculation must occur to determine
  a new successor.



Savage, et al.                Informational                    [Page 13]

RFC 7868                      Cisco's EIGRP                     May 2016


  The amount of time it takes to calculate the route impacts the
  convergence time.  Even though the recalculation is not processor
  intensive, it is advantageous to avoid recalculation if it is not
  necessary.  When a topology change occurs, DUAL will test for
  Feasible Successors.  If there are Feasible Successors, it will use
  any it finds in order to avoid any unnecessary recalculation.

  The FSM, which applies per destination in the topology table,
  operates independently for each destination.  It is true that if a
  single link goes down, multiple routes may go into ACTIVE state.
  However, a separate SDAG is computed for each destination, so loop-
  free topologies can be maintained for each reachable destination.







































Savage, et al.                Informational                    [Page 14]

RFC 7868                      Cisco's EIGRP                     May 2016


             +------------+                +-----------+
             |             \              /            |
             |              \            /             |
             |   +=================================+   |
             |   |                                 |   |
             |(1)|             Passive             |(2)|
             +-->|                                 |<--+
                 +=================================+
                     ^     |    ^    ^    ^    |
                 (14)|     |(15)|    |(13)|    |
                     |  (4)|    |(16)|    | (3)|
                     |     |    |    |    |    +------------+
                     |     |    |    |    |                  \
            +-------+      +    +    |    +-------------+     \
           /              /    /     |                   \     \
          /              /    /      +----+               \     \
         |               |   |            |                |     |
         |               v   |            |                |     v
     +==========+(11) +==========+     +==========+(12) +==========+
     |  Active  |---->|  Active  |(5)  |  Active  |---->|  Active  |
     |          |  (9)|          |---->|          | (10)|          |
     |  oij=0   |<----|  oij=1   |     |  oij=2   |<----|  oij=3   |
  +--|          |  +--|          |  +--|          |  +--|          |
  |  +==========+  |  +==========+  |  +==========+  |  +==========+
  |      ^   |(5)  |      ^         |    ^    ^      |         ^
  |      |   +-----|------|---------|----+    |      |         |
  +------+         +------+         +---------+      +---------+
  (6,7,8)          (6,7,8)            (6,7,8)          (6,7,8)

                     Figure 1: DUAL Finite State Machine

  Legend:

   i   Node that is computing route
   j   Destination node or network
   k   Any neighbor of node i
   oij QUERY origin flag
     0 = metric increase during ACTIVE state
     1 = node i originated
     2 = QUERY from, or link increase to, successor during ACTIVE state
     3 = QUERY originated from successor
   rijk REPLY status flag for each neighbor k for destination j
     1 = awaiting REPLY
     0 = received REPLY
   lik = the link connecting node i to neighbor k






Savage, et al.                Informational                    [Page 15]

RFC 7868                      Cisco's EIGRP                     May 2016


  The following describes in detail the state/event/action transitions
  of the DUAL FSM.  For all steps, the topology table is updated with
  the new metric information from either QUERY, REPLY, or UPDATE
  received.

  (1)  A QUERY is received from a neighbor that is not the current
       successor.  The route is currently in PASSIVE state.  As the
       successor is not affected by the QUERY, and a Feasible Successor
       exists, the route remains in PASSIVE state.  Since a Feasible
       Successor exists, a REPLY MUST be sent back to the originator of
       the QUERY.  Any metric received in the QUERY from that neighbor
       is recorded in the topology table and the Feasibility Check (FC)
       is run to check for any change to current successor.

  (2)  A directly connected interface changes state (connects,
       disconnects, or changes metric), or similarly an UPDATE or QUERY
       has been received with a metric change for an existing
       destination, the route will stay in the PASSIVE state if the
       current successor is not affected by the change, or it is no
       longer reachable and there is a Feasible Successor.  In either
       case, an UPDATE is sent with the new metric information if it
       has changed.

  (3)  A QUERY was received from a neighbor who is the current
       successor and no Feasible Successors exist.  The route for the
       destination goes into ACTIVE state.  A QUERY is sent to all
       neighbors on all interfaces that are not split horizon.  Split
       horizon takes effect for a query or update from the successor it
       is using for the destination in the query.  The QUERY origin
       flag is set to indicate the QUERY originated from a neighbor
       marked as successor for route.  The REPLY status flag is set for
       all neighbors to indicate outstanding replies.

  (4)  A directly connected link has gone down or its cost has
       increased, or an UPDATE has been received with a metric
       increase.  The route to the destination goes to ACTIVE state if
       there are no Feasible Successors found.  A QUERY is sent to all
       neighbors on all interfaces.  The QUERY origin flag is to
       indicate that the router originated the QUERY.  The REPLY status
       flag is set to 1 for all neighbors to indicate outstanding
       replies.










Savage, et al.                Informational                    [Page 16]

RFC 7868                      Cisco's EIGRP                     May 2016


  (5)  While a route for a destination is in ACTIVE state, and a QUERY
       is received from the current successor, the route remains in
       ACTIVE state.  The QUERY origin flag is set to indicate that
       there was another topology change while in ACTIVE state.  This
       indication is used so new Feasible Successors are compared to
       the metric that made the route go to ACTIVE state with the
       current successor.

  (6)  While a route for a destination is in ACTIVE state and a QUERY
       is received from a neighbor that is not the current successor, a
       REPLY should be sent to the neighbor.  The metric received in
       the QUERY should be recorded.

  (7)  If a link cost changes, or an UPDATE with a metric change is
       received in ACTIVE state from a non-successor, the router stays
       in ACTIVE state for the destination.  The metric information in
       the UPDATE is recorded.  When a route is in the ACTIVE state,
       neither a QUERY nor UPDATE are ever sent.

  (8)  If a REPLY for a destination, in ACTIVE state, is received from
       a neighbor or the link between a router and the neighbor fails,
       the router records that the neighbor replied to the QUERY.  The
       REPLY status flag is set to 0 to indicate this.  The route stays
       in ACTIVE state if there are more replies pending because the
       router has not heard from all neighbors.

  (9)  If a route for a destination is in ACTIVE state, and a link
       fails or a cost increase occurred between a router and its
       successor, the router treats this case like it has received a
       REPLY from its successor.  When this occurs after the router
       originates a QUERY, it sets the QUERY origin flag to indicate
       that another topology change occurred in ACTIVE state.

  (10) If a route for a destination is in ACTIVE state, and a link
       fails or a cost increase occurred between a router and its
       successor, the router treats this case like it has received a
       REPLY from its successor.  When this occurs after a successor
       originated a QUERY, the router sets the QUERY origin flag to
       indicate that another topology change occurred in ACTIVE state.

  (11) If a route for a destination is in ACTIVE state, the cost of the
       link through which the successor increases, and the last REPLY
       was received from all neighbors, but there is no Feasible
       Successor, the route should stay in ACTIVE state.  A QUERY is
       sent to all neighbors.  The QUERY origin flag is set to 1.






Savage, et al.                Informational                    [Page 17]

RFC 7868                      Cisco's EIGRP                     May 2016


  (12) If a route for a destination is in ACTIVE state because of a
       QUERY received from the current successor, and the last REPLY
       was received from all neighbors, but there is no Feasible
       Successor, the route should stay in ACTIVE state.  A QUERY is
       sent to all neighbors.  The QUERY origin flag is set to 3.

  (13) Received replies from all neighbors.  Since the QUERY origin
       flag indicates the successor originated the QUERY, it
       transitions to PASSIVE state and sends a REPLY to the old
       successor.

  (14) Received replies from all neighbors.  Since the QUERY origin
       flag indicates a topology change to the successor while in
       ACTIVE state, it need not send a REPLY to the old successor.
       When the Feasibility Condition is met, the route state
       transitions to PASSIVE.

  (15) Received replies from all neighbors.  Since the QUERY origin
       flag indicates either the router itself originated the QUERY or
       FC was not satisfied with the replies received in ACTIVE state,
       FD is reset to infinite value and the minimum of all the
       reported metrics is chosen as FD and route transitions back to
       PASSIVE state.  A REPLY is sent to the old-successor if oij
       flags indicate that there was a QUERY from successor.

  (16) If a route for a destination is in ACTIVE state because of a
       QUERY received from the current successor or there was an
       increase in distance while in ACTIVE state, the last REPLY was
       received from all neighbors, and a Feasible Successor exists for
       the destination, the route can go into PASSIVE state and a REPLY
       is sent to the successor if oij indicates that QUERY was
       received from the successor.

3.6.  DUAL Operation -- Example Topology

  The following topology (Figure 2) will be used to provide an example
  of how DUAL is used to reroute after a link failure.  Each node is
  labeled with its costs to destination N.  The arrows indicate the
  successor (next hop) used to reach destination N.  The least-cost
  path is selected.











Savage, et al.                Informational                    [Page 18]

RFC 7868                      Cisco's EIGRP                     May 2016


                               N
                               |
                            (1)A ---<--- B(2)
                               |         |
                               ^         |
                               |         |
                            (2)D ---<--- C(3)

                       Figure 2: Stable Topology

  In the case where the link between A and D fails (Figure 3);

         N                                   N
         |                                   |
         A ---<--- B                         A ---<--- B
         |         |                         |          |
         X         |                         ^          |
         |         |                         |          |
         D ---<--- C                         D ---<--- C
           Q->                                      <-R

                            N
                            |
                         (1)A ---<--- B(2)
                                      |
                                      ^
                                      |
                         (4)D --->--- C(3)

                 Figure 3: Link between A and D Fails


     Only observing the destination provided by node N, D enters the
  ACTIVE state and sends a QUERY to all its neighbors, in this case
  node C.
     C determines that it has a Feasible Successor and replies
  immediately with metric 3.
     C changes its old successor of D to its new single successor B
  and the route to N stays in PASSIVE state.
     D receives the REPLY and can transition out of ACTIVE state
  since it received replies from all its neighbors.
     D now has a viable path to N through C.
     D selects C as its successor to reach node N with a cost of 4.

  Notice that nodes A and B were not involved in the recalculation
  since they were not affected by the change.





Savage, et al.                Informational                    [Page 19]

RFC 7868                      Cisco's EIGRP                     May 2016


  Let's consider the situation in Figure 4, where Feasible Successors
  may not exist.  If the link between node A and B fails, B goes into
  ACTIVE state for destination N since it has no Feasible Successors.
  Node B sends a QUERY to node C.  C has no Feasible Successors, so it
  goes active for destination N; and since C has no neighbors, it
  replies to the QUERY, deletes the destination, and returns to the
  PASSIVE state for the unreachable route.  As C removes the (now
  unreachable) destination from its table, C sends REPLY to its old
  successor.  B receives this REPLY from C, and determines this is the
  last REPLY it is waiting on before determining what the new state of
  the route should be; on receiving this REPLY, B deletes the route to
  N from its routing table.

  Since B was the originator of the initial QUERY, it does not have to
  send a REPLY to its old successor (it would not be able to any ways,
  because the link to its old successor is down).  Note that nodes A
  and D were not involved in the recalculation since their successors
  were not affected.

         N                                N
         |                                |
      (1)A ---<--- B(2)                   A ------- B   Q
         |         |                      |         |   |^      ^
         ^         ^                      ^         |   v|      |
         |         |                      |         |      |    |
      (2)D         C(3)                   D         C     ACK   R


       Figure 4: No Feasible Successors When Link between A and B Fails

4.  EIGRP Packets

  EIGRP uses five different packet types to handle session management
  and pass DUAL Message types:

      HELLO Packets (includes ACK)
      QUERY Packets (includes SIA-Query)
      REPLY Packets (includes SIA-Reply)
      REQUEST Packets
      UPDATE Packets

  EIGRP packets are directly encapsulated into a network-layer
  protocol, such as IPv4 or IPv6.  While EIGRP is capable of using
  additional encapsulation (such as AppleTalk, IPX, etc.) no further
  encapsulation is specified in this document.






Savage, et al.                Informational                    [Page 20]

RFC 7868                      Cisco's EIGRP                     May 2016


  Support for network-layer protocol fragmentation is not supported,
  and EIGRP will attempt to avoid a maximum size packets that exceed
  the interface MTU by sending multiple packets that are less than or
  equal to MTU-sized packets.

  Each packet transmitted will use either multicast or unicast network-
  layer destination addresses.  When multicast addresses are used, a
  mapping for the data link multicast address (when available) must be
  provided.  The source address will be set to the address of the
  sending interface, if applicable.

  The following network-layer multicast addresses and associated data
  link multicast addresses:

     224.0.0.10 for IPv4 "EIGRP Routers" [13]
     FF02:0:0:0:0:0:0:A for IPv6 "EIGRP Routers" [14]

  They will be used on multicast-capable media and will be media
  independent for unicast addresses.  Network-layer addresses will be
  used and the mapping to media addresses will be achieved by the
  native protocol mechanisms.

4.1.  UPDATE Packets

  UPDATE packets carry the DUAL UPDATE message type and are used to
  convey information about destinations and the reachability of those
  destinations.  When a new neighbor is discovered, unicast UPDATE
  packets are used to transmit a full table to the new neighbor, so the
  neighbor can build up its topology table.  In normal operation (other
  than neighbor startup such as a link cost changes), UPDATE packets
  are multicast.  UPDATE packets are always transmitted reliably.  Each
  TLV destination will be processed individually through the DUAL FSM.

4.2.  QUERY Packets

  A QUERY packet carries the DUAL QUERY message type and is sent by a
  router to advertise that a route is in ACTIVE state and the
  originator is requesting alternate path information from its
  neighbors.  An infinite metric is encoded by setting the delay part
  of the metric to its maximum value.

  If there is a topology change that causes multiple destinations to be
  marked ACTIVE, EIGRP will build one or more QUERY packets for all
  destinations present.  The state of each route is recorded
  individually, so a responding QUERY or REPLY need not contain all the
  same destinations in a single packet.  Since EIGRP uses a reliable
  transport mechanism, route QUERY packets are also guaranteed be
  reliably delivered.



Savage, et al.                Informational                    [Page 21]

RFC 7868                      Cisco's EIGRP                     May 2016


  When a QUERY packet is received, each destination will trigger a DUAL
  event, and the state machine will run individually for each route.
  Once the entire original QUERY packet is processed, then a REPLY or
  SIA-REPLY will be sent with the latest information.

4.3.  REPLY Packets

  A REPLY packet carries the DUAL REPLY message type and will be sent
  in response to a QUERY or SIA-QUERY packet.  The REPLY packet will
  include a TLV for each destination and the associated vector metric
  in its own topology table.

  The REPLY packet is sent after the entire received QUERY packet is
  processed.  When a REPLY packet is received, there is no reason to
  process the packet before an acknowledgment is sent.  Therefore, an
  acknowledgment is sent immediately and then the packet is processed.
  The sending of the acknowledgment is accomplished either by sending
  an ACK packet or by piggybacking the acknowledgment onto another
  packet already being transmitted.

  Each TLV destination will be processed individually through the DUAL
  FSM.  When a QUERY is received for a route that doesn't exist in our
  topology table, a REPLY with an infinite metric is sent and an entry
  in the topology table is added with the metric in the QUERY if the
  metric is not an infinite value.

  If a REPLY for a designation not in the Active state, or not in the
  topology table, EIGRP will acknowledge the packet and discard the
  REPLY.

4.4.  Exception Handling

4.4.1.  Active Duration (SIA)

  When an EIGRP router transitions to ACTIVE state for a particular
  destination, a QUERY is sent to a neighbor and the ACTIVE timer is
  started to limit the amount of time a destination may remain in an
  ACTIVE state.

  A route is regarded as SIA when it does not receive a REPLY within a
  preset time.  This time interval is broken into two equal periods
  following the QUERY, and up to three additional "busy" periods in
  which an SIA-QUERY packet is sent for the destination.

  This process is begun when a router sends a QUERY to its neighbor.
  After one-half the SIA time interval (default implementation is 90
  seconds), the router will send an SIA-QUERY; this must be replied to
  with either a REPLY or SIA-REPLY.  Any neighbor that fails to send



Savage, et al.                Informational                    [Page 22]

RFC 7868                      Cisco's EIGRP                     May 2016


  either a REPLY or SIA-REPLY with-in one-half the SIA interval will
  result in the neighbor being deemed to be "stuck" in the active
  state.

  Cisco also limits the number of SIA-REPLY messages allowed to three.
  Once the timeout occurs after the third SIA-REPLY with the neighbor
  remaining in an ACTIVE state (as noted in the SIA-Reply message), the
  neighbor being deemed to be "stuck" in the active state.

  If the SIA state is declared, DUAL may take one of two actions;

     a) Delete the route from that neighbor, acting as if the neighbor
        had responded with an unreachable REPLY message from the
        neighbor.

     b) Delete all routes from that neighbor and reset the adjacency
        with that neighbor, acting as if the neighbor had responded
        with an unreachable message for all routes.

  Implementation note: Cisco currently implements option (b).

4.4.1.1.  SIA-QUERY

  When a QUERY is still outstanding and awaiting a REPLY from a
  neighbor, there is insufficient information to determine why a REPLY
  has not been received.  A lost packet, congestion on the link, or a
  slow neighbor could cause a lack of REPLY from a downstream neighbor.

  In order to try to ascertain if the neighboring device is still
  attempting to converge on the active route, EIGRP may send an SIA-
  QUERY packet to the active neighbor(s).  This enables an EIGRP router
  to determine if there is a communication issue with the neighbor or
  if it is simply still attempting to converge with downstream routers.

  By sending an SIA-QUERY, the originating router may extend the
  effective active time by resetting the ACTIVE timer that has been
  previously set, thus allowing convergence to continue so long as
  neighbor devices successfully communicate that convergence is still
  underway.

  The SIA-QUERY packet SHOULD be sent on a per-destination basis at
  one-half of the ACTIVE timeout period.  Up to three SIA-QUERY packets
  for a specific destination may be sent, each at a value of one-half
  the ACTIVE time, so long as each are successfully acknowledged and
  met with an SIA-REPLY.






Savage, et al.                Informational                    [Page 23]

RFC 7868                      Cisco's EIGRP                     May 2016


  Upon receipt of an SIA-QUERY packet, an EIGRP router should first
  send an ACK and then continue to process the SIA-QUERY information.
  The QUERY is sent on a per-destination basis at approximately one-
  half the active time.

  If the EIGRP router is still active for the destination specified in
  the SIA-QUERY, the router should respond to the originator with the
  SIA-REPLY indicating that active processing for this destination is
  still underway by setting the ACTIVE flag in the packet upon
  response.

  If the router receives an SIA-QUERY referencing a destination for
  which it has not received the original QUERY, the router should treat
  the packet as though it was a standard QUERY:

     1) Acknowledge the receipt of the packet

     2) Send a REPLY if a successor exists

     3) If the SIA-QUERY is from the successor, transition to the
        ACTIVE state if and only if a Feasibility Condition check fails
        and send an SIA-REPLY with the ACTIVE bit set

4.4.1.2.  SIA-REPLY

  An SIA-REPLY packet is the corresponding response upon receipt of an
  SIA-QUERY from an EIGRP neighbor.  The SIA-REPLY packet will include
  a TLV for each destination and the associated vector metric in the
  topology table.  The SIA-REPLY packet is sent after the entire
  received SIA-QUERY packet is processed.

  If the EIGRP router is still ACTIVE for a destination, the SIA-REPLY
  packet will be sent with the ACTIVE bit set.  This confirms for the
  neighbor device that the SIA-QUERY packet has been processed by DUAL
  and that the router is still attempting to resolve a loop-free path
  (likely awaiting responses to its own QUERY to downstream neighbors).

  The SIA-REPLY informs the recipient that convergence is complete or
  still ongoing; it is an explicit notification that the router is
  still actively engaged in the convergence process.  This allows the
  device that sent the SIA-QUERY to determine whether it should
  continue to allow the routes that are not converged to be in the
  ACTIVE state or if it should reset the neighbor relationship and
  flush all routes through this neighbor.







Savage, et al.                Informational                    [Page 24]

RFC 7868                      Cisco's EIGRP                     May 2016


5. EIGRP Operation

  EIGRP has four basic components:

       o Finite State Machine
       o Reliable Transport Protocol
       o Neighbor Discovery/Recovery
       o Route Management

5.1.  Finite State Machine

  The detail of DUAL, the State Machine used by EIGRP, is covered in
  Section 3.5.

5.2.  Reliable Transport Protocol

  The reliable transport is responsible for guaranteed, ordered
  delivery of EIGRP packets to all neighbors.  It supports intermixed
  transmission of multicast and unicast packets.  Some EIGRP packets
  must be transmitted reliably and others need not.  For efficiency,
  reliability is provided only when necessary.

  For example, on a multi-access network that has multicast
  capabilities, such as Ethernet, it is not necessary to send HELLOs
  reliably to all neighbors individually.  EIGRP sends a single
  multicast HELLO with an indication in the packet informing the
  receivers that the packet need not be acknowledged.  Other types of
  packets, such as UPDATE packets, require acknowledgment and this is
  indicated in the packet.  The reliable transport has a provision to
  send multicast packets quickly when there are unacknowledged packets
  pending.  This helps ensure that convergence time remains low in the
  presence of varying speed links.

  DUAL assumes there is lossless communication between devices and thus
  must depend on the transport protocol to guarantee that messages are
  transmitted reliably.  EIGRP implements the reliable transport
  protocol to ensure ordered delivery and acknowledgment of any
  messages requiring reliable transmission.  State variables such as a
  received sequence number, acknowledgment number, and transmission
  queues MUST be maintained on a per-neighbor basis.











Savage, et al.                Informational                    [Page 25]

RFC 7868                      Cisco's EIGRP                     May 2016


  The following sequence number rules must be met for the EIGRP
  reliable transport protocol to work correctly:

     o  A sender of a packet includes its global sequence number in the
        sequence number field of the fixed header.  The sequence number
        wraps around to one when the maximum value is exceeded
        (sequence number zero is reserved for unreliable transmission).
        The sender includes the receivers sequence number in the
        acknowledgment number field of the fixed header.

     o  Any packets that do not require acknowledgment must be sent
        with a sequence number of 0.

     o  Any packet that has an acknowledgment number of 0 indicates
        that sender is not expecting to explicitly acknowledge
        delivery.  Otherwise, it is acknowledging a single packet.

     o  Packets that are network-layer multicast must contain
        acknowledgment number of 0.

  When a router transmits a packet, it increments its sequence number
  and marks the packet as requiring acknowledgment by all neighbors on
  the interface for which the packet is sent.  When individual
  acknowledgments are unicast addressed by the receivers to the sender
  with the acknowledgment number equal to the packets sequence number,
  the sender SHALL clear the pending acknowledgment requirement for the
  packet from the respective neighbor.

  If the required acknowledgment is not received for the packet, it
  MUST be retransmitted.  Retransmissions will occur for a maximum of 5
  seconds.  This retransmission for each packet is tried 16 times,
  after which, if there is no ACK, the neighbor relationship is reset
  with the peer that didn't send the ACK.

  The protocol has no explicit windowing support.  A receiver will
  acknowledge each packet individually and will drop packets that are
  received out of order.

  Implementation note: The exception to this occurs if a duplicate
  packet is received, and the acknowledgment for the original packet
  has been scheduled for transmission, but not yet sent.  In this case,
  EIGRP will not send an acknowledgment for the duplicate packet, and
  the queued acknowledgment will acknowledge both the original and
  duplicate packet.

  Duplicate packets are also discarded upon receipt.  Acknowledgments
  are not accumulative.  Therefore, an ACK with a non-zero sequence
  number acknowledges a single packet.



Savage, et al.                Informational                    [Page 26]

RFC 7868                      Cisco's EIGRP                     May 2016


  There are situations when multicast and unicast packets are
  transmitted close together on multi-access broadcast-capable
  networks.  The reliable transport mechanism MUST ensure that all
  multicasts are transmitted in order and not mix the order among
  unicast and multicast packets.  The reliable transport provides a
  mechanism to deliver multicast packets in order to some receivers
  quickly, while some receivers have not yet received all unicast or
  previously sent multicast packets.  The SEQUENCE_TYPE TLV in HELLO
  packets achieves this.  This will be explained in more detail in this
  section.

  Figure 5 illustrates the reliable transport protocol on point-to-
  point links.  There are two scenarios that may occur: an UPDATE-
  initiated packet exchange or a QUERY-initiated packet exchange.

  This example will assume no packet loss.

Router A                          Router B

               An Example UPDATE Exchange
                                <----------------
                                UPDATE (multicast)
A receives packet                SEQ=100, ACK=0
                                Add packet to A's retransmit list
---------------->
ACK (unicast)
SEQ=0, ACK=100                   Receive ACK
Process UPDATE                   Delete packet from A's retransmit list

               An Example QUERY Exchange
                                <----------------
                                QUERY (multicast)
A receives packet                SEQ=101, ACK=0
Process QUERY                    Add packet to A's retransmit list

---------------->
REPLY (unicast)
SEQ=201, ACK=101                 Process ACK
                                Delete packet from A's retransmit
list
                                Process REPLY packet
                                <----------------
                                ACK (unicast)
A receives packet                SEQ=0, ACK=201

      Figure 5: Reliable Transfer on Point-to-Point Links





Savage, et al.                Informational                    [Page 27]

RFC 7868                      Cisco's EIGRP                     May 2016


  The UPDATE exchange sequence requires UPDATE packets sent to be
  delivered reliably.  The UPDATE packet transmitted contains a
  sequence number that is acknowledged by a receipt of an ACK packet.
  If the UPDATE or the ACK packet is lost on the network, the UPDATE
  packet will be retransmitted.

  This example will assume there is heavy packet loss on a network.

Router A                           Router B
                                <----------------
                                UPDATE (multicast)
A receives packet                SEQ=100, ACK=0
                                Add packet to A's retransmit list
---------------->
ACK (unicast)
SEQ=0, ACK=100                   Receive ACK
Process UPDATE                   Delete packet from A's retransmit list

                                <--/LOST/--------------
                                UPDATE (multicast)
                                SEQ=101, ACK=0
                                Add packet to A's retransmit list

                                Retransmit Timer Expires
                                <----------------
                                Retransmit UPDATE (unicast)
                                SEQ=101, ACK=0
                                Keep packet on A's retransmit list
---------------->
ACK (unicast)
SEQ=0, ACK=101                   Receive ACK
Process UPDATE                   Delete packet from A's retransmit list

         Figure 6: Reliable Transfer on Lossy Point-to-Point Links

  Reliable delivery on multi-access LANs works in a similar fashion to
  point-to-point links.  The initial packet is always multicast and
  subsequent retransmissions are unicast addressed.  The
  acknowledgments sent are always unicast addressed.  Figure 7 shows an
  example with four routers on an Ethernet.

          Router B -----------+
                              |
          Router C -----------+------------ Router A
                              |
          Router D -----------+





Savage, et al.                Informational                    [Page 28]

RFC 7868                      Cisco's EIGRP                     May 2016


                       An Example UPDATE Exchange
                                 <----------------
                                 A send UPDATE (multicast)
                                 SEQ=100, ACK=0
                                 Add packet to B's retransmit list
                                 Add packet to C's retransmit list
                                 Add packet to D's retransmit list
---------------->
B sends ACK (unicast)
SEQ=0, ACK=100                    Receive ACK
Process UPDATE                    Delete packet from B's retransmit list

---------------->
C sends ACK (unicast)
SEQ=0, ACK=100                    Receive ACK
Process UPDATE                    Delete packet from C's retransmit list

---------------->
D sends ACK (unicast)
SEQ=0, ACK=100                    Receive ACK
Process UPDATE                    Delete packet from D's retransmit list

                        An Example QUERY Exchange
                                 <----------------
                                 A sends UPDATE (multicast)
                                 SEQ=101, ACK=0
                                 Add packet to B's retransmit list
                                 Add packet to C's retransmit list
                                 Add packet to D's retransmit list

---------------->
B sends REPLY (unicast)           <----------------
SEQ=511, ACK=101                  A sends ACK (unicast to B)
Process UPDATE                    SEQ=0, ACK=511
                                 Delete packet from B's retransmit list
---------------->
C sends REPLY (unicast)           <----------------
SEQ=200, ACK=101                  A sends ACK (unicast to C)
Process UPDATE                    SEQ=0, ACK=200
                                 Delete packet from C's retransmit list

---------------->
D sends REPLY (unicast)           <----------------
SEQ=11, ACK=101                   A sends ACK (unicast to D)
Process UPDATE                    SEQ=0, ACK=11
                                 Delete packet from D's retransmit list

        Figure 7: Reliable Transfer on Multi-Access Links



Savage, et al.                Informational                    [Page 29]

RFC 7868                      Cisco's EIGRP                     May 2016


  And finally, a situation where numerous multicast and unicast packets
  are sent close together in a multi-access environment is illustrated
  in Figure 8.

       Router B -----------+
                           |
       Router C -----------+------------ Router A
                           |
       Router D -----------+

                               <----------------
                               A sends UPDATE (multicast)
                               SEQ=100, ACK=0
---------------/LOST/->         Add packet to B's retransmit list
B sends ACK (unicast)           Add packet to C's retransmit list
SEQ=0, ACK=100                  Add packet to D's retransmit list

---------------->
C sends ACK (unicast)
SEQ=0, ACK=100                  Delete packet from C's retransmit list

---------------->
D sends ACK (unicast)
SEQ=0, ACK=100                  Delete packet from D's retransmit list
                               <----------------
                               A sends HELLO (multicast)
                               SEQ=0, ACK=0, SEQ_TLV listing B

B receives Hello, does not set CR-Mode
C receives Hello, sets CR-Mode
D receives Hello, sets CR-Mode

                               <----------------
                               A sends UPDATE (multicast)
                               SEQ=101, ACK=0, CR-Flag=1
---------------/LOST/->         Add packet to B's retransmit list
B sends ACK (unicast)           Add packet to C's retransmit list
SEQ=0, ACK=100                  Add packet to D's retransmit list

B ignores UPDATE 101 because the CR-Flag
is set and it is not in CR-Mode

---------------->
C sends ACK (unicast)
SEQ=0, ACK=101






Savage, et al.                Informational                    [Page 30]

RFC 7868                      Cisco's EIGRP                     May 2016


---------------->
D sends ACK (unicast)

SEQ=0, ACK=101
                               <----------------
                               A resends UPDATE (unicast to B)
                               SEQ=100, ACK=0
B packet duplicate

--------------->
B sends ACK (unicast)           A removes packet from retransmit list
SEQ=0, ACK=100
                               <----------------
                               A resends UPDATE (unicast to B)
                               SEQ=101, ACK=0

--------------->
B sends ACK (unicast)            A removes packet from retransmit list
SEQ=0, ACK=101

        Figure 8: Reliable Transfer on Multi-Access Links
                     with Conditional Receive

  Initially, Router A sends a multicast addressed UPDATE packet on the
  LAN.  B and C receive it and send acknowledgments.  Router B receives
  the UPDATE, but the acknowledgment sent is lost on the network.
  Before the retransmission timer for Router B's packet expires, there
  is an event that causes a new multicast addressed UPDATE to be sent.

  Router A detects that there is at least one neighbor on the interface
  with a full queue.  Therefore, it MUST signal that neighbor not to
  receive the next packet or it would receive the retransmitted packet
  out of order.  If all neighbors on the interface have a full queue,
  then EIGRP should reschedule the transmission of the UPDATE once the
  queues are no longer full.

  Router A builds a HELLO packet with a SEQUENCE_TYPE TLV indicating
  all the neighbors that have full queues.  In this case, the only
  neighbor address in the list is Router B.  The HELLO packet is sent
  via multicast unreliably out the interface.

  Routers C and D process the SEQUENCE_TYPE TLV by looking for their
  own addresses in the list.  If not found, they put themselves in CR-
  Mode.

  Router B does not find its address in the SEQUENCE TLV peer list, so
  it enters CR-Mode.  Packets received by Router B with the CR-Flag
  MUST be discarded and not acknowledged.



Savage, et al.                Informational                    [Page 31]

RFC 7868                      Cisco's EIGRP                     May 2016


  Later, Router A will unicast transmit both packets 100 and 101
  directly to Router B.  Router B already has 100, so it discards and
  acknowledges it.

  Router B then accepts and acknowledges packet 101.  Once an
  acknowledgment is received, Router A can remove both packets from
  Router B's transmission list.

5.2.1.  Bandwidth on Low-Speed Links

  By default, EIGRP limits itself to using no more than 50% of the
  bandwidth reported by an interface when determining packet-pacing
  intervals.  If the bandwidth does not match the physical bandwidth
  (the network architect may have put in an artificially low or high
  bandwidth value to influence routing decisions), EIGRP may:

     1. Generate more traffic than the interface can handle, possibly
        causing drops, thereby impairing EIGRP performance.

     2. Generate a lot of EIGRP traffic that could result in little
        bandwidth remaining for user data.  To control such
        transmissions, an interface-pacing timer is defined for the
        interfaces on which EIGRP is enabled.  When a pacing timer
        expires, a packet is transmitted out on that interface.

5.3.  Neighbor Discovery/Recovery

  Neighbor Discovery/Recovery is the process that routers use to
  dynamically learn of other routers on their directly attached
  networks.  Routers MUST also discover when their neighbors become
  unreachable or inoperative.  This process is achieved with low
  overhead by periodically sending small HELLO packets.  As long as any
  packets are received from a neighbor, the router can determine that
  neighbor is alive and functioning.  Only after a neighbor router is
  considered operational can the neighboring routers exchange routing
  information.

5.3.1.  Neighbor Hold Time

  Each router keeps state information about adjacent neighbors.  When
  newly discovered neighbors are learned the address, interface, and
  Hold Time of the neighbor is noted.  When a neighbor sends a HELLO,
  it advertises its Hold Time.  The Hold Time is the amount of time a
  router treats a neighbor as reachable and operational.  In addition
  to the HELLO packet, if any packet is received within the Hold Time
  period, then the Hold Time period will be reset.  When the Hold Time
  expires, DUAL is informed of the topology change.




Savage, et al.                Informational                    [Page 32]

RFC 7868                      Cisco's EIGRP                     May 2016


5.3.2.  HELLO Packets

  When an EIGRP router is initialized, it will start sending HELLO
  packets out any interface on which EIGRP is enabled.  HELLO packets,
  when used for neighbor discovery, are normally sent multicast
  addressed.  The HELLO packet will include the configured EIGRP metric
  K-values.  Two routers become neighbors only if the K-values are the
  same.  This enforces that the metric usage is consistent throughout
  the Internet.  Also included in the HELLO packet is a Hold Time
  value.  This value indicates to all receivers the length of time in
  seconds that the neighbor is valid.  The default Hold Time will be
  three times the HELLO interval.  HELLO packets will be transmitted
  every 5 seconds (by default).  There may be a configuration command
  that controls this value and therefore changes the Hold Time.  HELLO
  packets are not transmitted reliably, so the sequence number should
  be set to 0.

5.3.3.  UPDATE Packets

  A router detects a new neighbor by receiving a HELLO packet from a
  neighbor not presently known.  To ensure unicast and multicast packet
  delivery, the detecting neighbor will send a unicast UPDATE packet to
  the new neighbor with no routing information (the NULL UPDATE
  packet).  The initial NULL UPDATE packet sent MUST have the INIT-Flag
  set and contain no topology information.

  Implementation note: The NULL UPDATE packet is used to ensure
  bidirectional UNICAST packet delivery as the NULL UPDATE and the ACK
  are both sent unicast.  Additional UPDATE packets cannot be sent
  until the initial NULL UPDATE packet is acknowledged.

  The INIT-Flag instructs the neighbor to advertise its routes, and it
  is also useful when a neighbor goes down and comes back up before the
  router detects it went down.  In this case, the neighbor needs new
  routing information.  The INIT-Flag informs the router to send it.

  Implementation note: When a router sends an UPDATE with the INIT-Flag
  set, and without the Restart (RS) flag set in the header, the
  receiving neighbor must also send an UPDATE with the INIT-Flag.
  Failure to do so will result in a Cisco device posting a "stuck in
  INIT state" error and subsequent discards.










Savage, et al.                Informational                    [Page 33]

RFC 7868                      Cisco's EIGRP                     May 2016


5.3.4.  Initialization Sequence

           Router A                           Router B
         (just booted)                    (up and running)

       (1)---------------->
            HELLO (multicast)           <----------------     (2)
            SEQ=0, ACK=0                 HELLO (multicast)
                                         SEQ=0, ACK=0

                                        <----------------     (3)
                                         UPDATE (unicast)
                                         SEQ=10, ACK=0, INIT
       (4)---------------->              UPDATE 11 is queued
            UPDATE (unicast)
            SEQ=100, ACK=10, INIT       <----------------     (5)
                                        UPDATE (unicast)
                                        SEQ=11, ACK=100
                                        All UPDATES sent
       (6)--------------/lost/->
            ACK (unicast)
            SEQ=0, ACK=11
                                        (5 seconds later)
                                        <----------------     (7)
            Duplicate received,         UPDATE (unicast)
            packet discarded            SEQ=11, ACK=100
       (8)--------------->
            ACK (unicast)
            SEQ=0, ACK=11

                   Figure 9: Initialization Sequence

  (1) Router A sends a multicast HELLO and Router B discovers it.

  (2) Router B sends an expedited HELLO and starts the process of
      sending its topology table to Router A.  In addition, Router B
      sends the NULL UPDATE packet with the INIT-Flag.  The second
      packet is queued, but it cannot be sent until the first is
      acknowledged.

  (3) Router A receives the first UPDATE packet and processes it as a
      DUAL event.  If the UPDATE contains topology information, the
      packet will be processed and stored in a topology table.  Router
      B sends its first and only UPDATE packet with an accompanied ACK.







Savage, et al.                Informational                    [Page 34]

RFC 7868                      Cisco's EIGRP                     May 2016


  (4) Router B receives UPDATE packet 100 from Router A.  Router B can
      dequeue packet 10 from A's transmission list since the UPDATE
      acknowledged 10.  It can now send UPDATE packet 11 and with an
      acknowledgment of Router A's UPDATE.

  (5) Router A receives the last UPDATE packet from Router B and
      acknowledges it.  The acknowledgment gets lost.

  (6) Router B later retransmits the UPDATE packet to Router A.

  (7) Router A detects the duplicate and simply acknowledges the
      packet.  Router B dequeues packet 11 from A's transmission list,
      and both routers are up and synchronized.

5.3.5.  Neighbor Formation

  To prevent packets from being sent to a neighbor prior to verifying
  multicast and unicast packet delivery is reliable, a three-way
  handshake is utilized.

  During normal adjacency formation, multicast HELLOs cause the EIGRP
  process to place new neighbors into the neighbor table.  Unicast
  packets are then used to exchange known routing information and
  complete the neighbor relationship (Section 5.2).

  To prevent EIGRP from sending sequenced packets to neighbors that
  fail to have bidirectional unicast/multicast, or one neighbor
  restarts while building the relationship, EIGRP MUST place the newly
  discovered neighbor in a "pending" state as follows:

     when Router A receives the first multicast HELLO from Router B, it
     places Router B in the pending state and transmits a unicast
     UPDATE containing no topology information and SHALL set the
     initialization bit.  While Router B is in this state, A will send
     it neither a QUERY nor an UPDATE.  When Router A receives the
     unicast acknowledgment from Router B, it will change the state
     from "pending" to "up".

5.3.6.  QUERY Packets during Neighbor Formation

  As described above, during the initial formation of the neighbor
  relationship, EIGRP uses a form of three-way handshake to verify both
  unicast and multicast connectivity are working successfully.  During
  this period of neighbor creation, the new neighbor is considered to
  be in the pending state, and it is not eligible to be included in the
  convergence process.





Savage, et al.                Informational                    [Page 35]

RFC 7868                      Cisco's EIGRP                     May 2016


  Because of this, any QUERY received by an EIGRP router would not
  cause a QUERY to be sent to the new (and pending) neighbor.  It would
  perform the DUAL process without the new peer in the conversation.
  To do this, when a router in the process of establishing a new
  neighbor receives a QUERY from a fully established neighbor, it
  performs the normal DUAL Feasible Successor check to determine
  whether it needs to REPLY with a valid path or whether it needs to
  enter the ACTIVE process on the prefix.

  If it determines that it must go active, each fully established
  neighbor that participates in the convergence process will be sent a
  QUERY packet, and REPLY packets are expected from each.  Any pending
  neighbor will not be expected to REPLY and will not be sent a QUERY
  directly.  If it resides on an interface containing a mix of fully
  established neighbors and pending neighbors, it might receive the
  QUERY, but it will not be expected to REPLY to it.

5.4.  Topology Table

  The topology table is populated by the Protocol-Dependent Modules
  (PDMs) (IPv4/IPv6), and it is acted upon by the DUAL finite state
  machine.  Associated with each entry are the destination address, a
  list of neighbors that have advertised this destination, and the
  metric associated with the destination.  The metric is referred to as
  the "CD".

  The CD is the best-advertised RD from all neighbors, plus the link
  cost between the receiving router and the neighbor.

  The "RD" is the CD as advertised by the Feasible Successor for the
  destination.  In other words, the Computed Distance, when sent by a
  neighbor, is referred to as the "Reported Distance" and is the metric
  that the neighboring router uses to reach the destination (its CD as
  described above).

  If the router is advertising a destination route, it MUST be using
  the route to forward packets; this is an important rule that distance
  vector protocols MUST follow.

5.4.1.  Route Management

  Within the topology table, EIGRP has the notion of internal and
  external routes.  Internal routes MUST be preferred over external
  routes, independent of the metric.  In practical terms, if an
  internal route is received, the diffusing computation will be run
  considering only the internal routes.  Only when no internal routes
  for a given destination exist will EIGRP choose the successor from
  the available external routes.



Savage, et al.                Informational                    [Page 36]

RFC 7868                      Cisco's EIGRP                     May 2016


5.4.1.1.  Internal Routes

  Internal routes are destinations that have been originated within the
  same EIGRP AS.  Therefore, a directly attached network that is
  configured to run EIGRP is considered an internal route and is
  propagated with this information throughout the network topology.

  Internal routes are tagged with the following information:

     o Router ID of the EIGRP router that originated the route.
     o Configurable administrator tag.

5.4.1.2.  External Routes

  External routes are destinations that have been learned from another
  source, such as a different routing protocol or static route.  These
  routes are marked individually with the identity of their
  origination.  External routes are tagged with the following
  information:

     o Router ID of the EIGRP router that redistributed the route.
     o AS number where the destination resides.
     o Configurable administrator tag.
     o Protocol ID of the external protocol.
     o Metric from the external protocol.
     o Bit flags for default routing.

  As an example, suppose there is an AS with three border routers: BR1,
  BR2, and BR3.  A border router is one that runs more than one routing
  protocol.  The AS uses EIGRP as the routing protocol.  Two of the
  border routers, BR1 and BR2, also use Open Shortest Path First (OSPF)
  [10] and the other, BR3, also uses the Routing Information Protocol
  (RIP).

  Routes learned by one of the OSPF border routers, BR1, can be
  conditionally redistributed into EIGRP.  This means that EIGRP
  running in BR1 advertises the OSPF routes within its own AS.  When it
  does so, it advertises the route and tags it as an OSPF-learned route
  with a metric equal to the routing table metric of the OSPF route.
  The router-id is set to BR1.  The EIGRP route propagates to the other
  border routers.

  Let's say that BR3, the RIP border router, also advertises the same
  destinations as BR1.  Therefore, BR3, redistributes the RIP routes
  into the EIGRP AS.  BR2, then, has enough information to determine
  the AS entry point for the route, the original routing protocol used,
  and the metric.




Savage, et al.                Informational                    [Page 37]

RFC 7868                      Cisco's EIGRP                     May 2016


  Further, the network administrator could assign tag values to
  specific destinations when redistributing the route.  BR2 can utilize
  any of this information to use the route or re-advertise it back out
  into OSPF.

  Using EIGRP route tagging can give a network administrator flexible
  policy controls and help customize routing.  Route tagging is
  particularly useful in transit ASes where EIGRP would typically
  interact with an inter-domain routing protocol that implements global
  policies.

5.4.2.  Split Horizon and Poison Reverse

  In some circumstances, EIGRP will suppress or poison QUERY and UPDATE
  information to prevent routing loops as changes propagate though the
  network.

  Within Cisco, the split horizon rule suggests: "Never advertise a
  route out of the interface through which it was learned".  EIGRP
  implements this to mean, "if you have a successor route to a
  destination, never advertise the route out the interface on which it
  was learned".

  The poison reverse rule states: "A route learned through an interface
  will be advertised as unreachable through that same interface".  As
  with the case of split horizon, EIGRP applies this rule only to
  interfaces it is using for reaching the destination.  Routes learned
  though interfaces that EIGRP is NOT using to reach the destination
  may have the route advertised out those interfaces.

  In EIGRP, split horizon suppresses a QUERY, where as poison reverse
  advertises a destination as unreachable.  This can occur for a
  destination under any of the following conditions:

     o two routers are in startup or restart mode
     o advertising a topology table change
     o sending a query

5.4.2.1.  Startup Mode

  When two routers first become neighbors, they exchange topology
  tables during startup mode.  For each destination a router receives
  during startup mode, it advertises the same destination back to its
  new neighbor with a maximum metric (Poison Route).







Savage, et al.                Informational                    [Page 38]

RFC 7868                      Cisco's EIGRP                     May 2016


5.4.2.2.  Advertising Topology Table Change

  If a router uses a neighbor as the successor for a given destination,
  it will send an UPDATE for the destination with a metric of infinity.

5.4.2.3.  Sending a QUERY/UPDATE

  In most cases, EIGRP follows normal split-horizon rules.  When a
  metric change is received from the successor via QUERY or UPDATE that
  causes the route to go ACTIVE, the router will send a QUERY to
  neighbors on all interfaces except the interface toward the
  successor.

  In other words, the router does not send the QUERY out of the inbound
  interface through which the information causing the route to go
  ACTIVE was received.

  An exception to this can occur if a router receives a QUERY from its
  successor while already reacting to an event that did not cause it to
  go ACTIVE, for example, a metric change from the successor that did
  not cause an ACTIVE transition, but was followed by the UPDATE/QUERY
  that does result the router to transition to ACTIVE.

5.5.  EIGRP Metric Coefficients

  EIGRP allows for modification of the default composite metric
  calculation (see Section 5.6) through the use of coefficients (K-
  values).  This adjustment allows for per-deployment tuning of network
  behavior.  Setting K-values up to 254 scales the impact of the scalar
  metric on the final composite metric.

  EIGRP default coefficients have been carefully selected to provide
  optimal performance in most networks.  The default K-values are as
  follows:

              K1 == K3 == 1
              K2 == K4 == K5 == 0
              K6 == 0

  If K5 is equal to 0, then reliability quotient is defined to be 1.











Savage, et al.                Informational                    [Page 39]

RFC 7868                      Cisco's EIGRP                     May 2016


5.5.1.  Coefficients K1 and K2

  K1 is used to allow path selection to be based on the bandwidth
  available along the path.  EIGRP can use one of two variations of
  Throughput-based path selection.

  o  Maximum Theoretical Bandwidth: paths chosen based on the highest
     reported bandwidth

  o  Network Throughput: paths chosen based on the highest "available"
     bandwidth adjusted by congestion-based effects (interface reported
     load)

  By default, EIGRP computes the Throughput using the maximum
  theoretical Throughput expressed in picoseconds per kilobyte of data
  sent.  This inversion results in a larger number (more time)
  ultimately generating a worse metric.

  If K2 is used, the effect of congestion as a measure of load reported
  by the interface will be used to simulate the "available Throughput"
  by adjusting the maximum Throughput.

5.5.2.  Coefficient K3

  K3 is used to allow delay or latency-based path selection.  Latency
  and delay are similar terms that refer to the amount of time it takes
  a bit to be transmitted to an adjacent neighbor.  EIGRP uses one-way-
  based values either provided by the interface or computed as a factor
  of the link s bandwidth.

5.5.3.  Coefficients K4 and K5

  K4 and K5 are used to allow for path selection based on link quality
  and packet loss.  Packet loss caused by network problems results in
  highly noticeable performance issues or Jitter with streaming
  technologies, voice over IP, online gaming and videoconferencing, and
  will affect all other network applications to one degree or another.

  Critical services should pass with less than 1% packet loss.  Lower
  priority packet types might pass with less than 5% and then 10% for
  the lowest of priority of services.  The final metric can be weighted
  based on the reported link quality.

  The handling of K5 is conditional.  If K5 is equal to 0, then
  reliability quotient is defined to be 1.






Savage, et al.                Informational                    [Page 40]

RFC 7868                      Cisco's EIGRP                     May 2016


5.5.4.  Coefficient K6

  K6 has been introduced with Wide Metric support and is used to allow
  for Extended Attributes, which can be used to reflect in a higher
  aggregate metric than those having lower energy usage.  Currently
  there are two Extended Attributes, Jitter and energy, defined in the
  scope of this document.

5.5.4.1.  Jitter

  Use of Jitter-based Path Selection results in a path calculation with
  the lowest reported Jitter.  Jitter is reported as the interval
  between the longest and shortest packet delivery and is expressed in
  microseconds.  Higher values result in a higher aggregate metric when
  compared to those having lower Jitter calculations.

  Jitter is measured in microseconds and is accumulated along the path,
  with each hop using an averaged 3-second period to smooth out the
  metric change rate.

  Presently, EIGRP does not have the ability to measure Jitter, and, as
  such, the default value will be zero (0).  Performance-based
  solutions such as PfR could be used to populate this field.

5.5.4.2.  Energy

  Use of Energy-based Path Selection results in paths with the lowest
  energy usage being selected in a loop-free and deterministic manner.
  The amount of energy used is accumulative and has results in a higher
  aggregate metric than those having lower energy.

  Presently, EIGRP does not report energy usage, and as such the
  default value will be zero (0).

5.6.  EIGRP Metric Calculations

5.6.1.  Classic Metrics

  The composite metric is based on bandwidth, delay, load, and
  reliability.  MTU is not an attribute for calculating the composite
  metric, but carried in the vector metrics.

  One of the original goals of EIGRP was to offer and enhance routing
  solutions for IGRP.  To achieve this, EIGRP used the same composite
  metric as IGRP, with the terms multiplied by 256 to change the metric
  from 24 bits to 32 bits.





Savage, et al.                Informational                    [Page 41]

RFC 7868                      Cisco's EIGRP                     May 2016


5.6.1.1.  Classic Composite Formulation

  EIGRP calculates the composite metric with the following formula:

  metric = 256 * ({(K1*BW) + [(K2*BW)/(256-LOAD)] + (K3*DELAY)} *
           (K5/(REL+K4)))

  In this formula, Bandwidth (BW) is the lowest interface bandwidth
  along the path, and delay (DELAY) is the sum of all outbound
  interface delays along the path.  Load (LOAD) and reliability (REL)
  values are expressed percentages with a value of 1 to 255.

  Implementation note: Cisco IOS routers display reliability as a
  fraction of 255.  That is, 255/255 is 100% reliability or a perfectly
  stable link; a value of 229/255 represents a 90% reliable link.  Load
  is a value between 1 and 255.  A load of 255/255 indicates a
  completely saturated link.  A load of 127/255 represents a 50%
  saturated link.  These values are not dynamically measured; they are
  only measured at the time a link changes.

  Bandwidth is the inverse minimum bandwidth (in kbps) of the path in
  bits per second scaled by a factor of 10^7.  The formula for
  bandwidth is as follows:

                    (10^7)/BWmin

  Implementation note: When converting the real bandwidth to the
  composite bandwidth, truncate before applying the scaling factor.
  When converting the composite bandwidth to the real bandwidth, apply
  the scaling factor before the division and only then truncate.

  The delay is the sum of the outgoing interface delay (in tens of
  microseconds) to the destination.  A delay set to it maximum value
  (hexadecimal 0xFFFFFFFF) indicates that the network is unreachable.
  The formula for delay is as follows:

                    [sum of delays]

  The default composite metric, adjusted for scaling factors, for EIGRP
  is:

            metric = 256 * { [(10^7)/ BWmin] + [sum of delays]}

  Minimum Bandwidth (BWmin) is represented in kbps, and the "sum of
  delays" is represented in tens of microseconds.  The bandwidth and
  delay for an Ethernet interface are 10 Mbps and 1 ms, respectively.





Savage, et al.                Informational                    [Page 42]

RFC 7868                      Cisco's EIGRP                     May 2016


  The calculated EIGRP bandwidth (BW) metric is then:

              256 * (10^7)/BW = 256 * {(10^7)/10,000}
                              = 256 * 1000
                              = 256,000

  And the calculated EIGRP delay metric is then:

           256 * sum of delay = 256 * 100 * 10 microseconds
                              = 25,600 (in tens of microseconds)

5.6.1.2.  Cisco Interface Delay Compatibility

  For compatibility with Cisco products, the following table shows the
  times in nanoseconds EIGRP uses for bandwidth and delay.

  Bandwidth        Classic     Wide Metrics     Interface
  (kbps)           Delay       Delay            Type
  ---------------------------------------------------------
  9               500000000   500000000         Tunnel
  56               20000000    20000000         56 kbps
  64               20000000    20000000         DS0
  1544             20000000    20000000         T1
  2048             20000000    20000000         E1
  10000             1000000     1000000         Ethernet
  16000              630000      630000         TokRing16
  45045            20000000    20000000         HSSI
  100000             100000      100000         FDDI
  100000             100000      100000         FastEthernet
  155000             100000      100000         ATM 155 Mbps
  1000000             10000       10000         GigaEthernet
  2000000             10000        5000         2 Gig
  5000000             10000        2000         5 Gig
  10000000            10000        1000         10 Gig
  20000000            10000          500        20 Gig
  50000000            10000          200        50 Gig
  100000000           10000          100        100 Gig
  200000000           10000           50        200 Gig
  500000000           10000           20        500 Gig

5.6.2.  Wide Metrics

  To enable EIGRP to perform the path selection for interfaces with
  high bandwidths, both the EIGRP packet and composite metric formula
  have been modified.  This change allows EIGRP to choose paths based
  on the computed time (measured in picoseconds) information takes to
  travel though the links.




Savage, et al.                Informational                    [Page 43]

RFC 7868                      Cisco's EIGRP                     May 2016


5.6.2.1.  Wide Metric Vectors

  EIGRP uses five "vector metrics": minimum Throughput, latency, load,
  reliability, and MTU.  These values are calculated from destination
  to source as follows:

             o Throughput    - Minimum value
             o Latency       - accumulative
             o Load          - maximum
             o Reliability   - minimum
             o MTU           - minimum
             o Hop count     - accumulative

  There are two additional values: Jitter and energy.  These two values
  are accumulated from destination to source:

          o Jitter - accumulative
          o Energy - accumulative

  These Extended Attributes, as well as any future ones, will be
  controlled via K6.  If K6 is non-zero, these will be additive to the
  path's composite metric.  Higher Jitter or energy usage will result
  in paths that are worse than those that either do not monitor these
  attributes or that have lower values.

  EIGRP will not send these attributes if the router does not provide
  them.  If the attributes are received, then EIGRP will use them in
  the metric calculation (based on K6) and will forward them with those
  routers values assumed to be "zero" and the accumulative values are
  forwarded unchanged.

  The use of the vector metrics allows EIGRP to compute paths based on
  any of four (bandwidth, delay, reliability, and load) path selection
  schemes.  The schemes are distinguished based on the choice of the
  key-measured network performance metric.

  Of these vector metric components, by default, only minimum
  Throughput and latency are traditionally used to compute the best
  path.  Unlike most metrics, minimum Throughput is set to the minimum
  value of the entire path, and it does not reflect how many hops or
  low Throughput links are in the path, nor does it reflect the
  availability of parallel links.  Latency is calculated based on one-
  way delays and is a cumulative value, which increases with each
  segment in the path.

  Network Designer note: When trying to manually influence EIGRP path
  selection though interface bandwidth/delay configuration, the
  modification of bandwidth is discouraged for following reasons:



Savage, et al.                Informational                    [Page 44]

RFC 7868                      Cisco's EIGRP                     May 2016


  The change will only affect the path selection if the configured
  value is the lowest bandwidth over the entire path.  Changing the
  bandwidth can have impact beyond affecting the EIGRP metrics.  For
  example, Quality of Service (QoS) also looks at the bandwidth on an
  interface.

  EIGRP throttles its packet transmissions so it will only use 50% of
  the configured bandwidth.  Lowering the bandwidth can cause EIGRP to
  starve an adjacency, causing slow or failed convergence and control-
  plane operation.

  Changing the delay does not impact other protocols, nor does it cause
  EIGRP to throttle back; changing the delay configured on a link only
  impacts metric calculation.

5.6.2.2.  Wide Metric Conversion Constants

  EIGRP uses a number of defined constants for conversion and
  calculation of metric values.  These numbers are provided here for
  reference

          EIGRP_BANDWIDTH                    10,000,000
          EIGRP_DELAY_PICO                    1,000,000
          EIGRP_INACCESSIBLE       0xFFFFFFFFFFFFFFFFLL
          EIGRP_MAX_HOPS                            100
          EIGRP_CLASSIC_SCALE                       256
          EIGRP_WIDE_SCALE                        65536

  When computing the metric using the above units, all capacity
  information will be normalized to kilobytes and picoseconds before
  being used.  For example, delay is expressed in microseconds per
  kilobyte, and would be converted to kilobytes per second; likewise,
  energy would be expressed in power per kilobytes per second of usage.

5.6.2.3.  Throughput Calculation

  The formula for the conversion for Max-Throughput value directly from
  the interface without consideration of congestion-based effects is as
  follows:

                                 (EIGRP_BANDWIDTH * EIGRP_WIDE_SCALE)
       Max-Throughput = K1 *     ------------------------------------
                                      Interface Bandwidth (kbps)








Savage, et al.                Informational                    [Page 45]

RFC 7868                      Cisco's EIGRP                     May 2016


  If K2 is used, the effect of congestion as a measure of load reported
  by the interface will be used to simulate the "available Throughput"
  by adjusting the maximum Throughput according to the formula:

                                          K2 * Max-Throughput
       Net-Throughput = Max-Throughput + ---------------------
                                             256 - Load

  K2 has the greatest effect on the metric occurs when the load
  increases beyond 90%.

5.6.2.4.  Latency Calculation

  Transmission times derived from physical interfaces MUST be n units
  of picoseconds, converted to picoseconds prior to being exchanged
  between neighbors, or used in the composite metric determination.

  This includes delay values present in configuration-based commands
  (i.e., interface delay, redistribute, default-metric, route-map,
  etc.).

  The delay value is then converted to a "latency" using the formula:

                         Delay * EIGRP_WIDE_SCALE
       Latency = K3 *   --------------------------
                            EIGRP_DELAY_PICO

5.6.2.5.  Composite Calculation

                                                               K5
     metric =[(K1*Net-Throughput) + Latency)+(K6*ExtAttr)] * ------
                                                             K4+Rel

  By default, the path selection scheme used by EIGRP is a combination
  of Throughput and Latency where the selection is a product of total
  latency and minimum Throughput of all links along the path:

     metric = (K1 * min(Throughput)) + (K3 * sum(Latency)) }

6.  EIGRP Packet Formats

6.1.  Protocol Number

  The IPv6 and IPv4 protocol identifier number spaces are common and
  will both use protocol identifier 88 [8] [9].






Savage, et al.                Informational                    [Page 46]

RFC 7868                      Cisco's EIGRP                     May 2016


  EIGRP IPv4 will transmit HELLO packets using either the unicast
  destination of a neighbor or using a multicast host group address [7]
  with a source address EIGRP IPv4 multicast address [13].

  EIGRP IPv6 will transmit HELLO packets with a source address being
  the link-local address of the transmitting interface.  Multicast
  HELLO packets will have a destination address of EIGRP IPv6 multicast
  address [14].  Unicast packets directed to a specific neighbor will
  contain the destination link-local address of the neighbor.

  There is no requirement that two EIGRP IPv6 neighbors share a common
  prefix on their connecting interface.  EIGRP IPv6 will check that a
  received HELLO contains a valid IPv6 link-local source address.
  Other HELLO processing will follow common EIGRP checks, including
  matching AS number and matching K-values.

6.2.  Protocol Assignment Encoding

  The External Protocol field is an informational assignment to
  identify the originating routing protocol that this route was learned
  by.  The following values are assigned:

          Protocols             Value
          IGRP                    1
          EIGRP                   2
          Static                  3
          RIP                     4
          HELLO                   5
          OSPF                    6
          ISIS                    7
          EGP                     8
          BGP                     9
          IDRP                   10
          Connected              11

6.3.  Destination Assignment Encoding

  Destinations types are encoded according to the IANA address family
  number assignments.  Currently only the following types are used:

        AFI Description            AFI Number
       --------------------------------------
        IP (IP version 4)                 1
        IP6 (IP version 6)                2
        EIGRP Common Service Family   16384
        EIGRP IPv4 Service Family     16385
        EIGRP IPv6 Service Family     16386




Savage, et al.                Informational                    [Page 47]

RFC 7868                      Cisco's EIGRP                     May 2016


6.4.  EIGRP Communities Attribute

  EIGRP supports communities similar to the BGP Extended Communities
  RFC 4360 [4] extended type with Type field composed of 2 octets and
  Value field composed of 6 octets.  Each Community is encoded as an
  8-octet quantity, as follows:

         - Type field: 2 octets
         - Value field: Remaining octets

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Type high     | Type low      |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+          Value                |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  In addition to well-known communities supported by BGP (such as Site
  of Origin), EIGRP defines a number of additional Community values in
  the "Experimental Use" [5] range as follows:

    Type high: 0x88
    Type low:

      Value       Name               Description
      ---------------------------------------------------------------
        00        EXTCOMM_EIGRP      EIGRP route information appended
        01        EXTCOMM_DAD        Data: AS + Delay
        02        EXTCOMM_VRHB       Vector: Reliability + Hop + BW
        03        EXTCOMM_SRLM       System: Reserve + Load + MTU
        04        EXTCOMM_SAR        System: Remote AS + Remote ID
        05        EXTCOMM_RPM        Remote: Protocol + Metric
        06        EXTCOMM_VRR        Vecmet: Rsvd + RouterID

















Savage, et al.                Informational                    [Page 48]

RFC 7868                      Cisco's EIGRP                     May 2016


6.5.  EIGRP Packet Header

  The basic EIGRP packet payload format is identical for both IPv4 and
  IPv6, although there are some protocol-specific variations.  Packets
  consist of a header, followed by a set of variable-length fields
  consisting of Type/Length/Value (TLV) triplets.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Header Version | Opcode        |           Checksum            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                             Flags                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Sequence Number                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Acknowledgment Number                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Virtual Router ID             |   Autonomous System Number    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Header Version: EIGRP Packet Header Format version.  Current Version
     is 2.  This field is not the same as the TLV Version field.

  Opcode: Indicates the type of the message.  It will be one of the
     following values:

          EIGRP_OPC_UPDATE              1
          EIGRP_OPC_REQUEST             2
          EIGRP_OPC_QUERY               3
          EIGRP_OPC_REPLY               4
          EIGRP_OPC_HELLO               5
          Reserved                      6      (EIGRP_OPC_IPXSAP)
          Reserved                      7      (EIGRP_OPC_PROBE)
          Reserved                      8      (EIGRP_OPC_ACK)
          Reserved                      9
          EIGRP_OPC_SIAQUERY           10
          EIGRP_OPC_SIAREPLY           11

  Checksum: Each packet will include a checksum for the entire contents
     of the packet.  The checksum will be the standard ones' complement
     of the ones' complement sum.  For purposes of computing the
     checksum, the value of the checksum field is zero.  The packet is
     discarded if the packet checksum fails.

  Flags: Defines special handling of the packet.  There are currently
     four defined flag bits.




Savage, et al.                Informational                    [Page 49]

RFC 7868                      Cisco's EIGRP                     May 2016


  INIT-Flag (0x01): This bit is set in the initial UPDATE sent to a
     newly discovered neighbor.  It instructs the neighbor to advertise
     its full set of routes.

  CR-Flag (0x02): This bit indicates that receivers should only accept
     the packet if they are in Conditionally Received mode.  A router
     enters Conditionally Received mode when it receives and processes
     a HELLO packet with a SEQUENCE TLV present.

  RS-Flag (0x04): The Restart flag is set in the HELLO and the UPDATE
     packets during the restart period.  The router looks at the RS-
     Flag to detect if a neighbor is restarting.  From the restarting
     routers perspective, if a neighboring router detects the RS-Flag
     set, it will maintain the adjacency, and will set the RS-Flag in
     its UPDATE packet to indicated it is doing a soft restart.

  EOT-Flag (0x08): The End-of-Table flag marks the end of the startup
     process with a neighbor.  If the flag is set, it indicates the
     neighbor has completed sending all UPDATEs.  At this point, the
     router will remove any stale routes learned from the neighbor
     prior to the restart event.  A stale route is any route that
     existed before the restart and was not refreshed by the neighbor
     via and UPDATE.

  Sequence Number: Each packet that is transmitted will have a 32-bit
     sequence number that is unique with respect to a sending router.
     A value of 0 means that an acknowledgment is not required.

  Acknowledgment Number: The 32-bit sequence number that is being
     acknowledged with respect to the receiver of the packet.  If the
     value is 0, there is no acknowledgment present.  A non-zero value
     can only be present in unicast-addressed packets.  A HELLO packet
     with a non-zero ACK field should be decoded as an ACK packet
     rather than a HELLO packet.

  Virtual Router Identifier (VRID): A 16-bit number that identifies the
     virtual router with which this packet is associated.  Packets
     received with an unknown, or unsupported, value will be discarded.

            Value Range       Usage
              0x0000            Unicast Address Family
              0x0001            Multicast Address Family
              0x0002-0x7FFF     Reserved
              0x8000            Unicast Service Family
              0x8001-0xFFFF     Reserved






Savage, et al.                Informational                    [Page 50]

RFC 7868                      Cisco's EIGRP                     May 2016


  Autonomous System Number: 16-bit unsigned number of the sending
     system.  This field is indirectly used as an authentication value.
     That is, a router that receives and accepts a packet from a
     neighbor must have the same AS number or the packet is ignored.
     The range of valid AS numbers is 1 through 65,535.

6.6.  EIGRP TLV Encoding Format

  The contents of each packet can contain a variable number of fields.
  Each field will be tagged and include a length field.  This allows
  for newer versions of software to add capabilities and coexist with
  old versions of software in the same configuration.  Fields that are
  tagged and not recognized can be skipped over.  Another advantage of
  this encoding scheme is that it allows multiple network-layer
  protocols to carry independent information.  Therefore, if it is
  later decided to implement a single "integrated" protocol, this can
  be done.

  The format of a {type, length, value} (TLV) is encoded as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Type high     | Type low      |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Value (variable length)                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The type values are the ones defined below.  The length value
  specifies the length in octets of the type, length, and value fields.
  TLVs can appear in a packet in any order, and there are no
  interdependencies among them.

  Malformed TLVs contained in EIGRP messages are handled by silently
  discarding the containing message.  A TLV is malformed if the TLV
  Length is invalid or if the TLV extends beyond the end of the
  containing message.














Savage, et al.                Informational                    [Page 51]

RFC 7868                      Cisco's EIGRP                     May 2016


6.6.1.  Type Field Encoding

  The type field is structured as follows: Type High: 1 octet that
  defines the protocol classification:

           Protocol            ID   VERSION
           General            0x00    1.2
           IPv4               0x01    1.2
           IPv6               0x04    1.2
           SAF                0x05    3.0
           Multiprotocol      0x06    2.0

  Type Low: 1 octet that defines the TLV Opcode; see TLV Definitions in
     Section 3.

6.6.2.  Length Field Encoding

  The Length field is a 2-octet unsigned number, which indicates the
  length of the TLV.  The value includes the Type and Length fields.

6.6.3.  Value Field Encoding

  The Value field is a multi-octet field containing the payload for the
  TLV.

6.7.  EIGRP Generic TLV Definitions

                                Ver 1.2   Ver 2.0
  PARAMETER_TYPE                0x0001    0x0001
  AUTHENTICATION_TYPE           0x0002    0x0002
  SEQUENCE_TYPE                 0x0003    0x0003
  SOFTWARE_VERSION_TYPE         0x0004    0x0004
  MULTICAST_SEQUENCE_TYPE       0x0005    0x0005
  PEER_INFORMATION_TYPE         0x0006    0x0006
  PEER_TERMINATION_TYPE         0x0007    0x0007
  PEER_TID_LIST_TYPE             ---      0x0008















Savage, et al.                Informational                    [Page 52]

RFC 7868                      Cisco's EIGRP                     May 2016


6.7.1.  0x0001 - PARAMETER_TYPE

  This TLV is used in HELLO packets to convey the EIGRP metric
  coefficient values: noted as "K-values" as well as the Hold Time
  values.  This TLV is also used in an initial UPDATE packet when a
  neighbor is discovered.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            0x0001             |            0x000C             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       K1      |       K2      |       K3      |       K4      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       K5      |       K6      |           Hold Time           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  K-values: The K-values associated with the EIGRP composite metric
     equation.  The default values for weights are:

               K1 - 1
               K2 - 0
               K3 - 1
               K4 - 0
               K5 - 0
               K6 - 0

  Hold Time: The amount of time in seconds that a receiving router
     should consider the sending neighbor valid.  A valid neighbor is
     one that is able to forward packets and participates in EIGRP.  A
     router that considers a neighbor valid will store all routing
     information advertised by the neighbor.

6.7.2.  0x0002 - AUTHENTICATION_TYPE

  This TLV may be used in any EIGRP packet and conveys the
  authentication type and data used.  Routers receiving a mismatch in
  authentication shall discard the packet.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             0x0002            |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Auth Type    | Auth Length  |      Auth Data (Variable)     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+





Savage, et al.                Informational                    [Page 53]

RFC 7868                      Cisco's EIGRP                     May 2016


  Authentication Type: The type of authentication used.

  Authentication Length: The length, measured in octets, of the
     individual authentication.

  Authentication Data: Variable-length field reflected by "Auth
     Length", which is dependent on the type of authentication used.
     Multiple authentication types can be present in a single
     AUTHENTICATION_TYPE TLV.

6.7.2.1.  0x02 - MD5 Authentication Type

  MD5 Authentication will use Auth Type code 0x02, and the Auth Data
  will be the MD5 Hash value.

6.7.2.2.  0x03 - SHA2 Authentication Type

  SHA2-256 Authentication will use Type code 0x03, and the Auth Data
  will be the 256-bit SHA2 [6] Hash value.

6.7.3.  0x0003 - SEQUENCE_TYPE

  This TLV is used for a sender to tell receivers to not accept packets
  with the CR-Flag set.  This is used to order multicast and unicast
  addressed packets.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            0x0003             |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Address Length |                 Protocol Address              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The Address Length and Protocol Address will be repeated one or more
  times based on the Length field.

  Address Length: Number of octets for the address that follows.  For
     IPv4, the value is 4.  For IPv6, it is 16.  For AppleTalk, the
     value is 4; for Novell IPX, the value is 10 (both are no longer in
     use).

  Protocol Address: Neighbor address on interface in which the HELLO
     with SEQUENCE TLV is sent.  Each address listed in the HELLO
     packet is a neighbor that should not enter Conditionally Received
     mode.





Savage, et al.                Informational                    [Page 54]

RFC 7868                      Cisco's EIGRP                     May 2016


6.7.4.  0x0004 - SOFTWARE_VERSION_TYPE

          Field                        Length
          Vender OS major version        1
          Vender OS minor version        1
          EIGRP major revision           1
          EIGRP minor revision           1

  The EIGRP TLV Version fields are used to determine TLV format
  versions.  Routers using Version 1.2 TLVs do not understand Version
  2.0 TLVs, therefore Version 2.0 routers must send the packet with
  both TLV formats in a mixed network.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            0x0004             |            0x000C             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Vendor Major V.|Vendor Minor V.| EIGRP Major V.| EIGRP Minor V.|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

6.7.5.  0x0005 - MULTICAST_SEQUENCE_TYPE

  The next multicast SEQUENCE TLV.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            0x0005             |             0x0008            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Sequence Number                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

6.7.6.  0x0006 - PEER_INFORMATION_TYPE

  This TLV is reserved, and not part of this document.















Savage, et al.                Informational                    [Page 55]

RFC 7868                      Cisco's EIGRP                     May 2016


6.7.7.  0x0007 - PEER_ TERMINATION_TYPE

  This TLV is used in HELLO packets to notify the list of neighbor(s)
  the router has reset the adjacency.  This TLV is used in HELLO
  packets to notify the list of neighbors that the router has reset the
  adjacency.  This is used anytime a router needs to reset an
  adjacency, or signal an adjacency it is going down.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            0x0007             |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Address List (variable)                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Implementation note: Older Cisco routers implement this using the
  "Parameters TLV" with all K-values set to 255 (except K6).

6.7.8.  0x0008 - TID_LIST_TYPE

  List of sub-topology identifiers, including the Base Topology,
  supported by the router.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            0x0008             |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Topology Identification List (variable)            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  If this information changes from the last state, it means either a
  new topology was added or an existing topology was removed.  This TLV
  is ignored until the three-way handshake has finished

  When the TID list is received, it compares the list to the previous
  list sent.  If a TID is found that does not previously exist, the TID
  is added to the neighbor's topology list, and the existing sub-
  topology is sent to the peer.

  If a TID that was in a previous list is not found, the TID is removed
  from the neighbor's topology list and all routes learned though that
  neighbor for that sub-topology are removed from the topology table.







Savage, et al.                Informational                    [Page 56]

RFC 7868                      Cisco's EIGRP                     May 2016


6.8.  Classic Route Information TLV Types

6.8.1.  Classic Flag Field Encoding

  EIGRP transports a number of flags with in the TLVs to indicate
  addition route state information.  These bits are defined as follows:

  Flags Field
  -----------
  Source Withdraw (Bit 0) - Indicates if the router that is the
  original source of the destination is withdrawing the route from the
  network or if the destination is lost due as a result of a network
  failure.

  Candidate Default (CD) (Bit 1) - Set to indicate the destination
  should be regarded as a candidate for the default route.  An EIGRP
  default route is selected from all the advertised candidate default
  routes with the smallest metric.

  ACTIVE (Bit 2) - Indicates if the route is in the ACTIVE State.

6.8.2.  Classic Metric Encoding

  The handling of bandwidth and delay for Classic TLVs is encoded in
  the packet "scaled" form relative to how they are represented on the
  physical link.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Scaled Delay                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Scaled Bandwidth                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                   MTU                         | Hop Count     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Reliability   |       Load    | Internal Tag  | Flags Field   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Scaled Delay: An administrative parameter assigned statically on a
     per-interface-type basis to represent the time it takes along an
     unloaded path.  This is expressed in units of tens of microseconds
     divvied by 256.  A delay of 0xFFFFFFFF indicates an unreachable
     route.

  Scaled Bandwidth: The path bandwidth measured in bits per second.  In
     units of 2,560,000,000/kbps.




Savage, et al.                Informational                    [Page 57]

RFC 7868                      Cisco's EIGRP                     May 2016


  MTU: The minimum MTU size for the path to the destination.

  Hop Count: The number of router traversals to the destination.

  Reliability: The current error rate for the path, measured as an
     error percentage.  A value of 255 indicates 100% reliability

  Load: The load utilization of the path to the destination, measured
     as a percentage.  A value of 255 indicates 100% load.

  Internal-Tag: A tag assigned by the network administrator that is
     untouched by EIGRP.  This allows a network administrator to filter
     routes in other EIGRP border routers based on this value.

  Flags Field: See Section 6.8.1.

6.8.3.  Classic Exterior Encoding

  Additional routing information so provided for destinations outside
  of the EIGRP AS as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Router Identifier (RID)                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               External Autonomous System (AS) Number          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Administrative Tag                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    External Protocol Metric                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           Reserved            |Extern Protocol|  Flags Field  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Router Identifier (RID): A 32-bit number provided by the router
     sourcing the information to uniquely identify it as the source.

  External Autonomous System (AS) Number: A 32-bit number indicating
     the external AS of which the sending router is a member.  If the
     source protocol is EIGRP, this field will be the [VRID, AS] pair.
     If the external protocol does not have an AS, other information
     can be used (for example, Cisco uses process-id for OSPF).

  Administrative Tag: A tag assigned by the network administrator that
     is untouched by EIGRP.  This allows a network administrator to
     filter routes in other EIGRP border routers based on this value.




Savage, et al.                Informational                    [Page 58]

RFC 7868                      Cisco's EIGRP                     May 2016


  External Protocol Metric: 32-bit value of the composite metric that
     resides in the routing table as learned by the foreign protocol.
     If the External Protocol is IGRP or another EIGRP routing process,
     the value can optionally be the composite metric or 0, and the
     metric information is stored in the metric section.

  External Protocol: Contains an enumerated value defined in Section
     6.2 to identify the routing protocol (external protocol)
     redistributing the route.

  Flags Field: See Section 6.8.1

6.8.4.  Classic Destination Encoding

  EIGRP carries destination in a compressed form, where the number of
  bits significant in the variable-length address field are indicated
  in a counter.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Subnet Mask   |    Destination Address (variable length)      |
  | Bit Count     |         ((Bit Count - 1) / 8) + 1             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Subnet Mask Bit Count: 8-bit value used to indicate the number of
     bits in the subnet mask.  A value of 0 indicates the default
     network, and no address is present.

  Destination Address: A variable-length field used to carry the
     destination address.  The length is determined by the number of
     consecutive bits in the destination address.  The formula to
     calculate the length is address-family dependent:

     IPv4: ((Bit Count - 1) / 8) + 1
     IPv6: (Bit Count == 128) ? 16 : ((x / 8) + 1)

6.8.5.  IPv4-Specific TLVs

     INTERNAL_TYPE       0x0102
     EXTERNAL_TYPE       0x0103
     COMMUNITY_TYPE      0x0104









Savage, et al.                Informational                    [Page 59]

RFC 7868                      Cisco's EIGRP                     May 2016


6.8.5.1.  IPv4 INTERNAL_TYPE

  This TLV conveys IPv4 destination and associated metric information
  for IPv4 networks.  Routes advertised in this TLV are network
  interfaces that EIGRP is configured on as well as networks that are
  learned via other routers running EIGRP.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      0x01     |       0x02    |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                   Next-Hop Forwarding Address                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Vector Metric Section (see Section 6.8.2)          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
  |                       Destination Section                     |
  |                 IPv4 Address (variable length)                |
  |                       (see Section 6.8.4)                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Next-Hop Forwarding Address: IPv4 address represented by four 8-bit
     values (total 4 octets).  If the value is zero (0), the IPv4
     address from the received IPv4 header is used as the next hop for
     the route.  Otherwise, the specified IPv4 address will be used.

  Vector Metric Section: The vector metrics for destinations contained
     in this TLV.  See the description of "metric encoding" in Section
     6.8.2.

  Destination Section: The network/subnet/host destination address
     being requested.  See the description of "destination" in Section
     6.8.4.

6.8.5.2.  IPv4 EXTERNAL_TYPE

  This TLV conveys IPv4 destination and metric information for routes
  learned by other routing protocols that EIGRP injects into the AS.
  Available with this information is the identity of the routing
  protocol that created the route, the external metric, the AS number,
  an indicator if it should be marked as part of the EIGRP AS, and a
  network-administrator tag used for route filtering at EIGRP AS
  boundaries.








Savage, et al.                Informational                    [Page 60]

RFC 7868                      Cisco's EIGRP                     May 2016


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      0x01     |       0x03    |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                   Next-Hop Forwarding Address                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                 Exterior Section (see Section 6.8.3)          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Vector Metric Section (see Section 6.8.2)          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
  |                       Destination Section                     |
  |                 IPv4 Address (variable length)                |
  |                       (see Section 6.8.4)                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Next-Hop Forwarding Address: IPv4 address represented by four 8-bit
     values (total 4 octets).  If the value is zero (0), the IPv4
     address from the received IPv4 header is used as the next hop for
     the route.  Otherwise, the specified IPv4 address will be used.

  Exterior Section: Additional routing information provided for a
     destination that is outside of the AS and that has been
     redistributed into the EIGRP.  See the description of "exterior
     encoding" in Section 6.8.3.

  Vector Metric Section: Vector metrics for destinations contained in
     this TLV.  See the description of "metric encoding" in Section
     6.8.2.

  Destination Section: The network/subnet/host destination address
     being requested.  See the description of "destination" in Section
     6.8.4.


















Savage, et al.                Informational                    [Page 61]

RFC 7868                      Cisco's EIGRP                     May 2016


6.8.5.3.  IPv4 COMMUNITY_TYPE

  This TLV is used to provide community tags for specific IPv4
  destinations.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      0x01     |       0x04    |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          IPv4 Destination                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Reserved           |       Community Length        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Community List                        |
  |                        (variable length)                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  IPv4 Destination: The IPv4 address with which the community
     information should be stored.

  Community Length: A 2-octet unsigned number that indicates the length
     of the Community List.  The length does not include the IPv4
     Address, Reserved, or Length fields.

  Community List: One or more 8-octet EIGRP communities, as defined in
     Section 6.4.

6.8.6.  IPv6-Specific TLVs

     INTERNAL_TYPE                 0x0402
     EXTERNAL_TYPE                 0x0403
     COMMUNITY_TYPE                0x0404


















Savage, et al.                Informational                    [Page 62]

RFC 7868                      Cisco's EIGRP                     May 2016


6.8.6.1.  IPv6 INTERNAL_TYPE

  This TLV conveys the IPv6 destination and associated metric
  information for IPv6 networks.  Routes advertised in this TLV are
  network interfaces that EIGRP is configured on as well as networks
  that are learned via other routers running EIGRP.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      0x04     |       0x02    |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                   Next-Hop Forwarding Address                 |
  |                            (16 octets)                        |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Vector Metric Section (see Section 6.8.2)          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
  |                       Destination Section                     |
  |                 IPv6 Address (variable length)                |
  |                       (see Section 6.8.4)                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Next-Hop Forwarding Address: This IPv6 address is represented by
     eight groups of 16-bit values (total 16 octets).  If the value is
     zero (0), the IPv6 address from the received IPv6 header is used
     as the next hop for the route.  Otherwise, the specified IPv6
     address will be used.

  Vector Metric Section: Vector metrics for destinations contained in
     this TLV.  See the description of "metric encoding" in Section
     6.8.2.

  Destination Section: The network/subnet/host destination address
     being requested.  See the description of "destination" in Section
     6.8.4.

6.8.6.2.  IPv6 EXTERNAL_TYPE

  This TLV conveys IPv6 destination and metric information for routes
  learned by other routing protocols that EIGRP injects into the
  topology.  Available with this information is the identity of the
  routing protocol that created the route, the external metric, the AS
  number, an indicator if it should be marked as part of the EIGRP AS,
  and a network administrator tag used for route filtering at EIGRP AS
  boundaries.




Savage, et al.                Informational                    [Page 63]

RFC 7868                      Cisco's EIGRP                     May 2016


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      0x04     |        0x03   |           Length              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                   Next-Hop Forwarding Address                 |
  |                             (16 octets)                       |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               Exterior Section (see Section 6.8.3)            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Vector Metric Section (see Section 6.8.2)          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
  |                        Destination Section                    |
  |                 IPv6 Address (variable length)                |
  |                       (see Section 6.8.4)                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Next-Hop Forwarding Address: IPv6 address is represented by eight
     groups of 16-bit values (total 16 octets).  If the value is zero
     (0), the IPv6 address from the received IPv6 header is used as the
     next hop for the route.  Otherwise, the specified IPv6 address
     will be used.

  Exterior Section: Additional routing information provided for a
     destination that is outside of the AS and that has been
     redistributed into the EIGRP.  See the description of "exterior
     encoding" in Section 6.8.3.

  Vector Metric Section: vector metrics for destinations contained in
     this TLV.  See the description of "metric encoding" in Section
     6.8.2.

  Destination Section: The network/subnet/host destination address
     being requested.  See the description of "destination" in Section
     6.8.4.














Savage, et al.                Informational                    [Page 64]

RFC 7868                      Cisco's EIGRP                     May 2016


6.8.6.3 IPv6 COMMUNITY_TYPE

  This TLV is used to provide community tags for specific IPv4
  destinations.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      0x04     |       0x04    |             Length            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                            Destination                        |
  |                            (16 octets)                        |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Reserved           |       Community Length        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Community List                        |
  |                        (variable length)                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Destination: The IPv6 address with which the community information
     should be stored.

  Community Length: A 2-octet unsigned number that indicates the length
     of the Community List.  The length does not include the IPv6
     Address, Reserved, or Length fields.

  Community List: One or more 8-octet EIGRP communities, as defined in
     Section 6.4.





















Savage, et al.                Informational                    [Page 65]

RFC 7868                      Cisco's EIGRP                     May 2016


6.9.  Multiprotocol Route Information TLV Types

  This TLV conveys topology and associated metric information.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Header Version |    Opcode     |           Checksum            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                              Flags                            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Sequence Number                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Acknowledgment Number                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Virtual Router ID             |   Autonomous System Number    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      TLV Header Encoding                      |
  |                      (see Section 6.9.1)                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Wide Metric Encoding                    |
  |                       (see Section 6.9.2)                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Destination Descriptor                  |
  |                         (variable length)                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

6.9.1.  TLV Header Encoding

  There has been a long-standing requirement for EIGRP to support
  routing technologies, such as multi-topologies, and to provide the
  ability to carry destination information independent of the
  transport.  To accomplish this, a Vector has been extended to have a
  new "Header Extension Header" section.  This is a variable-length
  field and, at a minimum, it will support the following fields:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Type High     | Type Low      |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               AFI             |             TID               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Router Identifier (RID)                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Value (variable length)                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+




Savage, et al.                Informational                    [Page 66]

RFC 7868                      Cisco's EIGRP                     May 2016


  The available fields are:

  TYPE - Topology TLVs have the following TYPE codes:
      Type High: 0x06
      Type Low:
          REQUEST_TYPE                 0x01
          INTERNAL_TYPE                0x02
          EXTERNAL_TYPE                0x03

  Router Identifier (RID): A 32-bit number provided by the router
     sourcing the information to uniquely identify it as the source.

6.9.2.  Wide Metric Encoding

  Multiprotocol TLVs will provide an extendable section of metric
  information, which is not used for the primary routing compilation.
  Additional per-path information is included to enable per-path cost
  calculations in the future.  Use of the per-path costing along with
  the VID/TID will prove a complete solution for multidimensional
  routing.

   0                   1                     2                 3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Offset     |   Priority    | Reliability   |        Load   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               MTU                             |   Hop Count   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               Delay                           |
  |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
  |                             Bandwidth                         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               Reserved        |         Opaque Flags          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Extended Attributes                      |
  |                        (variable length)                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The fields are as follows:

  Offset: Number of 16-bit words in the Extended Attribute section that
     are used to determine the start of the destination information.  A
     value of zero indicates no Extended Attributes are attached.






Savage, et al.                Informational                    [Page 67]

RFC 7868                      Cisco's EIGRP                     May 2016


  Priority: Priority of the prefix when processing a route.  In an AS
     using priority values, a destination with a higher priority
     receives preferential treatment and is serviced before a
     destination with a lower priority.  A value of zero indicates no
     priority is set.

  Reliability: The current error rate for the path.  Measured as an
     error percentage.  A value of 255 indicates 100% reliability

  Load: The load utilization of the path to the destination, measured
     as a percentage.  A value of 255 indicates 100% load.

  MTU: The minimum MTU size for the path to the destination.  Not used
     in metric calculation but available to underlying protocols

  Hop Count: The number of router traversals to the destination.

  Delay: The one-way latency along an unloaded path to the destination
     expressed in units of picoseconds per kilobit.  This number is not
     scaled; a value of 0xFFFFFFFFFFFF indicates an unreachable route.

  Bandwidth: The path bandwidth measured in kilobit per second as
     presented by the interface.  This number is not scaled; a value of
     0xFFFFFFFFFFFF indicates an unreachable route.

  Reserved: Transmitted as 0x0000.

  Opaque Flags: 16-bit protocol-specific flags.  Values currently
     defined by Cisco are:

         OPAQUE_SRCWD    0x01   Route Source Withdraw
         OPAQUE_CD       0x02   Candidate default route
         OPAQUE_ACTIVE   0x04   Route is currently in active state
         OPAQUE_REPL     0x08   Route is replicated from another VRF

  Extended Attributes (Optional): When present, defines extendable per-
     destination attributes.  This field is not normally transmitted.

6.9.3.  Extended Metrics

  Extended metrics allow for extensibility of the vector metrics in a
  manner similar to RFC 6390 [11].  Each Extended metric shall consist
  of a header identifying the type (Opcode) and the length (Offset)
  followed by application-specific information.  Extended metric values
  not understood must be treated as opaque and passed along with the
  associated route.





Savage, et al.                Informational                    [Page 68]

RFC 7868                      Cisco's EIGRP                     May 2016


  The general formats for the Extended Metric fields are:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Opcode    |      Offset   |              Data             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Opcode: Indicates the type of Extended Metric.

  Offset: Number of 16-bit words in the application-specific
     information.  Offset does not include the length of the Opcode or
     Offset.

  Data: Zero or more octets of data as defined by Opcode.

6.9.3.1.  0x00 - NoOp

  This is used to pad the attribute section to ensure 32-bit alignment
  of the metric encoding section.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     0x00      |      0x00     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The fields are:

  Opcode: Transmitted as zero (0).

  Offset: Transmitted as zero (0) indicating no data is present.

  Data: No data is present with this attribute.

















Savage, et al.                Informational                    [Page 69]

RFC 7868                      Cisco's EIGRP                     May 2016


6.9.3.2.  0x01 - Scaled Metric

  If a route is received from a back-rev neighbor, and the route is
  selected as the best path, the scaled metric received in the older
  UPDATE may be attached to the packet.  If received, the value is for
  informational purposes and is not affected by K6.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       0x01    |       0x04    |          Reserved             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Scaled Bandwidth                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Scaled Delay                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Reserved: Transmitted as 0x0000

  Scaled Bandwidth: The minimum bandwidth along a path expressed in
     units of 2,560,000,000/kbps.  A bandwidth of 0xFFFFFFFF indicates
     an unreachable route.

  Scaled Delay: An administrative parameter assigned statically on a
     per-interface-type basis to represent the time it takes along an
     unloaded path.  This is expressed in units of tens of microseconds
     divvied by 256.  A delay of 0xFFFFFFFF indicates an unreachable
     route.

6.9.3.3.  0x02 - Administrator Tag

  EIGRP administrative tag does not alter the path decision-making
  process.  Routers can set a tag value on a route and use the flags to
  apply specific routing polices within their network.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       0x02    |       0x02    |       Administrator Tag       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Administrator Tag (cont.)     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Administrator Tag: A tag assigned by the network administrator that
     is untouched by EIGRP.  This allows a network administrator to
     filter routes in other EIGRP border routers based on this value.





Savage, et al.                Informational                    [Page 70]

RFC 7868                      Cisco's EIGRP                     May 2016


6.9.3.4.  0x03 - Community List

  EIGRP communities themselves do not alter the path decision-making
  process, communities can be used as flags in order to mark a set of
  routes.  Upstream routers can then use these flags to apply specific
  routing polices within their network.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       0x03    |      Offset   |          Community List       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
  |                          (variable length)                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Offset: Number of 16-bit words in the sub-field.

  Community List: One or more 8-octet EIGRP communities, as defined in
     Section 6.4.

6.9.3.5.  0x04 - Jitter

  (Optional) EIGRP can carry one-way Jitter in networks that carry UDP
  traffic if the node is capable of measuring UDP Jitter.  The Jitter
  reported to will be averaged with any existing Jitter data and
  include in the route updates.  If no Jitter value is reported by the
  peer for a given destination, EIGRP will use the locally collected
  value.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        0x04    |      0x03    |             Jitter            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Jitter: The measure of the variability over time of the latency
     across a network measured in measured in microseconds.

6.9.3.6.  0x05 - Quiescent Energy

  (Optional) EIGRP can carry energy usage by nodes in networks if the
  node is capable of measuring energy.  The Quiescent Energy reported
  will be added to any existing energy data and include in the route
  updates.  If no energy data is reported by the peer for a given
  destination, EIGRP will use the locally collected value.




Savage, et al.                Informational                    [Page 71]

RFC 7868                      Cisco's EIGRP                     May 2016


   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        0x05    |        0x02  |        Q-Energy (high)        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Q-Energy (low)       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Q-Energy: Paths with higher idle (standby) energy usage will be
     reflected in a higher aggregate metric than those having lower
     energy usage.  If present, this number will represent the idle
     power consumption expressed in milliwatts per kilobit.

6.9.3.7.  0x06 - Energy

  (Optional) EIGRP can carry energy usage by nodes in networks if the
  node is capable of measuring energy.  The active Energy reported will
  be added to any existing energy data and include in the route
  updates.  If no energy data is reported by the peer for a given
  destination, EIGRP will use the locally collected value.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        0x06    |      0x02    |          Energy (high)        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          Energy (low)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Energy: Paths with higher active energy usage will be reflected in a
     higher aggregate metric than those having lower energy usage.  If
     present, this number will represent the power consumption
     expressed in milliwatts per kilobit.

6.9.3.8.  0x07 - AddPath

  The Add Path enables EIGRP to advertise multiple best paths to
  adjacencies.  There will be up to a maximum of four AddPaths
  supported, where the format of the field will be as follows.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       0x07    |       Offset  |     AddPath (Variable Length) |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Offset: Number of 16-bit words in the sub-field.




Savage, et al.                Informational                    [Page 72]

RFC 7868                      Cisco's EIGRP                     May 2016


  AddPath: Length of this field will vary in length based on whether it
     contains IPv4 or IPv6 data.

6.9.3.8.1.  AddPath with IPv4 Next Hop

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       0x07    |       Offset  | Next-Hop Addr. (Upper 2 bytes)|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | IPv4 Address (Lower 2 bytes)  |       RID (Upper 2 bytes)     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        RID (Upper 2 bytes)    | Admin Tag (Upper 2 bytes)     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Admin Tag (Upper 2 bytes)     |Extern Protocol| Flags Field   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Next-Hop Address: An IPv4 address represented by four 8-bit values
     (total 4 octets).  If the value is zero (0), the IPv6 address from
     the received IPv4 header is used as the next hop for the route.
     Otherwise, the specified IPv4 address will be used.

  Router Identifier (RID): A 32-bit number provided by the router
     sourcing the information to uniquely identify it as the source.

  Admin Tag: A 32-bit administrative tag assigned by the network.  This
     allows a network administrator to filter routes based on this
     value.

  If the route is of type external, then two additional bytes will be
  added as follows:

  External Protocol: Contains an enumerated value defined in Section
     6.2 to identify the routing protocol (external protocol)
     redistributing the route.

  Flags Field: See Section 6.8.1.














Savage, et al.                Informational                    [Page 73]

RFC 7868                      Cisco's EIGRP                     May 2016


6.9.3.8.2.  AddPath with IPv6 Next Hop

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       0x07     |       Offset |         Next-Hop Address      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
  |                                                               |
  |                            (16 octets)                        |
  |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|
  |                               |       RID (Upper 2 byes)      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |        RID (Upper 2 byes)     | Admin Tag (Upper 2 byes)      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Admin Tag (Upper 2 byes)      | Extern Protocol | Flags Field |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Next-Hop Address: An IPv6 address represented by eight groups of
     16-bit values (total 16 octets).  If the value is zero (0), the
     IPv6 address from the received IPv6 header is used as the next hop
     for the route.  Otherwise, the specified IPv6 address will be
     used.

  Router Identifier (RID): A 32-bit number provided by the router
     sourcing the information to uniquely identify it as the source.

  Admin Tag: A 32-bit administrative tag assigned by the network.  This
     allows a network administrator to filter routes based on this
     value.  If the route is of type external, then two addition bytes
     will be added as follows:

  External Protocol: Contains an enumerated value defined in Section
     6.2 to identify the routing protocol (external protocol)
     redistributing the route.

  Flags Field: See Section 6.8.1.















Savage, et al.                Informational                    [Page 74]

RFC 7868                      Cisco's EIGRP                     May 2016


6.9.4.  Exterior Encoding

  Additional routing information provided for destinations outside of
  the EIGRP AS as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Router Identifier (RID)                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            External Autonomous System (AS) Number             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     External Protocol Metric                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |            Reserved             |Extern Protocol| Flags Field |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Router Identifier (RID): A 32-bit number provided by the router
     sourcing the information to uniquely identify it as the source.

  External Autonomous System (AS) Number: A 32-bit number indicating
     the external AS of which the sending router is a member.  If the
     source protocol is EIGRP, this field will be the [VRID, AS] pair.
     If the external protocol does not have an AS, other information
     can be used (for example, Cisco uses process-id for OSPF).

  External Protocol Metric: A 32-bit value of the metric used by the
     routing table as learned by the foreign protocol.  If the External
     Protocol is IGRP or EIGRP, the value can (optionally) be 0, and
     the metric information is stored in the metric section.

  External Protocol: Contains an enumerated value defined in Section
     6.2 to identify the routing protocol (external protocol)
     redistributing the route.

  Flags Field: See Section 6.8.1.















Savage, et al.                Informational                    [Page 75]

RFC 7868                      Cisco's EIGRP                     May 2016


6.9.5.  Destination Encoding

  Destination information is encoded in Multiprotocol packets in the
  same manner used by Classic TLVs.  This is accomplished by using a
  counter to indicate how many significant bits are present in the
  variable-length address field.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Subnet Mask   |    Destination Address (variable length       |
  | Bit Count     |         ((Bit Count - 1) / 8) + 1             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Subnet Mask Bit Count: 8-bit value used to indicate the number of
     bits in the subnet mask.  A value of 0 indicates the default
     network and no address is present.

  Destination Address: A variable-length field used to carry the
     destination address.  The length is determined by the number of
     consecutive bits in the destination address.  The formula to
     calculate the length is address-family dependent:

     IPv4: ((Bit Count - 1) / 8) + 1
     IPv6: (Bit Count == 128) ? 16 : ((x / 8) + 1)

6.9.6.  Route Information

6.9.6.1.  INTERNAL TYPE

  This TLV conveys destination information based on the IANA AFI
  defined in the TLV Header (see Section 6.9.1), and associated metric
  information.  Routes advertised in this TLV are network interfaces
  that EIGRP is configured on as well as networks that are learned via
  other routers running EIGRP.

6.9.6.2.  EXTERNAL TYPE

  This TLV conveys destination information based on the IANA AFI
  defined in the TLV Header (see Section 6.9.1), and metric information
  for routes learned by other routing protocols that EIGRP injects into
  the AS.  Available with this information is the identity of the
  routing protocol that created the route, the external metric, the AS
  number, an indicator if it should be marked as part of the EIGRP AS,
  and a network administrator tag used for route filtering at EIGRP AS
  boundaries.





Savage, et al.                Informational                    [Page 76]

RFC 7868                      Cisco's EIGRP                     May 2016


7.  Security Considerations

  Being promiscuous, EIGRP will neighbor with any router that sends a
  valid HELLO packet.  Due to security considerations, this
  "completely" open aspect requires policy capabilities to limit
  peering to valid routers.

  EIGRP does not rely on a PKI or a heavyweight authentication system.
  These systems challenge the scalability of EIGRP, which was a primary
  design goal.

  Instead, Denial-of-Service (DoS) attack prevention will depend on
  implementations rate-limiting packets to the control plane as well as
  authentication of the neighbor through the use of MD5 or SHA2-256
  [6].

8.  IANA Considerations

  This document serves as the sole reference for two multicast
  addresses: 224.0.0.10 for IPv4 "EIGRP Routers" [13] and
  FF02:0:0:0:0:0:0:A for IPv6 "EIGRP Routers" [14].  It also serves as
  assignment for protocol number 88 (EIGRP) [15].

9.  References

9.1.  Normative References

  [1]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
       Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997,
       <http://www.rfc-editor.org/info/rfc2119>.

  [2]  Garcia-Luna-Aceves, J.J., "A Unified Approach to Loop-Free
       Routing Using Distance Vectors or Link States", SIGCOMM '89,
       Symposium proceedings on Communications architectures &
       protocols, Volume 19, pages 212-223, ACM
       089791-332-9/89/0009/0212, DOI 10.1145/75247.75268, 1989.

  [3]  Garcia-Luna-Aceves, J.J., "Loop-Free Routing using Diffusing
       Computations", Network Information Systems Center, SRI
       International, appeared in IEEE/ACM Transactions on Networking,
       Vol. 1, No. 1, DOI 10.1109/90.222913, 1993.

  [4]  Rosen, E. and Y. Rekhter, "IANA Registries for BGP Extended
       Communities", RFC 7153, DOI 10.17487/RFC7153, March 2014,
       <http://www.rfc-editor.org/info/rfc7153>.






Savage, et al.                Informational                    [Page 77]

RFC 7868                      Cisco's EIGRP                     May 2016


  [5]  Narten, T., "Assigning Experimental and Testing Numbers
       Considered Useful", BCP 82, RFC 3692, DOI 10.17487/RFC3692,
       January 2004, <http://www.rfc-editor.org/info/rfc3692>.

  [6]  Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-SHA-384, and
       HMAC-SHA-512 with IPsec", RFC 4868, DOI 10.17487/RFC4868, May
       2007, <http://www.rfc-editor.org/info/rfc4868>.

  [7]  Deering, S., "Host extensions for IP multicasting", STD 5,
       RFC 1112, DOI 10.17487/RFC1112, August 1989,
       <http://www.rfc-editor.org/info/rfc1112>.

  [8]  Postel, J., "Internet Protocol", STD 5, RFC 791,
       DOI 10.17487/RFC0791, September 1981,
       <http://www.rfc-editor.org/info/rfc791>.

  [9]  Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6)
       Specification", RFC 2460, DOI 10.17487/RFC2460, December 1998,
       <http://www.rfc-editor.org/info/rfc2460>.

9.2.  Informative References

  [10] Moy, J., "OSPF Version 2", STD 54, RFC 2328,
       DOI 10.17487/RFC2328, April 1998,
       <http://www.rfc-editor.org/info/rfc2328>.

  [11] Clark, A. and B. Claise, "Guidelines for Considering New
       Performance Metric Development", BCP 170, RFC 6390,
       DOI 10.17487/RFC6390, October 2011,
       <http://www.rfc-editor.org/info/rfc6390>.

  [12] IANA, "Address Family Numbers",
       <http://www.iana.org/assignments/address-family-numbers>.

  [13] IANA, "IPv4 Multicast Address Space Registry",
       <http://www.iana.org/assignments/multicast-addresses>.

  [14] IANA, "IPv6 Multicast Address Space Registry",
       <http://www.iana.org/assignments/ipv6-multicast-addresses>.

  [15] IANA, "Protocol Numbers",
       <http://www.iana.org/assignments/protocol-numbers>.









Savage, et al.                Informational                    [Page 78]

RFC 7868                      Cisco's EIGRP                     May 2016


Acknowledgments

  Thank you goes to Dino Farinacci, Bob Albrightson, and Dave Katz.
  Their significant accomplishments towards the design and development
  of the EIGRP provided the bases for this document.

  A special and appreciative thank you goes to the core group of Cisco
  engineers whose dedication, long hours, and hard work led the
  evolution of EIGRP over the past decade.  They are Donnie Savage,
  Mickel Ravizza, Heidi Ou, Dawn Li, Thuan Tran, Catherine Tran, Don
  Slice, Claude Cartee, Donald Sharp, Steven Moore, Richard Wellum, Ray
  Romney, Jim Mollmann, Dennis Wind, Chris Van Heuveln, Gerald Redwine,
  Glen Matthews, Michael Wiebe, and others.

  The authors would like to gratefully acknowledge many people who have
  contributed to the discussions that lead to the making of this
  proposal.  They include Chris Le, Saul Adler, Scott Van de Houten,
  Lalit Kumar, Yi Yang, Kumar Reddy, David Lapier, Scott Kirby, David
  Prall, Jason Frazier, Eric Voit, Dana Blair, Jim Guichard, and Alvaro
  Retana.

  In addition to the tireless work provided by the Cisco engineers over
  the years, we would like to personally recognize the teams that
  created open source versions of EIGRP:

  o  Linux implementation developed by the Quagga team: Jan Janovic,
     Matej Perina, Peter Orsag, and Peter Paluch.

  o  BSD implementation developed and released by Renato Westphal.






















Savage, et al.                Informational                    [Page 79]

RFC 7868                      Cisco's EIGRP                     May 2016


Authors' Addresses

  Donnie V. Savage
  Cisco Systems, Inc.
  7025 Kit Creek Rd., RTP,
  Morrisville, NC 27560
  United States
  Phone: 919-392-2379
  Email: [email protected]

  James Ng
  Cisco Systems, Inc.
  7025 Kit Creek Rd., RTP,
  Morrisville, NC 27560
  United States
  Phone: 919-392-2582
  Email: [email protected]

  Steven Moore
  Cisco Systems, Inc.
  7025 Kit Creek Rd., RTP,
  Morrisville, NC 27560
  United States
  Phone: 408-895-2031
  Email: [email protected]

  Donald Slice
  Cumulus Networks
  Apex, NC
  United States
  Email: [email protected]

  Peter Paluch
  University of Zilina
  Univerzitna 8215/1, Zilina 01026
  Slovakia
  Phone: 421-905-164432
  Email: [email protected]

  Russ White
  LinkedIn
  Apex, NC
  United States
  Phone: 1-877-308-0993
  Email: [email protected]






Savage, et al.                Informational                    [Page 80]