Internet Engineering Task Force (IETF)                     T. Melia, Ed.
Request for Comments: 7847                             Kudelski Security
Category: Informational                               S. Gundavelli, Ed.
ISSN: 2070-1721                                                    Cisco
                                                               May 2016


   Logical-Interface Support for IP Hosts with Multi-Access Support

Abstract

  A logical interface is a software semantic internal to the host
  operating system.  This semantic is available in all popular
  operating systems and is used in various protocol implementations.
  Logical-interface support is required on the mobile node attached to
  a Proxy Mobile IPv6 domain for leveraging various network-based
  mobility management features such as inter-technology handoffs,
  multihoming, and flow mobility support.  This document explains the
  operational details of the logical-interface construct and the
  specifics on how link-layer implementations hide the physical
  interfaces from the IP stack and from the network nodes on the
  attached access networks.  Furthermore, this document identifies the
  applicability of this approach to various link-layer technologies and
  analyzes the issues around it when used in conjunction with various
  mobility management features.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7847.










Melia & Gundavelli            Informational                     [Page 1]

RFC 7847                Logical-Interface Support               May 2016


Copyright Notice

  Copyright (c) 2016 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
  2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
  3.  Hiding Link-Layer Technologies -- Approaches and
      Applicability . . . . . . . . . . . . . . . . . . . . . . . .   4
    3.1.  Link-Layer Abstraction -- Approaches  . . . . . . . . . .   4
    3.2.  Link-Layer Support  . . . . . . . . . . . . . . . . . . .   5
    3.3.  Logical Interface . . . . . . . . . . . . . . . . . . . .   6
  4.  Technology Use Cases  . . . . . . . . . . . . . . . . . . . .   6
  5.  Logical-Interface Functional Details  . . . . . . . . . . . .   7
    5.1.  Configuration of a Logical Interface  . . . . . . . . . .   8
    5.2.  Logical-Interface Conceptual Data Structures  . . . . . .   9
  6.  Logical-Interface Use Cases in Proxy Mobile IPv6  . . . . . .  11
    6.1.  Multihoming Support . . . . . . . . . . . . . . . . . . .  11
    6.2.  Inter-technology Handoff Support  . . . . . . . . . . . .  12
    6.3.  Flow Mobility Support . . . . . . . . . . . . . . . . . .  13
  7.  Security Considerations . . . . . . . . . . . . . . . . . . .  13
  8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  14
    8.1.  Normative References  . . . . . . . . . . . . . . . . . .  14
    8.2.  Informative References  . . . . . . . . . . . . . . . . .  14
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  15
  Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .  15
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  16












Melia & Gundavelli            Informational                     [Page 2]

RFC 7847                Logical-Interface Support               May 2016


1.  Introduction

  Proxy Mobile IPv6 (PMIPv6) [RFC5213] is a network-based mobility
  management protocol standardized by IETF.  One of the key goals of
  the PMIPv6 protocol is to enable a mobile node to perform handovers
  across access networks based on different access technologies.  The
  protocol was also designed with the goal to allow a mobile node to
  simultaneously attach to different access networks and perform flow-
  based access selection [RFC7864].  The base protocol features
  specified in [RFC5213] and [RFC5844] have support for these
  capabilities.  However, to support these features, the mobile node is
  required to be enabled with a specific software configuration known
  as logical-interface support.  The logical-interface configuration is
  essential for a mobile node to perform inter-access handovers without
  impacting the IP sessions on the host.

  A logical-interface construct is internal to the operating system.
  It is an approach of interface abstraction, where a logical link-
  layer implementation hides a variety of physical interfaces from the
  IP stack.  This semantic was used on a variety of operating systems
  to implement applications such as Mobile IP client [RFC6275] and
  IPsec VPN client [RFC4301].  Many host operating systems have support
  for some form of such logical-interface construct.  But, there is no
  specification that documents the behavior of these logical interfaces
  or the requirements of a logical interface for supporting the above-
  mentioned mobility management features.  This specification attempts
  to document these aspects.

  The rest of the document provides a functional description of a
  logical interface on the mobile node and the interworking between a
  mobile node using a logical interface and the network elements in the
  Proxy Mobile IPv6 domain.  It also analyzes the issues involved with
  the use of a logical interface and characterizes the contexts in
  which such usage is appropriate.

2.  Terminology

  All the mobility-related terms used in this document are to be
  interpreted as defined in the Proxy Mobile IPv6 specifications
  [RFC5213] and [RFC5844].  In addition, this document uses the
  following terms:

  PIF (Physical Interface):  A network interface module on the host
     that is used for connecting to an access network.  A host
     typically has a number of network interface modules, such as
     Ethernet, Wireless LAN, LTE, etc.  Each of these network
     interfaces can support specific link technology.




Melia & Gundavelli            Informational                     [Page 3]

RFC 7847                Logical-Interface Support               May 2016


  LIF (Logical Interface):  A virtual interface in the IP stack.  A
     logical interface appears to the IP stack just as any other
     physical interface and provides similar semantics with respect to
     packet transmit and receive functions to the upper layers of the
     IP stack.  However, it is only a logical construct and is not a
     representation of an instance of any physical hardware.

  SIF (Sub-Interface):  A physical or logical interface that is part of
     a logical-interface construct.  For example, a logical interface
     may have been created by abstracting two physical interfaces, LTE
     and WLAN.  These physical interfaces, LTE and WLAN, are referred
     to as sub-interfaces of that logical interface.  In some cases, a
     sub-interface can also be another logical interface, such as an
     IPsec tunnel interface.

3.  Hiding Link-Layer Technologies -- Approaches and Applicability

  There are several techniques that allow hiding changes in access
  technology changes from the host layer.  These changes in access
  technology are primarily due to the host's movement between access
  networks.  This section classifies these existing techniques into a
  set of generic approaches, according to their most representative
  characteristics.  Later sections of this document analyze the
  applicability of these solution approaches for supporting features,
  such as inter-technology handovers and IP flow mobility support for a
  mobile node.

3.1.  Link-Layer Abstraction -- Approaches

  The following generic mechanisms can hide access technology changes
  from the host IP layer:

  o  Link-Layer Support -- Certain link-layer technologies are able to
     hide physical media changes from the upper layers.  For example,
     IEEE 802.11 is able to seamlessly change between IEEE 802.11a/b/g
     physical layers.  Also, an 802.11 Station (STA) can move between
     different access points within the same domain without the IP
     stack being aware of the movement.  In this case, the IEEE 802.11
     Media Access Control (MAC) layer takes care of the mobility,
     making the media change invisible to the upper layers.  Another
     example is IEEE 802.3, which supports changing the rate from 10
     Mbps to 100 Mbps and to 1000 Mbps.  Another example is the
     situation in the 3GPP Evolved Packet System [TS23401] where the
     User Equipment (UE) can perform inter-access handovers between
     three different access technologies (2G GSM/EDGE Radio Access
     Network (GERAN), 3G Universal Terrestrial Radio Access Network
     (UTRAN), and 4G Evolved UTRAN (E-UTRAN)) that are invisible to the
     IP layer at the UE.



Melia & Gundavelli            Informational                     [Page 4]

RFC 7847                Logical-Interface Support               May 2016


  o  A logical interface denotes a mechanism that logically groups
     several physical interfaces so they appear to the IP layer as a
     single interface (see Figure 1).  Depending on the type of access
     technologies, it might be possible to use more than one physical
     interface at a time -- such that the node is simultaneously
     attached via different access technologies -- or just perform
     handovers across a variety of physical interfaces.  Controlling
     the way the different access technologies are used (simultaneous,
     sequential attachment, etc.) is not trivial and requires
     additional intelligence and/or configuration within the logical-
     interface implementation.  The configuration is typically handled
     via a connection manager, and it is based on a combination of user
     preferences on one hand and operator preferences such as those
     provisioned by the Access Network Discovery and Selection Function
     (ANDSF) [TS23402] on the other hand.  The IETF Interfaces MIB
     specified in [RFC2863] and the YANG data model for interface
     management specified in [RFC7223] treat a logical interface just
     like any other type of network interface on the host.  This
     essentially makes the logical interface a natural operating system
     construct.

3.2.  Link-Layer Support

  Link-layer mobility support applies to cases in which the same link-
  layer technology is used and mobility can be fully handled at that
  layer.  One example is the case where several 802.11 access points
  are deployed in the same subnet with a common IP-layer configuration
  (DHCP server, default router, etc.).  In this case, the handover
  across access points need not be hidden to the IP layer since the IP-
  layer configuration remains the same after a handover.  This type of
  scenario is applicable to cases when the different points of
  attachment (i.e., access points) belong to the same network domain,
  e.g., enterprise, hotspots from same operator, etc.

  Since this type of link-layer technology does not typically allow for
  simultaneous attachment to different access networks of the same
  technology, the logical interface would not be used to provide
  simultaneous access for purposes of multihoming or flow mobility.
  Instead, the logical interface can be used to provide inter-access
  technology handover between this type of link-layer technology and
  another link-layer technology, e.g., between IEEE 802.11 and IEEE
  802.16.









Melia & Gundavelli            Informational                     [Page 5]

RFC 7847                Logical-Interface Support               May 2016


3.3.  Logical Interface

  The use of a logical interface allows the mobile node to provide a
  single-interface perspective to the IP layer and its upper layers
  (transport and application).  Doing so allows inter-access technology
  handovers or application flow handovers to be hidden across different
  physical interfaces.

  The logical interface may support simultaneous attachment in addition
  to sequential attachment.  It requires additional support at the node
  and the network in order to benefit from simultaneous attachment.
  For example, special mechanisms are required to enable addressing a
  particular interface from the network (e.g., for flow mobility).  In
  particular, extensions to PMIPv6 are required in order to enable the
  network (i.e., the mobile access gateway (MAG) and local mobility
  anchor (LMA)) to deal with the logical interface, instead of using
  extensions to IP interfaces as currently specified in RFC 5213.  RFC
  5213 assumes that each physical interface capable of attaching to a
  MAG is an IP interface, while the logical-interface solution groups
  several physical interfaces under the same IP logical interface.

  It is therefore clear that the logical-interface approach satisfies
  the requirement of multi-access technology and supports both
  sequential and simultaneous access.

4.  Technology Use Cases

  3GPP has defined the Evolved Packet System (EPS) for heterogeneous
  wireless access.  A mobile device equipped with 3GPP and non-3GPP
  wireless technologies can simultaneously or sequentially connect to
  any of the available access networks and receive IP services through
  any of them.  This document focuses on employing a logical interface
  for simultaneous and sequential use of a variety of access
  technologies.

  As mentioned in the previous sections, the logical-interface
  construct is able to hide from the IP layer the specifics of each
  technology in the context of network-based mobility (e.g., in multi-
  access technology networks based on PMIPv6).  The LIF concept can be
  used with at least the following technologies: 3GPP access
  technologies (3G and LTE), IEEE 802.16 access technology, and IEEE
  802.11 access technology.

  In some UE implementations, the wireless connection setup is based on
  creation of a PPP interface between the IP layer and the wireless
  modem that is configured with the IP Control Protocol (IPCP) and IPv6
  Control Protocol (IPv6CP) [RFC5072].  In this case, the PPP interface
  does not have any layer 2 (L2) addresses assigned.  In some other



Melia & Gundavelli            Informational                     [Page 6]

RFC 7847                Logical-Interface Support               May 2016


  implementations, the wireless modem is presented to the IP layer as a
  virtual Ethernet interface.

5.  Logical-Interface Functional Details

  This section identifies the functional details of a logical interface
  and provides some implementation considerations.

  On most operating systems, a network interface is associated with a
  physical device that offers the services for transmitting and
  receiving IP packets from the network.  In some configurations, a
  network interface can also be implemented as a logical interface,
  which does not have the inherent capability to transmit or receive
  packets on a physical medium, but relies on other physical interfaces
  for such services.  An example of such configuration is an IP tunnel
  interface.

  An overview of a logical interface is shown in Figure 1.  The logical
  interface allows heterogeneous attachment while making changes in the
  underlying media transparent to the IP stack.  Simultaneous and
  sequential network attachment procedures are therefore possible,
  enabling inter-technology and flow mobility scenarios.

                                 +----------------------------+
                                 |          TCP/UDP           |
          Session-to-IP    +---->|                            |
          Address Binding  |     +----------------------------+
                           +---->|             IP             |
          IP Address       +---->|                            |
          Binding          |     +----------------------------+
                           +---->|     Logical Interface      |
          Logical-to-      +---->|      IPv4/IPv6 Address     |
          Physical         |     +----------------------------+
          Interface        +---->|  L2  |  L2  |       |  L2  |
          Binding                |(IF#1)|(IF#2)| ..... |(IF#n)|
                                 +------+------+       +------+
                                 |  L1  |  L1  |       |  L1  |
                                 |      |      |       |      |
                                 +------+------+       +------+

             Figure 1: General Overview of Logical Interface

  From the perspective of the IP stack and the applications, a logical
  interface is just another interface.  In fact, the logical interface
  is only visible to the IP and upper layers when enabled.  A host does
  not see any operational difference between a logical and a physical
  interface.  As with physical interfaces, a logical interface is
  represented as a software object to which IP address configuration is



Melia & Gundavelli            Informational                     [Page 7]

RFC 7847                Logical-Interface Support               May 2016


  bound.  However, the logical interface has some special properties
  that are essential for enabling inter-technology handover and flow-
  mobility features.  Following are those properties:

  1.  The logical interface has a relation to a set of physical
      interfaces (sub-interfaces) on the host that it is abstracting.
      These sub-interfaces can be attached or detached from the logical
      interface at any time.  The sub-interfaces attached to a logical
      interface are not visible to the IP and upper layers.

  2.  The logical interface may be attached to multiple access
      technologies.

  3.  The Transmit/Receive functions of the logical interface are
      mapped to the Transmit/Receive services exposed by the sub-
      interfaces.  This mapping is dynamic, and any change is not
      visible to the upper layers of the IP stack.

  4.  The logical interface maintains IP flow information for each of
      its sub-interfaces.  A conceptual data structure is maintained
      for this purpose.  The host may populate this information based
      on tracking each of the sub-interfaces for the active flows.

5.1.  Configuration of a Logical Interface

  A host may be statically configured with the logical-interface
  configuration, or an application such as a connection manager on the
  host may dynamically create it.  Furthermore, the set of sub-
  interfaces that are part of a logical-interface construct may be a
  fixed set or may be kept dynamic, with the sub-interfaces getting
  added or deleted as needed.  The specific details related to these
  configuration aspects are implementation specific and are outside the
  scope of this document.

  The IP layer should be configured with a default router reachable via
  the logical interface.  The default router can be internal to the
  logical interface, i.e., it is a logical router that in turn decides
  which physical interface is to be used to transmit packets.













Melia & Gundavelli            Informational                     [Page 8]

RFC 7847                Logical-Interface Support               May 2016


5.2.  Logical-Interface Conceptual Data Structures

  Every logical interface maintains a list of sub-interfaces that are
  part of that logical-interface construct.  This is a conceptual data
  structure, called the LIF table.  Figure 2 shows an example LIF table
  where logical interface LIF-1 has three sub-interfaces, ETH-0,
  WLAN-0, and LTE-0, and logical interface LIF-2 has two sub-
  interfaces, ETH-1 and WLAN-1.  For each LIF entry, the table should
  store the associated link status and policy associated with that sub-
  interface (e.g., active or not active).  The method by which the
  routing policies are configured on the host is out of scope for this
  document.

  +=======================+========================+==================+
  |   Logical_Interface   |     Sub_Interface      |  Status/Policy   |
  +=======================+========================+==================+
  |       LIF-1           |          ETH-0         |         UP       |
  +=======================+========================+==================+
  |       LIF-1           |          WLAN-0        |         DOWN     |
  +=======================+========================+==================+
  |       LIF-1           |          LTE-0         |         UP       |
  +=======================+========================+==================+
  |       LIF-2           |          ETH-1         |         UP       |
  +=======================+========================+==================+
  |       LIF-2           |          WLAN-1        |         UP       |
  +=======================+========================+==================+

                    Figure 2: Logical-Interface Table

  The logical interface also maintains the list of flows associated
  with a given sub-interface, and this conceptual data structure is
  called the Flow table.  Figure 3 shows an example Flow table, where
  flows FID-1, FID-2, FID-3, FID-4, and FID-5 are associated with sub-
  interfaces ETH-0, WLAN-0, LTE-0, ETH-1, and WLAN-1, respectively.

















Melia & Gundavelli            Informational                     [Page 9]

RFC 7847                Logical-Interface Support               May 2016


           +=======================+========================+
           |       Flow            |     Sub_Interface      |
           +=======================+========================+
           |       FID-1           |          ETH-0         |
           +=======================+========================+
           |       FID-2           |          WLAN-0        |
           +=======================+========================+
           |       FID-3           |          LTE-0         |
           +=======================+========================+
           |       FID-4           |          ETH-1         |
           +=======================+========================+
           |       FID-5           |          WLAN-1        |
           +=======================+========================+

                          Figure 3: Flow Table

  The Flow table allows the logical interface to properly route each IP
  flow over a specific sub-interface.  The logical interface can
  identify the flows arriving on its sub-interfaces and associate them
  to those sub-interfaces.  This approach is similar to reflective QoS
  performed by the IP routers.  For locally generated traffic (e.g.,
  unicast flows), the logical interface should perform interface
  selection based on the Flow Routing Policies.  In case traffic of an
  existing flow is suddenly received from the network on a different
  sub-interface from the one locally stored, the logical interface
  should interpret the event as an explicit flow mobility trigger from
  the network, and it should update the corresponding entry in the Flow
  table.  Similarly, locally generated events from the sub-interfaces
  or configuration updates to the local policy rules can cause updates
  to the table and hence trigger flow mobility.





















Melia & Gundavelli            Informational                    [Page 10]

RFC 7847                Logical-Interface Support               May 2016


6.  Logical-Interface Use Cases in Proxy Mobile IPv6

  This section explains how the logical-interface support on the mobile
  node can be used for enabling some of the Proxy Mobile IPv6 protocol
  features.

6.1.  Multihoming Support

  Figure 4 shows a mobile node with multiple interfaces attached to a
  Proxy Mobile IPv6 domain.  In this scenario, the mobile node is
  configured to use a logical interface over the physical interfaces
  through which it is attached.

                                        LMA Binding Table
                                   +========================+
                          +----+   | HNP   MN-ID  CoA   ATT |
                          |LMA |   +========================+
                          +----+   | HNP-1 MN-1  PCoA-1  5  |
                           //\\    | HNP-1 MN-1  PCoA-2  4  |
                +---------//--\\-----------+
               (         //    \\           )
               (        //      \\          )
                +------//--------\\--------+
                      //          \\
              PCoA-1 //            \\ PCoA-2
                  +----+          +----+
           (WLAN) |MAG1|          |MAG2| (3GPP)
                  +----+          +----+
                     \               /
                      \             /
                       \           /
                        \         /
                         \       /
                    +-------+ +-------+
                    | if_1  | | if_2  |
                    |(WLAN) | |(3GPP) |
                    +-------+-+-------+
                    |     Logical     |
                    |    Interface    |
                    |     (HNP-1)     |
                    +-----------------|
                    |       MN        |
                    +-----------------+

                      Figure 4: Multihoming Support






Melia & Gundavelli            Informational                    [Page 11]

RFC 7847                Logical-Interface Support               May 2016


6.2.  Inter-technology Handoff Support

  The Proxy Mobile IPv6 protocol enables a mobile node with multiple
  network interfaces to move between access technologies but still
  retain the same address configuration on its attached interface.
  Figure 5 shows a mobile node performing an inter-technology handoff
  between access networks.  The protocol enables a mobile node to
  achieve address continuity during handoffs.  If the host is
  configured to use a logical interface over the physical interface
  through which it is attached, following are the related
  considerations.

                                          LMA's Binding Table
                                   +==========================+
                          +----+   | HNP   MN-ID  CoA   ATT   |
                          |LMA |   +==========================+
                          +----+   | HNP-1   MN-1  PCoA-1  5  |
                           //\\                   (pCoA-2)(4) <--change
                +---------//--\\-----------+
               (         //    \\           )
               (        //      \\          )
                +------//--------\\--------+
                      //          \\
              PCoA-1 //            \\ PCoA-2
                  +----+          +----+
           (WLAN) |MAG1|          |MAG2| (3GPP)
                  +----+          +----+
                     \               /
                      \   Handoff   /
                       \           /
                        \         /
                    +-------+ +-------+
                    | if_1  | | if_2  |
                    |(WLAN) | |(3GPP) |
                    +-------+-+-------+
                    |     Logical     |
                    |    Interface    |
                    |     (HNP-1)     |
                    +-----------------|
                    |       MN        |
                    +-----------------+

               Figure 5: Inter-technology Handoff Support

  o  When the mobile node performs a handoff between if_1 and if_2, the
     change will not be visible to the applications of the mobile node.





Melia & Gundavelli            Informational                    [Page 12]

RFC 7847                Logical-Interface Support               May 2016


  o  The protocol signaling between the network elements will ensure
     the local mobility anchor will switch the forwarding for the
     advertised prefix set from MAG1 to MAG2.

6.3.  Flow Mobility Support

  To support IP flow mobility, there is a need to support vertical
  handoff scenarios such as transferring a subset of a prefix(es)
  (hence the flows associated to it/them) from one interface to
  another.  The mobile node can support this scenario by using the
  logical-interface support.  This scenario is similar to the inter-
  technology handoff scenario defined in Section 6.2; only a subset of
  the prefixes are moved between interfaces.

  Additionally, IP flow mobility in general initiates when the LMA
  decides to move a particular flow from its default path to a
  different one.  The LMA can decide the best MAG to be used to forward
  a particular flow when the flow is initiated (e.g., based on
  application policy profiles) and/or during the lifetime of the flow
  upon receiving a network-based or a mobile-based trigger.  However,
  the specific details on how the LMA can formulate such flow policy is
  outside the scope of this document.

7.  Security Considerations

  This specification explains the operational details of a logical
  interface on an IP host.  The logical-interface implementation on the
  host is not visible to the network and does not require any special
  security considerations.

  Different layer 2 interfaces and the access networks to which they
  are connected have different security properties.  For example, the
  layer 2 network security of a Wireless LAN network operated by an end
  user is in the control of the home user whereas an LTE operator has
  control of the layer 2 security of the LTE access network.  An
  external entity using lawful means, or through other means, obtains
  the security keys from the LTE operator, but the same may not be
  possible in the case of a Wireless LAN network operated by a home
  user.  Therefore, grouping interfaces with such varying security
  properties into one logical interface could have negative
  consequences in some cases.  Such differences, though subtle, are
  entirely hidden by logical interfaces and are unknown to the upper
  layers.








Melia & Gundavelli            Informational                    [Page 13]

RFC 7847                Logical-Interface Support               May 2016


8.  References

8.1.  Normative References

  [RFC5213]  Gundavelli, S., Ed., Leung, K., Devarapalli, V.,
             Chowdhury, K., and B. Patil, "Proxy Mobile IPv6",
             RFC 5213, DOI 10.17487/RFC5213, August 2008,
             <http://www.rfc-editor.org/info/rfc5213>.

  [RFC5844]  Wakikawa, R. and S. Gundavelli, "IPv4 Support for Proxy
             Mobile IPv6", RFC 5844, DOI 10.17487/RFC5844, May 2010,
             <http://www.rfc-editor.org/info/rfc5844>.

8.2.  Informative References

  [RFC2863]  McCloghrie, K. and F. Kastenholz, "The Interfaces Group
             MIB", RFC 2863, DOI 10.17487/RFC2863, June 2000,
             <http://www.rfc-editor.org/info/rfc2863>.

  [RFC4301]  Kent, S. and K. Seo, "Security Architecture for the
             Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
             December 2005, <http://www.rfc-editor.org/info/rfc4301>.

  [RFC5072]  Varada, S., Ed., Haskins, D., and E. Allen, "IP Version 6
             over PPP", RFC 5072, DOI 10.17487/RFC5072, September 2007,
             <http://www.rfc-editor.org/info/rfc5072>.

  [RFC6275]  Perkins, C., Ed., Johnson, D., and J. Arkko, "Mobility
             Support in IPv6", RFC 6275, DOI 10.17487/RFC6275, July
             2011, <http://www.rfc-editor.org/info/rfc6275>.

  [RFC7223]  Bjorklund, M., "A YANG Data Model for Interface
             Management", RFC 7223, DOI 10.17487/RFC7223, May 2014,
             <http://www.rfc-editor.org/info/rfc7223>.

  [RFC7864]  Bernardos, CJ., Ed., "Proxy Mobile IPv6 Extensions to
             Support Flow Mobility", RFC 7864, DOI 10.17487/RFC7864,
             May 2016, <http://www.rfc-editor.org/info/rfc7864>.

  [TS23401]  3rd Generation Partnership Project, "Technical
             Specification Group Services and System Aspects; General
             Packet Radio Service (GPRS) enhancements for Evolved
             Universal Terrestrial Radio Access Network (E-UTRAN)
             access", TS 23.401, V13.6.0, March 2016.







Melia & Gundavelli            Informational                    [Page 14]

RFC 7847                Logical-Interface Support               May 2016


  [TS23402]  3rd Generation Partnership Project, "Technical
             Specification Group Services and System Aspects;
             Architecture enhancements for non-3GPP accesses", TS
             23.402, V13.5.0, March 2016.

Acknowledgements

  The authors would like to acknowledge all the discussions on this
  topic in the NETLMM and NETEXT working groups.  The authors would
  also like to thank Joo-Sang Youn, Pierrick Seite, Rajeev Koodli,
  Basavaraj Patil, Peter McCann, Julien Laganier, Maximilian Riegel,
  Georgios Karagian, Stephen Farrell, and Benoit Claise for their input
  to the document.

Contributors

  This document reflects contributions from the following individuals
  (listed in alphabetical order):

  Carlos Jesus Bernardos Cano
  Email: [email protected]

  Antonio De la Oliva
  Email: [email protected]

  Yong-Geun Hong
  Email: [email protected]

  Kent Leung
  Email: [email protected]

  Tran Minh Trung
  Email: [email protected]

  Hidetoshi Yokota
  Email: [email protected]

  Juan Carlos Zuniga
  Email: [email protected]












Melia & Gundavelli            Informational                    [Page 15]

RFC 7847                Logical-Interface Support               May 2016


Authors' Addresses

  Telemaco Melia (editor)
  Kudelski Security
  Geneva
  Switzerland

  Email: [email protected]


  Sri Gundavelli (editor)
  Cisco
  170 West Tasman Drive
  San Jose, CA  95134
  United States

  Email: [email protected]


































Melia & Gundavelli            Informational                    [Page 16]