Internet Engineering Task Force (IETF)                        T. Mizrahi
Request for Comments: 7821                                       Marvell
Category: Experimental                                        March 2016
ISSN: 2070-1721


      UDP Checksum Complement in the Network Time Protocol (NTP)

Abstract

  The Network Time Protocol (NTP) allows clients to synchronize to a
  time server using timestamped protocol messages.  To facilitate
  accurate timestamping, some implementations use hardware-based
  timestamping engines that integrate the accurate transmission time
  into every outgoing NTP packet during transmission.  Since these
  packets are transported over UDP, the UDP Checksum field is then
  updated to reflect this modification.  This document proposes an
  extension field that includes a 2-octet Checksum Complement, allowing
  timestamping engines to reflect the checksum modification in the last
  2 octets of the packet rather than in the UDP Checksum field.  The
  behavior defined in this document is interoperable with existing NTP
  implementations.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for examination, experimental implementation, and
  evaluation.

  This document defines an Experimental Protocol for the Internet
  community.  This document is a product of the Internet Engineering
  Task Force (IETF).  It represents the consensus of the IETF
  community.  It has received public review and has been approved for
  publication by the Internet Engineering Steering Group (IESG).  Not
  all documents approved by the IESG are a candidate for any level of
  Internet Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7821.











Mizrahi                       Experimental                      [Page 1]

RFC 7821                 NTP Checksum Complement              March 2016


Copyright Notice

  Copyright (c) 2016 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
     1.1. Intermediate Entities ......................................3
     1.2. Updating the UDP Checksum ..................................4
  2. Conventions Used in This Document ...............................5
     2.1. Terminology ................................................5
     2.2. Abbreviations ..............................................6
  3. Using the UDP Checksum Complement in NTP ........................6
     3.1. Overview ...................................................6
     3.2. Checksum Complement in NTP Packets .........................7
          3.2.1. Using the Checksum Complement .......................7
          3.2.2. Transmission of NTP with Checksum Complement ........8
          3.2.3. Updates of NTP with Checksum Complement .............8
          3.2.4. Reception of NTP with Checksum Complement ...........8
     3.3. Interoperability with Existing Implementations .............9
     3.4. The Checksum Complement and Authentication .................9
  4. Security Considerations ........................................10
  5. IANA Considerations ............................................10
  6. References .....................................................11
     6.1. Normative References ......................................11
     6.2. Informative References ....................................11
  Appendix A. Checksum Complement Usage Example .....................13
  Acknowledgments ...................................................14
  Author's Address ..................................................14











Mizrahi                       Experimental                      [Page 2]

RFC 7821                 NTP Checksum Complement              March 2016


1.  Introduction

  The Network Time Protocol [NTPv4] allows clients to synchronize their
  clocks to a time server by exchanging NTP packets.  The increasing
  demand for highly accurate clock synchronization motivates
  implementations that provide accurate timestamping.

1.1.  Intermediate Entities

  In this document, we use the term "intermediate entity" to refer to
  an entity that resides on the path between the sender and the
  receiver of an NTP packet and that modifies this NTP packet en route.

  In order to facilitate accurate timestamping, an implementation can
  use a hardware-based timestamping engine, as shown in Figure 1.  In
  such cases, NTP packets are sent and received by a software layer,
  whereas a timestamping engine modifies every outgoing NTP packet by
  incorporating its accurate transmission time into the
  <Transmit Timestamp> field in the packet.
































Mizrahi                       Experimental                      [Page 3]

RFC 7821                 NTP Checksum Complement              March 2016


                     NTP client/server
                   +-------------------+
                   |                   |
                   |   +-----------+   |
    Software       |   |    NTP    |   |
                   |   | protocol  |   |
                   |   +-----+-----+   |
                   |         |         |     +-----------------------+
                   |   +-----+-----+   |    / Intermediate entity    |
                   |   | Accurate  |   |   /  in charge of:          |
    ASIC/FPGA      |   | Timestamp |   |  /__ - Timestamping         |
                   |   |  engine   |   |     |- Updating checksum or |
                   |   +-----------+   |     |  Checksum Complement  |
                   |         |         |     +-----------------------+
                   +---------+---------+
                             |
                             |NTP packets
                             |
                         ___ v _
                        /   \_/ \__
                       /           \_
                      /     IP      /
                      \_  Network  /
                       /           \
                       \__/\_   ___/
                             \_/

    ASIC: Application-Specific Integrated Circuit
    FPGA: Field-Programmable Gate Array

                 Figure 1: Accurate Timestamping in NTP

  The accuracy of clock synchronization over packet networks is highly
  sensitive to delay jitters in the underlying network; this
  dramatically affects clock accuracy.  To address this challenge, the
  Precision Time Protocol (PTP) [IEEE1588] defines Transparent Clocks
  (TCs) -- switches and routers that improve end-to-end clock accuracy
  by updating a "Correction Field" in the PTP packet by adding the
  latency caused by the current TC.  In NTP, no equivalent entity is
  currently defined, but future versions of NTP may define an
  intermediate node that modifies en-route NTP packets using a
  "Correction Field".

1.2.  Updating the UDP Checksum

  When the UDP payload is modified by an intermediate entity, the UDP
  Checksum field needs to be updated to maintain its correctness.  When
  using UDP over IPv4 [UDP], an intermediate entity that cannot update



Mizrahi                       Experimental                      [Page 4]

RFC 7821                 NTP Checksum Complement              March 2016


  the value of the UDP Checksum has no choice except to assign a value
  of zero to the Checksum field, causing the receiver to ignore the
  Checksum field and potentially accept corrupted packets.  UDP over
  IPv6, as defined in [IPv6], does not allow a zero checksum, except in
  specific cases [ZeroChecksum].  As discussed in [ZeroChecksum], the
  use of a zero checksum is generally not recommended and should be
  avoided to the extent possible.

  Since an intermediate entity only modifies a specific field in the
  packet, i.e., the Timestamp field, the UDP Checksum update can be
  performed incrementally, using the concepts presented in [Checksum].

  This document defines the Checksum Complement for [NTPv4].  The
  Checksum Complement is a 2-octet field that resides at the end of the
  UDP payload.  It allows intermediate entities to update NTP packets
  and maintain the correctness of the UDP Checksum by modifying the
  last 2 octets of the packet, instead of updating the UDP Checksum
  field.  This is performed by adding an NTP extension field at the end
  of the packet, in which the last 2 octets are used as a Checksum
  Complement.

  The usage of the Checksum Complement can in some cases simplify the
  implementation, because if the packet data is processed in serial
  order, it is simpler to first update the Timestamp field and then
  update the Checksum Complement, rather than to update the timestamp
  and then update the UDP Checksum residing at the UDP header.  Note
  that while it is not impossible to implement a hardware timestamper
  that updates the UDP Checksum, using the Checksum Complement instead
  can significantly simplify the implementation.

  Note that the software layer and the intermediate entity (see
  Figure 1) are two modules in a single NTP clock.  It is assumed that
  these two modules are in agreement regarding whether transmitted NTP
  packets include the Checksum Complement or not.

  [RFC7820] defines the Checksum Complement mechanism for the One-Way
  Active Measurement Protocol (OWAMP) and the Two-Way Active
  Measurement Protocol (TWAMP).  A similar mechanism is presented in
  Annex E of [IEEE1588].

2.  Conventions Used in This Document

2.1.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [KEYWORDS].




Mizrahi                       Experimental                      [Page 5]

RFC 7821                 NTP Checksum Complement              March 2016


2.2.  Abbreviations

  MAC      Message Authentication Code

  NTP      Network Time Protocol

  PTP      Precision Time Protocol

  UDP      User Datagram Protocol

3.  Using the UDP Checksum Complement in NTP

3.1.  Overview

  The UDP Checksum Complement is a 2-octet field that is appended at
  the end of the UDP payload, using an NTP extension field.  Figure 2
  illustrates the packet format of an NTP packet with a Checksum
  Complement extension.

                        +--------------------------------+
                        |        IPv4/IPv6 Header        |
                        +--------------------------------+
                        |           UDP Header           |
                        +--------------------------------+
                ^       |                                |
                |       |           NTP packet           |
                |       |                                |
                |       +--------------------------------+
               UDP      | Optional NTP Extension Fields  |
             Payload    +--------------------------------+
                |       |    UDP Checksum Complement     |
                |       |   Extension Field (28 octets)  |
                v       +--------------------------------+

              Figure 2: Checksum Complement in NTP Packets

  The Checksum Complement is used to compensate for changes performed
  in the NTP packet by intermediate entities, as described in the
  Introduction (Section 1).  An example of the usage of the Checksum
  Complement is provided in Appendix A.











Mizrahi                       Experimental                      [Page 6]

RFC 7821                 NTP Checksum Complement              March 2016


3.2.  Checksum Complement in NTP Packets

  NTP is transported over UDP, either over IPv4 or over IPv6.  This
  document applies to both NTP over IPv4 and NTP over IPv6.

  NTP packets may include one or more extension fields, as defined in
  [NTPv4].  The Checksum Complement in NTP packets resides in a
  dedicated NTP extension field, as shown in Figure 3.

  If the NTP packet includes more than one extension field, the
  Checksum Complement extension is always the last extension field.
  Thus, the Checksum Complement is the last 2 octets in the UDP payload
  and is located at (UDP Length - 2 octets) after the beginning of the
  UDP header.  Note that the Checksum Complement is not used in
  authenticated NTP packets, as further discussed in Section 3.4.

3.2.1.  Using the Checksum Complement

  As described in Section 1, an intermediate entity that updates the
  timestamp in the NTP packet can use the Checksum Complement in order
  to maintain the correctness of the UDP Checksum field.  Specifically,
  if the value of the timestamp is updated, this update yields a change
  in the UDP Checksum value; thus, the intermediate entity assigns a
  new value in the Checksum Complement that cancels this change,
  leaving the current value of the UDP Checksum correct.  An example of
  the usage of the Checksum Complement is provided in Appendix A.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Field Type           |      Length = 28 octets       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                              MBZ                              |
   |                                                               |
   |                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                               |      Checksum Complement      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 3: NTP Checksum Complement Extension Field











Mizrahi                       Experimental                      [Page 7]

RFC 7821                 NTP Checksum Complement              March 2016


  Field Type

     A dedicated Field Type value is used to identify the Checksum
     Complement extension.  See Section 5.

  Length

     The Checksum Complement extension field length is 28 octets.

     This length guarantees that the host that receives the packet
     parses it correctly, whether the packet includes a MAC or not.
     [RFC7822] provides further details about the length of an
     extension field in the absence of a MAC.

  MBZ

     The extension field includes a 22-octet MBZ (MUST be zero) field.
     This field MUST be set to 0 and MUST be ignored by the recipient.
     The MBZ field is used for padding the extension field to
     28 octets.

  Checksum Complement

     The Checksum Complement extension includes the Checksum Complement
     field, residing in the last 2 octets of the extension.

3.2.2.  Transmission of NTP with Checksum Complement

  The transmitter of an NTP packet MAY include a Checksum Complement
  extension field.

3.2.3.  Updates of NTP with Checksum Complement

  An intermediate entity that receives and alters an NTP packet
  containing a Checksum Complement extension MAY use the Checksum
  Complement to maintain a correct UDP Checksum value.

3.2.4.  Reception of NTP with Checksum Complement

  This document does not impose new requirements on the receiving end
  of an NTP packet.

  The UDP layer at the receiving end verifies the UDP Checksum of
  received NTP packets, and the NTP layer SHOULD ignore the Checksum
  Complement extension field.






Mizrahi                       Experimental                      [Page 8]

RFC 7821                 NTP Checksum Complement              March 2016


3.3.  Interoperability with Existing Implementations

  The behavior defined in this document does not impose new
  requirements on the reception of NTP packets beyond the requirements
  defined in [RFC7822].  Note that, as defined in [RFC7822], a host
  that receives an NTP message with an unknown extension field SHOULD
  ignore the extension field and MAY drop the packet if policy requires
  it.  Thus, transmitters and intermediate entities that support the
  Checksum Complement can transparently interoperate with receivers
  that are not Checksum Complement compliant, as long as these
  receivers ignore unknown extension fields.  It is noted that existing
  implementations that discard packets with unknown extension fields
  cannot interoperate with transmitters that use the Checksum
  Complement.

  It should be noted that when hardware-based timestamping is used, it
  will likely be used at both ends, and thus both hosts that take part
  in the protocol will support the functionality described in this
  memo.  If only one of the hosts uses hardware-based timestamping,
  then the Checksum Complement can only be used if it is known that the
  peer host can accept the Checksum Complement.

3.4.  The Checksum Complement and Authentication

  A Checksum Complement MUST NOT be used when authentication is
  enabled.  The Checksum Complement is useful in unauthenticated mode,
  allowing the intermediate entity to perform serial processing of the
  packet without storing and forwarding it.

  On the other hand, when message authentication is used, an
  intermediate entity that alters NTP packets must also recompute the
  Message Authentication Code (MAC) accordingly.  In this case, it is
  not possible to update the Checksum Complement; updating the Checksum
  Complement would result in having to recalculate the MAC, and there
  would be a cyclic dependency between the MAC and the Checksum
  Complement.  Hence, when updating the MAC, it is necessary to update
  the UDP Checksum field, making the Checksum Complement field
  unnecessary in the presence of authentication.













Mizrahi                       Experimental                      [Page 9]

RFC 7821                 NTP Checksum Complement              March 2016


4.  Security Considerations

  This document describes how a Checksum Complement extension can be
  used for maintaining the correctness of the UDP Checksum.  The
  security considerations of time protocols in general are discussed in
  [SecTime], and the security considerations of NTP are discussed in
  [NTPv4].

  The purpose of this extension is to ease the implementation of
  accurate timestamping engines, as illustrated in Figure 1.  The
  extension is intended to be used internally in an NTP client or
  server.  This extension is not intended to be used by switches and
  routers that reside between the client and the server.  As opposed to
  PTP [IEEE1588], NTP does not require intermediate switches or routers
  to modify the content of NTP messages, and thus any such modification
  should be considered as a malicious man-in-the-middle (MITM) attack.

  It is important to emphasize that the scheme described in this
  document does not increase the protocol's vulnerability to MITM
  attacks; a MITM attacker who maliciously modifies a packet and its
  Checksum Complement is logically equivalent to a MITM attacker who
  modifies a packet and its UDP Checksum field.

  The concept described in this document is intended to be used only in
  unauthenticated mode.  As discussed in Section 3.4, if a
  cryptographic security mechanism is used, then the Checksum
  Complement does not simplify the implementation compared to using the
  conventional Checksum, and therefore the Checksum Complement is not
  used.

5.  IANA Considerations

  IANA has allocated a new value in the "NTP Extension Field Types"
  registry:

     0x2005 Checksum Complement















Mizrahi                       Experimental                     [Page 10]

RFC 7821                 NTP Checksum Complement              March 2016


6.  References

6.1.  Normative References

  [Checksum]  Rijsinghani, A., Ed., "Computation of the Internet
              Checksum via Incremental Update", RFC 1624,
              DOI 10.17487/RFC1624, May 1994,
              <http://www.rfc-editor.org/info/rfc1624>.

  [IPv6]      Deering, S. and R. Hinden, "Internet Protocol, Version 6
              (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
              December 1998, <http://www.rfc-editor.org/info/rfc2460>.

  [KEYWORDS]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

  [NTPv4]     Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
              "Network Time Protocol Version 4: Protocol and Algorithms
              Specification", RFC 5905, DOI 10.17487/RFC5905,
              June 2010, <http://www.rfc-editor.org/info/rfc5905>.

  [RFC7822]   Mizrahi, T. and D. Mayer, "Network Time Protocol
              Version 4 (NTPv4) Extension Fields", RFC 7822,
              DOI 10.17487/RFC7822, March 2016,
              <http://www.rfc-editor.org/info/rfc7822>.

  [UDP]       Postel, J., "User Datagram Protocol", STD 6, RFC 768,
              DOI 10.17487/RFC768, August 1980,
              <http://www.rfc-editor.org/info/rfc768>.

6.2.  Informative References

  [IEEE1588]  IEEE, "IEEE Standard for a Precision Clock
              Synchronization Protocol for Networked Measurement and
              Control Systems", IEEE Std 1588-2008,
              DOI 10.1109/IEEESTD.2008.4579760, July 2008.

  [RFC7820]   Mizrahi, T., "UDP Checksum Complement in the One-Way
              Active Measurement Protocol (OWAMP) and Two-Way Active
              Measurement Protocol (TWAMP)", RFC 7820,
              DOI 10.17487/RFC7820, March 2016,
              <http://www.rfc-editor.org/info/rfc7820>.







Mizrahi                       Experimental                     [Page 11]

RFC 7821                 NTP Checksum Complement              March 2016


  [SecTime]   Mizrahi, T., "Security Requirements of Time Protocols in
              Packet Switched Networks", RFC 7384,
              DOI 10.17487/RFC7384, October 2014,
              <http://www.rfc-editor.org/info/rfc7384>.

  [ZeroChecksum]
              Fairhurst, G. and M. Westerlund, "Applicability Statement
              for the Use of IPv6 UDP Datagrams with Zero Checksums",
              RFC 6936, DOI 10.17487/RFC6936, April 2013,
              <http://www.rfc-editor.org/info/rfc6936>.









































Mizrahi                       Experimental                     [Page 12]

RFC 7821                 NTP Checksum Complement              March 2016


Appendix A.  Checksum Complement Usage Example

  Consider an NTP packet sent by an NTP client to an NTP server.

  The client's software layer (see Figure 1) generates an NTP packet
  with an Origin Timestamp T and a UDP Checksum value U.  The value of
  U is the checksum of the UDP header, UDP payload, and pseudo-header.
  Thus, U is equal to:

                        U = Const + checksum(T)                     (1)

  Where "Const" is the checksum of all the fields that are covered by
  the checksum, except the Origin Timestamp T.

  Recall that the client's software emits the NTP packet with a
  Checksum Complement extension field, which resides at the end of the
  PTP packet.  It is assumed that the client initially assigns zero to
  the value of the Checksum Complement.

  The client's timestamping engine updates the Origin Timestamp field
  to the accurate time, changing its value from T to T'.  The engine
  also updates the Checksum Complement field from zero to a new value
  C, such that:

                  checksum(C) = checksum(T) - checksum(T')          (2)

  When the NTP packet is transmitted by the client's timestamping
  engine, the value of the checksum remains U as before:

     U = Const + checksum(T) = Const + checksum(T) + checksum(T') -
         checksum(T') = Const + checksum(T') + checksum(C)          (3)

  Thus, after the timestamping engine has updated the timestamp,
  U remains the correct checksum of the packet.

  When the NTP packet reaches the NTP server, the server performs a
  conventional UDP Checksum computation, and the computed value is U.
  Since the Checksum Complement is part of the extension field, its
  value (C) is transparently included in the computation, as per
  Equation (3), without requiring special treatment by the server.











Mizrahi                       Experimental                     [Page 13]

RFC 7821                 NTP Checksum Complement              March 2016


Acknowledgments

  The author gratefully thanks Danny Mayer, Miroslav Lichvar, Paul
  Kyzivat, Suresh Krishnan, and Brian Haberman for their review and
  helpful comments.

Author's Address

  Tal Mizrahi
  Marvell
  6 Hamada St.
  Yokneam, 20692
  Israel

  Email: [email protected]




































Mizrahi                       Experimental                     [Page 14]