Internet Engineering Task Force (IETF)                        T. Kivinen
Request for Comments: 7815                                 INSIDE Secure
Category: Informational                                       March 2016
ISSN: 2070-1721


Minimal Internet Key Exchange Version 2 (IKEv2) Initiator Implementation

Abstract

  This document describes a minimal initiator version of the Internet
  Key Exchange version 2 (IKEv2) protocol for constrained nodes.  IKEv2
  is a component of IPsec used for performing mutual authentication and
  establishing and maintaining Security Associations (SAs).  IKEv2
  includes several optional features, which are not needed in minimal
  implementations.  This document describes what is required from the
  minimal implementation and also describes various optimizations that
  can be done.  The protocol described here is interoperable with a
  full IKEv2 implementation using shared secret authentication (IKEv2
  does not require the use of certificate authentication).  This
  minimal initiator implementation can only talk to a full IKEv2
  implementation acting as the responder; thus, two minimal initiator
  implementations cannot talk to each other.

  This document does not update or modify RFC 7296 but provides a more
  compact description of the minimal version of the protocol.  If this
  document and RFC 7296 conflict, then RFC 7296 is the authoritative
  description.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7815.







Kivinen                       Informational                     [Page 1]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


Copyright Notice

  Copyright (c) 2016 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

  This document may contain material from IETF Documents or IETF
  Contributions published or made publicly available before November
  10, 2008.  The person(s) controlling the copyright in some of this
  material may not have granted the IETF Trust the right to allow
  modifications of such material outside the IETF Standards Process.
  Without obtaining an adequate license from the person(s) controlling
  the copyright in such materials, this document may not be modified
  outside the IETF Standards Process, and derivative works of it may
  not be created outside the IETF Standards Process, except to format
  it for publication as an RFC or to translate it into languages other
  than English.

























Kivinen                       Informational                     [Page 2]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   4
    1.1.  Use Cases . . . . . . . . . . . . . . . . . . . . . . . .   5
  2.  Exchanges . . . . . . . . . . . . . . . . . . . . . . . . . .   5
    2.1.  Initial Exchange  . . . . . . . . . . . . . . . . . . . .   5
    2.2.  Other Exchanges . . . . . . . . . . . . . . . . . . . . .  12
    2.3.  Generating Keying Material  . . . . . . . . . . . . . . .  12
  3.  Conformance Requirements  . . . . . . . . . . . . . . . . . .  13
  4.  Implementation Status . . . . . . . . . . . . . . . . . . . .  14
  5.  Security Considerations . . . . . . . . . . . . . . . . . . .  14
  6.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  15
    6.1.  Normative References  . . . . . . . . . . . . . . . . . .  15
    6.2.  Informative References  . . . . . . . . . . . . . . . . .  15
  Appendix A.  Header and Payload Formats . . . . . . . . . . . . .  17
    A.1.  The IKE Header  . . . . . . . . . . . . . . . . . . . . .  17
    A.2.  Generic Payload Header  . . . . . . . . . . . . . . . . .  19
    A.3.  Security Association Payload  . . . . . . . . . . . . . .  21
      A.3.1.  Proposal Substructure . . . . . . . . . . . . . . . .  23
      A.3.2.  Transform Substructure  . . . . . . . . . . . . . . .  24
      A.3.3.  Valid Transform Types by Protocol . . . . . . . . . .  26
      A.3.4.  Transform Attributes  . . . . . . . . . . . . . . . .  26
    A.4.  Key Exchange Payload  . . . . . . . . . . . . . . . . . .  27
    A.5.  Identification Payloads . . . . . . . . . . . . . . . . .  27
    A.6.  Certificate Payload . . . . . . . . . . . . . . . . . . .  29
    A.7.  Certificate Request Payload . . . . . . . . . . . . . . .  30
    A.8.  Authentication Payload  . . . . . . . . . . . . . . . . .  31
    A.9.  Nonce Payload . . . . . . . . . . . . . . . . . . . . . .  31
    A.10. Notify Payload  . . . . . . . . . . . . . . . . . . . . .  32
      A.10.1.  Notify Message Types . . . . . . . . . . . . . . . .  33
    A.11. Traffic Selector Payload  . . . . . . . . . . . . . . . .  34
      A.11.1.  Traffic Selector . . . . . . . . . . . . . . . . . .  36
    A.12. Encrypted Payload . . . . . . . . . . . . . . . . . . . .  37
  Appendix B.  Useful Optional Features . . . . . . . . . . . . . .  39
    B.1.  IKE SA Delete Notification  . . . . . . . . . . . . . . .  39
    B.2.  Raw Public Keys . . . . . . . . . . . . . . . . . . . . .  40
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  41
  Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  41













Kivinen                       Informational                     [Page 3]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


1.  Introduction

  The Internet Protocol Suite is increasingly used on small devices
  with severe constraints on power, memory, and processing resources.
  This document describes a minimal IKEv2 implementation designed for
  use on such constrained nodes that is interoperable with "Internet
  Key Exchange Protocol Version 2 (IKEv2)" [RFC7296].

  A minimal IKEv2 implementation only supports the initiator end of the
  protocol.  It only supports the initial IKE_SA_INIT and IKE_AUTH
  exchanges and does not initiate any other exchanges.  It also replies
  with an empty (or error) message to all incoming requests.

  This means that most of the optional features of IKEv2 are left out:
  NAT traversal, IKE SA rekey, Child SA rekey, multiple Child SAs,
  deleting Child / IKE SAs, Configuration payloads, Extensible
  Authentication Protocol (EAP) authentication, COOKIEs, etc.

  Some optimizations can be done because of the limited set of
  supported features, and this text should not be considered for
  generic IKEv2 implementations (for example, Message IDs can be done
  as specified because minimal implementation is only sending out an
  IKE_SA_INIT and IKE_AUTH request and not any other request).

  This document is intended to be standalone, meaning everything needed
  to implement IKEv2 is copied here except the description of the
  cryptographic algorithms.  The IKEv2 specification has lots of
  background information and rationale that has been omitted from this
  document.

  Numerous additional numeric values from IANA registries have been
  omitted from this document; only those which are of interest for a
  minimal implementation are listed.

  The main body of this document describes how to use the shared secret
  authentication in IKEv2, as it is easiest to implement.  In some
  cases, that is not enough, and Appendix B.2 describes how to use raw
  public keys instead of shared secret authentication.

  For more information, check the full IKEv2 specification in [RFC7296]
  and [IKEV2IANA].

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].  The term
  "Constrained Node" is defined in "Terminology for Constrained-Node
  Networks" [RFC7228].




Kivinen                       Informational                     [Page 4]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


1.1.  Use Cases

  One use case for this kind of minimal implementation is in small
  devices doing machine-to-machine communication.  In such
  environments, the node initiating connections can be very small, and
  the other end of the communication channel is some kind of larger
  device.

  An example of the small initiating node could be a remote garage door
  opener device, i.e., a device having buttons that open and close a
  garage door and that connects to the home area network server over a
  wireless link.

  Another example of such a device is some kind of sensor device, for
  example, a room temperature sensor, which sends periodic temperature
  data to some centralized node.

  Those devices usually sleep for a long time and only wake up
  periodically or because of user interaction.  The data transfer is
  always initiated from that sleeping node when they wake up; after
  they send packets, there might be ACKs or other packets coming back
  before they go back to sleep.  If some data needs to be transferred
  from a server node to the small device, it can be implemented by
  polling, i.e., the small node periodically polls for the server to
  see if it, for example, has some configuration changes or similar.
  While the device is sleeping, it will not maintain the IKEv2 SA.
  That is, it will always create the IKEv2 SA again when it wakes up.
  This means there is no need to do liveness checks for the server, as
  after the device wakes up again, the minimal implementation will
  start from the beginning again.

2.  Exchanges

2.1.  Initial Exchange

  All IKEv2 communications consist of pairs of messages: a request and
  a response.  The pair is called an "exchange" and is sometimes called
  a "request/response pair".  Every request requires a response.

  For every pair of IKEv2 messages, the initiator is responsible for
  retransmission in the event of a timeout.  The responder MUST never
  retransmit a response unless it receives a retransmission of the
  request.

  IKEv2 is a reliable protocol: the initiator MUST retransmit a request
  until it either receives a corresponding response or deems the IKE SA
  to have failed.  A retransmission from the initiator MUST be bitwise




Kivinen                       Informational                     [Page 5]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  identical to the original request.  Retransmission times MUST
  increase exponentially.

  IKEv2 is run over UDP port 500.  All IKEv2 implementations MUST be
  able to send, receive, and process IKEv2 messages that are up to 1280
  octets long.  An implementation MUST accept incoming requests even if
  the source port is not 500 and MUST respond to the address and port
  from which the request was received.

  The minimal implementation of IKEv2 only uses the first two
  exchanges, called IKE_SA_INIT and IKE_AUTH.  These are used to create
  the IKE SA and the first Child SA.  In addition to those messages, a
  minimal IKEv2 implementation needs to understand the CREATE_CHILD_SA
  request enough to generate a CREATE_CHILD_SA response containing the
  NO_ADDITIONAL_SAS error notify.  It needs to understand the
  INFORMATIONAL request enough to generate an empty INFORMATIONAL
  response to it.  There is no requirement to be able to respond to any
  other requests.

  All messages following the IKE_SA_INIT exchange are cryptographically
  protected using the cryptographic algorithms and keys negotiated in
  the IKE_SA_INIT exchange.

  Every IKEv2 message contains a Message ID as part of its fixed
  header.  This Message ID is used to match up requests and responses
  and to identify retransmissions of messages.

  Minimal implementations only need to support the role of initiator,
  so it typically only sends an IKE_SA_INIT request that, when
  answered, is followed by an IKE_AUTH.  As those messages have fixed
  Message IDs (0 and 1), it does not need to keep track of its own
  Message IDs for outgoing requests after that.

  Minimal implementations can also optimize Message ID handling of the
  incoming requests, as they do not need to protect incoming requests
  against replays.  This is possible because minimal implementations
  will only return error or empty notification replies to incoming
  requests.  This means that any of those incoming requests do not have
  any effect on the minimal implementation, thus processing them again
  does not cause any harm.  Because of this, a minimal implementation
  can always answer a request coming in, with the same Message ID than
  what the request had, and then forget the request/response pair
  immediately.  This means there is no need to keep track of Message
  IDs of the incoming requests.







Kivinen                       Informational                     [Page 6]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  In the following descriptions, the payloads contained in the message
  are indicated by the names listed below.

  Notation    Payload
  -----------------------------------------
  AUTH        Authentication
  CERTREQ     Certificate Request
  D           Delete
  HDR         IKE header (not a payload)
  IDi         Identification - Initiator
  IDr         Identification - Responder
  KE          Key Exchange
  Ni, Nr      Nonce
  N           Notify
  SA          Security Association
  SK          Encrypted and Authenticated
  TSi         Traffic Selector - Initiator
  TSr         Traffic Selector - Responder

  The initial exchanges are as follows:

  Initiator                         Responder
  -------------------------------------------------------------------
  HDR(SPIi=xxx, SPIr=0, IKE_SA_INIT,
      Flags: Initiator, Message ID=0),
      SAi1, KEi, Ni  -->

                     <--  HDR(SPIi=xxx, SPIr=yyy, IKE_SA_INIT,
                              Flags: Response, Message ID=0),
                              SAr1, KEr, Nr, [CERTREQ]

  HDR contains the Security Parameter Indexes (SPIs), version numbers,
  and flags of various sorts.  Each endpoint chooses one of the two
  SPIs and MUST choose them so as to be unique identifiers of an IKE
  SA.  An SPI value of zero is special: it indicates that the remote
  SPI value is not yet known by the sender.

  Incoming IKEv2 packets are mapped to an IKE SA using only the
  packet's SPI, not using (for example) the source IP address of the
  packet.

  The SAi1 payload states the cryptographic algorithms the initiator
  supports for the IKE SA.  The KEi and KEr payloads contain Diffie-
  Hellman values, and Ni and Nr are the nonces.  The SAr1 contains the
  chosen cryptographic suite from the initiator's offered choices.  A
  minimal implementation using shared secrets will ignore the CERTREQ
  payload.




Kivinen                       Informational                     [Page 7]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  Minimal implementation will most likely support exactly one set of
  cryptographic algorithms, meaning the SAi1 payload will be static.
  It needs to check that the SAr1 received matches the proposal it
  sent.

  At this point in the negotiation, each party can generate SKEYSEED,
  from which all keys are derived for that IKE SA.

  SKEYSEED = prf(Ni | Nr, g^ir)

  {SK_d | SK_ai | SK_ar | SK_ei | SK_er | SK_pi | SK_pr }
                  = prf+ (SKEYSEED, Ni | Nr | SPIi | SPIr )

  prf+ (K,S) = T1 | T2 | T3 | T4 | ...

  where:
  T1 = prf (K, S | 0x01)
  T2 = prf (K, T1 | S | 0x02)
  T3 = prf (K, T2 | S | 0x03)
  T4 = prf (K, T3 | S | 0x04)
  ...

  (indicating that the quantities SK_d, SK_ai, SK_ar, SK_ei, SK_er,
  SK_pi, and SK_pr are taken in order from the generated bits of the
  prf+). g^ir is the shared secret from the ephemeral Diffie-Hellman
  exchange. g^ir is represented as a string of octets in big endian
  order padded with zeros if necessary to make it the length of the
  modulus.  Ni and Nr are the nonces, stripped of any headers.

  The SK_d is used for deriving new keys for the Child SAs.  The SK_ai
  and SK_ar are used as a key to the integrity protection algorithm for
  authenticating the component messages of subsequent exchanges.  The
  SK_ei and SK_er are used for encrypting (and of course decrypting)
  all subsequent exchanges.  The SK_pi and SK_pr are used when
  generating an AUTH payload.  The lengths of SK_d, SK_pi, and SK_pr
  MUST be the preferred key length of the Pseudorandom Function (PRF)
  agreed upon.

  A separate SK_e and SK_a is computed for each direction.  The keys
  used to protect messages from the original initiator are SK_ai and
  SK_ei.  The keys used to protect messages in the other direction are
  SK_ar and SK_er.  The notation SK { ... } indicates that these
  payloads are encrypted and integrity protected using that direction's
  SK_e and SK_a.







Kivinen                       Informational                     [Page 8]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  Initiator                         Responder
  -------------------------------------------------------------------
  HDR(SPIi=xxx, SPIr=yyy, IKE_AUTH,
      Flags: Initiator, Message ID=1),
      SK {IDi, AUTH, SAi2, TSi, TSr,
          N(INITIAL_CONTACT)}  -->

                    <--  HDR(SPIi=xxx, SPIr=yyy, IKE_AUTH, Flags:
                                Response, Message ID=1),
                                SK {IDr, AUTH, SAr2, TSi, TSr}

  The initiator asserts its identity with the IDi payload, proves
  knowledge of the secret corresponding to IDi, and integrity protects
  the contents of the first message using the AUTH payload.  The
  responder asserts its identity with the IDr payload, authenticates
  its identity, and protects the integrity of the second message with
  the AUTH payload.

  As minimal implementation usually has only one host where it
  connects, that means it has only one shared secret.  This means it
  does not need to care about the IDr payload that much.  If the other
  end sends an AUTH payload that the initiator can verify using the
  shared secret it has, then it knows the other end is the peer it was
  configured to talk to.

  In the IKE_AUTH request, the initiator sends the SA offer(s) in the
  SAi2 payload and the proposed Traffic Selectors (TSs) for the Child
  SA in the TSi and TSr payloads.  The responder replies with the
  accepted offer in an SAr2 payload and with the selected Traffic
  Selectors.  The selected Traffic Selectors may be a subset of what
  the initiator proposed.

  In the minimal implementation, both SA payloads and TS payloads are
  going to be mostly static.  The SA payload will have the SPI value
  used in the Encapsulating Security Payload (ESP), but the algorithms
  are most likely going to be the one and only supported set.  The TS
  payloads on the initiator end will most likely say from any to any,
  i.e., full wildcard ranges, or from the local IP to the remote IP.
  In the wildcard case, the responder quite often narrows the range
  down to the one IP address pair.  Using a single IP address pair as
  the Traffic Selectors when sending the IKE_AUTH request will simplify
  processing as the responder will either accept the IP address pair or
  return an error.  If wildcard ranges are used, there is a possibility
  that the responder will narrow the Traffic Selector range to range
  that is not acceptable by the initiator.

  The IKE_AUTH (and IKE_SA_INIT) response may contain multiple status
  notification payloads that can be ignored by minimal implementations.



Kivinen                       Informational                     [Page 9]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  There can also be Vendor ID, Certificate, Certificate Request, or
  Configuration payloads, but any payload unknown to minimal
  implementations can simply be skipped over (response messages cannot
  have critical unsupported payloads).

  The exchange above includes N(INITIAL_CONTACT) notification in the
  request as that is quite commonly sent by a minimal implementation.
  It indicates to the other end that the initiator does not have any
  other IKE SAs between it and the responder, and if there is any left
  from previous runs, those can be deleted by the responder.  As
  minimal implementations delete IKE SAs without sending IKE SA delete
  requests, this will help the responder to clean up leftover state.

  When using shared secret authentication, the peers are authenticated
  by having each calculating a Message Authentication Code (MAC) over a
  block of data:

  For the initiator:
     AUTH = prf( prf(Shared Secret, "Key Pad for IKEv2"),
                      <InitiatorSignedOctets>)
  For the responder:
     AUTH = prf( prf(Shared Secret, "Key Pad for IKEv2"),
                      <ResponderSignedOctets>)

  The string "Key Pad for IKEv2" is 17 ASCII characters without null
  termination.  The implementation can precalculate the inner prf and
  only store the output of it.  This is possible because a minimal
  IKEv2 implementation usually only supports one PRF.

  In the following calculations, IDi' and IDr' are the entire ID
  payloads excluding the fixed header, and the Ni and Nr are only the
  values, not the payloads containing it.  Note that neither the nonce
  Ni/Nr nor the value prf(SK_pr, IDr')/prf(SK_pi, IDi') are
  transmitted.

  The initiator signs the first message (IKE_SA_INIT request), starting
  with the first octet of the first SPI in the header and ending with
  the last octet of the last payload in that first message.  Appended
  to this (for purposes of computing the signature) are the responder's
  nonce Nr and the value prf(SK_pi, IDi').

  For the responder, the octets to be signed start with the first octet
  of the first SPI in the header of the second message (IKE_SA_INIT
  response) and end with the last octet of the last payload in that
  second message.  Appended to this are the initiator's nonce Ni and
  the value prf(SK_pr, IDr').





Kivinen                       Informational                    [Page 10]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  The initiator's signed octets can be described as:

  InitiatorSignedOctets = RealMessage1 | NonceRData | MACedIDForI
  RealIKEHDR =  SPIi | SPIr |  . . . | Length
  RealMessage1 = RealIKEHDR | RestOfMessage1
  NonceRPayload = PayloadHeader | NonceRData
  InitiatorIDPayload = PayloadHeader | RestOfInitIDPayload
  RestOfInitIDPayload = IDType | RESERVED | InitIDData
  MACedIDForI = prf(SK_pi, RestOfInitIDPayload)

  The responder's signed octets can be described as:

  ResponderSignedOctets = RealMessage2 | NonceIData | MACedIDForR
  RealIKEHDR =  SPIi | SPIr |  . . . | Length
  RealMessage2 = RealIKEHDR | RestOfMessage2
  NonceIPayload = PayloadHeader | NonceIData
  ResponderIDPayload = PayloadHeader | RestOfRespIDPayload
  RestOfRespIDPayload = IDType | RESERVED | RespIDData
  MACedIDForR = prf(SK_pr, RestOfRespIDPayload)

  Note that all of the payloads inside the RestOfMessageX are included
  under the signature, including any payload types not listed in this
  document.

  The initiator might also get an unauthenticated response back that
  has a notification payload with an error code inside.  As that error
  code will be unauthenticated and may be faked, there is no need to do
  anything for those.  A minimal implementation can simply ignore those
  errors and retransmit its request until it times out, and if that
  happens, then the IKE SA (and Child SA) creation failed.

  The responder might also reply with an IKE_AUTH response packet that
  does not contain the payloads needed to set up a Child SA (SAr2, TSi,
  and TSr) but instead contain AUTH payload and an error.  Minimal
  implementation that does not support the CREATE_CHILD_SA exchange
  cannot recover from this scenario.  It can delete the IKE SA and
  start over from the beginning (which might fail again if this is a
  configuration error, or it might succeed if this was temporal
  failure).












Kivinen                       Informational                    [Page 11]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


2.2.  Other Exchanges

  Minimal implementations MUST be able to reply to INFORMATIONAL
  requests by sending back an empty INFORMATIONAL response:

  Minimal implementation            Other end
  -------------------------------------------------------------------
                     <--  HDR(SPIi=xxx, SPIr=yyy, INFORMATIONAL,
                                 Flags: none,  Message ID=m),
                                 SK {...}

  HDR(SPIi=xxx, SPIr=yyy, INFORMATIONAL,
      Flags: Initiator | Response,
      Message ID=m),
      SK {}  -->

  Minimal implementations MUST be able to reply to incoming
  CREATE_CHILD_SA requests.  A typical implementation will reject the
  CREATE_CHILD_SA exchanges by sending a NO_ADDITIONAL_SAS error notify
  back:

  Minimal implementation            Other end
  -------------------------------------------------------------------
                     <--  HDR(SPIi=xxx, SPIy=yyy, CREATE_CHILD_SA,
                                 Flags: none, Message ID=m),
                                 SK {...}

  HDR(SPIi=xxx, SPIr=yyy, CREATE_CHILD_SA,
      Flags: Initiator | Response, Message ID=m),
      SK {N(NO_ADDITIONAL_SAS)}  -->

  Note that INFORMATIONAL and CREATE_CHILD_SA requests might contain
  unsupported critical payloads, in which case a compliant
  implementation MUST ignore the request and send a response message
  back that has the UNSUPPORTED_CRITICAL_PAYLOAD notification.  That
  notification payload data contains a 1-octet payload type of the
  unsupported critical payload.

2.3.  Generating Keying Material

  The keying material for the Child SA created by the IKE_AUTH exchange
  is generated as follows:

  KEYMAT = prf+(SK_d, Ni | Nr)

  Where Ni and Nr are the nonces from the IKE_SA_INIT exchange.





Kivinen                       Informational                    [Page 12]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  A single CHILD_SA negotiation may result in multiple Security
  Associations.  ESP and Authentication Header (AH) SAs exist in pairs
  (one in each direction), so two SAs are created in a single Child SA
  negotiation for them.  The keying material for each Child SA MUST be
  taken from the expanded KEYMAT using the following rules:

  o  All keys for SAs carrying data from the initiator to the responder
     are taken before SAs going from the responder to the initiator.

  o  If an IPsec protocol requires multiple keys, the order in which
     they are taken from the SA's keying material needs to be described
     in the protocol's specification.  For ESP and AH, [IPSECARCH]
     defines the order, namely: the encryption key (if any) MUST be
     taken from the first bits, and the integrity key (if any) MUST be
     taken from the remaining bits.

  Each cryptographic algorithm takes a fixed number of bits of keying
  material specified as part of the algorithm or negotiated in SA
  payloads.

3.  Conformance Requirements

  For an implementation to be called conforming to the RFC 7296
  specification, it MUST be possible to configure it to accept the
  following:

  o  Public Key Infrastructure using X.509 (PKIX) Certificates
     containing and signed by RSA keys of size 1024 or 2048 bits, where
     the ID passed is any of ID_KEY_ID, ID_FQDN, ID_RFC822_ADDR, or
     ID_DER_ASN1_DN.

  o  Shared key authentication where the ID passed is any of ID_KEY_ID,
     ID_FQDN, or ID_RFC822_ADDR.

  o  Authentication where the responder is authenticated using PKIX
     Certificates, and the initiator is authenticated using shared key
     authentication.

  This document only supports the second bullet; it does not support
  PKIX Certificates at all.  As full RFC 7296 responders must also
  support that shared key authentication, this allows a minimal
  implementation to be able to interoperate with all implementations
  that are compliant with RFC 7296.

  PKIX Certificates are left out from the minimal implementation as
  those would add quite a lot of complexity to the implementation.  The
  actual code changes needed in the IKEv2 protocol are small, but the
  certificate validation code would be more complex than the whole



Kivinen                       Informational                    [Page 13]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  minimal IKEv2 implementation itself.  If public-key-based
  authentication is needed for scalability reasons, then raw public
  keys would probably be the best compromise (see Appendix B.2).

4.  Implementation Status

  This document describes a minimal implementation written by the
  author of this document.  The minimal implementation supported the
  base IKE_SA_INIT and IKE_AUTH exchanges and successfully
  interoperated with a full IKEv2 server.  This minimal implementation
  was presented in the Interconnecting Smart Objects with Internet
  Workshop in Prague in March 2011 [Kiv11].  This implementation was
  written as proof of concept in perl.

  There was another proof-of-concept implementation written in python,
  which also interoperated with a full IKEv2 server.

  Both implementations were written just for demonstration purposes and
  included fixed configuration built into the code, and both also
  implemented ESP, ICMP, and IP layers to the level that was needed to
  send and receive one ICMP echo packet.  Both implementations were
  about 1000 lines of code excluding cryptographic libraries but
  including ESP, ICMP, and IP layers.

5.  Security Considerations

  As this implements the same protocol as RFC 7296, this means all
  security considerations from it also apply to this document.























Kivinen                       Informational                    [Page 14]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


6.  References

6.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC7296]  Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
             Kivinen, "Internet Key Exchange Protocol Version 2
             (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
             2014, <http://www.rfc-editor.org/info/rfc7296>.

6.2.  Informative References

  [EAI]      Yang, A., Steele, S., and N. Freed, "Internationalized
             Email Headers", RFC 6532, DOI 10.17487/RFC6532, February
             2012, <http://www.rfc-editor.org/info/rfc6532>.

  [IDNA]     Klensin, J., "Internationalized Domain Names for
             Applications (IDNA): Definitions and Document Framework",
             RFC 5890, DOI 10.17487/RFC5890, August 2010,
             <http://www.rfc-editor.org/info/rfc5890>.

  [IKEV2IANA]
             IANA, "Internet Key Exchange Version 2 (IKEv2)
             Parameters",
             <http://www.iana.org/assignments/ikev2-parameters>.

  [IPSEARCH] Kent, S. and K. Seo, "Security Architecture for the
             Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
             December 2005, <http://www.rfc-editor.org/info/rfc4301>.

  [Kiv11]    Kivinen, T., "Interconnecting Smart Objects with Internet
             Workshop 2011-03025; IKEv2 and Smart Objects", March 2011,
             <https://www.iab.org/wp-content/IAB-uploads/2011/04/
             Kivinen.pdf>.

  [MODES]    National Institute of Standards and Technology, U.S.
             Department of Commerce, "Recommendation for Block Cipher
             Modes of Operation", SP 800-38A, 2001.

  [PKCS1]    Jonsson, J. and B. Kaliski, "Public-Key Cryptography
             Standards (PKCS) #1: RSA Cryptography Specifications
             Version 2.1", RFC 3447, DOI 10.17487/RFC3447, February
             2003, <http://www.rfc-editor.org/info/rfc3447>.




Kivinen                       Informational                    [Page 15]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
             Housley, R., and W. Polk, "Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
             <http://www.rfc-editor.org/info/rfc5280>.

  [RFC5322]  Resnick, P., Ed., "Internet Message Format", RFC 5322,
             DOI 10.17487/RFC5322, October 2008,
             <http://www.rfc-editor.org/info/rfc5322>.

  [RFC7228]  Bormann, C., Ersue, M., and A. Keranen, "Terminology for
             Constrained-Node Networks", RFC 7228,
             DOI 10.17487/RFC7228, May 2014,
             <http://www.rfc-editor.org/info/rfc7228>.

  [RFC7619]  Smyslov, V. and P. Wouters, "The NULL Authentication
             Method in the Internet Key Exchange Protocol Version 2
             (IKEv2)", RFC 7619, DOI 10.17487/RFC7619, August 2015,
             <http://www.rfc-editor.org/info/rfc7619>.

  [RFC7670]  Kivinen, T., Wouters, P., and H. Tschofenig, "Generic Raw
             Public-Key Support for IKEv2", RFC 7670,
             DOI 10.17487/RFC7670, January 2016,
             <http://www.rfc-editor.org/info/rfc7670>.



























Kivinen                       Informational                    [Page 16]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


Appendix A.  Header and Payload Formats

  This appendix describes actual packet payload formats.  This is
  required to make the document self-contained.  The descriptions are
  mostly copied from RFC 7296, and more information can be found from
  there.

  Various payloads contain RESERVED fields, and those MUST be sent as
  zero and MUST be ignored on receipt.

  All multi-octet fields representing integers are laid out in big
  endian order (also known as "most significant byte first" or "network
  byte order").

A.1.  The IKE Header

  Each IKEv2 message begins with the IKE header, denoted HDR in this
  document.  Following the header are one or more IKE payloads each
  identified by a Next Payload field in the preceding payload.
  Payloads are identified in the order in which they appear in an IKE
  message by looking in the Next Payload field in the IKE header and,
  subsequently, according to the Next Payload field in the IKE payload
  itself until a Next Payload field of zero indicates that no payloads
  follow.  If a payload of type "Encrypted" is found, that payload is
  decrypted and its contents parsed as additional payloads.  An
  Encrypted payload MUST be the last payload in a packet, and an
  Encrypted payload MUST NOT contain another Encrypted payload.

  The format of the IKE header is shown in Figure 1.

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       IKE SA Initiator's SPI                  |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       IKE SA Responder's SPI                  |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Next Payload | MjVer | MnVer | Exchange Type |     Flags     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Message ID                           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            Length                             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 1:  IKE Header Format




Kivinen                       Informational                    [Page 17]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  o  Initiator's SPI (8 octets) - A value chosen by the initiator to
     identify a unique IKE Security Association.  This value MUST NOT
     be zero.

  o  Responder's SPI (8 octets) - A value chosen by the responder to
     identify a unique IKE Security Association.  This value MUST be
     zero in the first message of an IKE initial exchange.

  o  Next Payload (1 octet) - Indicates the type of payload that
     immediately follows the header.  The format and value of each
     payload are defined below.

  o  Major Version (4 bits) - Indicates the major version of the IKE
     protocol in use.  Implementations based on this version of IKE
     MUST set the major version to 2 and MUST drop the messages with a
     higher major version number.

  o  Minor Version (4 bits) - Indicates the minor version of the IKE
     protocol in use.  Implementations based on this version of IKE
     MUST set the minor version to zero.  They MUST ignore the minor
     version number of received messages.

  o  Exchange Type (1 octet) - Indicates the type of exchange being
     used.  This constrains the payloads sent in each message in an
     exchange.

     Exchange Type             Value
     ----------------------------------
     IKE_SA_INIT               34
     IKE_AUTH                  35
     CREATE_CHILD_SA           36
     INFORMATIONAL             37

  o  Flags (1 octet) - Indicates specific options that are set for the
     message.  Presence of options is indicated by the appropriate bit
     in the flags field being set.  The bits are as follows:

       +-+-+-+-+-+-+-+-+
       |X|X|R|V|I|X|X|X|
       +-+-+-+-+-+-+-+-+











Kivinen                       Informational                    [Page 18]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


     In the description below, a bit being 'set' means its value is
     '1', while 'cleared' means its value is '0'.  'X' bits MUST be
     cleared when sending and MUST be ignored on receipt.

     *  R (Response) - This bit indicates that this message is a
        response to a message containing the same Message ID.  This bit
        MUST be cleared in all request messages and MUST be set in all
        responses.  An IKEv2 endpoint MUST NOT generate a response to a
        message that is marked as being a response.

     *  V (Version) - This bit indicates that the transmitter is
        capable of speaking a higher major version number of the
        protocol than the one indicated in the Major Version field.
        Implementations of IKEv2 MUST clear this bit when sending and
        MUST ignore it in incoming messages.

     *  I (Initiator) - This bit MUST be set in messages sent by the
        original initiator of the IKE SA and MUST be cleared in
        messages sent by the original responder.  It is used by the
        recipient to determine which 8 octets of the SPI were generated
        by the recipient.  This bit changes to reflect who initiated
        the last rekey of the IKE SA.

  o  Message ID (4 octets, unsigned integer) - Message identifier used
     to control retransmission of lost packets and matching of requests
     and responses.  It is essential to the security of the protocol
     because it is used to prevent message replay attacks.

  o  Length (4 octets, unsigned integer) - Length of the total message
     (header + payloads) in octets.

A.2.  Generic Payload Header

  Each IKE payload begins with a generic payload header, as shown in
  Figure 2.  Figures for each payload below will include the generic
  payload header, but for brevity, the description of each field will
  be omitted.

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Next Payload  |C|  RESERVED   |         Payload Length        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 2:  Generic Payload Header






Kivinen                       Informational                    [Page 19]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  The Generic Payload Header fields are defined as follows:

  o  Next Payload (1 octet) - Identifier for the payload type of the
     next payload in the message.  If the current payload is the last
     in the message, then this field will be zero.  This field provides
     a "chaining" capability whereby additional payloads can be added
     to a message by appending each one to the end of the message and
     setting the Next Payload field of the preceding payload to
     indicate the new payload's type.  An Encrypted payload, which must
     always be the last payload of a message, is an exception.  It
     contains data structures in the format of additional payloads.  In
     the header of an Encrypted payload, the Next Payload field is set
     to the payload type of the first contained payload (instead of
     zero); conversely, the Next Payload field of the last contained
     payload is set to zero).  The payload type values needed for
     minimal implementations are listed here.

     Next Payload Type                Notation  Value
     --------------------------------------------------
     No Next Payload                             0
     Security Association             SA         33
     Key Exchange                     KE         34
     Identification - Initiator       IDi        35
     Identification - Responder       IDr        36
     Certificate                      CERT       37
     Certificate Request              CERTREQ    38
     Authentication                   AUTH       39
     Nonce                            Ni, Nr     40
     Notify                           N          41
     Delete                           D          42
     Traffic Selector - Initiator     TSi        44
     Traffic Selector - Responder     TSr        45
     Encrypted and Authenticated      SK         46

  o  Critical (1 bit) - MUST be set to zero if the sender wants the
     recipient to skip this payload if it does not understand the
     payload type code in the Next Payload field of the previous
     payload.  MUST be set to 1 if the sender wants the recipient to
     reject this entire message if it does not understand the payload
     type.  MUST be ignored by the recipient if the recipient
     understands the payload type code.  MUST be set to zero for
     payload types defined in this document.  Note that the critical
     bit applies to the current payload rather than the "next" payload
     whose type code appears in the first octet.

  o  Payload Length (2 octets, unsigned integer) - Length in octets of
     the current payload, including the generic payload header.




Kivinen                       Informational                    [Page 20]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


A.3.  Security Association Payload

  The Security Association payload, denoted SA in this document, is
  used to negotiate attributes of a Security Association.

  An SA payload consists of one or more proposals.  Each proposal
  includes one protocol.  Each protocol contains one or more transforms
  -- each specifying a cryptographic algorithm.  Each transform
  contains zero or more attributes (attributes are needed only if the
  Transform ID does not completely specify the cryptographic algorithm;
  currently, the only attribute is the Key Length attribute for
  variable-length ciphers, meaning there is exactly zero or one
  attribute).

  The responder MUST choose a single suite, which may be any subset of
  the SA proposal following the rules below.

  Each proposal contains one protocol.  If a proposal is accepted, the
  SA response MUST contain the same protocol.  Each IPsec protocol
  proposal contains one or more transforms.  Each transform contains a
  Transform Type.  The accepted cryptographic suite MUST contain
  exactly one transform of each type included in the proposal.  For
  example: if an ESP proposal includes transforms ENCR_3DES, ENCR_AES
  w/keysize 128, ENCR_AES w/keysize 256, AUTH_HMAC_MD5, and
  AUTH_HMAC_SHA, the accepted suite MUST contain one of the ENCR_
  transforms and one of the AUTH_ transforms.  Thus, six combinations
  are acceptable.

  Minimal implementation can create very simple SA proposal, i.e.,
  include one proposal, which contains exactly one transform for each
  Transform Type.  It is important to only include one Diffie-Hellman
  group in the proposal, so there is no need to do INVALID_KE_PAYLOAD
  processing in responses.

  When parsing an SA, an implementation MUST check that the total
  Payload Length is consistent with the payload's internal lengths and
  counts.  Proposals, Transforms, and Attributes each have their own
  variable-length encodings.  They are nested such that the Payload
  Length of an SA includes the combined contents of the SA, Proposal,
  Transform, and Attribute information.  The length of a Proposal
  includes the lengths of all Transforms and Attributes it contains.
  The length of a Transform includes the lengths of all Attributes it
  contains.

  Each Proposal/Protocol structure is followed by one or more transform
  structures.  The number of different transforms is generally
  determined by the Protocol.  AH generally has two transforms:
  Extended Sequence Numbers (ESNs) and an integrity check algorithm.



Kivinen                       Informational                    [Page 21]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  ESP generally has three: ESN, an encryption algorithm, and an
  integrity check algorithm.  IKEv2 generally has four transforms: a
  Diffie-Hellman group, an integrity check algorithm, a PRF algorithm,
  and an encryption algorithm.  For each Protocol, the set of
  permissible transforms is assigned Transform ID numbers, which appear
  in the header of each transform.

  If there are multiple transforms with the same Transform Type, the
  proposal is an OR of those transforms.  If there are multiple
  transforms with different Transform Types, the proposal is an AND of
  the different groups.

  A given transform MAY have one or more Attributes.  Attributes are
  necessary when the transform can be used in more than one way, as
  when an encryption algorithm has a variable key size.  The transform
  would specify the algorithm, and the attribute would specify the key
  size.  To propose alternate values for an attribute (for example,
  multiple key sizes for the AES encryption algorithm), an
  implementation MUST include multiple transforms with the same
  Transform Type each with a single Attribute.

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Next Payload  |C|  RESERVED   |         Payload Length        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                          <Proposals>                          ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 3:  Security Association Payload

  o  Proposals (variable) - One or more proposal substructures.

















Kivinen                       Informational                    [Page 22]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


A.3.1.  Proposal Substructure

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 0 (last) or 2 |   RESERVED    |         Proposal Length       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Proposal Num  |  Protocol ID  |    SPI Size   |Num  Transforms|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                        SPI (variable)                         ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                        <Transforms>                           ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 4:  Proposal Substructure

  o  0 (last) or 2 (more) (1 octet) - Specifies whether this is the
     last Proposal Substructure in the SA.

  o  Proposal Length (2 octets, unsigned integer) - Length of this
     proposal, including all transforms and attributes that follow.

  o  Proposal Num (1 octet) - When a proposal is made, the first
     proposal in an SA payload MUST be 1, and subsequent proposals MUST
     be one more than the previous proposal.  When a proposal is
     accepted, the proposal number in the SA payload MUST match the
     number on the proposal sent that was accepted.

  o  Protocol ID (1 octet) - Specifies the IPsec protocol identifier
     for the current negotiation.

     Protocol                Protocol ID
     -----------------------------------
     IKE                     1
     AH                      2
     ESP                     3

  o  SPI Size (1 octet) - For an initial IKE SA negotiation, this field
     MUST be zero; the SPI is obtained from the outer header.  During
     subsequent negotiations, it is equal to the size, in octets, of
     the SPI of the corresponding protocol (8 for IKE and 4 for ESP and
     AH).

  o  Num Transforms (1 octet) - Specifies the number of transforms in
     this proposal.




Kivinen                       Informational                    [Page 23]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  o  SPI (variable) - The sending entity's SPI.  When the SPI Size
     field is zero, this field is not present in the Security
     Association payload.

  o  Transforms (variable) - One or more transform substructures.

A.3.2.  Transform Substructure

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | 0 (last) or 3 |   RESERVED    |        Transform Length       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Transform Type |   RESERVED    |          Transform ID         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                      Transform Attributes                     ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 5:  Transform Substructure

  o  0 (last) or 3 (more) (1 octet) - Specifies whether this is the
     last Transform Substructure in the Proposal.

  o  Transform Length - The length (in octets) of the Transform
     Substructure including Header and Attributes.

  o  Transform Type (1 octet) - The type of transform being specified
     in this transform.  Different protocols support different
     Transform Types.  For some protocols, some of the transforms may
     be optional.  If a transform is optional and the initiator wishes
     to propose that the transform be omitted, no transform of the
     given type is included in the proposal.  If the initiator wishes
     to make use of the transform optional to the responder, it
     includes a transform substructure with Transform ID = 0 as one of
     the options.

  o  Transform ID (2 octets) - The specific instance of the Transform
     Type being proposed.











Kivinen                       Informational                    [Page 24]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  The relevant Transform Type values are listed below.  For more
  information see [RFC7296].

  Description                     Trans.  Used In
                                  Type
  ------------------------------------------------------------------
  Encryption Algorithm (ENCR)     1       IKE and ESP
  Pseudorandom Function (PRF)     2       IKE
  Integrity Algorithm (INTEG)     3       IKE, AH, optional in ESP
  Diffie-Hellman group (D-H)      4       IKE, optional in AH & ESP
  Extended Sequence Numbers (ESN) 5       AH and ESP

  For Transform Type 1 (Encryption Algorithm), the relevant Transform
  IDs are listed below.

  Name                 Number
  ---------------------------
  ENCR_AES_CBC         12
  ENCR_AES-CCM_8       14

  For Transform Type 2 (Pseudorandom Function), the relevant Transform
  IDs are listed below.

  Name                        Number
  ----------------------------------
  PRF_HMAC_SHA1               2

  For Transform Type 3 (Integrity Algorithm), the relevant Transform
  IDs are listed below.

  Name                 Number
  ---------------------------
  AUTH_HMAC_SHA1_96    2
  AUTH_AES_XCBC_96     5

  For Transform Type 4 (Diffie-Hellman group), the relevant Transform
  IDs are listed below.

  Name               Number
  -------------------------
  1536-bit MODP      5
  2048-bit MODP      14









Kivinen                       Informational                    [Page 25]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  For Transform Type 5 (Extended Sequence Numbers), the relevant
  Transform IDs are listed below.

  Name                               Number
  --------------------------------------------
  No Extended Sequence Numbers       0
  Extended Sequence Numbers          1

  Note that an initiator who supports ESNs will usually include two ESN
  transforms, with values "0" and "1", in its proposals.  A proposal
  containing a single ESN transform with value "1" means that using
  normal (non-extended) sequence numbers is not acceptable.

A.3.3.  Valid Transform Types by Protocol

  The number and type of transforms that accompany an SA payload are
  dependent on the protocol in the SA itself.  An SA payload proposing
  the establishment of an SA has the following mandatory and optional
  Transform Types.  A compliant implementation MUST understand all
  mandatory and optional types for each protocol it supports (though it
  need not accept proposals with unacceptable suites).  A proposal MAY
  omit the optional types if the only value for them it will accept is
  NONE.

  Protocol    Mandatory Types          Optional Types
  ---------------------------------------------------
  IKE         ENCR, PRF, INTEG, D-H
  ESP         ENCR, ESN                INTEG, D-H
  AH          INTEG, ESN               D-H

A.3.4.  Transform Attributes

  Transform Type 1 (Encryption Algorithm) transforms might include one
  transform attribute: Key Length.

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |1|       Attribute Type        |        Attribute Value        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 6:  Data Attributes

  o  Attribute Type (15 bits) - Unique identifier for each type of
     attribute (see below).

  o  Attribute Value - Value of the attribute associated with the
     attribute type.



Kivinen                       Informational                    [Page 26]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  Attribute Type         Value
  ----------------------------
  Key Length (in bits)   14

  The Key Length attribute specifies the key length in bits (MUST use
  network byte order) for certain transforms as follows:

  o  The Key Length attribute MUST NOT be used with transforms that use
     a fixed-length key.

  o  Some transforms specify that the Key Length attribute MUST be
     always included.  For example, ENCR_AES_CBC.

A.4.  Key Exchange Payload

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Next Payload  |C|  RESERVED   |         Payload Length        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Diffie-Hellman Group Num    |           RESERVED            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Key Exchange Data                       ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 7:  Key Exchange Payload Format

  A Key Exchange payload is constructed by copying one's Diffie-Hellman
  public value into the "Key Exchange Data" portion of the payload.
  The length of the Diffie-Hellman public value for modular
  exponentiation groups (MODPs) MUST be equal to the length of the
  prime modulus over which the exponentiation was performed, prepending
  zero bits to the value if necessary.

  The Diffie-Hellman Group Num identifies the Diffie-Hellman group in
  which the Key Exchange Data was computed.  This Diffie-Hellman Group
  Num MUST match a Diffie-Hellman group specified in a proposal in the
  SA payload that is sent in the same message.

A.5.  Identification Payloads

  The Identification payloads, denoted IDi and IDr in this document,
  allow peers to assert an identity to one another.  When using the
  ID_IPV4_ADDR/ID_IPV6_ADDR identity types in IDi/IDr payloads, IKEv2
  does not require this address to match the address in the IP header
  of IKEv2 packets or anything in the TSi/TSr payloads.  The contents



Kivinen                       Informational                    [Page 27]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  of IDi/IDr are used purely to fetch the policy and authentication
  data related to the other party.  In minimal implementation, it might
  be easiest to always use KEY_ID type.  This allows the ID payload to
  be static.  Using an IP address has problems in environments where IP
  addresses are dynamically allocated.

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Next Payload  |C|  RESERVED   |         Payload Length        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   ID Type     |                 RESERVED                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                   Identification Data                         ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 8:  Identification Payload Format

  o  ID Type (1 octet) - Specifies the type of Identification being
     used.

  o  Identification Data (variable length) - Value, as indicated by the
     Identification Type.  The length of the Identification Data is
     computed from the size in the ID payload header.

  The following table lists the assigned semantics for the
  Identification Type field.

  ID Type                           Value
  -------------------------------------------------------------------
  ID_IPV4_ADDR                        1
     A single four (4) octet IPv4 address.

  ID_FQDN                             2
     A fully qualified domain name string.  An example of an ID_FQDN
     is "example.com".  The string MUST NOT contain any terminators
     (e.g., NULL, CR, etc.). All characters in the ID_FQDN are ASCII;
     for an "internationalized domain name", the syntax is as defined
     in [IDNA], for example, "xn--tmonesimerkki-bfbb.example.net".

  ID_RFC822_ADDR                      3
     A fully qualified RFC 822 email address string based [RFC5322].
     An example of an ID_RFC822_ADDR is "[email protected]".  The
     string MUST NOT contain any terminators.  Because of [EAI],
     implementations would be wise to treat this field as
     UTF-8-encoded text, not as pure ASCII.



Kivinen                       Informational                    [Page 28]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  ID_IPV6_ADDR                        5
     A single sixteen (16) octet IPv6 address.

  ID_KEY_ID                           11
     An opaque octet stream that may be used to pass vendor-
     specific information necessary to do certain proprietary
     types of identification.  Minimal implementation might use
     this type to send out a serial number or similar device-specific
     unique static Identification Data for the device.

A.6.  Certificate Payload

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Next Payload  |C|  RESERVED   |         Payload Length        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Cert Encoding |                                               |
  +-+-+-+-+-+-+-+-+                                               |
  ~                       Certificate Data                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 9:  Certificate Payload Format

  o  Certificate Encoding (1 octet) - This field indicates the type of
     certificate or certificate-related information contained in the
     Certificate Data field.

     Certificate Encoding                 Value
     ----------------------------------------------------
     X.509 Certificate - Signature        4
     Raw Public Key                       15

  o  Certificate Data (variable length) - Actual encoding of
     certificate data.  The type of certificate is indicated by the
     Certificate Encoding field.

  The syntax of the types above are:

  o  "X.509 Certificate - Signature" contains a DER-encoded X.509
     certificate whose public key is used to validate the sender's AUTH
     payload.  Note that with this encoding, if a chain of certificates
     needs to be sent, multiple CERT payloads are used, only the first
     of which holds the public key used to validate the sender's AUTH
     payload.





Kivinen                       Informational                    [Page 29]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  o  "Raw Public Key" contains a raw public key.  In essence, the
     Certificate Payload contains the SubjectPublicKeyInfo part of the
     PKIX Certificate (see Section 4.1.2.7 of [RFC5280]).  This is a
     quite simple ASN.1 object that contains mostly static parts before
     the actual public key values.  See [RFC7670] for more information.

A.7.  Certificate Request Payload

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Next Payload  |C|  RESERVED   |         Payload Length        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Cert Encoding |                                               |
  +-+-+-+-+-+-+-+-+                                               |
  ~                    Certification Authority (CA)               ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Figure 10:  Certificate Request Payload Format

  o  Certificate Encoding (1 octet) - Contains an encoding of the type
     or format of certificate requested.

  o  Certification Authority (variable length) - Contains an encoding
     of an acceptable certification authority for the type of
     certificate requested.

  The Certificate Encoding field has the same values as those defined
  by the certificate payload.  The Certification Authority field
  contains an indicator of trusted authorities for this certificate
  type.  The Certification Authority value is a concatenated list of
  SHA-1 hashes of the public keys of trusted Certification Authorities.
  Each is encoded as the SHA-1 hash of the Subject Public Key Info
  element (see Section 4.1.2.7 of [RFC5280]) from each Trust Anchor
  certificate.  The 20-octet hashes are concatenated and included with
  no other formatting.














Kivinen                       Informational                    [Page 30]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


A.8.  Authentication Payload

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Next Payload  |C|  RESERVED   |         Payload Length        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Auth Method   |                RESERVED                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                      Authentication Data                      ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 11:  Authentication Payload Format

  o  Auth Method (1 octet) - Specifies the method of authentication
     used.

  Mechanism                              Value
  -----------------------------------------------------------------
  RSA Digital Signature                  1
     Using an RSA private key with an RSASSA-PKCS1-v1_5 signature
     scheme specified in [PKCS1]; see Section 2.15 of [RFC7296] for
     details.

  Shared Key Message Integrity Code      2
     Computed as specified earlier using the shared key associated
     with the identity in the ID payload and the negotiated PRF.

  o  Authentication Data (variable length) - see Section 2.1.

A.9.  Nonce Payload

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Next Payload  |C|  RESERVED   |         Payload Length        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                            Nonce Data                         ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 12:  Nonce Payload Format

  o  Nonce Data (variable length) - Contains the random data generated
     by the transmitting entity.



Kivinen                       Informational                    [Page 31]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  The size of the Nonce Data MUST be between 16 and 256 octets,
  inclusive.  Nonce values MUST NOT be reused.

A.10.  Notify Payload

  The Notify payload, denoted N in this document, is used to transmit
  informational data, such as error conditions and state transitions,
  to an IKE peer.  A Notify payload may appear in a response message
  (usually specifying why a request was rejected), in an INFORMATIONAL
  exchange (to report an error not in an IKE request), or in any other
  message to indicate sender capabilities or to modify the meaning of
  the request.

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Next Payload  |C|  RESERVED   |         Payload Length        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Protocol ID  |   SPI Size    |      Notify Message Type      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                Security Parameter Index (SPI)                 ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       Notification Data                       ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 13:  Notify Payload Format

  o  Protocol ID (1 octet) - If this notification concerns an existing
     SA whose SPI is given in the SPI field, this field indicates the
     type of that SA.  If the SPI field is empty, this field MUST be
     sent as zero and MUST be ignored on receipt.

  o  SPI Size (1 octet) - Length in octets of the SPI as defined by the
     IPsec protocol ID or zero if no SPI is applicable.  For a
     notification concerning the IKE SA, the SPI Size MUST be zero and
     the SPI field must be empty.

  o  Notify Message Type (2 octets) - Specifies the type of
     notification message.

  o  SPI (variable length) - Security Parameter Index.






Kivinen                       Informational                    [Page 32]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  o  Notification Data (variable length) - Status or error data
     transmitted in addition to the Notify Message Type.  Values for
     this field are type specific.

A.10.1.  Notify Message Types

  Notification information can be error messages specifying why an SA
  could not be established.  It can also be status data that a process
  managing an SA database wishes to communicate with a peer process.

  Types in the range 0 - 16383 are intended for reporting errors.  An
  implementation receiving a Notify payload with one of these types
  that it does not recognize in a response MUST assume that the
  corresponding request has failed entirely.  Unrecognized error types
  in a request and status types in a request or response MUST be
  ignored, and they should be logged.

  Notify payloads with status types MAY be added to any message and
  MUST be ignored if not recognized.  They are intended to indicate
  capabilities and, as part of SA negotiation, are used to negotiate
  non-cryptographic parameters.

  NOTIFY messages: error types              Value
  -------------------------------------------------------------------
  UNSUPPORTED_CRITICAL_PAYLOAD              1
      Indicates that the 1-octet payload type included in the
      Notification Data field is unknown.

  INVALID_SYNTAX                            7
      Indicates the IKE message that was received was invalid because
      some type, length, or value was out of range or because the
      request was rejected for policy reasons.  To avoid a
      Denial-of-Service (DoS) attack using forged messages, this
      status may only be returned for and in an encrypted packet if
      the Message ID and cryptographic checksum were valid.  To avoid
      leaking information to someone probing a node, this status MUST
      be sent in response to any error not covered by one of the other
      status types.  To aid debugging, more detailed error information
      should be written to a console or log.

  NO_PROPOSAL_CHOSEN                       14
      None of the proposed crypto suites was acceptable.  This can be
      sent in any case where the offered proposals are not acceptable
      for the responder.

  NO_ADDITIONAL_SAS                        35
      Specifies that the node is unwilling to accept any more Child
      SAs.



Kivinen                       Informational                    [Page 33]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  NOTIFY messages: status types            Value
  -------------------------------------------------------------------
  INITIAL_CONTACT                          16384
      Asserts that this IKE SA is the only IKE SA currently active
      between the authenticated identities.

A.11.  Traffic Selector Payload

  Traffic Selector (TS) payloads allow endpoints to communicate some of
  the information from their Security Policy Database (SPD) to their
  peers.  TS payloads specify the selection criteria for packets that
  will be forwarded over the newly set up SA.

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Next Payload  |C|  RESERVED   |         Payload Length        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Number of TSs |                 RESERVED                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                       <Traffic Selectors>                     ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 14:  Traffic Selectors Payload Format

  o  Number of TSs (1 octet) - Number of Traffic Selectors being
     provided.

  o  Traffic Selectors (variable length) - One or more individual
     Traffic Selectors.

  The length of the Traffic Selector payload includes the TS header and
  all the Traffic Selectors.

  There is no requirement that TSi and TSr contain the same number of
  individual Traffic Selectors.  Thus, they are interpreted as follows:
  a packet matches a given TSi/TSr if it matches at least one of the
  individual selectors in TSi and at least one of the individual
  selectors in TSr.

  Two TS payloads appear in each of the messages in the exchange that
  creates a Child SA pair.  Each TS payload contains one or more
  Traffic Selectors.  Each Traffic Selector consists of an address
  range (IPv4 or IPv6), a port range, and an IP protocol ID.





Kivinen                       Informational                    [Page 34]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  The first of the two TS payloads is known as TSi (Traffic Selector -
  initiator).  The second is known as TSr (Traffic Selector -
  responder).  TSi specifies the source address of traffic forwarded
  from (or the destination address of traffic forwarded to) the
  initiator of the Child SA pair.  TSr specifies the destination
  address of the traffic forwarded to (or the source address of the
  traffic forwarded from) the responder of the Child SA pair.

  IKEv2 allows the responder to choose a subset of the traffic proposed
  by the initiator.

  When the responder chooses a subset of the traffic proposed by the
  initiator, it narrows the Traffic Selectors to some subset of the
  initiator's proposal (provided the set does not become the null set).
  If the type of Traffic Selector proposed is unknown, the responder
  ignores that Traffic Selector, so that the unknown type is not
  returned in the narrowed set.

  To enable the responder to choose the appropriate range, if the
  initiator has requested the SA due to a data packet, the initiator
  SHOULD include as the first Traffic Selector in each TSi and TSr a
  very specific Traffic Selector including the addresses in the packet
  triggering the request.  If the initiator creates the Child SA pair
  not in response to an arriving packet, but rather, say, upon startup,
  then there may be no specific addresses the initiator prefers for the
  initial tunnel over any other.  In that case, the first values in TSi
  and TSr can be ranges rather than specific values.

  As minimal implementations might only support one SA, the Traffic
  Selectors will usually be from the initiator's IP address to the
  responder's IP address (i.e., no port or protocol selectors and only
  one range).



















Kivinen                       Informational                    [Page 35]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


A.11.1.  Traffic Selector

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   TS Type     |IP Protocol ID |       Selector Length         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |           Start Port          |           End Port            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                         Starting Address                      ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~                         Ending Address                        ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 15: Traffic Selector

  o  TS Type (1 octet) - Specifies the type of Traffic Selector.

  o  IP protocol ID (1 octet) - Value specifying an associated IP
     protocol ID (such as UDP, TCP, and ICMP).  A value of zero means
     that the protocol ID is not relevant to this Traffic Selector --
     the SA can carry all protocols.

  o  Selector Length - Specifies the length of this Traffic Selector
     substructure including the header.

  o  Start Port (2 octets, unsigned integer) - Value specifying the
     smallest port number allowed by this Traffic Selector.  For
     protocols for which port is undefined (including protocol 0), or
     if all ports are allowed, this field MUST be zero.

  o  End Port (2 octets, unsigned integer) - Value specifying the
     largest port number allowed by this Traffic Selector.  For
     protocols for which port is undefined (including protocol 0), or
     if all ports are allowed, this field MUST be 65535.

  o  Starting Address - The smallest address included in this Traffic
     Selector (length determined by TS Type).

  o  Ending Address - The largest address included in this Traffic
     Selector (length determined by TS Type).






Kivinen                       Informational                    [Page 36]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  The following table lists values for the Traffic Selector Type field
  and the corresponding Address Selector Data.

  TS Type                            Value
  -------------------------------------------------------------------
  TS_IPV4_ADDR_RANGE                  7
      A range of IPv4 addresses, represented by two 4-octet
      values.  The first value is the beginning IPv4 address
      (inclusive), and the second value is the ending IPv4 address
      (inclusive).  All addresses falling between the two specified
      addresses are considered to be within the list.

  TS_IPV6_ADDR_RANGE                  8
      A range of IPv6 addresses, represented by two 16-octet
      values.  The first value is the beginning IPv6 address
      (inclusive), and the second value is the ending IPv6 address
      (inclusive).  All addresses falling between the two specified
      addresses are considered to be within the list.

A.12.  Encrypted Payload

  The Encrypted payload, denoted as SK{...} in this document, contains
  other payloads in encrypted form.

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Next Payload  |C|  RESERVED   |         Payload Length        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                     Initialization Vector                     |
  |       (length is block size for the encryption algorithm)     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                    Encrypted IKE Payloads                     ~
  +               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |               |             Padding (0-255 octets)            |
  +-+-+-+-+-+-+-+-+                               +-+-+-+-+-+-+-+-+
  |                                               |  Pad Length   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  ~                    Integrity Checksum Data                    ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 16:  Encrypted Payload Format









Kivinen                       Informational                    [Page 37]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  o  Next Payload - The payload type of the first embedded payload.
     Note that this is an exception in the standard header format,
     since the Encrypted payload is the last payload in the message;
     therefore, the Next Payload field would normally be zero.  But
     because the content of this payload is embedded payloads and there
     was no natural place to put the type of the first one, that type
     is placed here.

  o  Payload Length - Includes the lengths of the header,
     initialization vector (IV), Encrypted IKE payloads, Padding, Pad
     Length, and Integrity Checksum Data.

  o  Initialization Vector - For Cipher Block Chaining (CBC) mode
     ciphers, the length of the initialization vector (IV) is equal to
     the block length of the underlying encryption algorithm.  Senders
     MUST select a new unpredictable IV for every message; recipients
     MUST accept any value.  The reader is encouraged to consult
     [MODES] for advice on IV generation.  In particular, using the
     final ciphertext block of the previous message is not considered
     unpredictable.  For modes other than CBC, the IV format and
     processing is specified in the document specifying the encryption
     algorithm and mode.

  o  IKE payloads are as specified earlier in this section.  This field
     is encrypted with the negotiated cipher.

  o  Padding MAY contain any value chosen by the sender and MUST have a
     length that makes the combination of the payloads, the Padding,
     and the Pad Length to be a multiple of the encryption block size.
     This field is encrypted with the negotiated cipher.

  o  Pad Length is the length of the Padding field.  The sender SHOULD
     set the Pad Length to the minimum value that makes the combination
     of the payloads, the Padding, and the Pad Length a multiple of the
     block size, but the recipient MUST accept any length that results
     in proper alignment.  This field is encrypted with the negotiated
     cipher.

  o  Integrity Checksum Data is the cryptographic checksum of the
     entire message starting with the Fixed IKE header through the Pad
     Length.  The checksum MUST be computed over the encrypted message.
     Its length is determined by the integrity algorithm negotiated.









Kivinen                       Informational                    [Page 38]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


Appendix B.  Useful Optional Features

  There are some optional features of IKEv2, which might be useful for
  minimal implementations in some scenarios.  Such features include raw
  public keys authentication and sending an IKE SA delete notification.

B.1.  IKE SA Delete Notification

  In some scenarios, a minimal implementation device creates an IKE SA,
  sends one or few packets, perhaps gets some packets back, and then
  the device goes back to sleep, forgetting the IKE SA.  In such
  scenarios, it would be nice for the minimal implementation to send
  the IKE SA delete notification to tell the other end that the IKE SA
  is going away, so it can free the resources.

  Deleting the IKE SA can be done by sending one packet with a fixed
  Message ID and with only one payload inside the Encrypted payload.
  The other end will send back an empty response:

  Initiator                         Responder
  -------------------------------------------------------------------
  HDR(SPIi=xxx, SPIr=yyy, INFORMATIONAL,
      Flags: Initiator, Message ID=2),
      SK {D}  -->

                     <--  HDR(SPIi=xxx, SPIr=yyy, INFORMATIONAL,
                              Flags: Response, Message ID=2),
                              SK {}

  The Delete payload format is:

                       1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Next Payload  |C|  RESERVED   |         Payload Length        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Protocol ID   |   SPI Size    |          Num of SPIs          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  ~               Security Parameter Index(es) (SPI)              ~
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 17:  Delete Payload Format

  o  Protocol ID (1 octet) - Must be 1 for an IKE SA.





Kivinen                       Informational                    [Page 39]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  o  SPI Size (1 octet) - Length in octets of the SPI as defined by the
     protocol ID.  It MUST be zero for IKE (SPI is in the message
     header).

  o  Num of SPIs (2 octets, unsigned integer) - The number of SPIs
     contained in the Delete payload.  This MUST be zero for IKE.

  o  Security Parameter Index(es) (variable length) - Identifies the
     specific Security Association(s) to delete.  The length of this
     field is determined by the SPI Size and Num of SPIs fields.  This
     field is empty for the IKE SA delete.

B.2.  Raw Public Keys

  In some scenarios, the shared secret authentication is not safe
  enough, as anybody who knows the secret can impersonate the server.
  If the shared secret is printed on the side of the device, then
  anybody who gets physical access to the device can read it.  In such
  environments, public key authentication allows stronger
  authentication with minimal operational overhead.  Certificate
  support is quite complex, and minimal implementations do not usually
  have need for them.  Using Raw Public Keys is much simpler, and it
  scales similar to certificates.  The fingerprint of the raw public
  key can still be distributed by, for example, printing it on the side
  of the device allowing setup similar to using a shared secret.

  Raw public keys can also be used in a "leap of faith" or baby duck
  style initial setup, where the device imprints itself to the first
  device it sees when it boots up the first time.  After that initial
  connection, it stores the fingerprint of the Raw Public Key of the
  server in its own configuration and verifies that it never changes
  (unless a "reset to factory settings" or similar command is issued).

  This changes the initial IKE_AUTH payloads as follows:

  Initiator                         Responder
  -------------------------------------------------------------------
  HDR(SPIi=xxx, SPIr=yyy, IKE_AUTH,
      Flags: Initiator, Message ID=1),
      SK {IDi, CERT, AUTH, SAi2, TSi, TSr,
          N(INITIAL_CONTACT)}  -->

                    <--  HDR(SPIi=xxx, SPIr=yyy, IKE_AUTH, Flags:
                                Response, Message ID=1),
                                SK {IDr, CERT, AUTH, SAr2, TSi, TSr}






Kivinen                       Informational                    [Page 40]

RFC 7815         Minimal IKEv2 Initiator Implementation       March 2016


  The CERT payloads contain the raw public keys used to sign the hash
  of the InitiatorSignedOctects/ResponderSignedOctects when generating
  an AUTH payload.  Minimal implementations should use SHA-1 as the
  hash function as that is the "SHOULD" support algorithm specified in
  RFC 7296, so it is the most likely one that is supported by all
  devices.

  Note that RFC 7296 already obsoleted the old Raw RSA Key method, and
  "Generic Raw Public-Key Support for IKEv2" [RFC7670] adds a new
  format to allow using any types of raw public keys with IKEv2.  This
  document only specifies how to use the new format.

  In these setups, it might be possible that authenticating the server
  is not needed at all.  If a minimal device is sending, for example,
  sensor information to the server, the server wants to verify that the
  sensor is who it claims to be using raw public keys, but the sensor
  does not really care who the server is.  In such cases, the NULL
  authentication method [RFC7619] would be useful, as it allows devices
  to do one-way authentication.

Acknowledgements

  Most of the content of this document is copied from RFC 7296.

Author's Address

  Tero Kivinen
  INSIDE Secure
  Eerikinkatu 28
  HELSINKI  FI-00180
  FINLAND

  Email: [email protected]


















Kivinen                       Informational                    [Page 41]