Internet Engineering Task Force (IETF)                         G. Enyedi
Request for Comments: 7811                                    A. Csaszar
Category: Standards Track                                       Ericsson
ISSN: 2070-1721                                                 A. Atlas
                                                              C. Bowers
                                                       Juniper Networks
                                                             A. Gopalan
                                                  University of Arizona
                                                              June 2016


            An Algorithm for Computing IP/LDP Fast Reroute
              Using Maximally Redundant Trees (MRT-FRR)

Abstract

  This document supports the solution put forth in "An Architecture for
  IP/LDP Fast Reroute Using Maximally Redundant Trees (MRT-FRR)"
  (RFC 7812) by defining the associated MRT Lowpoint algorithm that is
  used in the Default MRT Profile to compute both the necessary
  Maximally Redundant Trees with their associated next hops and the
  alternates to select for MRT-FRR.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7811.















Enyedi, et al.               Standards Track                    [Page 1]

RFC 7811                    MRT-FRR Algorithm                  June 2016


Copyright Notice

  Copyright (c) 2016 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
  2.  Requirements Language . . . . . . . . . . . . . . . . . . . .   5
  3.  Terminology and Definitions . . . . . . . . . . . . . . . . .   5
  4.  Algorithm Key Concepts  . . . . . . . . . . . . . . . . . . .   6
    4.1.  Partial Ordering for Disjoint Paths . . . . . . . . . . .   7
    4.2.  Finding an Ear and the Correct Direction  . . . . . . . .   8
    4.3.  Lowpoint Values and Their Uses  . . . . . . . . . . . . .  11
    4.4.  Blocks in a Graph . . . . . . . . . . . . . . . . . . . .  14
    4.5.  Determining Localroot and Assigning Block-ID  . . . . . .  16
  5.  MRT Lowpoint Algorithm Specification  . . . . . . . . . . . .  18
    5.1.  Interface Ordering  . . . . . . . . . . . . . . . . . . .  18
    5.2.  MRT Island Identification . . . . . . . . . . . . . . . .  21
    5.3.  GADAG Root Selection  . . . . . . . . . . . . . . . . . .  21
    5.4.  Initialization  . . . . . . . . . . . . . . . . . . . . .  22
    5.5.  Constructing the GADAG Using Lowpoint Inheritance . . . .  23
    5.6.  Augmenting the GADAG by Directing All Links . . . . . . .  25
    5.7.  Compute MRT Next Hops . . . . . . . . . . . . . . . . . .  29
      5.7.1.  MRT Next Hops to All Nodes Ordered with Respect to
              the Computing Node  . . . . . . . . . . . . . . . . .  29
      5.7.2.  MRT Next Hops to All Nodes Not Ordered with Respect
              to the Computing Node . . . . . . . . . . . . . . . .  30
      5.7.3.  Computing Redundant Tree Next Hops in a 2-Connected
              Graph . . . . . . . . . . . . . . . . . . . . . . . .  31
      5.7.4.  Generalizing for a Graph That Isn't 2-Connected . . .  33
      5.7.5.  Complete Algorithm to Compute MRT Next Hops . . . . .  34
    5.8.  Identify MRT Alternates . . . . . . . . . . . . . . . . .  36
    5.9.  Named Proxy-Nodes . . . . . . . . . . . . . . . . . . . .  44
      5.9.1.  Determining Proxy-Node Attachment Routers . . . . . .  45
      5.9.2.  Computing If an Island Neighbor (IN) Is Loop-Free . .  45
      5.9.3.  Computing MRT Next Hops for Proxy-Nodes . . . . . . .  47
      5.9.4.  Computing MRT Alternates for Proxy-Nodes  . . . . . .  53



Enyedi, et al.               Standards Track                    [Page 2]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  6.  MRT Lowpoint Algorithm: Next-Hop Conformance  . . . . . . . .  61
  7.  Broadcast Interfaces  . . . . . . . . . . . . . . . . . . . .  61
    7.1.  Computing MRT Next Hops on Broadcast Networks . . . . . .  62
    7.2.  Using MRT Next Hops as Alternates in the Event of
          Failures on Broadcast Networks  . . . . . . . . . . . . .  63
  8.  Evaluation of Alternative Methods for Constructing GADAGs . .  64
  9.  Operational Considerations  . . . . . . . . . . . . . . . . .  66
    9.1.  GADAG Root Selection  . . . . . . . . . . . . . . . . . .  67
    9.2.  Destination-Rooted GADAGs . . . . . . . . . . . . . . . .  67
  10. Security Considerations . . . . . . . . . . . . . . . . . . .  67
  11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  68
    11.1.  Normative References . . . . . . . . . . . . . . . . . .  68
    11.2.  Informative References . . . . . . . . . . . . . . . . .  68
  Appendix A.  Python Implementation of MRT Lowpoint Algorithm  . .  70
  Appendix B.  Constructing a GADAG Using SPFs  . . . . . . . . . . 110
  Appendix C.  Constructing a GADAG Using a Hybrid Method . . . . . 115
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . . 117
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . . 118

1.  Introduction

  MRT Fast Reroute requires that packets can be forwarded not only on
  the shortest-path tree, but also on two Maximally Redundant Trees
  (MRTs), referred to as the MRT-Blue and the MRT-Red.  A router that
  experiences a local failure must also have predetermined which
  alternate to use.  This document defines how to compute these three
  things for use in MRT-FRR and describes the algorithm design
  decisions and rationale.  The algorithm is based on those presented
  in [MRTLinear] and expanded in [EnyediThesis].  The MRT Lowpoint
  algorithm is required for implementation when the Default MRT Profile
  is implemented.

  The MRT Lowpoint Algorithm defined in this document, when used for
  MRT Fast-Reroute as described in [RFC7812], guarantees 100% recovery
  for single failures when the network is 2-connected.  This guaranteed
  coverage does not depend on the link metrics, which an operator may
  be using to traffic-engineer the IP network.  Thus, the link metrics
  and general network topology are largely decoupled from the
  guaranteed coverage.

  Just as packets routed on a hop-by-hop basis require that each router
  compute a shortest-path tree that is consistent, it is necessary for
  each router to compute the MRT-Blue next hops and MRT-Red next hops
  in a consistent fashion.  This document defines the MRT Lowpoint
  algorithm to be used as a standard in the Default MRT Profile for
  MRT-FRR.





Enyedi, et al.               Standards Track                    [Page 3]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  A router's Forwarding Information Base (FIB) will continue to contain
  primary next hops for the current shortest-path tree for forwarding
  traffic.  In addition, a router's FIB will contain primary next hops
  for the MRT-Blue for forwarding received traffic on the MRT-Blue and
  primary next hops for the MRT-Red for forwarding received traffic on
  the MRT-Red.

  What alternate next hops a Point of Local Repair (PLR) selects need
  not be consistent -- but loops must be prevented.  To reduce
  congestion, it is possible for multiple alternate next hops to be
  selected; in the context of MRT alternates, each of those alternate
  next hops would be equal-cost paths.

  This document defines an algorithm for selecting an appropriate MRT
  alternate for consideration.  Other alternates, e.g., Loop-Free
  Alternates (LFAs) that are downstream paths, may be preferred when
  available.  See the "Operational Considerations" section of [RFC7812]
  for a more detailed discussion of combining MRT alternates with those
  produced by other FRR technologies.

  [E]---[D]---|           [E]<--[D]<--|                [E]-->[D]---|
   |     |    |            |     ^    |                       |    |
   |     |    |            V     |    |                       V    V
  [R]   [F]  [C]          [R]   [F]  [C]               [R]   [F]  [C]
   |     |    |                  ^    ^                 ^     |    |
   |     |    |                  |    |                 |     V    |
  [A]---[B]---|           [A]-->[B]---|                [A]<--[B]<--|

        (a)                     (b)                         (c)
  A 2-connected graph     MRT-Blue towards R          MRT-Red towards R

                                Figure 1

  The MRT Lowpoint algorithm can handle arbitrary network topologies
  where the whole network graph is not 2-connected, as in Figure 2, as
  well as the easier case where the network graph is 2-connected
  (Figure 1).  Each MRT is a spanning tree.  The pair of MRTs provide
  two paths from every node X to the root of the MRTs.  Those paths
  share the minimum number of nodes and the minimum number of links.
  Each such shared node is a cut-vertex.  Any shared links are cut-
  links.










Enyedi, et al.               Standards Track                    [Page 4]

RFC 7811                    MRT-FRR Algorithm                  June 2016


                       [E]---[D]---|     |---[J]
                        |     |    |     |    |
                        |     |    |     |    |
                       [R]   [F]  [C]---[G]   |
                        |     |    |     |    |
                        |     |    |     |    |
                       [A]---[B]---|     |---[H]

                      (a) a graph that is not 2-connected

        [E]<--[D]<--|         [J]        [E]-->[D]---|     |---[J]
         |     ^    |          |                |    |     |    ^
         V     |    |          |                V    V     V    |
        [R]   [F]  [C]<--[G]   |         [R]   [F]  [C]<--[G]   |
               ^    ^     ^    |          ^     |    |          |
               |    |     |    V          |     V    |          |
        [A]-->[B]---|     |---[H]        [A]<--[B]<--|         [H]

         (b) MRT-Blue towards R          (c) MRT-Red towards R

               Figure 2: A Network That Is Not 2-Connected

2.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

3.  Terminology and Definitions

  Please see the Terminology section of [RFC7812] for a complete list
  of terminology relevant to this document.  The list below does not
  repeat terminology introduced in that RFC.

  spanning tree:  A tree that contains links and that connects all
     nodes in the network graph.

  back-edge:  In the context of a spanning tree computed via a depth-
     first search, a back-edge is a link that connects a descendant of
     a node x with an ancestor of x.

  partial ADAG:  A subset of an Almost Directed Acyclic Graph (ADAG)
     that doesn't yet contain all the nodes in the block.  A partial
     ADAG is created during the MRT Lowpoint algorithm and then
     expanded until all nodes in the block are included and it becomes
     an ADAG.

  DFS:  Depth-First Search



Enyedi, et al.               Standards Track                    [Page 5]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  DFS ancestor:  A node n is a DFS ancestor of x if n is on the DFS-
     tree path from the DFS root to x.

  DFS descendant:  A node n is a DFS descendant of x if x is on the
     DFS-tree path from the DFS root to n.

  ear:  A path along nodes that are not yet included in the Generalized
     ADAG (GADAG) that starts at a node that is already included in the
     GADAG and that ends at a node that is already included in the
     GADAG.  The starting and ending nodes may be the same node if it
     is a cut-vertex.

  X>>Y or Y<<X:  Indicates the relationship between X and Y in a
     partial order, such as found in a GADAG.  X>>Y means that X is
     higher in the partial order than Y.  Y<<X means that Y is lower in
     the partial order than X.

  X>Y or Y<X:   Indicates the relationship between X and Y in the total
     order, such as found via a topological sort.  X>Y means that X is
     higher in the total order than Y.  Y<X means that Y is lower in
     the total order than X.

  X ?? Y:   Indicates that X is unordered with respect to Y in the
     partial order.

  UNDIRECTED:  In the GADAG, each link is marked as OUTGOING, INCOMING,
     or both.  Until the directionality of the link is determined, the
     link is marked as UNDIRECTED to indicate that its direction hasn't
     been determined.

  OUTGOING:  A link marked as OUTGOING has direction in the GADAG from
     the interface's router to the remote end.

  INCOMING:  A link marked as INCOMING has direction in the GADAG from
     the remote end to the interface's router.

4.  Algorithm Key Concepts

  There are five key concepts that are critical for understanding the
  MRT Lowpoint algorithm.  The first is the idea of partially ordering
  the nodes in a network graph with regard to each other and to the
  GADAG root.  The second is the idea of finding an ear of nodes and
  adding them in the correct direction.  The third is the idea of a
  Lowpoint value and how it can be used to identify cut-vertices and to
  find a second path towards the root.  The fourth is the idea that a
  non-2-connected graph is made up of blocks, where a block is a





Enyedi, et al.               Standards Track                    [Page 6]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  2-connected cluster, a cut-link or an isolated node.  The fifth is
  the idea of a localroot for each node; this is used to compute ADAGs
  in each block.

4.1.  Partial Ordering for Disjoint Paths

  Given any two nodes X and Y in a graph, a particular total order
  means that either X<Y or X>Y in that total order.  An example would
  be a graph where the nodes are ranked based upon their unique IP
  loopback addresses.  In a partial order, there may be some nodes for
  which it can't be determined whether X<<Y or X>>Y.  A partial order
  can be captured in a directed graph, as shown in Figure 3.  In a
  graphical representation, a link directed from X to Y indicates that
  X is a neighbor of Y in the network graph and X<<Y.

        [A]<---[R]    [E]       R << A << B << C << D << E
         |             ^        R << A << B << F << G << H << D << E
         |             |
         V             |        Unspecified Relationships:
        [B]--->[C]--->[D]             C and F
         |             ^              C and G
         |             |              C and H
         V             |
        [F]--->[G]--->[H]


            Figure 3: Directed Graph Showing a Partial Order

  To compute MRTs, the root of the MRTs is at both the very bottom and
  the very top of the partial ordering.  This means that from any node
  X, one can pick nodes higher in the order until the root is reached.
  Similarly, from any node X, one can pick nodes lower in the order
  until the root is reached.  For instance, in Figure 4, from G the
  higher nodes picked can be traced by following the directed links and
  are H, D, E, and R.  Similarly, from G the lower nodes picked can be
  traced by reversing the directed links and are F, B, A, and R.  A
  graph that represents this modified partial order is no longer a DAG;
  it is termed an Almost DAG (ADAG) because if the links directed to
  the root were removed, it would be a DAG.












Enyedi, et al.               Standards Track                    [Page 7]

RFC 7811                    MRT-FRR Algorithm                  June 2016


    [A]<---[R]<---[E]      R << A << B << C << R
     |      ^      ^       R << A << B << C << D << E << R
     |      |      |       R << A << B << F << G << H << D << E << R
     V      |      |
    [B]--->[C]--->[D]      Unspecified Relationships:
     |             ^              C and F
     |             |              C and G
     V             |              C and H
    [F]--->[G]--->[H]


    Figure 4: ADAG Showing a Partial Order with R Lowest and Highest

  Most importantly, if a node Y>>X, then Y can only appear on the
  increasing path from X to the root and never on the decreasing path.
  Similarly, if a node Z<<X, then Z can only appear on the decreasing
  path from X to the root and never on the increasing path.

  When following the increasing paths, it is possible to pick multiple
  higher nodes and still have the certainty that those paths will be
  disjoint from the decreasing paths.  For example, in the previous
  example, node B has multiple possibilities to forward packets along
  an increasing path: it can either forward packets to C or F.

4.2.  Finding an Ear and the Correct Direction

  For simplicity, the basic idea of creating a GADAG by adding ears is
  described assuming that the network graph is a single 2-connected
  cluster so that an ADAG is sufficient.  Generalizing to multiple
  blocks is done by considering the block-roots instead of the GADAG
  root -- and the actual algorithm is given in Section 5.5.

  In order to understand the basic idea of finding an ADAG, first
  suppose that we have already a partial ADAG, which doesn't contain
  all the nodes in the block yet, and we want to extend it to cover all
  the nodes.  Suppose that we find a path from a node X to Y such that
  X and Y are already contained by our partial ADAG, but all the
  remaining nodes along the path are not added to the ADAG yet.  We
  refer to such a path as an "ear".

  Recall that our ADAG is closely related to a partial order.  More
  precisely, if we remove root R, the remaining DAG describes a partial
  order of the nodes.  If we suppose that neither X nor Y is the root,
  we may be able to compare them.  If one of them is definitely lesser
  with respect to our partial order (say X<<Y), we can add the new path
  to the ADAG in a direction from X to Y.  As an example, consider
  Figure 5.




Enyedi, et al.               Standards Track                    [Page 8]

RFC 7811                    MRT-FRR Algorithm                  June 2016


          E---D---|              E<--D---|           E<--D<--|
          |   |   |              |   ^   |           |   ^   |
          |   |   |              V   |   |           V   |   |
          R   F   C              R   F   C           R   F   C
          |   |   |              |   ^   |           |   ^   ^
          |   |   |              V   |   |           V   |   |
          A---B---|              A-->B---|           A-->B---|

             (a)                    (b)                 (c)

          (a) A 2-connected graph
          (b) Partial ADAG (C is not included)
          (c) Resulting ADAG after adding path (or ear) B-C-D

                                Figure 5

  In this partial ADAG, node C is not yet included.  However, we can
  find path B-C-D, where both endpoints are contained by this partial
  ADAG (we say those nodes are "ready" in the following text), and the
  remaining node (node C) is not contained yet.  If we remove R, the
  remaining DAG defines a partial order, and with respect to this
  partial order, we can say that B<<D; so, we can add the path to the
  ADAG in the direction from B to D (arcs B->C and C->D are added).  If
  B>>D, we would add the same path in reverse direction.

  If, in the partial order where an ear's two ends are X and Y, X<<Y,
  then there must already be a directed path from X to Y in the ADAG.
  The ear must be added in a direction such that it doesn't create a
  cycle; therefore, the ear must go from X to Y.

  In the case when X and Y are not ordered with each other, we can
  select either direction for the ear.  We have no restriction since
  neither of the directions can result in a cycle.  In the corner case
  when one of the endpoints of an ear, say X, is the root (recall that
  the two endpoints must be different), we could use both directions
  again for the ear because the root can be considered both as smaller
  and as greater than Y.  However, we strictly pick that direction in
  which the root is lower than Y.  The logic for this decision is
  explained in Section 5.7

  A partial ADAG is started by finding a cycle from the root R back to
  itself.  This can be done by selecting a non-ready neighbor N of R
  and then finding a path from N to R that doesn't use any links
  between R and N.  The direction of the cycle can be assigned either
  way since it is starting the ordering.






Enyedi, et al.               Standards Track                    [Page 9]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  Once a partial ADAG is already present, it will always have a node
  that is not the root R in it.  The following is a brief proof that a
  partial ADAG can always have ears added to it: just select a non-
  ready neighbor N of a ready node Q, such that Q is not the root R,
  find a path from N to the root R in the graph with Q removed.  This
  path is an ear where the first node of the ear is Q, the next is N,
  then the path until the first ready node the path reached (that ready
  node is the other endpoint of the path).  Since the graph is
  2-connected, there must be a path from N to R without Q.

  It is always possible to select a non-ready neighbor N of a ready
  node Q so that Q is not the root R.  Because the network is
  2-connected, N must be connected to two different nodes and only one
  can be R.  Because the initial cycle has already been added to the
  ADAG, there are ready nodes that are not R.  Since the graph is
  2-connected, while there are non-ready nodes, there must be a non-
  ready neighbor N of a ready node that is not R.

   Generic_Find_Ears_ADAG(root)
      Create an empty ADAG.  Add root to the ADAG.
      Mark root as IN_GADAG.
      Select an arbitrary cycle containing root.
      Add the arbitrary cycle to the ADAG.
      Mark cycle's nodes as IN_GADAG.
      Add cycle's non-root nodes to process_list.
      While there exist connected nodes in graph that are not IN_GADAG
         Select a new ear.  Let its endpoints be X and Y.
         If Y is root or (Y<<X)
            Add the ear towards X to the ADAG
         Else // (a) X is root, or (b) X<<Y, or (c) X, Y not ordered
            Add the ear towards Y to the ADAG

     Figure 6: Generic Algorithm to Find Ears and Their Direction in
                            2-Connected Graph

  The algorithm in Figure 6 merely requires that a cycle or ear be
  selected without specifying how.  Regardless of the method for
  selecting the path, we will get an ADAG.  The method used for finding
  and selecting the ears is important; shorter ears result in shorter
  paths along the MRTs.  The MRT Lowpoint algorithm uses the Lowpoint
  Inheritance method for constructing an ADAG (and ultimately a GADAG).
  This method is defined in Section 5.5.  Other methods for
  constructing GADAGs are described in Appendices B and C.  An
  evaluation of these different methods is given in Section 8.

  As an example, consider Figure 5 again.  First, we select the
  shortest cycle containing R, which can be R-A-B-F-D-E (uniform link
  costs were assumed), so we get to the situation depicted in



Enyedi, et al.               Standards Track                   [Page 10]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  Figure 5(b).  Finally, we find a node next to a ready node; that must
  be node C and assume we reached it from ready node B.  We search a
  path from C to R without B in the original graph.  The first ready
  node along this is node D, so the open ear is B-C-D.  Since B<<D, we
  add arc B->C and C->D to the ADAG.  Since all the nodes are ready, we
  stop at this point.

4.3.  Lowpoint Values and Their Uses

  A basic way of computing a spanning tree on a network graph is to run
  a DFS, such as given in Figure 7.  This tree has the important
  property that if there is a link (x, n), then either n is a DFS
  ancestor of x or n is a DFS descendant of x.  In other words, either
  n is on the path from the root to x or x is on the path from the root
  to n.

                       global_variable: dfs_number

                       DFS_Visit(node x, node parent)
                          D(x) = dfs_number
                          dfs_number += 1
                          x.dfs_parent = parent
                          for each link (x, w)
                            if D(w) is not set
                              DFS_Visit(w, x)

                       Run_DFS(node gadag_root)
                          dfs_number = 0
                          DFS_Visit(gadag_root, NONE)

                      Figure 7: Basic DFS Algorithm

  Given a node x, one can compute the minimal DFS number of the
  neighbors of x, i.e., min( D(w) if (x,w) is a link).  This gives the
  earliest attachment point neighboring x.  What is interesting,
  though, is the earliest attachment point from x and x's descendants.
  This is what is determined by computing the Lowpoint value.

  In order to compute the low point value, the network is traversed
  using DFS and the vertices are numbered based on the DFS walk.  Let
  this number be represented as DFS(x).  All the edges that lead to
  already-visited nodes during DFS walk are back-edges.  The back-edges
  are important because they give information about reachability of a
  node via another path.







Enyedi, et al.               Standards Track                   [Page 11]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  The low point number is calculated by finding:

  Low(x) = Minimum of (  (DFS(x),
     Lowest DFS(n, x->n is a back-edge),
     Lowest Low(n, x->n is tree edge in DFS walk) ).

  A detailed algorithm for computing the lowpoint value is given in
  Figure 8.  Figure 9 illustrates how the Lowpoint algorithm applies to
  an example graph.

           global_variable: dfs_number

           Lowpoint_Visit(node x, node parent, interface p_to_x)
              D(x) = dfs_number
              L(x) = D(x)
              dfs_number += 1
              x.dfs_parent = parent
              x.dfs_parent_intf = p_to_x.remote_intf
              x.lowpoint_parent = NONE
              for each ordered_interface intf of x
                if D(intf.remote_node) is not set
                  Lowpoint_Visit(intf.remote_node, x, intf)
                  if L(intf.remote_node) < L(x)
                     L(x) = L(intf.remote_node)
                     x.lowpoint_parent = intf.remote_node
                     x.lowpoint_parent_intf = intf
                else if intf.remote_node is not parent
                  if D(intf.remote_node) < L(x)
                     L(x) = D(intf.remote_node)
                     x.lowpoint_parent = intf.remote_node
                     x.lowpoint_parent_intf = intf

           Run_Lowpoint(node gadag_root)
              dfs_number = 0
              Lowpoint_Visit(gadag_root, NONE, NONE)

                   Figure 8: Computing Lowpoint Value














Enyedi, et al.               Standards Track                   [Page 12]

RFC 7811                    MRT-FRR Algorithm                  June 2016


           [E]---|    [J]-------[I]   [P]---[O]
            |    |     |         |     |     |
            |    |     |         |     |     |
           [R]  [D]---[C]--[F]  [H]---[K]   [N]
            |          |    |    |     |     |
            |          |    |    |     |     |
           [A]--------[B]  [G]---|    [L]---[M]

              (a) a non-2-connected graph

            [E]----|    [J]---------[I]    [P]------[O]
           (5, )   |  (10, )       (9, ) (16,  ) (15,  )
             |     |     |           |      |        |
             |     |     |           |      |        |
            [R]   [D]---[C]---[F]   [H]----[K]      [N]
           (0, ) (4, ) (3, ) (6, ) (8, ) (11, )  (14, )
             |           |     |     |      |        |
             |           |     |     |      |        |
            [A]---------[B]   [G]----|     [L]------[M]
           (1, )       (2, ) (7, )       (12,  )  (13,  )

              (b) with DFS values assigned   (D(x), L(x))

            [E]----|    [J]---------[I]    [P]------[O]
           (5,0)   |  (10,3)       (9,3) (16,11) (15,11)
             |     |     |           |      |        |
             |     |     |           |      |        |
            [R]   [D]---[C]---[F]   [H]----[K]      [N]
           (0,0) (4,0) (3,0) (6,3) (8,3) (11,11) (14,11)
             |           |     |     |      |        |
             |           |     |     |      |        |
            [A]---------[B]   [G]----|     [L]------[M]
           (1,0)       (2,0) (7,3)       (12,11)  (13,11)

               (c) with lowpoint values assigned (D(x), L(x))

              Figure 9: Example Lowpoint Value Computation

  From the lowpoint value and lowpoint parent, there are three very
  useful things that motivate our computation.

  First, if there is a child c of x such that L(c) >= D(x), then there
  are no paths in the network graph that go from c or its descendants
  to an ancestor of x; therefore, x is a cut-vertex.  In Figure 9, this
  can be seen by looking at the DFS children of C.  C has two children,
  D and F and L(F) = 3 = D(C); so, it is clear that C is a cut-vertex
  and F is in a block where C is the block's root.  L(D) = 0<3 = D(C),
  so D has a path to the ancestors of C; in this case, D can go via E



Enyedi, et al.               Standards Track                   [Page 13]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  to reach R.  Comparing the lowpoint values of all a node's DFS-
  children with the node's DFS-value is very useful because it allows
  identification of the cut-vertices and thus the blocks.

  Second, by repeatedly following the path given by lowpoint_parent,
  there is a path from x back to an ancestor of x that does not use the
  link [x, x.dfs_parent] in either direction.  The full path need not
  be taken, but this gives a way of finding an initial cycle and then
  ears.

  Third, as seen in Figure 9, even if L(x)<D(x), there may be a block
  that contains both the root and a DFS-child of a node while other
  DFS-children might be in different blocks.  In this example, C's
  child D is in the same block as R while F is not.  It is important to
  realize that the root of a block may also be the root of another
  block.

4.4.  Blocks in a Graph

  A key idea for the MRT Lowpoint algorithm is that any non-2-connected
  graph is made up by blocks (e.g., 2-connected clusters, cut-links,
  and/or isolated nodes).  To compute GADAGs and thus MRTs, computation
  is done in each block to compute ADAGs or Redundant Trees and then
  those ADAGs or Redundant Trees are combined into a GADAG or MRT.



























Enyedi, et al.               Standards Track                   [Page 14]

RFC 7811                    MRT-FRR Algorithm                  June 2016


                 [E]---|    [J]-------[I]   [P]---[O]
                  |    |     |         |     |     |
                  |    |     |         |     |     |
                 [R]  [D]---[C]--[F]  [H]---[K]   [N]
                  |          |    |    |     |     |
                  |          |    |    |     |     |
                 [A]--------[B]  [G]---|    [L]---[M]

                 (a)  A graph with four blocks:
                      three 2-connected clusters
                      and one cut-link


                 [E]<--|    [J]<------[I]   [P]<--[O]
                  |    |     |         ^     |     ^
                  V    |     V         |     V     |
                 [R]  [D]<--[C]  [F]  [H]<---[K]  [N]
                             ^    |    ^           ^
                             |    V    |           |
                 [A]------->[B]  [G]---|     [L]-->[M]

                   (b) MRT-Blue for destination R


                 [E]---|    [J]-------->[I]    [P]-->[O]
                       |                 |            |
                       V                 V            V
                 [R]  [D]-->[C]<---[F]  [H]<---[K]   [N]
                  ^          |      ^    |      ^     |
                  |          V      |    |      |     V
                 [A]<-------[B]    [G]<--|     [L]<--[M]

                    (c) MRT-Red for destination R


                                Figure 10

  Consider the example depicted in Figure 10 (a).  In this figure, a
  special graph is presented, showing us all the ways 2-connected
  clusters can be connected.  It has four blocks: block 1 contains R,
  A, B, C, D, E; block 2 contains C, F, G, H, I, J; block 3 contains K,
  L, M, N, O, P; and block 4 is a cut-link containing H and K.  As can
  be observed, the first two blocks have one common node (node C) and
  blocks 2 and 3 do not have any common node, but they are connected
  through a cut-link that is block 4.  No two blocks can have more than
  one common node, since two blocks with at least two common nodes
  would qualify as a single 2-connected cluster.




Enyedi, et al.               Standards Track                   [Page 15]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  Moreover, observe that if we want to get from one block to another,
  we must use a cut-vertex (the cut-vertices in this graph are C, H,
  K), regardless of the path selected, so we can say that all the paths
  from block 3 along the MRTs rooted at R will cross K first.  This
  observation means that if we want to find a pair of MRTs rooted at R,
  then we need to build up a pair of RTs in block 3 with K as a root.
  Similarly, we need to find another pair of RTs in block 2 with C as a
  root, and finally, we need the last pair of RTs in block 1 with R as
  a root.  When all the trees are selected, we can simply combine them;
  when a block is a cut-link (as in block 4), that cut-link is added in
  the same direction to both of the trees.  The resulting trees are
  depicted in Figure 10 (b) and (c).

  Similarly, to create a GADAG it is sufficient to compute ADAGs in
  each block and connect them.

  It is necessary, therefore, to identify the cut-vertices, the blocks
  and identify the appropriate localroot to use for each block.

4.5.  Determining Localroot and Assigning Block-ID

  Each node in a network graph has a localroot, which is the cut-vertex
  (or root) in the same block that is closest to the root.  The
  localroot is used to determine whether two nodes share a common
  block.

              Compute_Localroot(node x, node localroot)
                  x.localroot = localroot
                  for each DFS child node c of x
                      if L(c) < D(x)   //x is not a cut-vertex
                          Compute_Localroot(c, x.localroot)
                      else
                          mark x as cut-vertex
                          Compute_Localroot(c, x)

              Compute_Localroot(gadag_root, gadag_root)

              Figure 11: A Method for Computing Localroots

  There are two different ways of computing the localroot for each
  node.  The stand-alone method is given in Figure 11 and better
  illustrates the concept; it is used by the GADAG construction methods
  given in Appendices B and C.  The MRT Lowpoint algorithm computes the
  localroot for a block as part of computing the GADAG using lowpoint
  inheritance; the essence of this computation is given in Figure 12.
  Both methods for computing the localroot produce the same results.





Enyedi, et al.               Standards Track                   [Page 16]

RFC 7811                    MRT-FRR Algorithm                  June 2016


           Get the current node, s.
           Compute an ear (either through lowpoint inheritance
           or by following dfs parents) from s to a ready node e.
           (Thus, s is not e, if there is such ear.)
           if s is e
              for each node x in the ear that is not s
                  x.localroot = s
           else
              for each node x in the ear that is not s or e
                  x.localroot = e.localroot

          Figure 12: Ear-Based Method for Computing Localroots

  Once the localroots are known, two nodes X and Y are in a common
  block if and only if one of the following three conditions apply.

  o  Y's localroot is X's localroot : They are in the same block and
     neither is the cut-vertex closest to the root.

  o  Y's localroot is X: X is the cut-vertex closest to the root for
     Y's block

  o  Y is X's localroot: Y is the cut-vertex closest to the root for
     X's block

  Once we have computed the localroot for each node in the network
  graph, we can assign for each node, a Block-ID that represents the
  block in which the node is present.  This computation is shown in
  Figure 13.

                global_var: max_block_id

                Assign_Block_ID(x, cur_block_id)
                  x.block_id = cur_block_id
                  foreach DFS child c of x
                     if (c.local_root is x)
                        max_block_id += 1
                        Assign_Block_ID(c, max_block_id)
                     else
                       Assign_Block_ID(c, cur_block_id)

                max_block_id = 0
                Assign_Block_ID(gadag_root, max_block_id)

            Figure 13: Assigning Block-ID to Identify Blocks






Enyedi, et al.               Standards Track                   [Page 17]

RFC 7811                    MRT-FRR Algorithm                  June 2016


5.  MRT Lowpoint Algorithm Specification

  The MRT Lowpoint algorithm computes one GADAG that is then used by a
  router to determine its MRT-Blue and MRT-Red next hops to all
  destinations.  Finally, based upon that information, alternates are
  selected for each next hop to each destination.  The different parts
  of this algorithm are described below.

  o  Order the interfaces in the network graph.  See Section 5.1.

  o  Compute the local MRT Island for the particular MRT Profile.  See
     Section 5.2.

  o  Select the root to use for the GADAG.  See Section 5.3.

  o  Initialize all interfaces to UNDIRECTED.  See Section 5.4.

  o  Compute the DFS value, e.g., D(x), and lowpoint value, L(x).  See
     Figure 8.

  o  Construct the GADAG.  See Section 5.5.

  o  Assign directions to all interfaces that are still UNDIRECTED.
     See Section 5.6.

  o  From the computing router x, compute the next hops for the MRT-
     Blue and MRT-Red.  See Section 5.7.

  o  Identify alternates for each next hop to each destination by
     determining which one of the MRT-Blue and the MRT-Red the
     computing router x should select.  See Section 5.8.

  A Python implementation of this algorithm is given in Appendix A.

5.1.  Interface Ordering

  To ensure consistency in computation, all routers MUST order
  interfaces identically down to the set of links with the same metric
  to the same neighboring node.  This is necessary for the DFS in
  Lowpoint_Visit in Section 4.3, where the selection order of the
  interfaces to explore results in different trees.  Consistent
  interface ordering is also necessary for computing the GADAG, where
  the selection order of the interfaces to use to form ears can result
  in different GADAGs.  It is also necessary for the topological sort
  described in Section 5.8, where different topological sort orderings
  can result in undirected links being added to the GADAG in different
  directions.




Enyedi, et al.               Standards Track                   [Page 18]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  The required ordering between two interfaces from the same router x
  is given in Figure 14.

     Interface_Compare(interface a, interface b)
       if a.metric < b.metric
          return A_LESS_THAN_B
       if b.metric < a.metric
          return B_LESS_THAN_A
       if a.neighbor.mrt_node_id < b.neighbor.mrt_node_id
          return A_LESS_THAN_B
       if b.neighbor.mrt_node_id < a.neighbor.mrt_node_id
          return B_LESS_THAN_A
       // Same metric to same node, so the order doesn't matter for
       // interoperability.
       return A_EQUAL_TO_B


   Figure 14: Rules for Ranking Multiple Interfaces (Order Is from Low
                                to High)

  In Figure 14, if two interfaces on a router connect to the same
  remote router with the same metric, the Interface_Compare function
  returns A_EQUAL_TO_B.  This is because the order in which those
  interfaces are initially explored does not affect the final GADAG
  produced by the algorithm described here.  While only one of the
  links will be added to the GADAG in the initial traversal, the other
  parallel links will be added to the GADAG with the same direction
  assigned during the procedure for assigning direction to UNDIRECTED
  links described in Section 5.6.  An implementation is free to apply
  some additional criteria to break ties in interface ordering in this
  situation, but those criteria are not specified here since they will
  not affect the final GADAG produced by the algorithm.

  The Interface_Compare function in Figure 14 relies on the
  interface.metric and the interface.neighbor.mrt_node_id values to
  order interfaces.  The exact source of these values for different
  IGPs and applications is specified in Figure 15.  The metric and
  mrt_node_id values for OSPFv2, OSPFv3, and IS-IS provided here is
  normative.  The metric and mrt_node_id values for IS-IS Path Control
  and Reservation (PCR) in this table should be considered
  informational.  The normative values are specified in [IEEE8021Qca].










Enyedi, et al.               Standards Track                   [Page 19]

RFC 7811                    MRT-FRR Algorithm                  June 2016


 +--------------+-----------------------+-----------------------------+
 | IGP/flooding | mrt_node_id           | metric of                   |
 | protocol     | of neighbor           | interface                   |
 | and          | on interface          |                             |
 | application  |                       |                             |
 +--------------+-----------------------+-----------------------------+
 | OSPFv2 for   | 4-octet Neighbor      | 2-octet Metric field        |
 | IP/LDP FRR   | Router ID in          | for corresponding           |
 |              | Link ID field for     | point-to-point link         |
 |              | corresponding         | in Router-LSA               |
 |              | point-to-point link   |                             |
 |              | in Router-LSA         |                             |
 +--------------+-----------------------+-----------------------------+
 | OSPFv3 for   | 4-octet Neighbor      | 2-octet Metric field        |
 | IP/LDP FRR   | Router ID field       | for corresponding           |
 |              | for corresponding     | point-to-point link         |
 |              | point-to-point link   | in Router-LSA               |
 |              | in Router-LSA         |                             |
 +--------------+-----------------------+-----------------------------+
 | IS-IS for    | 7-octet neighbor      | 3-octet metric field        |
 | IP/LDP FRR   | system ID and         | in Extended IS              |
 |              | pseudonode number     | Reachability TLV (type 22)  |
 |              | in Extended IS        | or Multi-Topology           |
 |              | Reachability TLV (type| IS Neighbor TLV (type 222)  |
 |              | 22) or Multi-Topology |                             |
 |              | IS Neighbor TLV (type |                             |
 |              | 222)                  |                             |
 +--------------+-----------------------+-----------------------------+
 | IS-IS PCR for| 8-octet Bridge ID     | 3-octet SPB-LINK-METRIC in  |
 | protection   | created from  2-octet | SPB-Metric sub-TLV (type 29)|
 | of traffic   | Bridge Priority in    | in Extended IS Reachability |
 | in bridged   | Shortest Path Bridging| TLV (type 22) or            |
 |              |SPB Instance sub-TLV   | Multi-Topology              |
 | networks     | (type 1) carried in   | Intermediate Systems        |
 |              | MT-Capability TLV     | TLV (type 222).  In the case|
 |              | (type 144) and 6-octet| of asymmetric link metrics, |
 |              | neighbor system ID in | the larger link metric      |
 |              | Extended IS           | is used for both link       |
 |              | Reachability TLV (type| directions.                 |
 |              | 22) or Multi-Topology | (informational)             |
 |              | Intermediate Systems  |                             |
 |              | TLV (type 222)        |                             |
 |              | (informational)       |                             |
 +--------------+-----------------------+-----------------------------+

         Figure 15: Value of interface.neighbor.mrt_node_id and
    interface.metric to Be Used for Ranking Interfaces, for Different
                   Flooding Protocols and Applications



Enyedi, et al.               Standards Track                   [Page 20]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  The metrics are unsigned integers and MUST be compared as unsigned
  integers.  The results of mrt_node_id comparisons MUST be the same as
  would be obtained by converting the mrt_node_ids to unsigned integers
  using network byte order and performing the comparison as unsigned
  integers.  In the case of IS-IS for IP/LDP FRR with point-to-point
  links, the pseudonode number (the 7th octet) is zero.  Broadcast
  interfaces will be discussed in Section 7.

5.2.  MRT Island Identification

  The local MRT Island for a particular MRT profile can be determined
  by starting from the computing router in the network graph and doing
  a breadth-first-search (BFS).  The BFS explores only links that are
  in the same area/level, are not IGP-excluded, and are not MRT-
  ineligible.  The BFS explores only nodes that support the particular
  MRT profile.  See Section 7 of [RFC7812] for more-precise definitions
  of these criteria.

  MRT_Island_Identification(topology, computing_rtr, profile_id, area)
    for all routers in topology
        rtr.IN_MRT_ISLAND = FALSE
    computing_rtr.IN_MRT_ISLAND = TRUE
    explore_list = { computing_rtr }
    while (explore_list is not empty)
       next_rtr = remove_head(explore_list)
       for each intf in next_rtr
          if (not intf.IN_MRT_ISLAND
             and not intf.MRT-ineligible
             and not intf.remote_intf.MRT-ineligible
             and not intf.IGP-excluded and (intf in area)
             and (intf.remote_node supports profile_id) )
             intf.IN_MRT_ISLAND = TRUE
             intf.remote_intf.IN_MRT_ISLAND = TRUE
             if (not intf.remote_node.IN_MRT_ISLAND))
                intf.remote_node.IN_MRT_ISLAND = TRUE
                add_to_tail(explore_list, intf.remote_node)

                  Figure 16: MRT Island Identification

5.3.  GADAG Root Selection

  In Section 8.3 of [RFC7812], the GADAG Root Selection Policy is
  described for the Default MRT Profile.  This selection policy allows
  routers to consistently select a common GADAG Root inside the local
  MRT Island, based on advertised priority values.  The MRT Lowpoint
  algorithm simply requires that all routers in the MRT Island MUST
  select the same GADAG Root; the mechanism can vary based upon the MRT
  profile description.  Before beginning computation, the network graph



Enyedi, et al.               Standards Track                   [Page 21]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  is reduced to contain only the set of routers that support the
  specific MRT profile whose MRTs are being computed.

  As noted in Section 7, pseudonodes MUST NOT be considered for GADAG
  root selection.

  It is expected that an operator will designate a set of routers as
  good choices for selection as GADAG root by setting the GADAG Root
  Selection Priority for that set of routers to lower (more preferred)
  numerical values.  For guidance on setting the GADAG Root Selection
  Priority values, refer to Section 9.1.

5.4.  Initialization

  Before running the algorithm, there is the standard type of
  initialization to be done, such as clearing any computed DFS-values,
  lowpoint-values, DFS parents, lowpoint-parents, any MRT-computed next
  hops, and flags associated with algorithm.

  It is assumed that a regular SPF computation has been run so that the
  primary next hops from the computing router to each destination are
  known.  This is required for determining alternates at the last step.

  Initially, all interfaces MUST be initialized to UNDIRECTED.  Whether
  they are OUTGOING, INCOMING, or both is determined when the GADAG is
  constructed and augmented.

  It is possible that some links and nodes will be marked using
  standard IGP mechanisms to discourage or prevent transit traffic.
  Section 7.3.1 of [RFC7812] describes how those links and nodes are
  excluded from MRT Island formation.

  MRT-FRR also has the ability to advertise links MRT-Ineligible, as
  described in Section 7.3.2 of [RFC7812].  These links are excluded
  from the MRT Island and the GADAG.  Computation of MRT next hops will
  therefore not use any MRT-ineligible links.  The MRT Lowpoint
  algorithm does still need to consider MRT-ineligible links when
  computing FRR alternates, because an MRT-ineligible link can still be
  the shortest-path next hop to reach a destination.

  When a broadcast interface is advertised as MRT-ineligible, then the
  pseudonode representing the entire broadcast network MUST NOT be
  included in the MRT Island.  This is equivalent to excluding all of
  the broadcast interfaces on that broadcast network from the MRT
  Island.






Enyedi, et al.               Standards Track                   [Page 22]

RFC 7811                    MRT-FRR Algorithm                  June 2016


5.5.  Constructing the GADAG Using Lowpoint Inheritance

  As discussed in Section 4.2, it is necessary to find ears from a node
  x that is already in the GADAG (known as IN_GADAG).  Two different
  methods are used to find ears in the algorithm.  The first is by
  going to a DFS-child that is not IN_GADAG and then following the
  chain of lowpoint parents until an IN_GADAG node is found.  The
  second is by going to a neighbor that is not IN_GADAG and then
  following the chain of DFS parents until an IN_GADAG node is found.
  As an ear is found, the associated interfaces are marked based on the
  direction taken.  The nodes in the ear are marked as IN_GADAG.  In
  the algorithm, first the ears via DFS-children are found and then the
  ears via DFS-neighbors are found.

  By adding both types of ears when an IN_GADAG node is processed, all
  ears that connect to that node are found.  The order in which the
  IN_GADAG nodes are processed is, of course, key to the algorithm.
  The order is a stack of ears so the most recent ear is found at the
  top of the stack.  Of course, the stack stores nodes and not ears, so
  an ordered list of nodes, from the first node in the ear to the last
  node in the ear, is created as the ear is explored and then that list
  is pushed onto the stack.

  Each ear represents a partial order (see Figure 4) and processing the
  nodes in order along each ear ensures that all ears connecting to a
  node are found before a node higher in the partial order has its ears
  explored.  This means that the direction of the links in the ear is
  always from the node x being processed towards the other end of the
  ear.  Additionally, by using a stack of ears, this means that any
  unprocessed nodes in previous ears can only be ordered higher than
  nodes in the ears below it on the stack.

  In this algorithm that depends upon Lowpoint inheritance, it is
  necessary that every node has a lowpoint parent that is not itself.
  If a node is a cut-vertex, that may not yet be the case.  Therefore,
  any nodes without a lowpoint parent will have their lowpoint parent
  set to their DFS parent and their lowpoint value set to the DFS-value
  of their parent.  This assignment also properly allows an ear between
  two cut-vertices.

  Finally, the algorithm simultaneously computes each node's localroot,
  as described in Figure 12.  This is further elaborated as follows.
  The localroot can be inherited from the node at the end of the ear
  unless the end of the ear is x itself, in which case the localroot
  for all the nodes in the ear would be x.  This is because whenever
  the first cycle is found in a block, or an ear involving a bridge is
  computed, the cut-vertex closest to the root would be x itself.  In
  all other scenarios, the properties of lowpoint/dfs parents ensure



Enyedi, et al.               Standards Track                   [Page 23]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  that the end of the ear will be in the same block, and thus
  inheriting its localroot would be the correct localroot for all newly
  added nodes.

  The pseudocode for the GADAG algorithm (assuming that the adjustment
  of lowpoint for cut-vertices has been made) is shown in Figure 17.

          Construct_Ear(x, Stack, intf, ear_type)
             ear_list = empty
             cur_node = intf.remote_node
             cur_intf = intf
             not_done = true

             while not_done
                cur_intf.UNDIRECTED = false
                cur_intf.OUTGOING = true
                cur_intf.remote_intf.UNDIRECTED = false
                cur_intf.remote_intf.INCOMING = true

                if cur_node.IN_GADAG is false
                   cur_node.IN_GADAG = true
                   add_to_list_end(ear_list, cur_node)
                   if ear_type is CHILD
                      cur_intf = cur_node.lowpoint_parent_intf
                      cur_node = cur_node.lowpoint_parent
                   else  // ear_type must be NEIGHBOR
                      cur_intf = cur_node.dfs_parent_intf
                      cur_node = cur_node.dfs_parent
                else
                   not_done = false

             if (ear_type is CHILD) and (cur_node is x)
                // x is a cut-vertex and the local root for
                // the block in which the ear is computed
                x.IS_CUT_VERTEX = true
                localroot = x
             else
                // Inherit localroot from the end of the ear
                localroot = cur_node.localroot
             while ear_list is not empty
                y = remove_end_item_from_list(ear_list)
                y.localroot = localroot
                push(Stack, y)

          Construct_GADAG_via_Lowpoint(topology, gadag_root)
            gadag_root.IN_GADAG = true
            gadag_root.localroot = None
            Initialize Stack to empty



Enyedi, et al.               Standards Track                   [Page 24]

RFC 7811                    MRT-FRR Algorithm                  June 2016


            push gadag_root onto Stack
            while (Stack is not empty)
               x = pop(Stack)
               foreach ordered_interface intf of x
                  if ((intf.remote_node.IN_GADAG == false) and
                      (intf.remote_node.dfs_parent is x))
                      Construct_Ear(x, Stack, intf, CHILD)
               foreach ordered_interface intf of x
                  if ((intf.remote_node.IN_GADAG == false) and
                      (intf.remote_node.dfs_parent is not x))
                      Construct_Ear(x, Stack, intf, NEIGHBOR)

          Construct_GADAG_via_Lowpoint(topology, gadag_root)

             Figure 17: Lowpoint Inheritance GADAG Algorithm

5.6.  Augmenting the GADAG by Directing All Links

  The GADAG, regardless of the method used to construct it, at this
  point could be used to find MRTs, but the topology does not include
  all links in the network graph.  That has two impacts.  First, there
  might be shorter paths that respect the GADAG partial ordering and so
  the alternate paths would not be as short as possible.  Second, there
  may be additional paths between a router x and the root that are not
  included in the GADAG.  Including those provides potentially more
  bandwidth to traffic flowing on the alternates and may reduce
  congestion compared to just using the GADAG as currently constructed.

  The goal is thus to assign direction to every remaining link marked
  as UNDIRECTED to improve the paths and number of paths found when the
  MRTs are computed.

  To do this, we need to establish a total order that respects the
  partial order described by the GADAG.  This can be done using Kahn's
  topological sort [Kahn_1962_topo_sort], which essentially assigns a
  number to a node x only after all nodes before it (e.g., with a link
  incoming to x) have had their numbers assigned.  The only issue with
  the topological sort is that it works on DAGs and not ADAGs or
  GADAGs.

  To convert a GADAG to a DAG, it is necessary to remove all links that
  point to a root of block from within that block.  That provides the
  necessary conversion to a DAG and then a topological sort can be
  done.  When adding undirected links to the GADAG, links connecting
  the block root to other nodes in that block need special handling
  because the topological order will not always give the right answer
  for those links.  There are three cases to consider.  If the
  undirected link in question has another parallel link between the



Enyedi, et al.               Standards Track                   [Page 25]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  same two nodes that is already directed, then the direction of the
  undirected link can be inherited from the previously directed link.
  In the case of parallel cut links, we set all of the parallel links
  to both INCOMING and OUTGOING.  Otherwise, the undirected link in
  question is set to OUTGOING from the block root node.  A cut-link can
  then be identified by the fact that it will be directed both INCOMING
  and OUTGOING in the GADAG.  The exact details of this whole process
  are captured in Figure 18.

    Add_Undirected_Block_Root_Links(topo, gadag_root)
        foreach node x in topo
            if x.IS_CUT_VERTEX or x is gadag_root
                foreach interface i of x
                    if (i.remote_node.localroot is not x
                                        or i.PROCESSED )
                        continue
                    Initialize bundle_list to empty
                    bundle.UNDIRECTED = true
                    bundle.OUTGOING = false
                    bundle.INCOMING = false
                    foreach interface i2 in x
                        if i2.remote_node is i.remote_node
                            add_to_list_end(bundle_list, i2)
                            if not i2.UNDIRECTED:
                                bundle.UNDIRECTED = false
                                if i2.INCOMING:
                                    bundle.INCOMING = true
                                if i2.OUTGOING:
                                    bundle.OUTGOING = true
                    if bundle.UNDIRECTED
                        foreach interface i3 in bundle_list
                            i3.UNDIRECTED = false
                            i3.remote_intf.UNDIRECTED = false
                            i3.PROCESSED = true
                            i3.remote_intf.PROCESSED = true
                            i3.OUTGOING = true
                            i3.remote_intf.INCOMING = true
                    else
                        if (bundle.OUTGOING and bundle.INCOMING)
                            foreach interface i3 in bundle_list
                                i3.UNDIRECTED = false
                                i3.remote_intf.UNDIRECTED = false
                                i3.PROCESSED = true
                                i3.remote_intf.PROCESSED = true
                                i3.OUTGOING = true
                                i3.INCOMING = true
                                i3.remote_intf.INCOMING = true
                                i3.remote_intf.OUTGOING = true



Enyedi, et al.               Standards Track                   [Page 26]

RFC 7811                    MRT-FRR Algorithm                  June 2016


                        else if bundle.OUTGOING
                            foreach interface i3 in bundle_list
                                i3.UNDIRECTED = false
                                i3.remote_intf.UNDIRECTED = false
                                i3.PROCESSED = true
                                i3.remote_intf.PROCESSED = true
                                i3.OUTGOING = true
                                i3.remote_intf.INCOMING = true
                        else if bundle.INCOMING
                            foreach interface i3 in bundle_list
                                i3.UNDIRECTED = false
                                i3.remote_intf.UNDIRECTED = false
                                i3.PROCESSED = true
                                i3.remote_intf.PROCESSED = true
                                i3.INCOMING = true
                                i3.remote_intf.OUTGOING = true

    Modify_Block_Root_Incoming_Links(topo, gadag_root)
        foreach node x in topo
            if x.IS_CUT_VERTEX or x is gadag_root
                foreach interface i of x
                    if i.remote_node.localroot is x
                        if i.INCOMING:
                            i.INCOMING = false
                            i.INCOMING_STORED = true
                            i.remote_intf.OUTGOING = false
                            i.remote_intf.OUTGOING_STORED = true

    Revert_Block_Root_Incoming_Links(topo, gadag_root)
        foreach node x in topo
            if x.IS_CUT_VERTEX or x is gadag_root
                foreach interface i of x
                    if i.remote_node.localroot is x
                        if i.INCOMING_STORED
                            i.INCOMING = true
                            i.remote_intf.OUTGOING = true
                            i.INCOMING_STORED = false
                            i.remote_intf.OUTGOING_STORED = false

    Run_Topological_Sort_GADAG(topo, gadag_root)
        Modify_Block_Root_Incoming_Links(topo, gadag_root)
        foreach node x in topo
            node.unvisited = 0
            foreach interface i of x
                if (i.INCOMING)
                    node.unvisited += 1
        Initialize working_list to empty
        Initialize topo_order_list to empty



Enyedi, et al.               Standards Track                   [Page 27]

RFC 7811                    MRT-FRR Algorithm                  June 2016


        add_to_list_end(working_list, gadag_root)
        while working_list is not empty
            y = remove_start_item_from_list(working_list)
            add_to_list_end(topo_order_list, y)
            foreach ordered_interface i of y
                if intf.OUTGOING
                    i.remote_node.unvisited -= 1
                    if i.remote_node.unvisited is 0
                        add_to_list_end(working_list, i.remote_node)
        next_topo_order = 1
        while topo_order_list is not empty
            y = remove_start_item_from_list(topo_order_list)
            y.topo_order = next_topo_order
            next_topo_order += 1
        Revert_Block_Root_Incoming_Links(topo, gadag_root)

    def Set_Other_Undirected_Links_Based_On_Topo_Order(topo)
        foreach node x in topo
            foreach interface i of x
                if i.UNDIRECTED:
                    if x.topo_order < i.remote_node.topo_order
                        i.OUTGOING = true
                        i.UNDIRECTED = false
                        i.remote_intf.INCOMING = true
                        i.remote_intf.UNDIRECTED = false
                    else
                        i.INCOMING = true
                        i.UNDIRECTED = false
                        i.remote_intf.OUTGOING = true
                        i.remote_intf.UNDIRECTED = false

    Add_Undirected_Links(topo, gadag_root)
        Add_Undirected_Block_Root_Links(topo, gadag_root)
        Run_Topological_Sort_GADAG(topo, gadag_root)
        Set_Other_Undirected_Links_Based_On_Topo_Order(topo)

    Add_Undirected_Links(topo, gadag_root)

           Figure 18: Assigning Direction to UNDIRECTED Links

  Proxy-nodes do not need to be added to the network graph.  They
  cannot be transited and do not affect the MRTs that are computed.
  The details of how the MRT-Blue and MRT-Red next hops are computed
  for proxy-nodes and how the appropriate alternate next hops are
  selected is given in Section 5.9.






Enyedi, et al.               Standards Track                   [Page 28]

RFC 7811                    MRT-FRR Algorithm                  June 2016


5.7.  Compute MRT Next Hops

  As was discussed in Section 4.1, once an ADAG is found, it is
  straightforward to find the next hops from any node X to the ADAG
  root.  However, in this algorithm, we will reuse the common GADAG and
  find not only the one pair of MRTs rooted at the GADAG root with it,
  but find a pair rooted at each node.  This is useful since it is
  significantly faster to compute.

  The method for computing differently rooted MRTs from the common
  GADAG is based on two ideas.  First, if two nodes X and Y are ordered
  with respect to each other in the partial order, then an SPF along
  OUTGOING links (an increasing-SPF) and an SPF along INCOMING links (a
  decreasing-SPF) can be used to find the increasing and decreasing
  paths.  Second, if two nodes X and Y aren't ordered with respect to
  each other in the partial order, then intermediary nodes can be used
  to create the paths by increasing/decreasing to the intermediary and
  then decreasing/increasing to reach Y.

  As usual, the two basic ideas will be discussed assuming the network
  is 2-connected.  The generalization to multiple blocks is discussed
  in Section 5.7.4.  The full algorithm is given in Section 5.7.5.

5.7.1.  MRT Next Hops to All Nodes Ordered with Respect to the Computing
       Node

  Finding two node-disjoint paths from the computing router X to any
  node Y depends upon whether Y>>X or Y<<X.  As shown in Figure 19, if
  Y>>X, then there is an increasing path that goes from X to Y without
  crossing R; this contains nodes in the interval [X,Y].  There is also
  a decreasing path that decreases towards R and then decreases from R
  to Y; this contains nodes in the interval [X,R-small] or [R-great,Y].
  The two paths cannot have common nodes other than X and Y.


                    [Y]<---(Cloud 2)<--- [X]
                     |                    ^
                     |                    |
                     V                    |
                  (Cloud 3)--->[R]--->(Cloud 1)

                 MRT-Blue path: X->Cloud 2->Y
                 MRT-Red path: X->Cloud 1->R->Cloud 3->Y

                             Figure 19: Y>>X






Enyedi, et al.               Standards Track                   [Page 29]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  Similar logic applies if Y<<X, as shown in Figure 20.  In this case,
  the increasing path from X increases to R and then increases from R
  to Y to use nodes in the intervals [X,R-great] and [R-small, Y].  The
  decreasing path from X reaches Y without crossing R and uses nodes in
  the interval [Y,X].


                   [X]<---(Cloud 2)<--- [Y]
                    |                    ^
                    |                    |
                    V                    |
                 (Cloud 3)--->[R]--->(Cloud 1)

                MRT-Blue path: X->Cloud 3->R->Cloud 1->Y
                MRT-Red path: X->Cloud 2->Y

                             Figure 20: Y<<X

5.7.2.  MRT Next Hops to All Nodes Not Ordered with Respect to the
       Computing Node

  When X and Y are not ordered, the first path should increase until we
  get to a node G, where G>>Y.  At G, we need to decrease to Y.  The
  other path should be just the opposite: we must decrease until we get
  to a node H, where H<<Y, and then increase.  Since R is smaller and
  greater than Y, such G and H must exist.  It is also easy to see that
  these two paths must be node disjoint: the first path contains nodes
  in interval [X,G] and [Y,G], while the second path contains nodes in
  interval [H,X] and [H,Y].  This is illustrated in Figure 21.  It is
  necessary to decrease and then increase for the MRT-Blue and increase
  and then decrease for the MRT-Red; if one simply increased for one
  and decreased for the other, then both paths would go through the
  root R.


















Enyedi, et al.               Standards Track                   [Page 30]

RFC 7811                    MRT-FRR Algorithm                  June 2016


                (Cloud 6)<---[Y]<---(Cloud 5)<------------|
                  |                                       |
                  |                                       |
                  V                                       |
                 [G]--->(Cloud 4)--->[R]--->(Cloud 1)--->[H]
                  ^                                       |
                  |                                       |
                  |                                       |
                 (Cloud 3)<---[X]<---(Cloud 2)<-----------|

             MRT-Blue path: decrease to H and increase to Y
                  X->Cloud 2->H->Cloud 5->Y
             MRT-Red path:  increase to G and decrease to Y
                  X->Cloud 3->G->Cloud 6->Y

                      Figure 21: X and Y Unordered

  This gives disjoint paths as long as G and H are not the same node.
  Since G>>Y and H<<Y, if G and H could be the same node, that would
  have to be the root R.  This is not possible because there is only
  one incoming interface to the root R that is created when the initial
  cycle is found.  Recall from Figure 6 that whenever an ear was found
  to have an end that was the root R, the ear was directed from R so
  that the associated interface on R is outgoing and not incoming.
  Therefore, there must be exactly one node M that is the largest one
  before R, so the MRT-Red path will never reach R; it will turn at M
  and decrease to Y.

5.7.3.  Computing Redundant Tree Next Hops in a 2-Connected Graph

  The basic ideas for computing RT next hops in a 2-connected graph
  were given in Sections 5.7.1 and 5.7.2.  Given these two ideas, how
  can we find the trees?

  If some node X only wants to find the next hops (which is usually the
  case for IP networks), it is enough to find which nodes are greater
  and less than X, and which are not ordered; this can be done by
  running an increasing-SPF and a decreasing-SPF rooted at X and not
  exploring any links from the ADAG root.

  In principle, a traversal method other than SPF could be used to
  traverse the GADAG in the process of determining blue and red next
  hops that result in maximally redundant trees.  This will be the case
  as long as one traversal uses the links in the direction specified by
  the GADAG and the other traversal uses the links in the direction
  opposite of that specified by the GADAG.  However, a different
  traversal algorithm will generally result in different blue and red




Enyedi, et al.               Standards Track                   [Page 31]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  next hops.  Therefore, the algorithm specified here requires the use
  of SPF to traverse the GADAG to generate MRT blue and red next hops,
  as described below.

  An increasing-SPF rooted at X and not exploring links from the root
  will find the increasing next hops to all Y>>X.  Those increasing
  next hops are X's next hops on the MRT-Blue to reach Y.  A
  decreasing-SPF rooted at X and not exploring links from the root will
  find the decreasing next hops to all Z<<X.  Those decreasing next
  hops are X's next hops on the MRT-Red to reach Z.  Since the root R
  is both greater than and less than X, after this increasing-SPF and
  decreasing-SPF, X's next hops on the MRT-Blue and on the MRT-Red to
  reach R are known.  For every node Y>>X, X's next hops on the MRT-Red
  to reach Y are set to those on the MRT-Red to reach R.  For every
  node Z<<X, X's next hops on the MRT-Blue to reach Z are set to those
  on the MRT-Blue to reach R.

  For those nodes that were not reached by either the increasing-SPF or
  the decreasing-SPF, we can determine the next hops as well.  The
  increasing MRT-Blue next hop for a node that is not ordered with
  respect to X is the next hop along the decreasing MRT-Red towards R,
  and the decreasing MRT-Red next hop is the next hop along the
  increasing MRT-Blue towards R.  Naturally, since R is ordered with
  respect to all the nodes, there will always be an increasing and a
  decreasing path towards it.  This algorithm does not provide the
  complete specific path taken but just the appropriate next hops to
  use.  The identities of G and H are not determined by the computing
  node X.

  The final case to consider is when the GADAG root R computes its own
  next hops.  Since the GADAG root R is << all other nodes, running an
  increasing-SPF rooted at R will reach all other nodes; the MRT-Blue
  next hops are those found with this increasing-SPF.  Similarly, since
  the GADAG root R is >> all other nodes, running a decreasing-SPF
  rooted at R will reach all other nodes; the MRT-Red next hops are
  those found with this decreasing-SPF.















Enyedi, et al.               Standards Track                   [Page 32]

RFC 7811                    MRT-FRR Algorithm                  June 2016


                E---D---|              E<--D<--|
                |   |   |              |   ^   |
                |   |   |              V   |   |
                R   F   C              R   F   C
                |   |   |              |   ^   ^
                |   |   |              V   |   |
                A---B---|              A-->B---|

                   (a)                    (b)
           A 2-connected graph    A spanning ADAG rooted at R

                                Figure 22

  As an example, consider the situation depicted in Figure 22.  Node C
  runs an increasing-SPF and a decreasing-SPF on the ADAG.  The
  increasing-SPF reaches D, E, and R; the decreasing-SPF reaches B, A,
  and R.  E>>C.  So, towards E the MRT-Blue next hop is D, since E was
  reached on the increasing path through D.  The MRT-Red next hop
  towards E is B, since R was reached on the decreasing path through B.
  Since E>>D, D will similarly compute its MRT-Blue next hop to be E,
  ensuring that a packet on MRT-Blue will use path C-D-E.  B, A, and R
  will similarly compute the MRT-Red next hops towards E (which is
  ordered less than B, A and R), ensuring that a packet on MRT-Red will
  use path C-B-A-R-E.

  C can determine the next hops towards F as well.  Since F is not
  ordered with respect to C, the MRT-Blue next hop is the decreasing
  one towards R (which is B) and the MRT-Red next hop is the increasing
  one towards R (which is D).  Since F>>B, for its MRT-Blue next hop
  towards F, B will use the real increasing next hop towards F.  So a
  packet forwarded to B on MRT-Blue will get to F on path C-B-F.
  Similarly, D will use the real decreasing next hop towards F as its
  MRT-Red next hop, a packet on MRT-Red will use path C-D-F.

5.7.4.  Generalizing for a Graph That Isn't 2-Connected

  If a graph isn't 2-connected, then the basic approach given in
  Section 5.7.3 needs some extensions to determine the appropriate MRT
  next hops to use for destinations outside the computing router X's
  blocks.  In order to find a pair of maximally redundant trees in that
  graph, we need to find a pair of RTs in each of the blocks (the root
  of these trees will be discussed later) and combine them.









Enyedi, et al.               Standards Track                   [Page 33]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  When computing the MRT next hops from a router X, there are three
  basic differences:

  1.  Only nodes in a common block with X should be explored in the
      increasing-SPF and decreasing-SPF.

  2.  Instead of using the GADAG root, X's localroot should be used.
      This has the following implications:

      A.  The links from X's localroot should not be explored.

      B.  If a node is explored in the outgoing SPF so Y>>X, then X's
          MRT-Red next hops to reach Y uses X's MRT-Red next hops to
          reach X's localroot and if Z<<X, then X's MRT-Blue next hops
          to reach Z uses X's MRT-Blue next hops to reach X's
          localroot.

      C.  If a node W in a common block with X was not reached in the
          increasing-SPF or decreasing-SPF, then W is unordered with
          respect to X.  X's MRT-Blue next hops to W are X's decreasing
          (aka MRT-Red) next hops to X's localroot.  X's MRT-Red next
          hops to W are X's increasing (aka MRT-Blue) next hops to X's
          localroot.

  3.  For nodes in different blocks, the next hops must be inherited
      via the relevant cut-vertex.

  These are all captured in the detailed algorithm given in
  Section 5.7.5.

5.7.5.  Complete Algorithm to Compute MRT Next Hops

  The complete algorithm to compute MRT Next Hops for a particular
  router X is given in Figure 23.  In addition to computing the MRT-
  Blue next hops and MRT-Red next hops used by X to reach each node Y,
  the algorithm also stores an "order_proxy", which is the proper cut-
  vertex to reach Y if it is outside the block, and which is used later
  in deciding whether the MRT-Blue or the MRT-Red can provide an
  acceptable alternate for a particular primary next hop.












Enyedi, et al.               Standards Track                   [Page 34]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  In_Common_Block(x, y)
    if ( (x.block_id is y.block_id)
         or (x is y.localroot) or (y is x.localroot) )
       return true
    return false

  Store_Results(y, direction)
     if direction is FORWARD
        y.higher = true
        y.blue_next_hops = y.next_hops
     if direction is REVERSE
        y.lower = true
        y.red_next_hops = y.next_hops

  SPF_No_Traverse_Block_Root(spf_root, block_root, direction)
     Initialize spf_heap to empty
     Initialize nodes' spf_metric to infinity and next_hops to empty
     spf_root.spf_metric = 0
     insert(spf_heap, spf_root)
     while (spf_heap is not empty)
         min_node = remove_lowest(spf_heap)
         Store_Results(min_node, direction)
         if ((min_node is spf_root) or (min_node is not block_root))
            foreach interface intf of min_node
               if ( ( ((direction is FORWARD) and intf.OUTGOING) or
                    ((direction is REVERSE) and intf.INCOMING) )
                    and In_Common_Block(spf_root, intf.remote_node) )
                  path_metric = min_node.spf_metric + intf.metric
                  if path_metric < intf.remote_node.spf_metric
                     intf.remote_node.spf_metric = path_metric
                     if min_node is spf_root
                       intf.remote_node.next_hops = make_list(intf)
                     else
                       intf.remote_node.next_hops = min_node.next_hops
                     insert_or_update(spf_heap, intf.remote_node)
                  else if path_metric == intf.remote_node.spf_metric
                     if min_node is spf_root
                        add_to_list(intf.remote_node.next_hops, intf)
                     else
                        add_list_to_list(intf.remote_node.next_hops,
                                         min_node.next_hops)

  SetEdge(y)
    if y.blue_next_hops is empty and y.red_next_hops is empty
       SetEdge(y.localroot)
       y.blue_next_hops = y.localroot.blue_next_hops
       y.red_next_hops = y.localroot.red_next_hops
       y.order_proxy = y.localroot.order_proxy



Enyedi, et al.               Standards Track                   [Page 35]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  Compute_MRT_NextHops(x, gadag_root)
     foreach node y
       y.higher = y.lower = false
       clear y.red_next_hops and y.blue_next_hops
       y.order_proxy = y
     SPF_No_Traverse_Block_Root(x, x.localroot, FORWARD)
     SPF_No_Traverse_Block_Root(x, x.localroot, REVERSE)

     // red and blue next hops are stored to x.localroot as different
     // paths are found via the SPF and reverse-SPF.
     // Similarly, any node whose localroot is x will have its
     // red_next_hops and blue_next_hops already set.

     // Handle nodes in the same block that aren't the localroot
     foreach node y
       if (y.IN_MRT_ISLAND and (y is not x) and
            (y.block_id is x.block_id) )
          if y.higher
             y.red_next_hops = x.localroot.red_next_hops
          else if y.lower
             y.blue_next_hops = x.localroot.blue_next_hops
          else
             y.blue_next_hops = x.localroot.red_next_hops
             y.red_next_hops = x.localroot.blue_next_hops

     // Inherit next hops and order_proxies to other components
     if (x is not gadag_root) and (x.localroot is not gadag_root)
        gadag_root.blue_next_hops = x.localroot.blue_next_hops
        gadag_root.red_next_hops = x.localroot.red_next_hops
        gadag_root.order_proxy = x.localroot
     foreach node y
        if (y is not gadag_root) and (y is not x) and y.IN_MRT_ISLAND
          SetEdge(y)

  max_block_id = 0
  Assign_Block_ID(gadag_root, max_block_id)
  Compute_MRT_NextHops(x, gadag_root)

         Figure 23: Complete Algorithm to Compute MRT Next Hops

5.8.  Identify MRT Alternates

  At this point, a computing router S knows its MRT-Blue next hops and
  MRT-Red next hops for each destination in the MRT Island.  The
  primary next hops along the SPT are also known.  It remains to
  determine for each primary next hop to a destination D, which MRT
  avoids the primary next-hop node F.  This computation depends upon
  data set in Compute_MRT_NextHops such as each node y's



Enyedi, et al.               Standards Track                   [Page 36]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  y.blue_next_hops, y.red_next_hops, y.order_proxy, y.higher, y.lower,
  and topo_orders.  Recall that any router knows only which are the
  nodes greater and lesser than itself, but it cannot decide the
  relation between any two given nodes easily; that is why we need
  topological ordering.

  For each primary next-hop node F to each destination D, S can call
  Select_Alternates(S, D, F, primary_intf) to determine whether to use
  the MRT-Blue or MRT-Red next hops as the alternate next hop(s) for
  that primary next hop.  The algorithm is given in Figure 24 and
  discussed afterwards.

 Select_Alternates_Internal(D, F, primary_intf,
                                D_lower, D_higher, D_topo_order):
     if D_higher and D_lower
         if F.HIGHER and F.LOWER
             if F.topo_order < D_topo_order
                 return USE_RED
             else
                 return USE_BLUE
         if F.HIGHER
             return USE_RED
         if F.LOWER
             return USE_BLUE
         //F unordered wrt S
         return USE_RED_OR_BLUE

     else if D_higher
         if F.HIGHER and F.LOWER
             return USE_BLUE
         if F.LOWER
             return USE_BLUE
         if F.HIGHER
             if (F.topo_order > D_topo_order)
                 return USE_BLUE
             if (F.topo_order < D_topo_order)
                 return USE_RED
         //F unordered wrt S
         return USE_RED_OR_BLUE

     else if D_lower
         if F.HIGHER and F.LOWER
             return USE_RED
         if F.HIGHER
             return USE_RED
         if F.LOWER
             if F.topo_order > D_topo_order
                 return USE_BLUE



Enyedi, et al.               Standards Track                   [Page 37]

RFC 7811                    MRT-FRR Algorithm                  June 2016


             if F.topo_order < D_topo_order
                 return USE_RED
         //F unordered wrt S
         return USE_RED_OR_BLUE

     else  //D is unordered wrt S
         if F.HIGHER and F.LOWER
             if primary_intf.OUTGOING and primary_intf.INCOMING
                 return USE_RED_OR_BLUE
             if primary_intf.OUTGOING
                 return USE_BLUE
             if primary_intf.INCOMING
                 return USE_RED
             //primary_intf not in GADAG
             return USE_RED
         if F.LOWER
             return USE_RED
         if F.HIGHER
             return USE_BLUE
         //F unordered wrt S
         if F.topo_order > D_topo_order:
             return USE_BLUE
         else:
             return USE_RED

 Select_Alternates(D, F, primary_intf)
     if not In_Common_Block(F, S)
         return PRIM_NH_IN_DIFFERENT_BLOCK
     if (D is F) or (D.order_proxy is F)
         return PRIM_NH_IS_D_OR_OP_FOR_D
     D_lower = D.order_proxy.LOWER
     D_higher = D.order_proxy.HIGHER
     D_topo_order = D.order_proxy.topo_order
     return Select_Alternates_Internal(D, F, primary_intf,
                                       D_lower, D_higher, D_topo_order)

     Figure 24: Select_Alternates() and Select_Alternates_Internal()

  It is useful to first handle the case where F is also D, or F is the
  order proxy for D.  In this case, only link protection is possible.
  The MRT that doesn't use the failed primary next hop is used.  If
  both MRTs use the primary next hop, then the primary next hop must be
  a cut-link, so either MRT could be used but the set of MRT next hops
  must be pruned to avoid the failed primary next-hop interface.  To
  indicate this case, Select_Alternates returns
  PRIM_NH_IS_D_OR_OP_FOR_D.  Explicit pseudocode to handle the three
  sub-cases above is not provided.




Enyedi, et al.               Standards Track                   [Page 38]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  The logic behind Select_Alternates_Internal() is described in
  Figure 25.  As an example, consider the first case described in the
  table, where the D>>S and D<<S.  If this is true, then either S or D
  must be the block root, R.  If F>>S and F<<S, then S is the block
  root.  So the blue path from S to D is the increasing path to D, and
  the red path S to D is the decreasing path to D.  If the
  F.topo_order>D.topo_order, then either F is ordered higher than D or
  F is unordered with respect to D.  Therefore, F is either on a
  decreasing path from S to D, or it is on neither an increasing nor a
  decreasing path from S to D.  In either case, it is safe to take an
  increasing path from S to D to avoid F.  We know that when S is R,
  the increasing path is the blue path, so it is safe to use the blue
  path to avoid F.

  If instead F.topo_order<D.topo_order, then either F is ordered lower
  than D, or F is unordered with respect to D.  Therefore, F is either
  on an increasing path from S to D, or it is on neither an increasing
  nor a decreasing path from S to D.  In either case, it is safe to
  take a decreasing path from S to D to avoid F.  We know that when S
  is R, the decreasing path is the red path, so it is safe to use the
  red path to avoid F.

  If F>>S or F<<S (but not both), then D is the block root.  We then
  know that the blue path from S to D is the increasing path to R, and
  the red path is the decreasing path to R.  When F>>S, we deduce that
  F is on an increasing path from S to R.  So in order to avoid F, we
  use a decreasing path from S to R, which is the red path.  Instead,
  when F<<S, we deduce that F is on a decreasing path from S to R.  So
  in order to avoid F, we use an increasing path from S to R, which is
  the blue path.

  All possible cases are systematically described in the same manner in
  the rest of the table.


















Enyedi, et al.               Standards Track                   [Page 39]

RFC 7811                    MRT-FRR Algorithm                  June 2016


+------+------------+------+------------------------------+------------+
| D    | MRT blue   | F    | additional      | F          | Alternate  |
| wrt  | and red    | wrt  | criteria        | wrt        |            |
| S    | path       | S    |                 | MRT        |            |
|      | properties |      |                 | (deduced)  |            |
+------+------------+------+-----------------+------------+------------+
| D>>S | Blue path: | F>>S | additional      | F on an    | Use Red    |
| and  | Increasing | only | criteria        | increasing | to avoid   |
| D<<S,| path to R. |      | not needed      | path from  | F          |
| D is | Red path:  |      |                 | S to R     |            |
| R,   | Decreasing +------+-----------------+------------+------------+
|      | path to R. | F<<S | additional      | F on a     | Use Blue   |
|      |            | only | criteria        | decreasing | to avoid   |
|      |            |      | not needed      | path from  | F          |
| or   |            |      |                 | S to R     |            |
|      |            +------+-----------------+------------+------------+
|      |            | F>>S | topo(F)>topo(D) | F on a     | Use Blue   |
| S is | Blue path: | and  | implies that    | decreasing | to avoid   |
| R    | Increasing | F<<S,| F>>D or F??D    | path from  | F          |
|      | path to D. |      |                 | S to D or  |            |
|      | Red path:  |      |                 | neither    |            |
|      | Decreasing |      +-----------------+------------+------------+
|      | path to D. |      | topo(F)<topo(D) | F on an    | Use Red    |
|      |            |      | implies that    | increasing | to avoid   |
|      |            |      | F<<D or F??D    | path from  | F          |
|      |            |      |                 | S to D or  |            |
|      |            |      |                 | neither    |            |
|      |            +------+-----------------+------------+------------+
|      |            | F??S | Can only occur  | F is on    | Use Red    |
|      |            |      | when link       | neither    | or Blue    |
|      |            |      | between         | increasing | to avoid   |
|      |            |      | F and S         | nor decr.  | F          |
|      |            |      | is marked       | path from  |            |
|      |            |      | MRT_INELIGIBLE  | S to D or R|            |

















Enyedi, et al.               Standards Track                   [Page 40]

RFC 7811                    MRT-FRR Algorithm                  June 2016


+------+------------+------+-----------------+------------+------------+
| D>>S | Blue path: | F<<S | additional      | F on       | Use Blue   |
| only | Increasing | only | criteria        | decreasing | to avoid   |
|      | shortest   |      | not needed      | path from  | F          |
|      | path from  |      |                 | S to R     |            |
|      | S to D.    +------+-----------------+------------+------------+
|      | Red path:  | F>>S | topo(F)>topo(D) | F on       | Use Blue   |
|      | Decreasing | only | implies that    | decreasing | to avoid   |
|      | shortest   |      | F>>D or F??D    | path from  | F          |
|      | path from  |      |                 | R to D     |            |
|      | S to R,    |      |                 | or         |            |
|      | then       |      |                 | neither    |            |
|      | decreasing |      +-----------------+------------+------------+
|      | shortest   |      | topo(F)<topo(D) | F on       | Use Red    |
|      | path from  |      | implies that    | increasing | to avoid   |
|      | R to D.    |      | F<<D or F??D    | path from  | F          |
|      |            |      |                 | S to D     |            |
|      |            |      |                 | or         |            |
|      |            |      |                 | neither    |            |
|      |            +------+-----------------+------------+------------+
|      |            | F>>S | additional      | F on Red   | Use Blue   |
|      |            | and  | criteria        |            | to avoid   |
|      |            | F<<S,| not needed      |            | F          |
|      |            | F is |                 |            |            |
|      |            | R    |                 |            |            |
|      |            +------+-----------------+------------+------------+
|      |            | F??S | Can only occur  | F is on    | Use Red    |
|      |            |      | when link       | neither    | or Blue    |
|      |            |      | between         | increasing | to avoid   |
|      |            |      | F and S         | nor decr.  | F          |
|      |            |      | is marked       | path from  |            |
|      |            |      | MRT_INELIGIBLE  | S to D or R|            |



















Enyedi, et al.               Standards Track                   [Page 41]

RFC 7811                    MRT-FRR Algorithm                  June 2016


+------+------------+------+-----------------+------------+------------+
| D<<S | Blue path: | F>>S | additional      | F on       | Use Red    |
| only | Increasing | only | criteria        | increasing | to avoid   |
|      | shortest   |      | not needed      | path from  | F          |
|      | path from  |      |                 | S to R     |            |
|      | S to R,    +------+-----------------+------------+------------+
|      | then       | F<<S | topo(F)>topo(D) | F on       | Use Blue   |
|      | increasing | only | implies that    | decreasing | to avoid   |
|      | shortest   |      | F>>D or F??D    | path from  | F          |
|      | path from  |      |                 | R to D     |            |
|      | R to D.    |      |                 | or         |            |
|      | Red path:  |      |                 | neither    |            |
|      | Decreasing |      +-----------------+------------+------------+
|      | shortest   |      | topo(F)<topo(D) | F on       | Use Red    |
|      | path from  |      | implies that    | increasing | to avoid   |
|      | S to D.    |      | F<<D or F??D    | path from  | F          |
|      |            |      |                 | S to D     |            |
|      |            |      |                 | or         |            |
|      |            |      |                 | neither    |            |
|      |            +------+-----------------+------------+------------+
|      |            | F>>S | additional      | F on Blue  | Use Red    |
|      |            | and  | criteria        |            | to avoid   |
|      |            | F<<S,| not             |            | F          |
|      |            | F is | needed          |            |            |
|      |            | R    |                 |            |            |
|      |            +------+-----------------+------------+------------+
|      |            | F??S | Can only occur  | F is on    | Use Red    |
|      |            |      | when link       | neither    | or Blue    |
|      |            |      | between         | increasing | to avoid   |
|      |            |      | F and S         | nor decr.  | F          |
|      |            |      | is marked       | path from  |            |
|      |            |      | MRT_INELIGIBLE  | S to D or R|            |
+------+------------+------+-----------------+------------+------------+
| D??S | Blue path: | F<<S | additional      | F on a     | Use Red    |
|      | Decr. from | only | criteria        | decreasing | to avoid   |
|      | S to first |      | not needed      | path from  | F          |
|      | node K<<D, |      |                 | S to K.    |            |
|      | then incr. +------+-----------------+------------+------------+
|      | to D.      | F>>S | additional      | F on an    | Use Blue   |
|      | Red path:  | only | criteria        | increasing | to avoid   |
|      | Incr. from |      | not needed      | path from  | F          |
|      | S to first |      |                 | S to L     |            |
|      | node L>>D, |      |                 |            |            |
|      | then decr. |      |                 |            |            |







Enyedi, et al.               Standards Track                   [Page 42]

RFC 7811                    MRT-FRR Algorithm                  June 2016


|      |            +------+-----------------+------------+------------+
|      |            | F??S | topo(F)>topo(D) | F on decr. | Use Blue   |
|      |            |      | implies that    | path from  | to avoid   |
|      |            |      | F>>D or F??D    | L to D or  | F          |
|      |            |      |                 | neither    |            |
|      |            |      +-----------------+------------+------------+
|      |            |      | topo(F)<topo(D) | F on incr. | Use Red    |
|      |            |      | implies that    | path from  | to avoid   |
|      |            |      | F<<D or F??D    | K to D or  | F          |
|      |            |      |                 | neither    |            |
|      |            +------+-----------------+------------+------------+
|      |            | F>>S | GADAG link      | F on an    | Use Blue   |
|      |            | and  | direction       | incr. path | to avoid   |
|      |            | F<<S,| S->F            | from S     | F          |
|      |            | F is +-----------------+------------+------------+
|      |            | R    | GADAG link      | F on a     | Use Red    |
|      |            |      | direction       | decr. path | to avoid   |
|      |            |      | S<-F            | from S     | F          |
|      |            |      +-----------------+------------+------------+
|      |            |      | GADAG link      | Either F is the order   |
|      |            |      | direction       | proxy for D (case       |
|      |            |      | S<-->F          | already handled) or D   |
|      |            |      |                 | is in a different block |
|      |            |      |                 | from F, in which case   |
|      |            |      |                 | Red or Blue avoids F    |
|      |            |      +-----------------+-------------------------+
|      |            |      | S-F link not    | Relies on special       |
|      |            |      | in GADAG,       | construction of GADAG   |
|      |            |      | only when       | to demonstrate that     |
|      |            |      | S-F link is     | using Red avoids F      |
|      |            |      | MRT_INELIGIBLE  | (see text)              |
+------+------------+------+-----------------+-------------------------+

   Determining MRT next hops and alternates based on the partial order
        and topological sort relationships between the source(S),
    destination(D), primary next hop(F), and block root(R).  topo(N)
  indicates the topological sort value of node N.  X??Y indicates that
   node X is unordered with respect to node Y.  It is assumed that the
   case where F is D, or where F is the order proxy for D, has already
                              been handled.

           Figure 25: Determining MRT Next Hops and Alternates

  The last case in Figure 25 requires additional explanation.  The fact
  that the red path from S to D in this case avoids F relies on a
  special property of the GADAGs that we have constructed in this
  algorithm, a property not shared by all GADAGs in general.  When D is
  unordered with respect to S, and F is the localroot for S, it can



Enyedi, et al.               Standards Track                   [Page 43]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  occur that the link between S and F is not in the GADAG only when
  that link has been marked MRT_INELIGIBLE.  For an arbitrary GADAG, S
  doesn't have enough information based on the computed order
  relationships to determine if the red path or blue path will hit F
  (which is also the localroot) before hitting K or L, and making it
  safely to D.  However, the GADAGs that we construct using the
  algorithm in this document are not arbitrary GADAGs.  They have the
  additional property that incoming links to a localroot come from only
  one other node in the same block.  This is a result of the method of
  construction.  This additional property guarantees that the red path
  from S to D will never pass through the localroot of S.  (That would
  require the localroot to play the role of L, the first node in the
  path ordered higher than D, which would in turn require the localroot
  to have two incoming links in the GADAG, which cannot happen.)
  Therefore, it is safe to use the red path to avoid F with these
  specially constructed GADAGs.

  As an example of how Select_Alternates_Internal() operates, consider
  the ADAG depicted in Figure 26 and first suppose that G is the
  source, D is the destination, and H is the failed next hop.  Since
  D>>G, we need to compare H.topo_order and D.topo_order.  Since
  D.topo_order>H.topo_order, D must be either higher than H or
  unordered with respect to H, so we should select the decreasing path
  towards the root.  If, however, the destination were instead J, we
  must find that H.topo_order>J.topo_order, so we must choose the
  increasing Blue next hop to J, which is I.  In the case, when instead
  the destination is C, we find that we need to first decrease to avoid
  using H, so the Blue, first decreasing then increasing, path is
  selected.

                            [E]<-[D]<-[H]<-[J]
                             |    ^    ^    ^
                             V    |    |    |
                            [R]  [C]  [G]->[I]
                             |    ^    ^    ^
                             V    |    |    |
                            [A]->[B]->[F]---|


           Figure 26: ADAG Rooted at R for a 2-Connected Graph

5.9.  Named Proxy-Nodes

  As discussed in Section 11.2 of [RFC7812], it is necessary to find
  MRT-Blue and MRT-Red next hops and MRT-FRR alternates for named
  proxy-nodes.  An example use case is for a router that is not part of
  that local MRT Island, when there is only partial MRT support in the
  domain.



Enyedi, et al.               Standards Track                   [Page 44]

RFC 7811                    MRT-FRR Algorithm                  June 2016


5.9.1.  Determining Proxy-Node Attachment Routers

  Section 11.2 of [RFC7812] discusses general considerations for
  determining the two proxy-node attachment routers for a given proxy-
  node, corresponding to a prefix.  A router in the MRT Island that
  advertises the prefix is a candidate for being a proxy-node
  attachment router, with the associated named-proxy-cost equal to the
  advertised cost to the prefix.

  An Island Border Router (IBR) is a router in the MRT Island that is
  connected to an Island Neighbor (IN), which is a router not in the
  MRT Island but in the same area/level.  An (IBR,IN) pair is a
  candidate for being a proxy-node attachment router, if the shortest
  path from the IN to the prefix does not enter the MRT Island.  A
  method for identifying such Loop-Free Island Neighbors (LFINs) is
  given below.  The named-proxy-cost assigned to each (IBR, IN) pair is
  cost(IBR, IN) + D_opt(IN, prefix).

  From the set of prefix-advertising routers and the set of IBRs with
  at least one LFIN, the two routers with the lowest named-proxy-cost
  are selected.  Ties are broken based upon the lowest Router ID.  For
  ease of discussion, the two selected routers will be referred to as
  proxy-node attachment routers.

5.9.2.  Computing If an Island Neighbor (IN) Is Loop-Free

  As discussed above, the IN needs to be loop-free with respect to the
  whole MRT Island for the destination.  This can be accomplished by
  running the usual SPF algorithm while keeping track of which shortest
  paths have passed through the MRT island.  Pseudocode for this is
  shown in Figure 27.  The Island_Marking_SPF() is run for each IN that
  needs to be evaluated for the loop-free condition, with the IN as the
  spf_root.  Whether or not an IN is loop-free with respect to the MRT
  island can then be determined by evaluating node.PATH_HITS_ISLAND for
  each destination of interest.
















Enyedi, et al.               Standards Track                   [Page 45]

RFC 7811                    MRT-FRR Algorithm                  June 2016


   Island_Marking_SPF(spf_root)
       Initialize spf_heap to empty
       Initialize nodes' spf_metric to infinity and next_hops to empty
           and PATH_HITS_ISLAND to false
       spf_root.spf_metric = 0
       insert(spf_heap, spf_root)
       while (spf_heap is not empty)
           min_node = remove_lowest(spf_heap)
           foreach interface intf of min_node
               path_metric = min_node.spf_metric + intf.metric
               if path_metric < intf.remote_node.spf_metric
                   intf.remote_node.spf_metric = path_metric
                   if min_node is spf_root
                       intf.remote_node.next_hops = make_list(intf)
                   else
                       intf.remote_node.next_hops = min_node.next_hops
                   if intf.remote_node.IN_MRT_ISLAND
                       intf.remote_node.PATH_HITS_ISLAND = true
                   else
                       intf.remote_node.PATH_HITS_ISLAND =
                           min_node.PATH_HITS_ISLAND
                   insert_or_update(spf_heap, intf.remote_node)
               else if path_metric == intf.remote_node.spf_metric
                   if min_node is spf_root
                       add_to_list(intf.remote_node.next_hops, intf)
                   else
                       add_list_to_list(intf.remote_node.next_hops,
                                        min_node.next_hops)
                   if intf.remote_node.IN_MRT_ISLAND
                       intf.remote_node.PATH_HITS_ISLAND = true
                   else
                       intf.remote_node.PATH_HITS_ISLAND =
                           min_node.PATH_HITS_ISLAND

  Figure 27: Island_Marking_SPF() for Determining If an Island Neighbor
                              Is Loop-Free

  It is also possible that a given prefix is originated by a
  combination of non-island routers and island routers.  The results of
  the Island_Marking_SPF() computation can be used to determine if the
  shortest path from an IN to reach that prefix hits the MRT Island.
  The shortest path for the IN to reach prefix P is determined by the
  total cost to reach prefix P, which is the sum of the cost for the IN
  to reach a prefix-advertising node and the cost with which that node
  advertises the prefix.  The path with the minimum total cost to
  prefix P is chosen.  If the prefix-advertising node for that minimum
  total cost path has PATH_HITS_ISLAND set to True, then the IN is not
  loop-free with respect to the MRT Island for reaching prefix P.  If



Enyedi, et al.               Standards Track                   [Page 46]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  there are multiple minimum total cost paths to reach prefix P, then
  all of the prefix-advertising routers involved in the minimum total
  cost paths MUST have PATH_HITS_ISLAND set to False for the IN to be
  considered loop-free to reach P.

  Note that there are other computations that could be used to
  determine if paths from a given IN _might_ pass through the MRT
  Island for a given prefix or destination.  For example, a previous
  draft version of this document specified running the SPF algorithm on
  modified topology that treats the MRT Island as a single node (with
  intra-island links set to zero cost) in order to provide input to
  computations to determine if the path from IN to non-island
  destination hits the MRT Island in this modified topology.  This
  computation is enough to guarantee that a path will not hit the MRT
  Island in the original topology.  However, it is possible that a path
  that is disqualified for hitting the MRT Island in the modified
  topology will not actually hit the MRT Island in the original
  topology.  The algorithm described in Island_Marking_SPF() above does
  not modify the original topology, and will only disqualify a path if
  the actual path does in fact hit the MRT Island.

  Since all routers need to come to the same conclusion about which
  routers qualify as LFINs, this specification requires that all
  routers computing LFINs MUST use an algorithm whose result is
  identical to that of the Island_Marking_SPF() in Figure 27.

5.9.3.  Computing MRT Next Hops for Proxy-Nodes

  Determining the MRT next hops for a proxy-node in the degenerate case
  where the proxy-node is attached to only one node in the GADAG is
  trivial, as all needed information can be derived from that proxy-
  node attachment router.  If there are multiple interfaces connecting
  the proxy-node to the single proxy-node attachment router, then some
  can be assigned to MRT-Red and others to MRT_Blue.

  Now, consider the proxy-node P that is attached to two proxy-node
  attachment routers.  The pseudocode for Select_Proxy_Node_NHs(P,S) in
  Figure 28 specifies how a computing-router S MUST compute the MRT red
  and blue next hops to reach proxy-node P.  The proxy-node attachment
  router with the lower value of mrt_node_id (as defined in Figure 15)
  is assigned to X, and the other proxy-node attachment router is
  assigned to Y.  We will be using the relative order of X,Y, and S in
  the partial order defined by the GADAG to determine the MRT red and
  blue next hops to reach P, so we also define A and B as the order
  proxies for X and Y, respectively, with respect to S.  The order
  proxies for all nodes with respect to S were already computed in
  Compute_MRT_NextHops().




Enyedi, et al.               Standards Track                   [Page 47]

RFC 7811                    MRT-FRR Algorithm                  June 2016


def Select_Proxy_Node_NHs(P,S):
    if P.pnar1.node.node_id < P.pnar2.node.node_id:
        X = P.pnar1.node
        Y = P.pnar2.node
    else:
        X = P.pnar2.node
        Y = P.pnar1.node
    P.pnar_X = X
    P.pnar_Y = Y
    A = X.order_proxy
    B = Y.order_proxy
    if (A is S.localroot
        and B is S.localroot):
        // case 1.0
        Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
        Copy_List_Items(P.red_next_hops, Y.red_next_hops)
        return
    if (A is S.localroot
        and B is not S.localroot):
        // case 2.0
        if B.LOWER:
            // case 2.1
            Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
            Copy_List_Items(P.red_next_hops, Y.red_next_hops)
            return
        if B.HIGHER:
            // case 2.2
            Copy_List_Items(P.blue_next_hops, X.red_next_hops)
            Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
            return
        else:
            // case 2.3
            Copy_List_Items(P.blue_next_hops, X.red_next_hops)
            Copy_List_Items(P.red_next_hops, Y.red_next_hops)
            return
    if (A is not S.localroot
        and B is S.localroot):
        // case 3.0
        if A.LOWER:
            // case 3.1
            Copy_List_Items(P.blue_next_hops, X.red_next_hops)
            Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
            return
        if A.HIGHER:
            // case 3.2
            Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
            Copy_List_Items(P.red_next_hops, Y.red_next_hops)
            return



Enyedi, et al.               Standards Track                   [Page 48]

RFC 7811                    MRT-FRR Algorithm                  June 2016


        else:
            // case 3.3
            Copy_List_Items(P.blue_next_hops, X.red_next_hops)
            Copy_List_Items(P.red_next_hops, Y.red_next_hops)
            return
    if (A is not S.localroot
        and B is not S.localroot):
        // case 4.0
        if (S is A.localroot or S is B.localroot):
            // case 4.05
            if A.topo_order < B.topo_order:
                // case 4.05.1
                Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
                Copy_List_Items(P.red_next_hops, Y.red_next_hops)
                return
            else:
                // case 4.05.2
                Copy_List_Items(P.blue_next_hops, X.red_next_hops)
                Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
                return
        if A.LOWER:
            // case 4.1
            if B.HIGHER:
                // case 4.1.1
                Copy_List_Items(P.blue_next_hops, X.red_next_hops)
                Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
                return
            if B.LOWER:
                // case 4.1.2
                if A.topo_order < B.topo_order:
                    // case 4.1.2.1
                    Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
                    Copy_List_Items(P.red_next_hops, Y.red_next_hops)
                    return
                else:
                    // case 4.1.2.2
                    Copy_List_Items(P.blue_next_hops, X.red_next_hops)
                    Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
                    return
            else:
                // case 4.1.3
                Copy_List_Items(P.blue_next_hops, X.red_next_hops)
                Copy_List_Items(P.red_next_hops, Y.red_next_hops)
                return
        if A.HIGHER:
            // case 4.2





Enyedi, et al.               Standards Track                   [Page 49]

RFC 7811                    MRT-FRR Algorithm                  June 2016


            if B.HIGHER:
                // case 4.2.1
                if A.topo_order < B.topo_order:
                    // case 4.2.1.1
                    Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
                    Copy_List_Items(P.red_next_hops, Y.red_next_hops)
                    return
                else:
                    // case 4.2.1.2
                    Copy_List_Items(P.blue_next_hops, X.red_next_hops)
                    Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
                    return
            if B.LOWER:
                // case 4.2.2
                Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
                Copy_List_Items(P.red_next_hops, Y.red_next_hops)
                return
            else:
                // case 4.2.3
                Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
                Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
                return
        else:
            // case 4.3
            if B.LOWER:
                // case 4.3.1
                Copy_List_Items(P.blue_next_hops, X.red_next_hops)
                Copy_List_Items(P.red_next_hops, Y.red_next_hops)
                return
            if B.HIGHER:
                // case 4.3.2
                Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
                Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
                return
            else:
                // case 4.3.3
                if A.topo_order < B.topo_order:
                    // case 4.3.3.1
                    Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
                    Copy_List_Items(P.red_next_hops, Y.red_next_hops)
                    return










Enyedi, et al.               Standards Track                   [Page 50]

RFC 7811                    MRT-FRR Algorithm                  June 2016


                else:
                    // case 4.3.3.2
                    Copy_List_Items(P.blue_next_hops, X.red_next_hops)
                    Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
                    return
    assert(False)

                   Figure 28: Select_Proxy_Node_NHs()

  It is useful to understand up front that the blue next hops to reach
  proxy-node P produced by Select_Proxy_Node_NHs() will always be the
  next hops that reach proxy-node attachment router X, while the red
  next hops to reach proxy-node P will always be the next hops that
  reach proxy-node attachment router Y.  This is different from the red
  and blue next hops produced by Compute_MRT_NextHops() where, for
  example, blue next hops to a destination that is ordered with respect
  to the source will always correspond to an INCREASING next hop on the
  GADAG.  The exact choice of which next hops chosen by
  Select_Proxy_Node_NHs() as the blue next hops to reach P (which will
  necessarily go through X on its way to P) does depend on the GADAG,
  but the relationship is more complex than was the case with
  Compute_MRT_NextHops().

  There are 21 different relative order relationships between A, B, and
  S that Select_Proxy_Node_NHs() uses to determine red and blue next
  hops to P.  This document does not attempt to provide an exhaustive
  description of each case considered in Select_Proxy_Node_NHs().
  Instead, we provide a high-level overview of the different cases, and
  we consider a few cases in detail to give an example of the reasoning
  that can be used to understand each case.

  At the highest level, Select_Proxy_Node_NHs() distinguishes between
  four different cases depending on whether or not A or B is the
  localroot for S.  For example, for case 4.0, neither A nor B is the
  localroot for S.  Case 4.05 addresses the case where S is the
  localroot for either A or B, while cases 4.1, 4.2, and 4.3 address
  the cases where A is ordered lower than S, A is ordered higher than
  S, or A is unordered with respect to S on the GADAG.  In general,
  each of these cases is then further subdivided into whether or not B
  is ordered lower than S, B is ordered higher than S, or B is
  unordered with respect to S.  In some cases, we also need a further
  level of discrimination, where we use the topological sort order of A
  with respect to B.

  As a detailed example, let's consider case 4.1 and all of its sub-
  cases, and explain why the red and blue next hops to reach P are
  chosen as they are in Select_Proxy_Node_NHs().  In case 4.1, neither
  A nor B is the localroot for S, S is not the localroot for A or B,



Enyedi, et al.               Standards Track                   [Page 51]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  and A is ordered lower than S on the GADAG.  In this situation, we
  know that the red path to reach X (as computed in
  Compute_MRT_NextHops()) will follow DECREASING next hops towards A,
  while the blue path to reach X will follow INCREASING next hops to
  the localroot, and then INCREASING next hops to A.

  Now consider sub-case 4.1.1 where B is ordered higher than S.  In
  this situation, we know that the blue path to reach Y will follow
  INCREASING next hops towards B, while the red next hops to reach Y
  will follow DECREASING next hops to the localroot, and then
  DECREASING next hops to B.  So, to reach X and Y by two disjoint
  paths, we can choose the red next hops to X and the blue next hops to
  Y.  We have chosen the convention that blue next hops to P are those
  that pass through X, and red next hops to P are those that pass
  through Y, so we can see that case 4.1.1 produces the desired result.
  Choosing blue to X and red to Y does not produce disjoint paths
  because the paths intersect at least at the localroot.

  Now consider sub-case 4.1.2 where B is ordered lower than S.  In this
  situation, we know that the red path to reach Y will follow
  DECREASING next hops towards B, while the BLUE next hops to reach Y
  will follow INCREASING next hops to the localroot, and then
  INCREASING next hops to A.  The choice here is more difficult than in
  4.1.1 because A and B are both on the DECREASING path from S towards
  the localroot.  We want to use the direct DECREASING(red) path to the
  one that is nearer to S on the GADAG.  We get this extra information
  by comparing the topological sort order of A and B.  If
  A.topo_order<B.topo_order, then we use red to Y and blue to X, since
  the red path to Y will DECREASE to B without hitting A, and the blue
  path to X will INCREASE to A without hitting B.  Instead, if
  A.topo_order>B.topo_order, then we use red to X and blue to Y.

  Note that when A is unordered with respect to B, the result of
  comparing A.topo_order with B.topo_order could be greater than or
  less than.  In this case, the result doesn't matter because either
  choice (red to Y and blue to X or red to X and blue to Y) would work.
  What is required is that all nodes in the network give the same
  result when comparing A.topo_order with B.topo_order.  This is
  guaranteed by having all nodes run the same algorithm
  (Run_Topological_Sort_GADAG()) to compute the topological sort order.

  Finally, we consider case 4.1.3, where B is unordered with respect to
  S.  In this case, the blue path to reach Y will follow the DECREASING
  next hops towards the localroot until it reaches some node (K) which
  is ordered less than B, after which it will take INCREASING next hops
  to B.  The red path to reach Y will follow the INCREASING next hops
  towards the localroot until it reaches some node (L) which is ordered
  greater than B, after which it will take DECREASING next hops to B.



Enyedi, et al.               Standards Track                   [Page 52]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  Both K and A are reached by DECREASING from S, but we don't have
  information about whether or not that DECREASING path will hit K or A
  first.  Instead, we do know that the INCREASING path from S will hit
  L before reaching A.  Therefore, we use the red path to reach Y and
  the red path to reach X.

  Similar reasoning can be applied to understand the other 17 cases
  used in Select_Proxy_Node_NHs().  However, cases 2.3 and 3.3 deserve
  special attention because the correctness of the solution for these
  two cases relies on a special property of the GADAGs that we have
  constructed in this algorithm, a property not shared by all GADAGs in
  general.  Focusing on case 2.3, we consider the case where A is the
  localroot for S, while B is not, and B is unordered with respect to
  S.  The red path to X DECREASES from S to the localroot A, while the
  blue path to X INCREASES from S to the localroot A.  The blue path to
  Y DECREASES towards the localroot A until it reaches some node (K)
  which is ordered less than B, after which the path INCREASES to B.
  The red path to Y INCREASES towards the localroot A until it reaches
  some node (L) which is ordered greater than B, after which the path
  DECREASES to B.  It can be shown that for an arbitrary GADAG, with
  only the ordering relationships computed so far, we don't have enough
  information to choose a pair of paths to reach X and Y that are
  guaranteed to be disjoint.  In some topologies, A will play the role
  of K, the first node ordered less than B on the blue path to Y.  In
  other topologies, A will play the role of L, the first node ordered
  greater than B on the red path to Y.  The basic problem is that we
  cannot distinguish between these two cases based on the ordering
  relationships.

  As discussed Section 5.8, the GADAGs that we construct using the
  algorithm in this document are not arbitrary GADAGs.  They have the
  additional property that incoming links to a localroot come from only
  one other node in the same block.  This is a result of the method of
  construction.  This additional property guarantees that localroot A
  will never play the role of L in the red path to Y, since L must have
  at least two incoming links from different nodes in the same block in
  the GADAG.  This, in turn, allows Select_Proxy_Node_NHs() to choose
  the red path to Y and the red path to X as the disjoint MRT paths to
  reach P.

5.9.4.  Computing MRT Alternates for Proxy-Nodes

  After finding the red and the blue next hops for a given proxy-node
  P, it is necessary to know which one of these to use in the case of
  failure.  This can be done by Select_Alternates_Proxy_Node(), as
  shown in the pseudocode in Figure 29.





Enyedi, et al.               Standards Track                   [Page 53]

RFC 7811                    MRT-FRR Algorithm                  June 2016


 def Select_Alternates_Proxy_Node(P,F,primary_intf):
     S = primary_intf.local_node
     X = P.pnar_X
     Y = P.pnar_Y
     A = X.order_proxy
     B = Y.order_proxy
     if F is A and F is B:
         return 'PRIM_NH_IS_OP_FOR_BOTH_X_AND_Y'
     if F is A:
         return 'USE_RED'
     if F is B:
         return 'USE_BLUE'

     if not In_Common_Block(A, B):
         if In_Common_Block(F, A):
             return 'USE_RED'
         elif In_Common_Block(F, B):
             return 'USE_BLUE'
         else:
             return 'USE_RED_OR_BLUE'
     if (not In_Common_Block(F, A)
         and not In_Common_Block(F, A) ):
         return 'USE_RED_OR_BLUE'

     alt_to_X = Select_Alternates(X, F, primary_intf)
     alt_to_Y = Select_Alternates(Y, F, primary_intf)

     if (alt_to_X == 'USE_RED_OR_BLUE'
         and alt_to_Y == 'USE_RED_OR_BLUE'):
         return 'USE_RED_OR_BLUE'
     if alt_to_X == 'USE_RED_OR_BLUE':
         return 'USE_BLUE'
     if alt_to_Y == 'USE_RED_OR_BLUE':
         return 'USE_RED'

     if (A is S.localroot
         and B is S.localroot):
         // case 1.0
         if (alt_to_X == 'USE_BLUE' and alt_to_Y == 'USE_RED'):
             return 'USE_RED_OR_BLUE'
         if alt_to_X == 'USE_BLUE':
             return 'USE_BLUE'
         if alt_to_Y == 'USE_RED':
             return 'USE_RED'
         assert(False)
     if (A is S.localroot
         and B is not S.localroot):
         // case 2.0



Enyedi, et al.               Standards Track                   [Page 54]

RFC 7811                    MRT-FRR Algorithm                  June 2016


         if B.LOWER:
             // case 2.1
             if (alt_to_X == 'USE_BLUE' and alt_to_Y == 'USE_RED'):
                 return 'USE_RED_OR_BLUE'
             if alt_to_X == 'USE_BLUE':
                 return 'USE_BLUE'
             if alt_to_Y == 'USE_RED':
                 return 'USE_RED'
             assert(False)
         if B.HIGHER:
             // case 2.2
             if (alt_to_X == 'USE_RED' and alt_to_Y == 'USE_BLUE'):
                 return 'USE_RED_OR_BLUE'
             if alt_to_X == 'USE_RED':
                 return 'USE_BLUE'
             if alt_to_Y == 'USE_BLUE':
                 return 'USE_RED'
             assert(False)
         else:
             // case 2.3
             if (alt_to_X == 'USE_RED' and alt_to_Y == 'USE_RED'):
                 return 'USE_RED_OR_BLUE'
             if alt_to_X == 'USE_RED':
                 return 'USE_BLUE'
             if alt_to_Y == 'USE_RED':
                 return 'USE_RED'
             assert(False)
     if (A is not S.localroot
         and B is S.localroot):
         // case 3.0
         if A.LOWER:
             // case 3.1
             if (alt_to_X == 'USE_RED' and alt_to_Y == 'USE_BLUE'):
                 return 'USE_RED_OR_BLUE'
             if alt_to_X == 'USE_RED':
                 return 'USE_BLUE'
             if alt_to_Y == 'USE_BLUE':
                 return 'USE_RED'
             assert(False)
         if A.HIGHER:
             // case 3.2
             if (alt_to_X == 'USE_BLUE' and alt_to_Y == 'USE_RED'):
                 return 'USE_RED_OR_BLUE'
             if alt_to_X == 'USE_BLUE':
                 return 'USE_BLUE'
             if alt_to_Y == 'USE_RED':
                 return 'USE_RED'
             assert(False)



Enyedi, et al.               Standards Track                   [Page 55]

RFC 7811                    MRT-FRR Algorithm                  June 2016


         else:
             // case 3.3
             if (alt_to_X == 'USE_RED' and alt_to_Y == 'USE_RED'):
                 return 'USE_RED_OR_BLUE'
             if alt_to_X == 'USE_RED':
                 return 'USE_BLUE'
             if alt_to_Y == 'USE_RED':
                 return 'USE_RED'
             assert(False)
     if (A is not S.localroot
         and B is not S.localroot):
         // case 4.0
         if (S is A.localroot or S is B.localroot):
             // case 4.05
             if A.topo_order < B.topo_order:
                 // case 4.05.1
                 if (alt_to_X == 'USE_BLUE' and alt_to_Y == 'USE_RED'):
                     return 'USE_RED_OR_BLUE'
                 if alt_to_X == 'USE_BLUE':
                     return 'USE_BLUE'
                 if alt_to_Y == 'USE_RED':
                     return 'USE_RED'
                 assert(False)
             else:
                 // case 4.05.2
                 if (alt_to_X == 'USE_RED' and alt_to_Y == 'USE_BLUE'):
                     return 'USE_RED_OR_BLUE'
                 if alt_to_X == 'USE_RED':
                     return 'USE_BLUE'
                 if alt_to_Y == 'USE_BLUE':
                     return 'USE_RED'
                 assert(False)
         if A.LOWER:
             // case 4.1
             if B.HIGHER:
                 // case 4.1.1
                 if (alt_to_X == 'USE_RED' and alt_to_Y == 'USE_BLUE'):
                     return 'USE_RED_OR_BLUE'
                 if alt_to_X == 'USE_RED':
                     return 'USE_BLUE'
                 if alt_to_Y == 'USE_BLUE':
                     return 'USE_RED'
                 assert(False)
             if B.LOWER:
                 // case 4.1.2
                 if A.topo_order < B.topo_order:
                     // case 4.1.2.1
                     if (alt_to_X == 'USE_BLUE'



Enyedi, et al.               Standards Track                   [Page 56]

RFC 7811                    MRT-FRR Algorithm                  June 2016


                         and alt_to_Y == 'USE_RED'):
                         return 'USE_RED_OR_BLUE'
                     if alt_to_X == 'USE_BLUE':
                         return 'USE_BLUE'
                     if alt_to_Y == 'USE_RED':
                         return 'USE_RED'
                     assert(False)
                 else:
                     // case 4.1.2.2
                     if (alt_to_X == 'USE_RED'
                         and alt_to_Y == 'USE_BLUE'):
                         return 'USE_RED_OR_BLUE'
                     if alt_to_X == 'USE_RED':
                         return 'USE_BLUE'
                     if alt_to_Y == 'USE_BLUE':
                         return 'USE_RED'
                     assert(False)
             else:
                 // case 4.1.3
                 if (F.LOWER and not F.HIGHER
                     and F.topo_order > A.topo_order):
                     // case 4.1.3.1
                     return 'USE_RED'
                 else:
                     // case 4.1.3.2
                     return 'USE_BLUE'
         if A.HIGHER:
             // case 4.2
             if B.HIGHER:
                 // case 4.2.1
                 if A.topo_order < B.topo_order:
                     // case 4.2.1.1
                     if (alt_to_X == 'USE_BLUE'
                         and alt_to_Y == 'USE_RED'):
                         return 'USE_RED_OR_BLUE'
                     if alt_to_X == 'USE_BLUE':
                         return 'USE_BLUE'
                     if alt_to_Y == 'USE_RED':
                         return 'USE_RED'
                     assert(False)
                 else:
                     // case 4.2.1.2
                     if (alt_to_X == 'USE_RED'
                         and alt_to_Y == 'USE_BLUE'):
                         return 'USE_RED_OR_BLUE'
                     if alt_to_X == 'USE_RED':
                         return 'USE_BLUE'
                     if alt_to_Y == 'USE_BLUE':



Enyedi, et al.               Standards Track                   [Page 57]

RFC 7811                    MRT-FRR Algorithm                  June 2016


                         return 'USE_RED'
                     assert(False)
             if B.LOWER:
                 // case 4.2.2
                 if (alt_to_X == 'USE_BLUE'
                     and alt_to_Y == 'USE_RED'):
                     return 'USE_RED_OR_BLUE'
                 if alt_to_X == 'USE_BLUE':
                     return 'USE_BLUE'
                 if alt_to_Y == 'USE_RED':
                     return 'USE_RED'
                 assert(False)
             else:
                 // case 4.2.3
                 if (F.HIGHER and not F.LOWER
                     and F.topo_order < A.topo_order):
                     return 'USE_RED'
                 else:
                     return 'USE_BLUE'
         else:
             // case 4.3
             if B.LOWER:
                 // case 4.3.1
                 if (F.LOWER and not F.HIGHER
                     and F.topo_order > B.topo_order):
                     return 'USE_BLUE'
                 else:
                     return 'USE_RED'
             if B.HIGHER:
                 // case 4.3.2
                 if (F.HIGHER and not F.LOWER
                     and F.topo_order < B.topo_order):
                     return 'USE_BLUE'
                 else:
                     return 'USE_RED'
             else:
                 // case 4.3.3
                 if A.topo_order < B.topo_order:
                     // case 4.3.3.1
                     if (alt_to_X == 'USE_BLUE'
                         and alt_to_Y == 'USE_RED'):
                         return 'USE_RED_OR_BLUE'
                     if alt_to_X == 'USE_BLUE':
                         return 'USE_BLUE'
                     if alt_to_Y == 'USE_RED':
                         return 'USE_RED'
                     assert(False)




Enyedi, et al.               Standards Track                   [Page 58]

RFC 7811                    MRT-FRR Algorithm                  June 2016


                 else:
                     // case 4.3.3.2
                     if (alt_to_X == 'USE_RED'
                         and alt_to_Y == 'USE_BLUE'):
                         return 'USE_RED_OR_BLUE'
                     if alt_to_X == 'USE_RED':
                         return 'USE_BLUE'
                     if alt_to_Y == 'USE_BLUE':
                         return 'USE_RED'
                     assert(False)
     assert(False)

                Figure 29: Select_Alternates_Proxy_Node()

  Select_Alternates_Proxy_Node(P,F,primary_intf) determines whether it
  is safe to use the blue path to P (which goes through X), the red
  path to P (which goes through Y), or either, when the primary_intf to
  node F (and possibly node F) fails.  The basic approach is to run
  Select_Alternates(X,F,primary_intf) and
  Select_Alternates(Y,F,primary_intf) to determine which of the two MRT
  paths to X and which of the two MRT paths to Y is safe to use in the
  event of the failure of F.  In general, we will find that if it is
  safe to use a particular path to X or Y when F fails, and
  Select_Proxy_Node_NHs() used that path when constructing the red or
  blue path to reach P, then it will also be safe to use that path to
  reach P when F fails.  This rule has one exception which is covered
  below.  First, we give a concrete example of how
  Select_Alternates_Proxy_Node() works in the common case.

  The 21 ordering relationships used in Select_Proxy_Node_NHs() are
  repeated in Select_Alternates_Proxy_Node().  We focus on case 4.1.1
  to give a detailed example of the reasoning used in
  Select_Alternates_Proxy_Node().  In Select_Proxy_Node_NHs(), we
  determined for case 4.1.1 that the red next hops to X and the blue
  next hops to Y allow us to reach X and Y by disjoint paths, and are
  thus the blue and red next hops to reach P.  Therefore, if
  Select_Alternates(X, F, primary_intf) is run and we find that it is
  safe to USE_RED to reach X, then we also conclude that it is safe to
  use the MRT path through X to reach P (the blue path to P) when F
  fails.  Similarly, if we run Select_Alternates(Y, F, primary_intf)
  and we find that it is safe to USE_BLUE to reach Y, then we also
  conclude that it is safe to use the MRT path through Y to reach P
  (the red path to P) when F fails.  If both of the paths that were
  used in Select_Proxy_Node_NHs() to construct the blue and red paths
  to P are found to be safe to use to use to reach X and Y, t then we
  conclude that we can use either the red or the blue path to P.





Enyedi, et al.               Standards Track                   [Page 59]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  This simple reasoning gives the correct answer in most of the cases.
  However, additional logic is needed when either A or B (but not both
  A and B) is unordered with respect to S.  This applies to cases
  4.1.3, 4.2.3, 4.3.1, and 4.3.2.  Looking at case 4.1.3 in more
  detail, A is ordered less than S, but B is unordered with respect to
  S.  In the discussion of case 4.1.3 above, we saw that
  Select_Proxy_Node_NHs() chose the red path to reach Y and the red
  path to reach X.  We also saw that the red path to reach Y will
  follow the INCREASING next hops towards the localroot until it
  reaches some node (L) which is ordered greater than B, after which it
  will take DECREASING next hops to B.  The problem is that the red
  path to reach P (the one that goes through Y) won't necessarily be
  the same as the red path to reach Y.  This is because the next hop
  that node L computes for its red next hop to reach P may be different
  from the next hop it computes for its red next hop to reach Y.  This
  is because B is ordered lower than L, so L applies case 4.1.2 of
  Select_Proxy_Node_NHs() in order to determine its next hops to reach
  P.  If A.topo_order<B.topo_order (case 4.1.2.1), then L will choose
  DECREASING next hops directly to B, which is the same result that L
  computes in Compute_MRT_NextHops() to reach Y.  However, if
  A.topo_order>B.topo_order (case 4.1.2.2), then L will choose
  INCREASING next hops to reach B, which is different from what L
  computes in Compute_MRT_NextHops() to reach Y.  So, testing the
  safety of the path for S to reach Y on failure of F as a surrogate
  for the safety of using the red path to reach P is not reliable in
  this case.  It is possible construct topologies where the red path to
  P hits F even though the red path to Y does not hit F.

  Fortunately, there is enough information in the order relationships
  that we have already computed to still figure out which alternate to
  choose in these four cases.  The basic idea is to always choose the
  path involving the ordered node, unless that path would hit F.
  Returning to case 4.1.3, we see that since A is ordered lower than S,
  the only way for S to hit F using a simple DECREASING path to A is
  for F to lie between A and S on the GADAG.  This scenario is covered
  by requiring that F be lower than S (but not also higher than S) and
  that F.topo_order>A.topo_order in case 4.1.3.1.

  We just need to confirm that it is safe to use the path involving B
  in this scenario.  In case 4.1.3.1, either F is between A and S on
  the GADAG, or F is unordered with respect to A and lies on the
  DECREASING path from S to the localroot.  When F is between A and S
  on the GADAG, then the path through B chosen to avoid A in
  Select_Proxy_Node_NHs() will also avoid F.  When F is unordered with
  respect to A and lies on the DECREASING path from S to the localroot,
  then we consider two cases.  Either F.topo_order<B.topo_order or
  F.topo_order>B.topo_order.  In the first case, since
  F.topo_order<B.topo_order and F.topo_order>A.topo_order, it must be



Enyedi, et al.               Standards Track                   [Page 60]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  the case that A.topo_order<B.topo_order.  Therefore, L will choose
  DECREASING next hops directly to B (case 4.1.2.1), which cannot hit F
  since F.topo_order<B.topo_order.  In the second case, where
  F.topo_order>B.topo_order, the only way for the path involving B to
  hit F is if it DECREASES from L to B through F, i.e., it must be that
  L>>F>>B.  However, since S>>F, this would imply that S>>B.  However,
  we know that S is unordered with respect to B, so the second case
  cannot occur.  So we have demonstrated that the red path to P (which
  goes via B and Y) is safe to use under the conditions of 4.1.3.1.
  Similar reasoning can be applied to the other three special cases
  where either A or B is unordered with respect to S.

6.  MRT Lowpoint Algorithm: Next-Hop Conformance

  This specification defines the MRT Lowpoint algorithm, which includes
  the construction of a common GADAG and the computation of MRT-Red and
  MRT-Blue next hops to each node in the graph.  An implementation MAY
  select any subset of next hops for MRT-Red and MRT-Blue that respect
  the available nodes that are described in Section 5.7 for each of the
  MRT-Red and MRT-Blue and the selected next hops are further along in
  the interval of allowed nodes towards the destination.

  For example, the MRT-Blue next hops used when the destination Y >> X,
  the computing router, MUST be one or more nodes, T, whose topo_order
  is in the interval [X.topo_order, Y.topo_order] and where Y >> T or Y
  is T.  Similarly, the MRT-Red next hops MUST be have a topo_order in
  the interval [R-small.topo_order, X.topo_order] or [Y.topo_order,
  R-big.topo_order].

  Implementations SHOULD implement the Select_Alternates() function to
  pick an MRT-FRR alternate.

7.  Broadcast Interfaces

  When broadcast interfaces are used to connect nodes, the broadcast
  network MUST be represented as a pseudonode, where each real node
  connects to the pseudonode.  The interface metric in the direction
  from real node to pseudonode is the non-zero interface metric, while
  the interface metric in the direction from the pseudonode to the real
  node is set to zero.  This is consistent with the way that broadcast
  interfaces are represented as pseudonodes in IS-IS and OSPF.

  Pseudonodes MUST be treated as equivalent to real nodes in the
  network graph used in the MRT Lowpoint algorithm with a few
  exceptions detailed below.

  The pseudonodes MUST be included in the computation of the GADAG.
  The neighbors of the pseudonode need to know the mrt_node_id of the



Enyedi, et al.               Standards Track                   [Page 61]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  pseudonode in order to consistently order interfaces, which is needed
  to compute the GADAG.  The mrt_node_id for IS-IS is the 7-octet
  neighbor system ID and pseudonode number in TLV 22 or TLV 222.  The
  mrt_node_id for OSPFv2 is the 4-octet interface address of the
  Designated Router found in the Link ID field for the link type 2
  (transit network) in the Router-LSA.  The mrt_node_id for OSPFv3 is
  the 4 octet interface address of the Designated Router found in the
  Neighbor Interface ID field for the link type 2 (transit network) in
  the Router-LSA.  Note that this is different from the Neighbor Router
  ID field used for the mrt_node_id for point-to-point links in OSPFv3
  Router-LSAs given in Figure 15.

  Pseudonodes MUST NOT be considered candidates for selection as GADAG
  root.  This rule is intended to result in a more stable network-wide
  selection of GADAG root by removing the possibility that the change
  of Designated Router or Designated Intermediate System on a broadcast
  network can result in a change of GADAG root.

7.1.  Computing MRT Next Hops on Broadcast Networks

  The pseudonode does not correspond to a real node, so it is not
  actually involved in forwarding.  A real node on a broadcast network
  cannot simply forward traffic to the broadcast network.  It must
  specify another real node on the broadcast network as the next hop.
  On a network graph where a broadcast network is represented by a
  pseudonode, this means that if a real node determines that the next
  hop to reach a given destination is a pseudonode, it must also
  determine the next-next-hop for that destination in the network
  graph, which corresponds to a real node attached to the broadcast
  network.

  It is interesting to note that this issue is not unique to the MRT
  algorithm, but is also encountered in normal SPF computations for
  IGPs.  Section 16.1.1 of [RFC2328] describes how this is done for
  OSPF.  When OSPF runs its shortest-path tree calculation, it deals
  with pseudonodes in the following manner.  Whenever the calculating
  router finds a shorter path to reach a real destination node and the
  shorter path to the destination is a single pseudonode hop, then the
  next hop for that destination is taken from the interface IP address
  in the Router-LSA correspond to the link to the real destination
  node.

  For IS-IS, in the example pseudocode implementation of Dijkstra's
  algorithm in Annex C of [ISO10589-Second-Edition], whenever the
  algorithm encounters an adjacency from a real node to a pseudonode,
  it gets converted to a set of adjacencies from the real node to the
  neighbors of the pseudonode.  In this way, the computed next hops
  point all the way to the real node, and not the pseudonode.



Enyedi, et al.               Standards Track                   [Page 62]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  We could avoid the problem of determining next hops across
  pseudonodes in MRT by converting the pseudonode representation of
  broadcast networks to a full mesh of links between real nodes on the
  same network.  However, if we make that conversion before computing
  the GADAG, we lose information about which links actually correspond
  to a single physical interface into the broadcast network.  This
  could result computing red and blue next hops that use the same
  broadcast interface, in which case neither the red nor the blue next
  hop would be usable as an alternate on failure of the broadcast
  interface.

  Instead, we take the following approach, which maintains the property
  that either the red and blue next hop will avoid the broadcast
  network, if topologically allowed.  We run the MRT Lowpoint algorithm
  treating the pseudonodes as equivalent to real nodes in the network
  graph, with the exceptions noted above.  In addition to running the
  MRT Lowpoint algorithm from the point of view of itself, a computing
  router connected to a pseudonode MUST also run the MRT Lowpoint
  algorithm from the point of view of each of its pseudonode neighbors.
  For example, if a computing router S determines that its MRT red next
  hop to reach a destination D is a pseudonode P, S looks at its MRT
  Lowpoint algorithm computation from P's point of view to determine
  P's red next hop to reach D, say interface 1 on node X.  S now knows
  that its real red next hop to reach D is interface 1 on node X on the
  broadcast network represented by P, and it can install the
  corresponding entry in its FIB.

7.2.  Using MRT Next Hops as Alternates in the Event of Failures on
     Broadcast Networks

  In the previous section, we specified how to compute MRT next hops
  when broadcast networks are involved.  In this section, we discuss
  how a PLR can use those MRT next hops in the event of failures
  involving broadcast networks.

  A PLR attached to a broadcast network running only OSPF or IS-IS with
  large Hello intervals has limited ability to quickly detect failures
  on a broadcast network.  The only failure mode that can be quickly
  detected is the failure of the physical interface connecting the PLR
  to the broadcast network.  For the failure of the interface
  connecting the PLR to the broadcast network, the alternate that
  avoids the broadcast network can be computed by using the broadcast
  network pseudonode as F, the primary next-hop node, in
  Select_Alternates().  This will choose an alternate path that avoids
  the broadcast network.  However, the alternate path will not
  necessarily avoid all of the real nodes connected to the broadcast
  network.  This is because we have used the pseudonode to represent
  the broadcast network.  And we have enforced the node-protecting



Enyedi, et al.               Standards Track                   [Page 63]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  property of MRT on the pseudonode to provide protection against
  failure of the broadcast network, not the real next-hop nodes on the
  broadcast network.  This is the best that we can hope to do if
  failure of the broadcast interface is the only failure mode that the
  PLR can respond to.

  We can improve on this if the PLR also has the ability to quickly
  detect a lack of connectivity across the broadcast network to a given
  IP-layer node.  This can be accomplished by running BFD between all
  pairs of IGP neighbors on the broadcast network.  Note that in the
  case of OSPF, this would require establishing BFD sessions between
  all pairs of neighbors in the 2-WAY state.  When the PLR can quickly
  detect the failure of a particular next hop across a broadcast
  network, the PLR can be more selective in its choice of alternates.
  For example, when the PLR observes that connectivity to an IP-layer
  node on a broadcast network has failed, the PLR may choose to still
  use the broadcast network to reach other IP-layer nodes that are
  still reachable.  Or, if the PLR observes that connectivity has
  failed to several IP-layer nodes on the same broadcast network, it
  may choose to treat the entire broadcast network as failed.  The
  choice of MRT alternates by a PLR for a particular set of failure
  conditions is a local decision, since it does not require
  coordination with other nodes.

8.  Evaluation of Alternative Methods for Constructing GADAGs

  This document specifies the MRT Lowpoint algorithm.  One component of
  the algorithm involves constructing a common GADAG based on the
  network topology.  The MRT Lowpoint algorithm computes the GADAG
  using the method described in Section 5.5.  This method aims to
  minimize the amount of computation required to compute the GADAG.  In
  the process of developing the MRT Lowpoint algorithm, two alternative
  methods for constructing GADAGs were also considered.  These
  alternative methods are described in Appendices B and C.  In general,
  these other two methods require more computation to compute the
  GADAG.  The analysis below was performed to determine if the
  alternative GADAG construction methods produce shorter MRT alternate
  paths in real network topologies, and if so, to what extent.

  Figure 30 compares results obtained using the three different methods
  for constructing GADAGs on five different service provider network
  topologies.  MRT_LOWPOINT indicates the method specified in
  Section 5.5, while MRT_SPF and MRT_HYBRID indicate the methods
  specified in Appendices B and C, respectively.  The columns on the
  right present the distribution of alternate path lengths for each
  GADAG construction method.  Each MRT computation was performed using
  a same GADAG root chosen based on centrality.




Enyedi, et al.               Standards Track                   [Page 64]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  For three of the topologies analyzed (T201, T206, and T211), the use
  of MRT_SPF or MRT_HYBRID methods does not appear to provide a
  significantly shorter alternate path lengths compared to the
  MRT_LOWPOINT method.  However, for two of the topologies (T216 and
  T219), the use of the MRT_SPF method resulted in noticeably shorter
  alternate path lengths than the use of the MRT_LOWPOINT or MRT_HYBRID
  methods.

  It was decided to use the MRT_LOWPOINT method to construct the GADAG
  in the algorithm specified in this document, in order to initially
  offer an algorithm with lower computational requirements.  These
  results indicate that in the future it may be useful to evaluate and
  potentially specify other MRT Lowpoint algorithm variants that use
  different GADAG construction methods.





































Enyedi, et al.               Standards Track                   [Page 65]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  +-------------------------------------------------------------------+
  |        Topology name         |   percentage of failure scenarios  |
  |                              |  protected by an alternate N hops  |
  |      GADAG construction      |   longer than the primary path     |
  |            method            +------------------------------------+
  |                              |   |   |   |   |   |   |   |   | no |
  |                              |   |   |   |   |   |10 |12 |14 | alt|
  |                              |0-1|2-3|4-5|6-7|8-9|-11|-13|-15| <16|
  +------------------------------+---+---+---+---+---+---+---+---+----+
  |  T201(avg primary hops=3.5)  |   |   |   |   |   |   |   |   |    |
  |  MRT_HYBRID                  | 33| 26| 23|  6|  3|   |   |   |    |
  |  MRT_SPF                     | 33| 36| 23|  6|  3|   |   |   |    |
  |  MRT_LOWPOINT                | 33| 36| 23|  6|  3|   |   |   |    |
  +------------------------------+---+---+---+---+---+---+---+---+----+
  |  T206(avg primary hops=3.7)  |   |   |   |   |   |   |   |   |    |
  |  MRT_HYBRID                  | 50| 35| 13|  2|   |   |   |   |    |
  |  MRT_SPF                     | 50| 35| 13|  2|   |   |   |   |    |
  |  MRT_LOWPOINT                | 55| 32| 13|   |   |   |   |   |    |
  +------------------------------+---+---+---+---+---+---+---+---+----+
  |  T211(avg primary hops=3.3)  |   |   |   |   |   |   |   |   |    |
  |  MRT_HYBRID                  | 86| 14|   |   |   |   |   |   |    |
  |  MRT_SPF                     | 86| 14|   |   |   |   |   |   |    |
  |  MRT_LOWPOINT                | 85| 15|  1|   |   |   |   |   |    |
  +------------------------------+---+---+---+---+---+---+---+---+----+
  |  T216(avg primary hops=5.2)  |   |   |   |   |   |   |   |   |    |
  |  MRT_HYBRID                  | 23| 22| 18| 13| 10|  7|  4|  2|   2|
  |  MRT_SPF                     | 35| 32| 19|  9|  3|  1|   |   |    |
  |  MRT_LOWPOINT                | 28| 25| 18| 11|  7|  6|  3|  2|   1|
  +------------------------------+---+---+---+---+---+---+---+---+----+
  |  T219(avg primary hops=7.7)  |   |   |   |   |   |   |   |   |    |
  |  MRT_HYBRID                  | 20| 16| 13| 10|  7|  5|  5|  5|   3|
  |  MRT_SPF                     | 31| 23| 19| 12|  7|  4|  2|  1|    |
  |  MRT_LOWPOINT                | 19| 14| 15| 12| 10|  8|  7|  6|  10|
  +------------------------------+---+---+---+---+---+---+---+---+----+


       Figure 30: The Length of Alternate Paths for Various GADAG
                          Construction Methods

9.  Operational Considerations

  This section discusses operational considerations related to the MRT
  Lowpoint algorithm and other potential MRT algorithm variants.  For a
  discussion of operational considerations related to MRT-FRR in
  general, see the "Operational Considerations" section of [RFC7812].






Enyedi, et al.               Standards Track                   [Page 66]

RFC 7811                    MRT-FRR Algorithm                  June 2016


9.1.  GADAG Root Selection

  The Default MRT Profile uses the GADAG Root Selection Priority
  advertised by routers as the primary criterion for selecting the
  GADAG root.  It is RECOMMENDED that an operator designate a set of
  routers as good choices for selection as GADAG root by setting the
  GADAG Root Selection Priority for that set of routers to lower (more
  preferred) numerical values.  Criteria for making this designation
  are discussed below.

  Analysis has shown that the centrality of a router can have a
  significant impact on the lengths of the alternate paths computed.
  Therefore, it is RECOMMENDED that off-line analysis that considers
  the centrality of a router be used to help determine how good a
  choice a particular router is for the role of GADAG root.

  If the router currently selected as GADAG root becomes unreachable in
  the IGP topology, then a new GADAG root will be selected.  Changing
  the GADAG root can change the overall structure of the GADAG as well
  the paths of the red and MRT-Blue trees built using that GADAG.  In
  order to minimize change in the associated red and MRT-Blue
  forwarding entries that can result from changing the GADAG root, it
  is RECOMMENDED that operators prioritize for selection as GADAG root
  those routers that are expected to consistently remain part of the
  IGP topology.

9.2.  Destination-Rooted GADAGs

  The MRT Lowpoint algorithm constructs a single GADAG rooted at a
  single node selected as the GADAG root.  It is also possible to
  construct a different GADAG for each destination, with the GADAG
  rooted at the destination.  A router can compute the MRT-Red and MRT-
  Blue next hops for that destination based on the GADAG rooted at that
  destination.  Building a different GADAG for each destination is
  computationally more expensive, but it may give somewhat shorter
  alternate paths.  Using destination-rooted GADAGs would require a new
  MRT profile to be created with a new MRT algorithm specification,
  since all routers in the MRT Island would need to use destination-
  rooted GADAGs.

10.  Security Considerations

  The algorithm described in this document does not introduce new
  security concerns beyond those already discussed in the document
  describing the MRT FRR architecture [RFC7812].






Enyedi, et al.               Standards Track                   [Page 67]

RFC 7811                    MRT-FRR Algorithm                  June 2016


11.  References

11.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC7812]  Atlas, A., Bowers, C., and G. Enyedi, "An Architecture for
             IP/LDP Fast Reroute Using Maximally Redundant Trees
             (MRT-FRR)", RFC 7812, DOI 10.17487/RFC7812, June 2016,
             <http://www.rfc-editor.org/info/rfc7812>.

11.2.  Informative References

  [EnyediThesis]
             Enyedi, G., "Novel Algorithms for IP Fast Reroute",
             Department of Telecommunications and Media Informatics,
             Budapest University of Technology and Economics Ph.D.
             Thesis, February 2011,
             <https://repozitorium.omikk.bme.hu/bitstream/
             handle/10890/1040/ertekezes.pdf>.

  [IEEE8021Qca]
             IEEE, "IEEE Standard for Local and metropolitan area
             networks - Bridges and Bridged Networks - Amendment 24:
             Path Control and Reservation", IEEE 802.1Qca-2015,
             DOI 10.1109/IEEESTD.2016.7434544, 2016,
             <https://standards.ieee.org/findstds/
             standard/802.1Qca-2015.html>.

  [ISO10589-Second-Edition]
             International Organization for Standardization,
             "Intermediate system to Intermediate system intra-domain
             routeing information exchange protocol for use in
             conjunction with the protocol for providing the
             connectionless-mode Network Service (ISO 8473)", ISO/
             IEC 10589:2002, Second Edition, November 2002.

  [Kahn_1962_topo_sort]
             Kahn, A., "Topological sorting of large networks",
             Communications of the ACM, Volume 5, Issue 11 DOI
             10.1145/368996.369025, November 1962,
             <http://dl.acm.org/citation.cfm?doid=368996.369025>.






Enyedi, et al.               Standards Track                   [Page 68]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  [MRTLinear]
             Enyedi, G., Retvari, G., and A. Csaszar, "On Finding
             Maximally Redundant Trees in Strictly Linear Time", IEEE
             Symposium on Computers and Communications (ISCC), 2009,
             <http://opti.tmit.bme.hu/~enyedi/ipfrr/
             distMaxRedTree.pdf>.

  [RFC2328]  Moy, J., "OSPF Version 2", STD 54, RFC 2328,
             DOI 10.17487/RFC2328, April 1998,
             <http://www.rfc-editor.org/info/rfc2328>.









































Enyedi, et al.               Standards Track                   [Page 69]

RFC 7811                    MRT-FRR Algorithm                  June 2016


Appendix A.  Python Implementation of MRT Lowpoint Algorithm

  Below is Python code implementing the MRT Lowpoint algorithm
  specified in this document.  The code is also posted on GitHub
  <https://github.com/cbowers/draft-ietf-rtgwg-mrt-frr-
  algorithm/blob/python_code_RFC7811/src/mrt_lowpoint_draft_text.py>.

  While this Python code is believed to correctly implement the
  pseudocode description of the algorithm, in the event of a
  difference, the pseudocode description should be considered
  normative.

<CODE BEGINS>
# This program has been tested to run on Python 2.6 and 2.7
# (specifically Python 2.6.6 and 2.7.8 were tested).
# The program has known incompatibilities with Python 3.X.

# When executed, this program will generate a text file describing
# an example topology.  It then reads that text file back in as input
# to create the example topology, and runs the MRT Lowpoint algorithm.
# This was done to simplify the inclusion of the program as a single
# text file that can be extracted from the RFC.

# The output of the program is four text files containing a description
# of the GADAG, the blue and MRT-Reds for all destinations, and the
# MRT alternates for all failures.

import random
import os.path
import heapq

# simple Class definitions allow structure-like dot notation for
# variables and a convenient place to initialize those variables.
class Topology:
   def __init__(self):
       self.gadag_root = None
       self.node_list = []
       self.node_dict = {}
       self.test_gr = None
       self.island_node_list_for_test_gr = []
       self.stored_named_proxy_dict = {}
       self.init_new_computing_router()
   def init_new_computing_router(self):
       self.island_node_list = []
       self.named_proxy_dict = {}






Enyedi, et al.               Standards Track                   [Page 70]

RFC 7811                    MRT-FRR Algorithm                  June 2016


class Node:
   def __init__(self):
       self.node_id = None
       self.intf_list = []
       self.profile_id_list = [0]
       self.GR_sel_priority = 128
       self.blue_next_hops_dict = {}
       self.red_next_hops_dict = {}
       self.blue_to_green_nh_dict = {}
       self.red_to_green_nh_dict = {}
       self.prefix_cost_dict = {}
       self.pnh_dict = {}
       self.alt_dict = {}
       self.init_new_computing_router()
   def init_new_computing_router(self):
       self.island_intf_list = []
       self.IN_MRT_ISLAND = False
       self.IN_GADAG = False
       self.dfs_number = None
       self.dfs_parent = None
       self.dfs_parent_intf = None
       self.dfs_child_list = []
       self.lowpoint_number = None
       self.lowpoint_parent = None
       self.lowpoint_parent_intf = None
       self.localroot = None
       self.block_id = None
       self.IS_CUT_VERTEX = False
       self.blue_next_hops = []
       self.red_next_hops = []
       self.primary_next_hops = []
       self.alt_list = []

class Interface:
   def __init__(self):
       self.metric = None
       self.area = None
       self.MRT_INELIGIBLE = False
       self.IGP_EXCLUDED = False
       self.SIMULATION_OUTGOING = False
       self.init_new_computing_router()
   def init_new_computing_router(self):
       self.UNDIRECTED = True
       self.INCOMING = False
       self.OUTGOING = False
       self.INCOMING_STORED = False
       self.OUTGOING_STORED = False
       self.IN_MRT_ISLAND = False



Enyedi, et al.               Standards Track                   [Page 71]

RFC 7811                    MRT-FRR Algorithm                  June 2016


       self.PROCESSED = False

class Bundle:
   def __init__(self):
       self.UNDIRECTED = True
       self.OUTGOING = False
       self.INCOMING = False

class Alternate:
   def __init__(self):
       self.failed_intf = None
       self.red_or_blue = None
       self.nh_list = []
       self.fec = 'NO_ALTERNATE'
       self.prot = 'NO_PROTECTION'
       self.info = 'NONE'

class Proxy_Node_Attachment_Router:
   def __init__(self):
       self.prefix = None
       self.node = None
       self.named_proxy_cost = None
       self.min_lfin = None
       self.nh_intf_list = []

class Named_Proxy_Node:
   def __init__(self):
       self.node_id = None  #this is the prefix_id
       self.node_prefix_cost_list = []
       self.lfin_list = []
       self.pnar1 = None
       self.pnar2 = None
       self.pnar_X = None
       self.pnar_Y = None
       self.blue_next_hops = []
       self.red_next_hops = []
       self.primary_next_hops = []
       self.blue_next_hops_dict = {}
       self.red_next_hops_dict = {}
       self.pnh_dict = {}
       self.alt_dict = {}

def Interface_Compare(intf_a, intf_b):
   if intf_a.metric < intf_b.metric:
       return -1
   if intf_b.metric < intf_a.metric:
       return 1
   if intf_a.remote_node.node_id < intf_b.remote_node.node_id:



Enyedi, et al.               Standards Track                   [Page 72]

RFC 7811                    MRT-FRR Algorithm                  June 2016


       return -1
   if intf_b.remote_node.node_id < intf_a.remote_node.node_id:
       return 1
   return 0

def Sort_Interfaces(topo):
   for node in topo.island_node_list:
       node.island_intf_list.sort(Interface_Compare)

def Reset_Computed_Node_and_Intf_Values(topo):
   topo.init_new_computing_router()
   for node in topo.node_list:
       node.init_new_computing_router()
       for intf in node.intf_list:
           intf.init_new_computing_router()

# This function takes a file with links represented by 2-digit
# numbers in the format:
# 01,05,10
# 05,02,30
# 02,01,15
# which represents a triangle topology with nodes 01, 05, and 02
# and symmetric metrics of 10, 30, and 15.

# Inclusion of a fourth column makes the metrics for the link
# asymmetric.  An entry of:
# 02,07,10,15
# creates a link from node 02 to 07 with metrics 10 and 15.
def Create_Topology_From_File(filename):
   topo = Topology()
   node_id_set= set()
   cols_list = []
   # on first pass just create nodes
   with open(filename + '.csv') as topo_file:
       for line in topo_file:
           line = line.rstrip('\r\n')
           cols=line.split(',')
           cols_list.append(cols)
           nodea_node_id = int(cols[0])
           nodeb_node_id = int(cols[1])
           if (nodea_node_id > 999 or nodeb_node_id > 999):
               print("node_id must be between 0 and 999.")
               print("exiting.")
               exit()
           node_id_set.add(nodea_node_id)
           node_id_set.add(nodeb_node_id)
   for node_id in node_id_set:
       node = Node()



Enyedi, et al.               Standards Track                   [Page 73]

RFC 7811                    MRT-FRR Algorithm                  June 2016


       node.node_id = node_id
       topo.node_list.append(node)
       topo.node_dict[node_id] = node
   # on second pass create interfaces
   for cols in cols_list:
       nodea_node_id = int(cols[0])
       nodeb_node_id = int(cols[1])
       metric = int(cols[2])
       reverse_metric = int(cols[2])
       if len(cols) > 3:
           reverse_metric=int(cols[3])
       nodea = topo.node_dict[nodea_node_id]
       nodeb = topo.node_dict[nodeb_node_id]
       nodea_intf = Interface()
       nodea_intf.metric = metric
       nodea_intf.area = 0
       nodeb_intf = Interface()
       nodeb_intf.metric = reverse_metric
       nodeb_intf.area = 0
       nodea_intf.remote_intf = nodeb_intf
       nodeb_intf.remote_intf = nodea_intf
       nodea_intf.remote_node = nodeb
       nodeb_intf.remote_node = nodea
       nodea_intf.local_node = nodea
       nodeb_intf.local_node = nodeb
       nodea_intf.link_data = len(nodea.intf_list)
       nodeb_intf.link_data = len(nodeb.intf_list)
       nodea.intf_list.append(nodea_intf)
       nodeb.intf_list.append(nodeb_intf)
   return topo

def MRT_Island_Identification(topo, computing_rtr, profile_id, area):
  if profile_id in computing_rtr.profile_id_list:
      computing_rtr.IN_MRT_ISLAND = True
      explore_list = [computing_rtr]
  else:
      return
  while explore_list != []:
      next_rtr = explore_list.pop()
      for intf in next_rtr.intf_list:
          if ( (not intf.IN_MRT_ISLAND)
               and (not intf.MRT_INELIGIBLE)
               and (not intf.remote_intf.MRT_INELIGIBLE)
               and (not intf.IGP_EXCLUDED) and intf.area == area
               and (profile_id in intf.remote_node.profile_id_list)):
               intf.IN_MRT_ISLAND = True
               intf.remote_intf.IN_MRT_ISLAND = True
               if (not intf.remote_node.IN_MRT_ISLAND):



Enyedi, et al.               Standards Track                   [Page 74]

RFC 7811                    MRT-FRR Algorithm                  June 2016


                   intf.remote_INTF.IN_MRT_ISLAND = True
                   explore_list.append(intf.remote_node)

def Compute_Island_Node_List_For_Test_GR(topo, test_gr):
   Reset_Computed_Node_and_Intf_Values(topo)
   topo.test_gr = topo.node_dict[test_gr]
   MRT_Island_Identification(topo, topo.test_gr, 0, 0)
   for node in topo.node_list:
       if node.IN_MRT_ISLAND:
           topo.island_node_list_for_test_gr.append(node)

def Set_Island_Intf_and_Node_Lists(topo):
   for node in topo.node_list:
       if node.IN_MRT_ISLAND:
           topo.island_node_list.append(node)
           for intf in node.intf_list:
               if intf.IN_MRT_ISLAND:
                   node.island_intf_list.append(intf)

global_dfs_number = None

def Lowpoint_Visit(x, parent, intf_p_to_x):
   global global_dfs_number
   x.dfs_number = global_dfs_number
   x.lowpoint_number = x.dfs_number
   global_dfs_number += 1
   x.dfs_parent = parent
   if intf_p_to_x == None:
       x.dfs_parent_intf = None
   else:
       x.dfs_parent_intf = intf_p_to_x.remote_intf
   x.lowpoint_parent = None
   if parent != None:
       parent.dfs_child_list.append(x)
   for intf in x.island_intf_list:
       if intf.remote_node.dfs_number == None:
           Lowpoint_Visit(intf.remote_node, x, intf)
           if intf.remote_node.lowpoint_number < x.lowpoint_number:
               x.lowpoint_number = intf.remote_node.lowpoint_number
               x.lowpoint_parent = intf.remote_node
               x.lowpoint_parent_intf = intf
       else:
           if intf.remote_node is not parent:
               if intf.remote_node.dfs_number < x.lowpoint_number:
                   x.lowpoint_number = intf.remote_node.dfs_number
                   x.lowpoint_parent = intf.remote_node
                   x.lowpoint_parent_intf = intf




Enyedi, et al.               Standards Track                   [Page 75]

RFC 7811                    MRT-FRR Algorithm                  June 2016


def Run_Lowpoint(topo):
   global global_dfs_number
   global_dfs_number = 0
   Lowpoint_Visit(topo.gadag_root, None, None)

max_block_id = None

def Assign_Block_ID(x, cur_block_id):
   global max_block_id
   x.block_id = cur_block_id
   for c in x.dfs_child_list:
       if (c.localroot is x):
           max_block_id += 1
           Assign_Block_ID(c, max_block_id)
       else:
           Assign_Block_ID(c, cur_block_id)

def Run_Assign_Block_ID(topo):
   global max_block_id
   max_block_id = 0
   Assign_Block_ID(topo.gadag_root, max_block_id)

def Construct_Ear(x, stack, intf, ear_type):
   ear_list = []
   cur_intf = intf
   not_done = True
   while not_done:
       cur_intf.UNDIRECTED = False
       cur_intf.OUTGOING = True
       cur_intf.remote_intf.UNDIRECTED = False
       cur_intf.remote_intf.INCOMING = True
       if cur_intf.remote_node.IN_GADAG == False:
           cur_intf.remote_node.IN_GADAG = True
           ear_list.append(cur_intf.remote_node)
           if ear_type == 'CHILD':
               cur_intf = cur_intf.remote_node.lowpoint_parent_intf
           else:
               assert ear_type == 'NEIGHBOR'
               cur_intf = cur_intf.remote_node.dfs_parent_intf
       else:
           not_done = False

   if ear_type == 'CHILD' and cur_intf.remote_node is x:
       # x is a cut-vertex and the local root for the block
       # in which the ear is computed
       x.IS_CUT_VERTEX = True
       localroot = x
   else:



Enyedi, et al.               Standards Track                   [Page 76]

RFC 7811                    MRT-FRR Algorithm                  June 2016


       # inherit local root from the end of the ear
       localroot = cur_intf.remote_node.localroot

   while ear_list != []:
       y = ear_list.pop()
       y.localroot = localroot
       stack.append(y)

def Construct_GADAG_via_Lowpoint(topo):
   gadag_root = topo.gadag_root
   gadag_root.IN_GADAG = True
   gadag_root.localroot = None
   stack = []
   stack.append(gadag_root)
   while stack != []:
       x = stack.pop()
       for intf in x.island_intf_list:
           if ( intf.remote_node.IN_GADAG == False
                and intf.remote_node.dfs_parent is x ):
               Construct_Ear(x, stack, intf, 'CHILD' )
       for intf in x.island_intf_list:
           if (intf.remote_node.IN_GADAG == False
               and intf.remote_node.dfs_parent is not x):
               Construct_Ear(x, stack, intf, 'NEIGHBOR')

def Assign_Remaining_Lowpoint_Parents(topo):
   for node in topo.island_node_list:
       if ( node is not topo.gadag_root
           and node.lowpoint_parent == None ):
           node.lowpoint_parent = node.dfs_parent
           node.lowpoint_parent_intf = node.dfs_parent_intf
           node.lowpoint_number = node.dfs_parent.dfs_number

def Add_Undirected_Block_Root_Links(topo):
   for node in topo.island_node_list:
       if node.IS_CUT_VERTEX or node is topo.gadag_root:
           for intf in node.island_intf_list:
               if ( intf.remote_node.localroot is not node
                    or intf.PROCESSED ):
                   continue
               bundle_list = []
               bundle = Bundle()
               for intf2 in node.island_intf_list:
                   if intf2.remote_node is intf.remote_node:
                       bundle_list.append(intf2)
                       if not intf2.UNDIRECTED:
                           bundle.UNDIRECTED = False
                           if intf2.INCOMING:



Enyedi, et al.               Standards Track                   [Page 77]

RFC 7811                    MRT-FRR Algorithm                  June 2016


                               bundle.INCOMING = True
                           if intf2.OUTGOING:
                               bundle.OUTGOING = True
               if bundle.UNDIRECTED:
                   for intf3 in bundle_list:
                       intf3.UNDIRECTED = False
                       intf3.remote_intf.UNDIRECTED = False
                       intf3.PROCESSED = True
                       intf3.remote_intf.PROCESSED = True
                       intf3.OUTGOING = True
                       intf3.remote_intf.INCOMING = True
               else:
                   if (bundle.OUTGOING and bundle.INCOMING):
                       for intf3 in bundle_list:
                           intf3.UNDIRECTED = False
                           intf3.remote_intf.UNDIRECTED = False
                           intf3.PROCESSED = True
                           intf3.remote_intf.PROCESSED = True
                           intf3.OUTGOING = True
                           intf3.INCOMING = True
                           intf3.remote_intf.INCOMING = True
                           intf3.remote_intf.OUTGOING = True
                   elif bundle.OUTGOING:
                       for intf3 in bundle_list:
                           intf3.UNDIRECTED = False
                           intf3.remote_intf.UNDIRECTED = False
                           intf3.PROCESSED = True
                           intf3.remote_intf.PROCESSED = True
                           intf3.OUTGOING = True
                           intf3.remote_intf.INCOMING = True
                   elif bundle.INCOMING:
                       for intf3 in bundle_list:
                           intf3.UNDIRECTED = False
                           intf3.remote_intf.UNDIRECTED = False
                           intf3.PROCESSED = True
                           intf3.remote_intf.PROCESSED = True
                           intf3.INCOMING = True
                           intf3.remote_intf.OUTGOING = True

def Modify_Block_Root_Incoming_Links(topo):
   for node in topo.island_node_list:
       if ( node.IS_CUT_VERTEX == True or node is topo.gadag_root ):
           for intf in node.island_intf_list:
               if intf.remote_node.localroot is node:
                   if intf.INCOMING:
                       intf.INCOMING = False
                       intf.INCOMING_STORED = True
                       intf.remote_intf.OUTGOING = False



Enyedi, et al.               Standards Track                   [Page 78]

RFC 7811                    MRT-FRR Algorithm                  June 2016


                       intf.remote_intf.OUTGOING_STORED = True

def Revert_Block_Root_Incoming_Links(topo):
   for node in topo.island_node_list:
       if ( node.IS_CUT_VERTEX == True or node is topo.gadag_root ):
           for intf in node.island_intf_list:
               if intf.remote_node.localroot is node:
                   if intf.INCOMING_STORED:
                       intf.INCOMING = True
                       intf.remote_intf.OUTGOING = True
                       intf.INCOMING_STORED = False
                       intf.remote_intf.OUTGOING_STORED = False

def Run_Topological_Sort_GADAG(topo):
   Modify_Block_Root_Incoming_Links(topo)
   for node in topo.island_node_list:
       node.unvisited = 0
       for intf in node.island_intf_list:
           if (intf.INCOMING == True):
               node.unvisited += 1
   working_list = []
   topo_order_list = []
   working_list.append(topo.gadag_root)
   while working_list != []:
       y = working_list.pop(0)
       topo_order_list.append(y)
       for intf in y.island_intf_list:
           if ( intf.OUTGOING == True):
               intf.remote_node.unvisited -= 1
               if intf.remote_node.unvisited == 0:
                   working_list.append(intf.remote_node)
   next_topo_order = 1
   while topo_order_list != []:
       y = topo_order_list.pop(0)
       y.topo_order = next_topo_order
       next_topo_order += 1
   Revert_Block_Root_Incoming_Links(topo)

def Set_Other_Undirected_Links_Based_On_Topo_Order(topo):
   for node in topo.island_node_list:
       for intf in node.island_intf_list:
           if intf.UNDIRECTED:
               if node.topo_order < intf.remote_node.topo_order:
                   intf.OUTGOING = True
                   intf.UNDIRECTED = False
                   intf.remote_intf.INCOMING = True
                   intf.remote_intf.UNDIRECTED = False
               else:



Enyedi, et al.               Standards Track                   [Page 79]

RFC 7811                    MRT-FRR Algorithm                  June 2016


                   intf.INCOMING = True
                   intf.UNDIRECTED = False
                   intf.remote_intf.OUTGOING = True
                   intf.remote_intf.UNDIRECTED = False

def Initialize_Temporary_Interface_Flags(topo):
   for node in topo.island_node_list:
       for intf in node.island_intf_list:
           intf.PROCESSED = False
           intf.INCOMING_STORED = False
           intf.OUTGOING_STORED = False

def Add_Undirected_Links(topo):
   Initialize_Temporary_Interface_Flags(topo)
   Add_Undirected_Block_Root_Links(topo)
   Run_Topological_Sort_GADAG(topo)
   Set_Other_Undirected_Links_Based_On_Topo_Order(topo)

def In_Common_Block(x,y):
   if (  (x.block_id == y.block_id)
         or ( x is y.localroot) or (y is x.localroot) ):
       return True
   return False

def Copy_List_Items(target_list, source_list):
   del target_list[:] # Python idiom to remove all elements of a list
   for element in source_list:
       target_list.append(element)

def Add_Item_To_List_If_New(target_list, item):
   if item not in target_list:
       target_list.append(item)

def Store_Results(y, direction):
   if direction == 'INCREASING':
       y.HIGHER = True
       Copy_List_Items(y.blue_next_hops, y.next_hops)
   if direction == 'DECREASING':
       y.LOWER = True
       Copy_List_Items(y.red_next_hops, y.next_hops)
   if direction == 'NORMAL_SPF':
       y.primary_spf_metric = y.spf_metric
       Copy_List_Items(y.primary_next_hops, y.next_hops)
   if direction == 'MRT_ISLAND_SPF':
       Copy_List_Items(y.mrt_island_next_hops, y.next_hops)
   if direction == 'COLLAPSED_SPF':
       y.collapsed_metric = y.spf_metric
       Copy_List_Items(y.collapsed_next_hops, y.next_hops)



Enyedi, et al.               Standards Track                   [Page 80]

RFC 7811                    MRT-FRR Algorithm                  June 2016


# Note that the Python heapq function allows for duplicate items,
# so we use the 'spf_visited' property to only consider a node
# as min_node the first time it gets removed from the heap.
def SPF_No_Traverse_Block_Root(topo, spf_root, block_root, direction):
   spf_heap = []
   for y in topo.island_node_list:
       y.spf_metric = 2147483647 # 2^31-1
       y.next_hops = []
       y.spf_visited = False
   spf_root.spf_metric = 0
   heapq.heappush(spf_heap,
                  (spf_root.spf_metric, spf_root.node_id,  spf_root) )
   while spf_heap != []:
       #extract third element of tuple popped from heap
       min_node = heapq.heappop(spf_heap)[2]
       if min_node.spf_visited:
           continue
       min_node.spf_visited = True
       Store_Results(min_node, direction)
       if ( (min_node is spf_root) or (min_node is not block_root) ):
           for intf in min_node.island_intf_list:
               if ( ( (direction == 'INCREASING' and intf.OUTGOING )
                   or (direction == 'DECREASING' and intf.INCOMING ) )
                   and In_Common_Block(spf_root, intf.remote_node) ) :
                   path_metric = min_node.spf_metric + intf.metric
                   if path_metric < intf.remote_node.spf_metric:
                       intf.remote_node.spf_metric = path_metric
                       if min_node is spf_root:
                           intf.remote_node.next_hops = [intf]
                       else:
                           Copy_List_Items(intf.remote_node.next_hops,
                                           min_node.next_hops)
                       heapq.heappush(spf_heap,
                                      ( intf.remote_node.spf_metric,
                                        intf.remote_node.node_id,
                                        intf.remote_node ) )
                   elif path_metric == intf.remote_node.spf_metric:
                       if min_node is spf_root:
                           Add_Item_To_List_If_New(
                               intf.remote_node.next_hops,intf)
                       else:
                           for nh_intf in min_node.next_hops:
                               Add_Item_To_List_If_New(
                                   intf.remote_node.next_hops,nh_intf)

def Normal_SPF(topo, spf_root):
   spf_heap = []
   for y in topo.node_list:



Enyedi, et al.               Standards Track                   [Page 81]

RFC 7811                    MRT-FRR Algorithm                  June 2016


       y.spf_metric = 2147483647 # 2^31-1 as max metric
       y.next_hops = []
       y.primary_spf_metric = 2147483647
       y.primary_next_hops = []
       y.spf_visited = False
   spf_root.spf_metric = 0
   heapq.heappush(spf_heap,
                  (spf_root.spf_metric,spf_root.node_id,spf_root) )
   while spf_heap != []:
       #extract third element of tuple popped from heap
       min_node = heapq.heappop(spf_heap)[2]
       if min_node.spf_visited:
           continue
       min_node.spf_visited = True
       Store_Results(min_node, 'NORMAL_SPF')
       for intf in min_node.intf_list:
           path_metric = min_node.spf_metric + intf.metric
           if path_metric < intf.remote_node.spf_metric:
               intf.remote_node.spf_metric = path_metric
               if min_node is spf_root:
                   intf.remote_node.next_hops = [intf]
               else:
                   Copy_List_Items(intf.remote_node.next_hops,
                                   min_node.next_hops)
               heapq.heappush(spf_heap,
                              ( intf.remote_node.spf_metric,
                                intf.remote_node.node_id,
                                intf.remote_node ) )
           elif path_metric == intf.remote_node.spf_metric:
               if min_node is spf_root:
                   Add_Item_To_List_If_New(
                       intf.remote_node.next_hops,intf)
               else:
                   for nh_intf in min_node.next_hops:
                       Add_Item_To_List_If_New(
                           intf.remote_node.next_hops,nh_intf)

def Set_Edge(y):
   if (y.blue_next_hops == [] and y.red_next_hops == []):
       Set_Edge(y.localroot)
       Copy_List_Items(y.blue_next_hops,y.localroot.blue_next_hops)
       Copy_List_Items(y.red_next_hops ,y.localroot.red_next_hops)
       y.order_proxy = y.localroot.order_proxy

def Compute_MRT_NH_For_One_Src_To_Island_Dests(topo,x):
   for y in topo.island_node_list:
       y.HIGHER = False
       y.LOWER = False



Enyedi, et al.               Standards Track                   [Page 82]

RFC 7811                    MRT-FRR Algorithm                  June 2016


       y.red_next_hops = []
       y.blue_next_hops = []
       y.order_proxy = y
   SPF_No_Traverse_Block_Root(topo, x, x.localroot, 'INCREASING')
   SPF_No_Traverse_Block_Root(topo, x, x.localroot, 'DECREASING')
   for y in topo.island_node_list:
       if ( y is not x and (y.block_id == x.block_id) ):
           assert (not ( y is x.localroot or x is y.localroot) )
           assert(not (y.HIGHER and y.LOWER) )
           if y.HIGHER == True:
               Copy_List_Items(y.red_next_hops,
                               x.localroot.red_next_hops)
           elif y.LOWER == True:
               Copy_List_Items(y.blue_next_hops,
                               x.localroot.blue_next_hops)
           else:
               Copy_List_Items(y.blue_next_hops,
                               x.localroot.red_next_hops)
               Copy_List_Items(y.red_next_hops,
                               x.localroot.blue_next_hops)

   # Inherit x's MRT next hops to reach the GADAG root
   # from x's MRT next hops to reach its local root,
   # but first check if x is the gadag_root (in which case
   # x does not have a local root) or if x's local root
   # is the gadag root (in which case we already have the
   # x's MRT next hops to reach the gadag root)
   if x is not topo.gadag_root and x.localroot is not topo.gadag_root:
       Copy_List_Items(topo.gadag_root.blue_next_hops,
                       x.localroot.blue_next_hops)
       Copy_List_Items(topo.gadag_root.red_next_hops,
                       x.localroot.red_next_hops)
       topo.gadag_root.order_proxy = x.localroot

   # Inherit next hops and order_proxies to other blocks
   for y in topo.island_node_list:
       if (y is not topo.gadag_root and y is not x ):
           Set_Edge(y)

def Store_MRT_Nexthops_For_One_Src_To_Island_Dests(topo,x):
   for y in topo.island_node_list:
       if y is x:
           continue
       x.blue_next_hops_dict[y.node_id] = []
       x.red_next_hops_dict[y.node_id] = []
       Copy_List_Items(x.blue_next_hops_dict[y.node_id],
                       y.blue_next_hops)




Enyedi, et al.               Standards Track                   [Page 83]

RFC 7811                    MRT-FRR Algorithm                  June 2016


       Copy_List_Items(x.red_next_hops_dict[y.node_id],
                       y.red_next_hops)

def Store_Primary_and_Alts_For_One_Src_To_Island_Dests(topo,x):
   for y in topo.island_node_list:
       x.pnh_dict[y.node_id] = []
       Copy_List_Items(x.pnh_dict[y.node_id], y.primary_next_hops)
       x.alt_dict[y.node_id] = []
       Copy_List_Items(x.alt_dict[y.node_id], y.alt_list)

def Store_Primary_NHs_For_One_Source_To_Nodes(topo,x):
   for y in topo.node_list:
       x.pnh_dict[y.node_id] = []
       Copy_List_Items(x.pnh_dict[y.node_id], y.primary_next_hops)

def Store_MRT_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,x):
   for prefix in topo.named_proxy_dict:
       P = topo.named_proxy_dict[prefix]
       x.blue_next_hops_dict[P.node_id] = []
       x.red_next_hops_dict[P.node_id] = []
       Copy_List_Items(x.blue_next_hops_dict[P.node_id],
                       P.blue_next_hops)
       Copy_List_Items(x.red_next_hops_dict[P.node_id],
                       P.red_next_hops)

def Store_Alts_For_One_Src_To_Named_Proxy_Nodes(topo,x):
   for prefix in topo.named_proxy_dict:
       P = topo.named_proxy_dict[prefix]
       x.alt_dict[P.node_id] = []
       Copy_List_Items(x.alt_dict[P.node_id],
                       P.alt_list)

def Store_Primary_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,x):
   for prefix in topo.named_proxy_dict:
       P = topo.named_proxy_dict[prefix]
       x.pnh_dict[P.node_id] = []
       Copy_List_Items(x.pnh_dict[P.node_id],
                       P.primary_next_hops)

def Select_Alternates_Internal(D, F, primary_intf,
                              D_lower, D_higher, D_topo_order):
   if D_higher and D_lower:
       if F.HIGHER and F.LOWER:
           if F.topo_order > D_topo_order:
               return 'USE_BLUE'
           else:
               return 'USE_RED'
       if F.HIGHER:



Enyedi, et al.               Standards Track                   [Page 84]

RFC 7811                    MRT-FRR Algorithm                  June 2016


           return 'USE_RED'
       if F.LOWER:
           return 'USE_BLUE'
       assert(primary_intf.MRT_INELIGIBLE
              or primary_intf.remote_intf.MRT_INELIGIBLE)
       return 'USE_RED_OR_BLUE'
   if D_higher:
       if F.HIGHER and F.LOWER:
           return 'USE_BLUE'
       if F.LOWER:
           return 'USE_BLUE'
       if F.HIGHER:
           if (F.topo_order > D_topo_order):
               return 'USE_BLUE'
           if (F.topo_order < D_topo_order):
               return 'USE_RED'
           assert(False)
       assert(primary_intf.MRT_INELIGIBLE
              or primary_intf.remote_intf.MRT_INELIGIBLE)
       return 'USE_RED_OR_BLUE'
   if D_lower:
       if F.HIGHER and F.LOWER:
           return 'USE_RED'
       if F.HIGHER:
           return 'USE_RED'
       if F.LOWER:
           if F.topo_order > D_topo_order:
               return 'USE_BLUE'
           if F.topo_order < D_topo_order:
               return 'USE_RED'
           assert(False)
       assert(primary_intf.MRT_INELIGIBLE
              or primary_intf.remote_intf.MRT_INELIGIBLE)
       return 'USE_RED_OR_BLUE'
   else: # D is unordered wrt S
       if F.HIGHER and F.LOWER:
           if primary_intf.OUTGOING and primary_intf.INCOMING:
               # This can happen when F and D are in different blocks
               return 'USE_RED_OR_BLUE'
           if primary_intf.OUTGOING:
               return 'USE_BLUE'
           if primary_intf.INCOMING:
               return 'USE_RED'
           #This can occur when primary_intf is MRT_INELIGIBLE.
           #This appears to be a case where the special
           #construction of the GADAG allows us to choose red,
           #whereas with an arbitrary GADAG, neither red nor blue
           #is guaranteed to work.



Enyedi, et al.               Standards Track                   [Page 85]

RFC 7811                    MRT-FRR Algorithm                  June 2016


           assert(primary_intf.MRT_INELIGIBLE
                  or primary_intf.remote_intf.MRT_INELIGIBLE)
           return 'USE_RED'
       if F.LOWER:
           return 'USE_RED'
       if F.HIGHER:
           return 'USE_BLUE'
       assert(primary_intf.MRT_INELIGIBLE
              or primary_intf.remote_intf.MRT_INELIGIBLE)
       if F.topo_order > D_topo_order:
           return 'USE_BLUE'
       else:
           return 'USE_RED'

def Select_Alternates(D, F, primary_intf):
   S = primary_intf.local_node
   if not In_Common_Block(F, S):
       return 'PRIM_NH_IN_DIFFERENT_BLOCK'
   if (D is F) or (D.order_proxy is F):
       return 'PRIM_NH_IS_D_OR_OP_FOR_D'
   D_lower = D.order_proxy.LOWER
   D_higher = D.order_proxy.HIGHER
   D_topo_order = D.order_proxy.topo_order
   return Select_Alternates_Internal(D, F, primary_intf,
                                     D_lower, D_higher, D_topo_order)


def Is_Remote_Node_In_NH_List(node, intf_list):
   for intf in intf_list:
       if node is intf.remote_node:
           return True
   return False

def Select_Alts_For_One_Src_To_Island_Dests(topo,x):
   Normal_SPF(topo, x)
   for D in topo.island_node_list:
       D.alt_list = []
       if D is x:
           continue
       for failed_intf in D.primary_next_hops:
           alt = Alternate()
           alt.failed_intf = failed_intf
           cand_alt_list = []
           F = failed_intf.remote_node
           #We need to test if F is in the island, as opposed
           #to just testing if failed_intf is in island_intf_list,
           #because failed_intf could be marked as MRT_INELIGIBLE.
           if F in topo.island_node_list:



Enyedi, et al.               Standards Track                   [Page 86]

RFC 7811                    MRT-FRR Algorithm                  June 2016


               alt.info = Select_Alternates(D, F, failed_intf)
           else:
               #The primary next hop is not in the MRT Island.
               #Either red or blue will avoid the primary next hop,
               #because the primary next hop is not even in the
               #GADAG.
               alt.info = 'USE_RED_OR_BLUE'

           if (alt.info == 'USE_RED_OR_BLUE'):
               alt.red_or_blue = random.choice(['USE_RED','USE_BLUE'])
           if (alt.info == 'USE_BLUE'
               or alt.red_or_blue == 'USE_BLUE'):
               Copy_List_Items(alt.nh_list, D.blue_next_hops)
               alt.fec = 'BLUE'
               alt.prot = 'NODE_PROTECTION'
           if (alt.info == 'USE_RED' or alt.red_or_blue == 'USE_RED'):
               Copy_List_Items(alt.nh_list, D.red_next_hops)
               alt.fec = 'RED'
               alt.prot = 'NODE_PROTECTION'
           if (alt.info == 'PRIM_NH_IN_DIFFERENT_BLOCK'):
               alt.fec = 'NO_ALTERNATE'
               alt.prot = 'NO_PROTECTION'
           if (alt.info == 'PRIM_NH_IS_D_OR_OP_FOR_D'):
               if failed_intf.OUTGOING and failed_intf.INCOMING:
                   # cut-link: if there are parallel cut links, use
                   # the link(s) with lowest metric that are not
                   # primary intf or None
                   cand_alt_list = [None]
                   min_metric = 2147483647
                   for intf in x.island_intf_list:
                       if ( intf is not failed_intf and
                            (intf.remote_node is
                            failed_intf.remote_node)):
                           if intf.metric < min_metric:
                               cand_alt_list = [intf]
                               min_metric = intf.metric
                           elif intf.metric == min_metric:
                               cand_alt_list.append(intf)
                   if cand_alt_list != [None]:
                       alt.fec = 'GREEN'
                       alt.prot = 'PARALLEL_CUTLINK'
                   else:
                       alt.fec = 'NO_ALTERNATE'
                       alt.prot = 'NO_PROTECTION'
                   Copy_List_Items(alt.nh_list, cand_alt_list)

               # Is_Remote_Node_In_NH_List() is used, as opposed
               # to just checking if failed_intf is in D.red_next_hops,



Enyedi, et al.               Standards Track                   [Page 87]

RFC 7811                    MRT-FRR Algorithm                  June 2016


               # because failed_intf could be marked as MRT_INELIGIBLE.
               elif Is_Remote_Node_In_NH_List(F, D.red_next_hops):
                   Copy_List_Items(alt.nh_list, D.blue_next_hops)
                   alt.fec = 'BLUE'
                   alt.prot = 'LINK_PROTECTION'
               elif Is_Remote_Node_In_NH_List(F, D.blue_next_hops):
                   Copy_List_Items(alt.nh_list, D.red_next_hops)
                   alt.fec = 'RED'
                   alt.prot = 'LINK_PROTECTION'
               else:
                   alt.fec = random.choice(['RED','BLUE'])
                   alt.prot = 'LINK_PROTECTION'

           D.alt_list.append(alt)

def Write_GADAG_To_File(topo, file_prefix):
   gadag_edge_list = []
   for node in topo.node_list:
       for intf in node.intf_list:
           if intf.SIMULATION_OUTGOING:
               local_node =  "%04d" % (intf.local_node.node_id)
               remote_node = "%04d" % (intf.remote_node.node_id)
               intf_data = "%03d" % (intf.link_data)
               edge_string=(local_node+','+remote_node+','+
                            intf_data+'\n')
               gadag_edge_list.append(edge_string)
   gadag_edge_list.sort();
   filename = file_prefix + '_gadag.csv'
   with open(filename, 'w') as gadag_file:
       gadag_file.write('local_node,'\
                        'remote_node,local_intf_link_data\n')
       for edge_string in gadag_edge_list:
           gadag_file.write(edge_string);

def Write_MRTs_For_All_Dests_To_File(topo, color, file_prefix):
   edge_list = []
   for node in topo.island_node_list_for_test_gr:
       if color == 'blue':
           node_next_hops_dict = node.blue_next_hops_dict
       elif color == 'red':
           node_next_hops_dict = node.red_next_hops_dict
       for dest_node_id in node_next_hops_dict:
           for intf in node_next_hops_dict[dest_node_id]:
               gadag_root =  "%04d" % (topo.gadag_root.node_id)
               dest_node =  "%04d" % (dest_node_id)
               local_node =  "%04d" % (intf.local_node.node_id)
               remote_node = "%04d" % (intf.remote_node.node_id)
               intf_data = "%03d" % (intf.link_data)



Enyedi, et al.               Standards Track                   [Page 88]

RFC 7811                    MRT-FRR Algorithm                  June 2016


               edge_string=(gadag_root+','+dest_node+','+local_node+
                              ','+remote_node+','+intf_data+'\n')
               edge_list.append(edge_string)
   edge_list.sort()
   filename = file_prefix + '_' + color + '_to_all.csv'
   with open(filename, 'w') as mrt_file:
       mrt_file.write('gadag_root,dest,'\
           'local_node,remote_node,link_data\n')
       for edge_string in edge_list:
           mrt_file.write(edge_string);

def Write_Both_MRTs_For_All_Dests_To_File(topo, file_prefix):
   Write_MRTs_For_All_Dests_To_File(topo, 'blue', file_prefix)
   Write_MRTs_For_All_Dests_To_File(topo, 'red', file_prefix)

def Write_Alternates_For_All_Dests_To_File(topo, file_prefix):
   edge_list = []
   for x in topo.island_node_list_for_test_gr:
       for dest_node_id in x.alt_dict:
           alt_list = x.alt_dict[dest_node_id]
           for alt in alt_list:
               for alt_intf in alt.nh_list:
                   gadag_root =  "%04d" % (topo.gadag_root.node_id)
                   dest_node =  "%04d" % (dest_node_id)
                   prim_local_node =  \
                       "%04d" % (alt.failed_intf.local_node.node_id)
                   prim_remote_node = \
                       "%04d" % (alt.failed_intf.remote_node.node_id)
                   prim_intf_data = \
                       "%03d" % (alt.failed_intf.link_data)
                   if alt_intf == None:
                       alt_local_node = "None"
                       alt_remote_node = "None"
                       alt_intf_data = "None"
                   else:
                       alt_local_node = \
                           "%04d" % (alt_intf.local_node.node_id)
                       alt_remote_node = \
                           "%04d" % (alt_intf.remote_node.node_id)
                       alt_intf_data = \
                           "%03d" % (alt_intf.link_data)
                   edge_string = (gadag_root+','+dest_node+','+
                       prim_local_node+','+prim_remote_node+','+
                       prim_intf_data+','+alt_local_node+','+
                       alt_remote_node+','+alt_intf_data+','+
                       alt.fec +'\n')
                   edge_list.append(edge_string)
   edge_list.sort()



Enyedi, et al.               Standards Track                   [Page 89]

RFC 7811                    MRT-FRR Algorithm                  June 2016


   filename = file_prefix + '_alts_to_all.csv'
   with open(filename, 'w') as alt_file:
       alt_file.write('gadag_root,dest,'\
           'prim_nh.local_node,prim_nh.remote_node,'\
           'prim_nh.link_data,alt_nh.local_node,'\
           'alt_nh.remote_node,alt_nh.link_data,'\
           'alt_nh.fec\n')
       for edge_string in edge_list:
           alt_file.write(edge_string);

def Raise_GADAG_Root_Selection_Priority(topo,node_id):
   node = topo.node_dict[node_id]
   node.GR_sel_priority = 255

def Lower_GADAG_Root_Selection_Priority(topo,node_id):
   node = topo.node_dict[node_id]
   node.GR_sel_priority = 128

def GADAG_Root_Compare(node_a, node_b):
   if (node_a.GR_sel_priority > node_b.GR_sel_priority):
       return 1
   elif (node_a.GR_sel_priority < node_b.GR_sel_priority):
       return -1
   else:
       if node_a.node_id > node_b.node_id:
           return 1
       elif node_a.node_id < node_b.node_id:
           return -1

def Set_GADAG_Root(topo,computing_router):
   gadag_root_list = []
   for node in topo.island_node_list:
       gadag_root_list.append(node)
   gadag_root_list.sort(GADAG_Root_Compare)
   topo.gadag_root = gadag_root_list.pop()

def Add_Prefix_Advertisements_From_File(topo, filename):
   prefix_filename = filename + '.prefix'
   cols_list = []
   if not os.path.exists(prefix_filename):
       return
   with open(prefix_filename) as prefix_file:
       for line in prefix_file:
           line = line.rstrip('\r\n')
           cols=line.split(',')
           cols_list.append(cols)
           prefix_id = int(cols[0])
           if prefix_id < 2000 or prefix_id >2999:



Enyedi, et al.               Standards Track                   [Page 90]

RFC 7811                    MRT-FRR Algorithm                  June 2016


               print('skipping the following line of prefix file')
               print('prefix id should be between 2000 and 2999')
               print(line)
               continue
           prefix_node_id = int(cols[1])
           prefix_cost = int(cols[2])
           advertising_node = topo.node_dict[prefix_node_id]
           advertising_node.prefix_cost_dict[prefix_id] = prefix_cost

def Add_Prefixes_for_Non_Island_Nodes(topo):
   for node in topo.node_list:
       if node.IN_MRT_ISLAND:
           continue
       prefix_id = node.node_id + 1000
       node.prefix_cost_dict[prefix_id] = 0

def Add_Profile_IDs_from_File(topo, filename):
   profile_filename = filename + '.profile'
   for node in topo.node_list:
       node.profile_id_list = []
   cols_list = []
   if os.path.exists(profile_filename):
       with open(profile_filename) as profile_file:
           for line in profile_file:
               line = line.rstrip('\r\n')
               cols=line.split(',')
               cols_list.append(cols)
               node_id = int(cols[0])
               profile_id = int(cols[1])
               this_node = topo.node_dict[node_id]
               this_node.profile_id_list.append(profile_id)
   else:
       for node in topo.node_list:
           node.profile_id_list = [0]

def Island_Marking_SPF(topo,spf_root):
   spf_root.isl_marking_spf_dict = {}
   for y in topo.node_list:
       y.spf_metric = 2147483647 # 2^31-1 as max metric
       y.PATH_HITS_ISLAND = False
       y.next_hops = []
       y.spf_visited = False
   spf_root.spf_metric = 0
   spf_heap = []
   heapq.heappush(spf_heap,
                  (spf_root.spf_metric,spf_root.node_id,spf_root) )
   while spf_heap != []:
       #extract third element of tuple popped from heap



Enyedi, et al.               Standards Track                   [Page 91]

RFC 7811                    MRT-FRR Algorithm                  June 2016


       min_node = heapq.heappop(spf_heap)[2]
       if min_node.spf_visited:
           continue
       min_node.spf_visited = True
       spf_root.isl_marking_spf_dict[min_node.node_id] = \
           (min_node.spf_metric, min_node.PATH_HITS_ISLAND)
       for intf in min_node.intf_list:
           path_metric = min_node.spf_metric + intf.metric
           if path_metric < intf.remote_node.spf_metric:
               intf.remote_node.spf_metric = path_metric
               if min_node is spf_root:
                   intf.remote_node.next_hops = [intf]
               else:
                   Copy_List_Items(intf.remote_node.next_hops,
                                   min_node.next_hops)
               if (intf.remote_node.IN_MRT_ISLAND):
                   intf.remote_node.PATH_HITS_ISLAND = True
               else:
                   intf.remote_node.PATH_HITS_ISLAND = \
                       min_node.PATH_HITS_ISLAND
               heapq.heappush(spf_heap,
                              ( intf.remote_node.spf_metric,
                                intf.remote_node.node_id,
                                intf.remote_node ) )
           elif path_metric == intf.remote_node.spf_metric:
               if min_node is spf_root:
                   Add_Item_To_List_If_New(
                       intf.remote_node.next_hops,intf)
               else:
                   for nh_intf in min_node.next_hops:
                       Add_Item_To_List_If_New(
                           intf.remote_node.next_hops,nh_intf)
               if (intf.remote_node.IN_MRT_ISLAND):
                   intf.remote_node.PATH_HITS_ISLAND = True
               else:
                   if (intf.remote_node.PATH_HITS_ISLAND
                       or min_node.PATH_HITS_ISLAND):
                       intf.remote_node.PATH_HITS_ISLAND = True

def Create_Basic_Named_Proxy_Nodes(topo):
   for node in topo.node_list:
       for prefix in node.prefix_cost_dict:
           prefix_cost = node.prefix_cost_dict[prefix]
           if prefix in topo.named_proxy_dict:
               P = topo.named_proxy_dict[prefix]
               P.node_prefix_cost_list.append((node,prefix_cost))
           else:
               P = Named_Proxy_Node()



Enyedi, et al.               Standards Track                   [Page 92]

RFC 7811                    MRT-FRR Algorithm                  June 2016


               topo.named_proxy_dict[prefix] = P
               P.node_id = prefix
               P.node_prefix_cost_list = [(node,prefix_cost)]

def Compute_Loop_Free_Island_Neighbors_For_Each_Prefix(topo):
   topo.island_nbr_set = set()
   topo.island_border_set = set()
   for node in topo.node_list:
       if node.IN_MRT_ISLAND:
           continue
       for intf in node.intf_list:
           if intf.remote_node.IN_MRT_ISLAND:
               topo.island_nbr_set.add(node)
               topo.island_border_set.add(intf.remote_node)

   for island_nbr in topo.island_nbr_set:
       Island_Marking_SPF(topo,island_nbr)

   for prefix in topo.named_proxy_dict:
       P = topo.named_proxy_dict[prefix]
       P.lfin_list = []
       for island_nbr in topo.island_nbr_set:
           min_isl_nbr_to_pref_cost = 2147483647
           for (adv_node, prefix_cost) in P.node_prefix_cost_list:
               (adv_node_cost, path_hits_island) = \
                   island_nbr.isl_marking_spf_dict[adv_node.node_id]
               isl_nbr_to_pref_cost = adv_node_cost + prefix_cost
               if isl_nbr_to_pref_cost < min_isl_nbr_to_pref_cost:
                   min_isl_nbr_to_pref_cost = isl_nbr_to_pref_cost
                   min_path_hits_island = path_hits_island
               elif isl_nbr_to_pref_cost == min_isl_nbr_to_pref_cost:
                   if min_path_hits_island or path_hits_island:
                       min_path_hits_island = True
           if not min_path_hits_island:
               P.lfin_list.append( (island_nbr,
                                    min_isl_nbr_to_pref_cost) )


def Compute_Island_Border_Router_LFIN_Pairs_For_Each_Prefix(topo):
   for ibr in topo.island_border_set:
       ibr.prefix_lfin_dict = {}
       ibr.min_intf_metric_dict = {}
       ibr.min_intf_list_dict = {}
       ibr.min_intf_list_dict[None] = None
       for intf in ibr.intf_list:
           if not intf.remote_node in topo.island_nbr_set:
               continue
           if not intf.remote_node in ibr.min_intf_metric_dict:



Enyedi, et al.               Standards Track                   [Page 93]

RFC 7811                    MRT-FRR Algorithm                  June 2016


               ibr.min_intf_metric_dict[intf.remote_node] = \
                   intf.metric
               ibr.min_intf_list_dict[intf.remote_node] = [intf]
           else:
               if (intf.metric
                   < ibr.min_intf_metric_dict[intf.remote_node]):
                   ibr.min_intf_metric_dict[intf.remote_node] = \
                        intf.metric
                   ibr.min_intf_list_dict[intf.remote_node] = [intf]
               elif (intf.metric
                     < ibr.min_intf_metric_dict[intf.remote_node]):
                   ibr.min_intf_list_dict[intf.remote_node].\
                       append(intf)

   for prefix in topo.named_proxy_dict:
       P = topo.named_proxy_dict[prefix]
       for ibr in topo.island_border_set:
           min_ibr_lfin_pref_cost = 2147483647
           min_lfin = None
           for (lfin, lfin_to_pref_cost) in P.lfin_list:
               if not lfin in ibr.min_intf_metric_dict:
                   continue
               ibr_lfin_pref_cost = \
                   ibr.min_intf_metric_dict[lfin] + lfin_to_pref_cost
               if ibr_lfin_pref_cost < min_ibr_lfin_pref_cost:
                   min_ibr_lfin_pref_cost = ibr_lfin_pref_cost
                   min_lfin = lfin
           ibr.prefix_lfin_dict[prefix] = (min_lfin,
               min_ibr_lfin_pref_cost,
               ibr.min_intf_list_dict[min_lfin])

def Proxy_Node_Att_Router_Compare(pnar_a, pnar_b):
   if pnar_a.named_proxy_cost < pnar_b.named_proxy_cost:
       return -1
   if pnar_b.named_proxy_cost < pnar_a.named_proxy_cost:
       return 1
   if pnar_a.node.node_id < pnar_b.node.node_id:
       return -1
   if pnar_b.node.node_id < pnar_a.node.node_id:
       return 1
   if pnar_a.min_lfin == None:
       return -1
   if pnar_b.min_lfin == None:
       return 1

def Choose_Proxy_Node_Attachment_Routers(topo):
   for prefix in topo.named_proxy_dict:
       P = topo.named_proxy_dict[prefix]



Enyedi, et al.               Standards Track                   [Page 94]

RFC 7811                    MRT-FRR Algorithm                  June 2016


       pnar_candidate_list = []
       for (node, prefix_cost) in P.node_prefix_cost_list:
           if not node.IN_MRT_ISLAND:
               continue
           pnar = Proxy_Node_Attachment_Router()
           pnar.prefix = prefix
           pnar.named_proxy_cost = prefix_cost
           pnar.node = node
           pnar_candidate_list.append(pnar)
       for ibr in topo.island_border_set:
           (min_lfin, prefix_cost, min_intf_list) = \
               ibr.prefix_lfin_dict[prefix]
           if min_lfin == None:
               continue
           pnar = Proxy_Node_Attachment_Router()
           pnar.named_proxy_cost = prefix_cost
           pnar.node = ibr
           pnar.min_lfin = min_lfin
           pnar.nh_intf_list = min_intf_list
           pnar_candidate_list.append(pnar)
       pnar_candidate_list.sort(cmp=Proxy_Node_Att_Router_Compare)
       #pop first element from list
       first_pnar = pnar_candidate_list.pop(0)
       second_pnar = None
       for next_pnar in pnar_candidate_list:
           if next_pnar.node is first_pnar.node:
               continue
           second_pnar = next_pnar
           break

       P.pnar1 = first_pnar
       P.pnar2 = second_pnar

def Attach_Named_Proxy_Nodes(topo):
   Compute_Loop_Free_Island_Neighbors_For_Each_Prefix(topo)
   Compute_Island_Border_Router_LFIN_Pairs_For_Each_Prefix(topo)
   Choose_Proxy_Node_Attachment_Routers(topo)

def Select_Proxy_Node_NHs(P,S):
   if P.pnar1.node.node_id < P.pnar2.node.node_id:
       X = P.pnar1.node
       Y = P.pnar2.node
   else:
       X = P.pnar2.node
       Y = P.pnar1.node
   P.pnar_X = X
   P.pnar_Y = Y
   A = X.order_proxy



Enyedi, et al.               Standards Track                   [Page 95]

RFC 7811                    MRT-FRR Algorithm                  June 2016


   B = Y.order_proxy
   if (A is S.localroot
       and B is S.localroot):
       #print("1.0")
       Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
       Copy_List_Items(P.red_next_hops, Y.red_next_hops)
       return
   if (A is S.localroot
       and B is not S.localroot):
       #print("2.0")
       if B.LOWER:
           #print("2.1")
           Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
           Copy_List_Items(P.red_next_hops, Y.red_next_hops)
           return
       if B.HIGHER:
           #print("2.2")
           Copy_List_Items(P.blue_next_hops, X.red_next_hops)
           Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
           return
       else:
           #print("2.3")
           Copy_List_Items(P.blue_next_hops, X.red_next_hops)
           Copy_List_Items(P.red_next_hops, Y.red_next_hops)
           return
   if (A is not S.localroot
       and B is S.localroot):
       #print("3.0")
       if A.LOWER:
           #print("3.1")
           Copy_List_Items(P.blue_next_hops, X.red_next_hops)
           Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
           return
       if A.HIGHER:
           #print("3.2")
           Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
           Copy_List_Items(P.red_next_hops, Y.red_next_hops)
           return
       else:
           #print("3.3")
           Copy_List_Items(P.blue_next_hops, X.red_next_hops)
           Copy_List_Items(P.red_next_hops, Y.red_next_hops)
           return
   if (A is not S.localroot
       and B is not S.localroot):
       #print("4.0")
       if (S is A.localroot or S is B.localroot):
           #print("4.05")



Enyedi, et al.               Standards Track                   [Page 96]

RFC 7811                    MRT-FRR Algorithm                  June 2016


           if A.topo_order < B.topo_order:
               #print("4.05.1")
               Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
               Copy_List_Items(P.red_next_hops, Y.red_next_hops)
               return
           else:
               #print("4.05.2")
               Copy_List_Items(P.blue_next_hops, X.red_next_hops)
               Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
               return
       if A.LOWER:
           #print("4.1")
           if B.HIGHER:
               #print("4.1.1")
               Copy_List_Items(P.blue_next_hops, X.red_next_hops)
               Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
               return
           if B.LOWER:
               #print("4.1.2")
               if A.topo_order < B.topo_order:
                   #print("4.1.2.1")
                   Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
                   Copy_List_Items(P.red_next_hops, Y.red_next_hops)
                   return
               else:
                   #print("4.1.2.2")
                   Copy_List_Items(P.blue_next_hops, X.red_next_hops)
                   Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
                   return
           else:
               #print("4.1.3")
               Copy_List_Items(P.blue_next_hops, X.red_next_hops)
               Copy_List_Items(P.red_next_hops, Y.red_next_hops)
               return
       if A.HIGHER:
           #print("4.2")
           if B.HIGHER:
               #print("4.2.1")
               if A.topo_order < B.topo_order:
                   #print("4.2.1.1")
                   Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
                   Copy_List_Items(P.red_next_hops, Y.red_next_hops)
                   return
               else:
                   #print("4.2.1.2")
                   Copy_List_Items(P.blue_next_hops, X.red_next_hops)
                   Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
                   return



Enyedi, et al.               Standards Track                   [Page 97]

RFC 7811                    MRT-FRR Algorithm                  June 2016


           if B.LOWER:
               #print("4.2.2")
               Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
               Copy_List_Items(P.red_next_hops, Y.red_next_hops)
               return
           else:
               #print("4.2.3")
               Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
               Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
               return
       else:
           #print("4.3")
           if B.LOWER:
               #print("4.3.1")
               Copy_List_Items(P.blue_next_hops, X.red_next_hops)
               Copy_List_Items(P.red_next_hops, Y.red_next_hops)
               return
           if B.HIGHER:
               #print("4.3.2")
               Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
               Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
               return
           else:
               #print("4.3.3")
               if A.topo_order < B.topo_order:
                   #print("4.3.3.1")
                   Copy_List_Items(P.blue_next_hops, X.blue_next_hops)
                   Copy_List_Items(P.red_next_hops, Y.red_next_hops)
                   return
               else:
                   #print("4.3.3.2")
                   Copy_List_Items(P.blue_next_hops, X.red_next_hops)
                   Copy_List_Items(P.red_next_hops, Y.blue_next_hops)
                   return
   assert(False)

def Compute_MRT_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,S):
   for prefix in topo.named_proxy_dict:
       P = topo.named_proxy_dict[prefix]
       if P.pnar2 == None:
           if S is P.pnar1.node:
               # set the MRT next hops for the PNAR to
               # reach the LFIN and change FEC to green
               Copy_List_Items(P.blue_next_hops,
                               P.pnar1.nh_intf_list)
               S.blue_to_green_nh_dict[P.node_id] = True
               Copy_List_Items(P.red_next_hops,
                               P.pnar1.nh_intf_list)



Enyedi, et al.               Standards Track                   [Page 98]

RFC 7811                    MRT-FRR Algorithm                  June 2016


               S.red_to_green_nh_dict[P.node_id] = True
           else:
               # inherit MRT NHs for P from pnar1
               Copy_List_Items(P.blue_next_hops,
                               P.pnar1.node.blue_next_hops)
               Copy_List_Items(P.red_next_hops,
                               P.pnar1.node.red_next_hops)
       else:
           Select_Proxy_Node_NHs(P,S)
           # set the MRT next hops for the PNAR to reach the LFIN
           # and change FEC to green rely on the red or blue
           # next hops being empty to figure out which one needs
           # to point to the LFIN.
           if S is P.pnar1.node:
               this_pnar = P.pnar1
           elif S is P.pnar2.node:
               this_pnar = P.pnar2
           else:
               continue
           if P.blue_next_hops == []:
               Copy_List_Items(P.blue_next_hops,
                   this_pnar.nh_intf_list)
               S.blue_to_green_nh_dict[P.node_id] = True
           if P.red_next_hops == []:
               Copy_List_Items(P.red_next_hops,
                   this_pnar.nh_intf_list)
               S.red_to_green_nh_dict[P.node_id] = True

def Select_Alternates_Proxy_Node(P,F,primary_intf):
   S = primary_intf.local_node
   X = P.pnar_X
   Y = P.pnar_Y
   A = X.order_proxy
   B = Y.order_proxy
   if F is A and F is B:
       return 'PRIM_NH_IS_OP_FOR_BOTH_X_AND_Y'
   if F is A:
       return 'USE_RED'
   if F is B:
       return 'USE_BLUE'

   if not In_Common_Block(A, B):
       if In_Common_Block(F, A):
           return 'USE_RED'
       elif In_Common_Block(F, B):
           return 'USE_BLUE'
       else:
           return 'USE_RED_OR_BLUE'



Enyedi, et al.               Standards Track                   [Page 99]

RFC 7811                    MRT-FRR Algorithm                  June 2016


   if (not In_Common_Block(F, A)
       and not In_Common_Block(F, A) ):
       return 'USE_RED_OR_BLUE'

   alt_to_X = Select_Alternates(X, F, primary_intf)
   alt_to_Y = Select_Alternates(Y, F, primary_intf)

   if (alt_to_X == 'USE_RED_OR_BLUE'
       and alt_to_Y == 'USE_RED_OR_BLUE'):
       return 'USE_RED_OR_BLUE'
   if alt_to_X == 'USE_RED_OR_BLUE':
       return 'USE_BLUE'
   if alt_to_Y == 'USE_RED_OR_BLUE':
       return 'USE_RED'

   if (A is S.localroot
       and B is S.localroot):
       #print("1.0")
       if (alt_to_X == 'USE_BLUE' and alt_to_Y == 'USE_RED'):
           return 'USE_RED_OR_BLUE'
       if alt_to_X == 'USE_BLUE':
           return 'USE_BLUE'
       if alt_to_Y == 'USE_RED':
           return 'USE_RED'
       assert(False)
   if (A is S.localroot
       and B is not S.localroot):
       #print("2.0")
       if B.LOWER:
           #print("2.1")
           if (alt_to_X == 'USE_BLUE' and alt_to_Y == 'USE_RED'):
               return 'USE_RED_OR_BLUE'
           if alt_to_X == 'USE_BLUE':
               return 'USE_BLUE'
           if alt_to_Y == 'USE_RED':
               return 'USE_RED'
           assert(False)
       if B.HIGHER:
           #print("2.2")
           if (alt_to_X == 'USE_RED' and alt_to_Y == 'USE_BLUE'):
               return 'USE_RED_OR_BLUE'
           if alt_to_X == 'USE_RED':
               return 'USE_BLUE'
           if alt_to_Y == 'USE_BLUE':
               return 'USE_RED'
           assert(False)
       else:
           #print("2.3")



Enyedi, et al.               Standards Track                  [Page 100]

RFC 7811                    MRT-FRR Algorithm                  June 2016


           if (alt_to_X == 'USE_RED' and alt_to_Y == 'USE_RED'):
               return 'USE_RED_OR_BLUE'
           if alt_to_X == 'USE_RED':
               return 'USE_BLUE'
           if alt_to_Y == 'USE_RED':
               return 'USE_RED'
           assert(False)
   if (A is not S.localroot
       and B is S.localroot):
       #print("3.0")
       if A.LOWER:
           #print("3.1")
           if (alt_to_X == 'USE_RED' and alt_to_Y == 'USE_BLUE'):
               return 'USE_RED_OR_BLUE'
           if alt_to_X == 'USE_RED':
               return 'USE_BLUE'
           if alt_to_Y == 'USE_BLUE':
               return 'USE_RED'
           assert(False)
       if A.HIGHER:
           #print("3.2")
           if (alt_to_X == 'USE_BLUE' and alt_to_Y == 'USE_RED'):
               return 'USE_RED_OR_BLUE'
           if alt_to_X == 'USE_BLUE':
               return 'USE_BLUE'
           if alt_to_Y == 'USE_RED':
               return 'USE_RED'
           assert(False)
       else:
           #print("3.3")
           if (alt_to_X == 'USE_RED' and alt_to_Y == 'USE_RED'):
               return 'USE_RED_OR_BLUE'
           if alt_to_X == 'USE_RED':
               return 'USE_BLUE'
           if alt_to_Y == 'USE_RED':
               return 'USE_RED'
           assert(False)
   if (A is not S.localroot
       and B is not S.localroot):
       #print("4.0")
       if (S is A.localroot or S is B.localroot):
           #print("4.05")
           if A.topo_order < B.topo_order:
               #print("4.05.1")
               if (alt_to_X == 'USE_BLUE' and alt_to_Y == 'USE_RED'):
                   return 'USE_RED_OR_BLUE'
               if alt_to_X == 'USE_BLUE':
                   return 'USE_BLUE'



Enyedi, et al.               Standards Track                  [Page 101]

RFC 7811                    MRT-FRR Algorithm                  June 2016


               if alt_to_Y == 'USE_RED':
                   return 'USE_RED'
               assert(False)
           else:
               #print("4.05.2")
               if (alt_to_X == 'USE_RED' and alt_to_Y == 'USE_BLUE'):
                   return 'USE_RED_OR_BLUE'
               if alt_to_X == 'USE_RED':
                   return 'USE_BLUE'
               if alt_to_Y == 'USE_BLUE':
                   return 'USE_RED'
               assert(False)
       if A.LOWER:
           #print("4.1")
           if B.HIGHER:
               #print("4.1.1")
               if (alt_to_X == 'USE_RED' and alt_to_Y == 'USE_BLUE'):
                   return 'USE_RED_OR_BLUE'
               if alt_to_X == 'USE_RED':
                   return 'USE_BLUE'
               if alt_to_Y == 'USE_BLUE':
                   return 'USE_RED'
               assert(False)
           if B.LOWER:
               #print("4.1.2")
               if A.topo_order < B.topo_order:
                   #print("4.1.2.1")
                   if (alt_to_X == 'USE_BLUE'
                       and alt_to_Y == 'USE_RED'):
                       return 'USE_RED_OR_BLUE'
                   if alt_to_X == 'USE_BLUE':
                       return 'USE_BLUE'
                   if alt_to_Y == 'USE_RED':
                       return 'USE_RED'
                   assert(False)
               else:
                   #print("4.1.2.2")
                   if (alt_to_X == 'USE_RED'
                       and alt_to_Y == 'USE_BLUE'):
                       return 'USE_RED_OR_BLUE'
                   if alt_to_X == 'USE_RED':
                       return 'USE_BLUE'
                   if alt_to_Y == 'USE_BLUE':
                       return 'USE_RED'
                   assert(False)
           else:
               #print("4.1.3")
               if (F.LOWER and not F.HIGHER



Enyedi, et al.               Standards Track                  [Page 102]

RFC 7811                    MRT-FRR Algorithm                  June 2016


                   and F.topo_order > A.topo_order):
                   #print("4.1.3.1")
                   return 'USE_RED'
               else:
                   #print("4.1.3.2")
                   return 'USE_BLUE'
       if A.HIGHER:
           #print("4.2")
           if B.HIGHER:
               #print("4.2.1")
               if A.topo_order < B.topo_order:
                   #print("4.2.1.1")
                   if (alt_to_X == 'USE_BLUE'
                       and alt_to_Y == 'USE_RED'):
                       return 'USE_RED_OR_BLUE'
                   if alt_to_X == 'USE_BLUE':
                       return 'USE_BLUE'
                   if alt_to_Y == 'USE_RED':
                       return 'USE_RED'
                   assert(False)
               else:
                   #print("4.2.1.2")
                   if (alt_to_X == 'USE_RED'
                       and alt_to_Y == 'USE_BLUE'):
                       return 'USE_RED_OR_BLUE'
                   if alt_to_X == 'USE_RED':
                       return 'USE_BLUE'
                   if alt_to_Y == 'USE_BLUE':
                       return 'USE_RED'
                   assert(False)
           if B.LOWER:
               #print("4.2.2")
               if (alt_to_X == 'USE_BLUE'
                   and alt_to_Y == 'USE_RED'):
                   return 'USE_RED_OR_BLUE'
               if alt_to_X == 'USE_BLUE':
                   return 'USE_BLUE'
               if alt_to_Y == 'USE_RED':
                   return 'USE_RED'
               assert(False)
           else:
               #print("4.2.3")
               if (F.HIGHER and not F.LOWER
                   and F.topo_order < A.topo_order):
                   return 'USE_RED'
               else:
                   return 'USE_BLUE'




Enyedi, et al.               Standards Track                  [Page 103]

RFC 7811                    MRT-FRR Algorithm                  June 2016


       else:
           #print("4.3")
           if B.LOWER:
               #print("4.3.1")
               if (F.LOWER and not F.HIGHER
                   and F.topo_order > B.topo_order):
                   return 'USE_BLUE'
               else:
                   return 'USE_RED'
           if B.HIGHER:
               #print("4.3.2")
               if (F.HIGHER and not F.LOWER
                   and F.topo_order < B.topo_order):
                   return 'USE_BLUE'
               else:
                   return 'USE_RED'
           else:
               #print("4.3.3")
               if A.topo_order < B.topo_order:
                   #print("4.3.3.1")
                   if (alt_to_X == 'USE_BLUE'
                       and alt_to_Y == 'USE_RED'):
                       return 'USE_RED_OR_BLUE'
                   if alt_to_X == 'USE_BLUE':
                       return 'USE_BLUE'
                   if alt_to_Y == 'USE_RED':
                       return 'USE_RED'
                   assert(False)
               else:
                   #print("4.3.3.2")
                   if (alt_to_X == 'USE_RED'
                       and alt_to_Y == 'USE_BLUE'):
                       return 'USE_RED_OR_BLUE'
                   if alt_to_X == 'USE_RED':
                       return 'USE_BLUE'
                   if alt_to_Y == 'USE_BLUE':
                       return 'USE_RED'
                   assert(False)
   assert(False)

def Compute_Primary_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,src):
   for prefix in topo.named_proxy_dict:
       P = topo.named_proxy_dict[prefix]
       min_total_pref_cost = 2147483647
       for (adv_node, prefix_cost) in P.node_prefix_cost_list:
           total_pref_cost = (adv_node.primary_spf_metric
                              + prefix_cost)
           if total_pref_cost < min_total_pref_cost:



Enyedi, et al.               Standards Track                  [Page 104]

RFC 7811                    MRT-FRR Algorithm                  June 2016


               min_total_pref_cost = total_pref_cost
               Copy_List_Items(P.primary_next_hops,
                               adv_node.primary_next_hops)
           elif total_pref_cost == min_total_pref_cost:
               for nh_intf in adv_node.primary_next_hops:
                   Add_Item_To_List_If_New(P.primary_next_hops,
                                           nh_intf)

def Select_Alts_For_One_Src_To_Named_Proxy_Nodes(topo,src):
   for prefix in topo.named_proxy_dict:
       P = topo.named_proxy_dict[prefix]
       P.alt_list = []
       for failed_intf in P.primary_next_hops:
           alt = Alternate()
           alt.failed_intf = failed_intf
           if failed_intf not in src.island_intf_list:
               alt.info = 'PRIM_NH_FOR_PROXY_NODE_NOT_IN_ISLAND'
           elif P.pnar1 is None:
               alt.info = 'NO_PNARs_EXIST_FOR_THIS_PREFIX'
           elif src is P.pnar1.node:
               alt.info = 'SRC_IS_PNAR'
           elif P.pnar2 is not None and src is P.pnar2.node:
               alt.info = 'SRC_IS_PNAR'
           elif P.pnar2 is None:
               #inherit alternates from the only pnar.
               alt.info = Select_Alternates(P.pnar1.node,
                           failed_intf.remote_node, failed_intf)
           elif failed_intf in src.island_intf_list:
               alt.info = Select_Alternates_Proxy_Node(P,
                           failed_intf.remote_node, failed_intf)

           if alt.info == 'USE_RED_OR_BLUE':
               alt.red_or_blue = \
                   random.choice(['USE_RED','USE_BLUE'])
           if (alt.info == 'USE_BLUE'
               or alt.red_or_blue == 'USE_BLUE'):
               Copy_List_Items(alt.nh_list, P.blue_next_hops)
               alt.fec = 'BLUE'
               alt.prot = 'NODE_PROTECTION'
           elif (alt.info == 'USE_RED'
                 or alt.red_or_blue == 'USE_RED'):
               Copy_List_Items(alt.nh_list, P.red_next_hops)
               alt.fec = 'RED'
               alt.prot = 'NODE_PROTECTION'
           elif (alt.info == 'PRIM_NH_IS_D_OR_OP_FOR_D'
               or alt.info == 'PRIM_NH_IS_OP_FOR_BOTH_X_AND_Y'):
               if failed_intf.OUTGOING and failed_intf.INCOMING:
                   # cut-link: if there are parallel cut links, use



Enyedi, et al.               Standards Track                  [Page 105]

RFC 7811                    MRT-FRR Algorithm                  June 2016


                   # the link(s) with lowest metric that are not
                   # primary intf or None
                   cand_alt_list = [None]
                   min_metric = 2147483647
                   for intf in src.island_intf_list:
                       if ( intf is not failed_intf and
                            (intf.remote_node is
                            failed_intf.remote_node)):
                           if intf.metric < min_metric:
                               cand_alt_list = [intf]
                               min_metric = intf.metric
                           elif intf.metric == min_metric:
                               cand_alt_list.append(intf)
                   if cand_alt_list != [None]:
                       alt.fec = 'GREEN'
                       alt.prot = 'PARALLEL_CUTLINK'
                   else:
                       alt.fec = 'NO_ALTERNATE'
                       alt.prot = 'NO_PROTECTION'
                   Copy_List_Items(alt.nh_list, cand_alt_list)
               else:
                   # set Z as the node to inherit blue next hops from
                   if alt.info == 'PRIM_NH_IS_D_OR_OP_FOR_D':
                       Z = P.pnar1.node
                   else:
                       Z = P
                   if failed_intf in Z.red_next_hops:
                       Copy_List_Items(alt.nh_list, Z.blue_next_hops)
                       alt.fec = 'BLUE'
                       alt.prot = 'LINK_PROTECTION'
                   else:
                       assert(failed_intf in Z.blue_next_hops)
                       Copy_List_Items(alt.nh_list, Z.red_next_hops)
                       alt.fec = 'RED'
                       alt.prot = 'LINK_PROTECTION'

           elif alt.info == 'PRIM_NH_FOR_PROXY_NODE_NOT_IN_ISLAND':
               if (P.pnar2 == None and src is P.pnar1.node):
                   #MRT Island is singly connected to non-island dest
                   alt.fec = 'NO_ALTERNATE'
                   alt.prot = 'NO_PROTECTION'
               elif P.node_id in src.blue_to_green_nh_dict:
                   # blue to P goes to failed LFIN so use red to P
                   Copy_List_Items(alt.nh_list, P.red_next_hops)
                   alt.fec = 'RED'
                   alt.prot = 'LINK_PROTECTION'
               elif P.node_id in src.red_to_green_nh_dict:
                   # red to P goes to failed LFIN so use blue to P



Enyedi, et al.               Standards Track                  [Page 106]

RFC 7811                    MRT-FRR Algorithm                  June 2016


                   Copy_List_Items(alt.nh_list, P.blue_next_hops)
                   alt.fec = 'BLUE'
                   alt.prot = 'LINK_PROTECTION'
               else:
                   Copy_List_Items(alt.nh_list, P.blue_next_hops)
                   alt.fec = 'BLUE'
                   alt.prot = 'LINK_PROTECTION'
           elif alt.info == 'TEMP_NO_ALTERNATE':
               alt.fec = 'NO_ALTERNATE'
               alt.prot = 'NO_PROTECTION'

           P.alt_list.append(alt)

def Run_Basic_MRT_for_One_Source(topo, src):
   MRT_Island_Identification(topo, src, 0, 0)
   Set_Island_Intf_and_Node_Lists(topo)
   Set_GADAG_Root(topo,src)
   Sort_Interfaces(topo)
   Run_Lowpoint(topo)
   Assign_Remaining_Lowpoint_Parents(topo)
   Construct_GADAG_via_Lowpoint(topo)
   Run_Assign_Block_ID(topo)
   Add_Undirected_Links(topo)
   Compute_MRT_NH_For_One_Src_To_Island_Dests(topo,src)
   Store_MRT_Nexthops_For_One_Src_To_Island_Dests(topo,src)
   Select_Alts_For_One_Src_To_Island_Dests(topo,src)
   Store_Primary_and_Alts_For_One_Src_To_Island_Dests(topo,src)

def Store_GADAG_and_Named_Proxies_Once(topo):
   for node in topo.node_list:
       for intf in node.intf_list:
           if intf.OUTGOING:
               intf.SIMULATION_OUTGOING = True
           else:
               intf.SIMULATION_OUTGOING = False
   for prefix in topo.named_proxy_dict:
       P = topo.named_proxy_dict[prefix]
       topo.stored_named_proxy_dict[prefix] = P

def Run_Basic_MRT_for_All_Sources(topo):
   for src in topo.node_list:
       Reset_Computed_Node_and_Intf_Values(topo)
       Run_Basic_MRT_for_One_Source(topo,src)
       if src is topo.gadag_root:
           Store_GADAG_and_Named_Proxies_Once(topo)






Enyedi, et al.               Standards Track                  [Page 107]

RFC 7811                    MRT-FRR Algorithm                  June 2016


def Run_MRT_for_One_Source(topo, src):
   MRT_Island_Identification(topo, src, 0, 0)
   Set_Island_Intf_and_Node_Lists(topo)
   Set_GADAG_Root(topo,src)
   Sort_Interfaces(topo)
   Run_Lowpoint(topo)
   Assign_Remaining_Lowpoint_Parents(topo)
   Construct_GADAG_via_Lowpoint(topo)
   Run_Assign_Block_ID(topo)
   Add_Undirected_Links(topo)
   Compute_MRT_NH_For_One_Src_To_Island_Dests(topo,src)
   Store_MRT_Nexthops_For_One_Src_To_Island_Dests(topo,src)
   Select_Alts_For_One_Src_To_Island_Dests(topo,src)
   Store_Primary_and_Alts_For_One_Src_To_Island_Dests(topo,src)
   Create_Basic_Named_Proxy_Nodes(topo)
   Attach_Named_Proxy_Nodes(topo)
   Compute_MRT_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,src)
   Store_MRT_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,src)
   Compute_Primary_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,src)
   Store_Primary_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,src)
   Select_Alts_For_One_Src_To_Named_Proxy_Nodes(topo,src)
   Store_Alts_For_One_Src_To_Named_Proxy_Nodes(topo,src)

def Run_Prim_SPF_for_One_Source(topo,src):
   Normal_SPF(topo, src)
   Store_Primary_NHs_For_One_Source_To_Nodes(topo,src)
   Create_Basic_Named_Proxy_Nodes(topo)
   Compute_Primary_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,src)
   Store_Primary_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,src)

def Run_MRT_for_All_Sources(topo):
   for src in topo.node_list:
       Reset_Computed_Node_and_Intf_Values(topo)
       if src in topo.island_node_list_for_test_gr:
           # src runs MRT if it is in same MRT island as test_gr
           Run_MRT_for_One_Source(topo,src)
           if src is topo.gadag_root:
               Store_GADAG_and_Named_Proxies_Once(topo)
       else:
           # src still runs SPF if not in MRT island
           Run_Prim_SPF_for_One_Source(topo,src)

def Write_Output_To_Files(topo,file_prefix):
   Write_GADAG_To_File(topo,file_prefix)
   Write_Both_MRTs_For_All_Dests_To_File(topo,file_prefix)
   Write_Alternates_For_All_Dests_To_File(topo,file_prefix)





Enyedi, et al.               Standards Track                  [Page 108]

RFC 7811                    MRT-FRR Algorithm                  June 2016


def Create_Basic_Topology_Input_File(filename):
   data = [[01,02,10],[02,03,10],[03,04,11],[04,05,10,20],[05,06,10],
           [06,07,10],[06,07,10],[06,07,15],[07,01,10],[07,51,10],
           [51,52,10],[52,53,10],[53,03,10],[01,55,10],[55,06,10],
           [04,12,10],[12,13,10],[13,14,10],[14,15,10],[15,16,10],
           [16,17,10],[17,04,10],[05,76,10],[76,77,10],[77,78,10],
           [78,79,10],[79,77,10]]
   with open(filename + '.csv', 'w') as topo_file:
       for item in data:
           if len(item) > 3:
               line = (str(item[0])+','+str(item[1])+','+
                       str(item[2])+','+str(item[3])+'\n')
           else:
               line = (str(item[0])+','+str(item[1])+','+
                       str(item[2])+'\n')
           topo_file.write(line)

def Create_Complex_Topology_Input_File(filename):
   data = [[01,02,10],[02,03,10],[03,04,11],[04,05,10,20],[05,06,10],
           [06,07,10],[06,07,10],[06,07,15],[07,01,10],[07,51,10],
           [51,52,10],[52,53,10],[53,03,10],[01,55,10],[55,06,10],
           [04,12,10],[12,13,10],[13,14,10],[14,15,10],[15,16,10],
           [16,17,10],[17,04,10],[05,76,10],[76,77,10],[77,78,10],
           [78,79,10],[79,77,10]]
   with open(filename + '.csv', 'w') as topo_file:
       for item in data:
           if len(item) > 3:
               line = (str(item[0])+','+str(item[1])+','+
                       str(item[2])+','+str(item[3])+'\n')
           else:
               line = (str(item[0])+','+str(item[1])+','+
                       str(item[2])+'\n')
           topo_file.write(line)

   data = [[01,0],[02,0],[03,0],[04,0],[05,0],
           [06,0],[07,0],
           [51,0],[55,0],
           [12,0],[13,0],[14,0],[15,0],
           [16,0],[17,0],[76,0],[77,0],
           [78,0],[79,0]]
   with open(filename + '.profile', 'w') as topo_file:
       for item in data:
           line = (str(item[0])+','+str(item[1])+'\n')
           topo_file.write(line)

   data = [[2001,05,100],[2001,07,120],[2001,03,130],
           [2002,13,100],[2002,15,110],
           [2003,52,100],[2003,78,100]]



Enyedi, et al.               Standards Track                  [Page 109]

RFC 7811                    MRT-FRR Algorithm                  June 2016


   with open(filename + '.prefix', 'w') as topo_file:
       for item in data:
           line = (str(item[0])+','+str(item[1])+','+
                   str(item[2])+'\n')
           topo_file.write(line)

def Generate_Basic_Topology_and_Run_MRT():
   this_gadag_root = 3
   Create_Basic_Topology_Input_File('basic_topo_input')
   topo = Create_Topology_From_File('basic_topo_input')
   res_file_base = 'basic_topo'
   Compute_Island_Node_List_For_Test_GR(topo, this_gadag_root)
   Raise_GADAG_Root_Selection_Priority(topo,this_gadag_root)
   Run_Basic_MRT_for_All_Sources(topo)
   Write_Output_To_Files(topo, res_file_base)

def Generate_Complex_Topology_and_Run_MRT():
   this_gadag_root = 3
   Create_Complex_Topology_Input_File('complex_topo_input')
   topo = Create_Topology_From_File('complex_topo_input')
   Add_Profile_IDs_from_File(topo,'complex_topo_input')
   Add_Prefix_Advertisements_From_File(topo,'complex_topo_input')
   Compute_Island_Node_List_For_Test_GR(topo, this_gadag_root)
   Add_Prefixes_for_Non_Island_Nodes(topo)
   res_file_base = 'complex_topo'
   Raise_GADAG_Root_Selection_Priority(topo,this_gadag_root)
   Run_MRT_for_All_Sources(topo)
   Write_Output_To_Files(topo, res_file_base)

Generate_Basic_Topology_and_Run_MRT()

Generate_Complex_Topology_and_Run_MRT()

<CODE ENDS>

Appendix B.  Constructing a GADAG Using SPFs

  The basic idea in this method for constructing a GADAG is to use
  slightly modified SPF computations to find ears.  In every block, an
  SPF computation is first done to find a cycle from the local root and
  then SPF computations in that block find ears until there are no more
  interfaces to be explored.  The used result from the SPF computation
  is the path of interfaces indicated by following the previous hops
  from the minimized IN_GADAG node back to the SPF root.

  To do this, first all cut-vertices must be identified and localroots
  assigned as specified in Figure 12.




Enyedi, et al.               Standards Track                  [Page 110]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  The slight modifications to the SPF are as follows.  The root of the
  block is referred to as the block-root; it is either the GADAG root
  or a cut-vertex.

  a.  The SPF is rooted at a neighbor x of an IN_GADAG node y.  All
      links between y and x are marked as TEMP_UNUSABLE.  They should
      not be used during the SPF computation.

  b.  If y is not the block-root, then it is marked TEMP_UNUSABLE.  It
      should not be used during the SPF computation.  This prevents
      ears from starting and ending at the same node and avoids cycles;
      the exception is because cycles to/from the block-root are
      acceptable and expected.

  c.  Do not explore links to nodes whose localroot is not the block-
      root.  This keeps the SPF confined to the particular block.

  d.  Terminate when the first IN_GADAG node z is minimized.

  e.  Respect the existing directions (e.g., INCOMING, OUTGOING,
      UNDIRECTED) already specified for each interface.


   Mod_SPF(spf_root, block_root)
      Initialize spf_heap to empty
      Initialize nodes' spf_metric to infinity
      spf_root.spf_metric = 0
      insert(spf_heap, spf_root)
      found_in_gadag = false
      while (spf_heap is not empty) and (found_in_gadag is false)
          min_node = remove_lowest(spf_heap)
          if min_node.IN_GADAG
             found_in_gadag = true
          else
             foreach interface intf of min_node
                if ((intf.OUTGOING or intf.UNDIRECTED) and
                    ((intf.remote_node.localroot is block_root) or
                     (intf.remote_node is block_root)) and
                    (intf.remote_node is not TEMP_UNUSABLE) and
                    (intf is not TEMP_UNUSABLE))
                   path_metric = min_node.spf_metric + intf.metric
                   if path_metric < intf.remote_node.spf_metric
                      intf.remote_node.spf_metric = path_metric
                      intf.remote_node.spf_prev_intf = intf
                      insert_or_update(spf_heap, intf.remote_node)
      return min_node





Enyedi, et al.               Standards Track                  [Page 111]

RFC 7811                    MRT-FRR Algorithm                  June 2016


   SPF_for_Ear(cand_intf.local_node,cand_intf.remote_node, block_root,
               method)
      Mark all interfaces between cand_intf.remote_node
                 and cand_intf.local_node as TEMP_UNUSABLE
      if cand_intf.local_node is not block_root
         Mark cand_intf.local_node as TEMP_UNUSABLE
      Initialize ear_list to empty
      end_ear = Mod_SPF(spf_root, block_root)
      y = end_ear.spf_prev_hop
      while y.local_node is not spf_root
        add_to_list_start(ear_list, y)
        y.local_node.IN_GADAG = true
        y = y.local_node.spf_prev_intf
      if(method is not hybrid)
         Set_Ear_Direction(ear_list, cand_intf.local_node,
                           end_ear,block_root)
      Clear TEMP_UNUSABLE from all interfaces between
            cand_intf.remote_node and cand_intf.local_node
      Clear TEMP_UNUSABLE from cand_intf.local_node
   return end_ear


             Figure 31: Modified SPF for GADAG Construction

  Assume that an ear is found by going from y to x and then running an
  SPF that terminates by minimizing z (e.g., y<->x...q<->z).  Now it is
  necessary to determine the direction of the ear; if y<<z, then the
  path should be y->x...q->z; but if y>>z, then the path should be
  y<-x...q<-z.  In Section 5.5, the same problem was handled by finding
  all ears that started at a node before looking at ears starting at
  nodes higher in the partial order.  In this GADAG construction
  method, using that approach could mean that new ears aren't added in
  order of their total cost since all ears connected to a node would
  need to be found before additional nodes could be found.

  The alternative is to track the order relationship of each node with
  respect to every other node.  This can be accomplished by maintaining
  two sets of nodes at each node.  The first set, Higher_Nodes,
  contains all nodes that are known to be ordered above the node.  The
  second set, Lower_Nodes, contains all nodes that are known to be
  ordered below the node.  This is the approach used in this GADAG
  construction method.









Enyedi, et al.               Standards Track                  [Page 112]

RFC 7811                    MRT-FRR Algorithm                  June 2016


     Set_Ear_Direction(ear_list, end_a, end_b, block_root)
       // Default of A_TO_B for the following cases:
       // (a) end_a and end_b are the same (root)
       // or (b) end_a is in end_b's Lower Nodes
       // or (c) end_a and end_b were unordered with respect to each
       //        other
       direction = A_TO_B
       if (end_b is block_root) and (end_a is not end_b)
          direction = B_TO_A
       else if end_a is in end_b.Higher_Nodes
          direction = B_TO_A
       if direction is B_TO_A
          foreach interface i in ear_list
              i.UNDIRECTED = false
              i.INCOMING = true
              i.remote_intf.UNDIRECTED = false
              i.remote_intf.OUTGOING = true
       else
          foreach interface i in ear_list
              i.UNDIRECTED = false
              i.OUTGOING = true
              i.remote_intf.UNDIRECTED = false
              i.remote_intf.INCOMING = true
        if end_a is end_b
           return
        // Next, update all nodes' Lower_Nodes and Higher_Nodes
        if (end_a is in end_b.Higher_Nodes)
           foreach node x where x.localroot is block_root
               if end_a is in x.Lower_Nodes
                  foreach interface i in ear_list
                     add i.remote_node to x.Lower_Nodes
               if end_b is in x.Higher_Nodes
                  foreach interface i in ear_list
                     add i.local_node to x.Higher_Nodes
         else
           foreach node x where x.localroot is block_root
               if end_b is in x.Lower_Nodes
                  foreach interface i in ear_list
                     add i.local_node to x.Lower_Nodes
               if end_a is in x.Higher_Nodes
                  foreach interface i in ear_list
                     add i.remote_node to x.Higher_Nodes

        Figure 32: Algorithm to Assign Links of an Ear Direction

  A goal of this GADAG construction method is to find the shortest
  cycles and ears.  An ear is started by going to a neighbor x of an
  IN_GADAG node y.  The path from x to an IN_GADAG node is minimal,



Enyedi, et al.               Standards Track                  [Page 113]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  since it is computed via SPF.  Since a shortest path is made of
  shortest paths, to find the shortest ears requires reaching from the
  set of IN_GADAG nodes to the closest node that isn't IN_GADAG.
  Therefore, an ordered tree is maintained of interfaces that could be
  explored from the IN_GADAG nodes.  The interfaces are ordered by
  their characteristics of metric, local loopback address, remote
  loopback address, and ifindex, based on the Interface_Compare
  function defined in Figure 14.

  This GADAG construction method ignores interfaces picked from the
  ordered list that belong to the block root if the block in which the
  interface is present already has an ear that has been computed.  This
  is necessary since we allow at most one incoming interface to a block
  root in each block.  This requirement stems from the way next hops
  are computed as was seen in Section 5.7.  After any ear gets
  computed, we traverse the newly added nodes to the GADAG and insert
  interfaces whose far end is not yet on the GADAG to the ordered tree
  for later processing.

  Finally, cut-links are a special case because there is no point in
  doing an SPF on a block of two nodes.  The algorithm identifies cut-
  links simply as links where both ends of the link are cut-vertices.
  Cut-links can simply be added to the GADAG with both OUTGOING and
  INCOMING specified on their interfaces.

    add_eligible_interfaces_of_node(ordered_intfs_tree,node)
       for each interface of node
          if intf.remote_node.IN_GADAG is false
             insert(intf,ordered_intfs_tree)

    check_if_block_has_ear(x,block_id)
       block_has_ear = false
          for all interfaces of x
             if ( (intf.remote_node.block_id == block_id) &&
                   intf.remote_node.IN_GADAG )
                block_has_ear = true
    return block_has_ear

    Construct_GADAG_via_SPF(topology, root)
      Compute_Localroot (root,root)
      Assign_Block_ID(root,0)
      root.IN_GADAG = true
         add_eligible_interfaces_of_node(ordered_intfs_tree,root)
      while ordered_intfs_tree is not empty
         cand_intf = remove_lowest(ordered_intfs_tree)
         if cand_intf.remote_node.IN_GADAG is false
            if L(cand_intf.remote_node) == D(cand_intf.remote_node)
               // Special case for cut-links



Enyedi, et al.               Standards Track                  [Page 114]

RFC 7811                    MRT-FRR Algorithm                  June 2016


               cand_intf.UNDIRECTED = false
               cand_intf.remote_intf.UNDIRECTED = false
               cand_intf.OUTGOING = true
               cand_intf.INCOMING = true
               cand_intf.remote_intf.OUTGOING = true
               cand_intf.remote_intf.INCOMING = true
               cand_intf.remote_node.IN_GADAG = true
            add_eligible_interfaces_of_node(
                           ordered_intfs_tree,cand_intf.remote_node)
         else
            if (cand_intf.remote_node.local_root ==
                cand_intf.local_node) &&
                check_if_block_has_ear(cand_intf.local_node,
                             cand_intf.remote_node.block_id))
                /* Skip the interface since the block root
                already has an incoming interface in the
                block */
            else
            ear_end = SPF_for_Ear(cand_intf.local_node,
                    cand_intf.remote_node,
                    cand_intf.remote_node.localroot,
                    SPF method)
            y = ear_end.spf_prev_hop
            while y.local_node is not cand_intf.local_node
                add_eligible_interfaces_of_node(
                    ordered_intfs_tree, y.local_node)
                y = y.local_node.spf_prev_intf


           Figure 33: SPF-Based Method for GADAG Construction

Appendix C.  Constructing a GADAG Using a Hybrid Method

  The idea of this method is to combine the salient features of the
  lowpoint inheritance and SPF methods.  To this end, we process nodes
  as they get added to the GADAG just like in the lowpoint inheritance
  by maintaining a stack of nodes.  This ensures that we do not need to
  maintain lower and higher sets at each node to ascertain ear
  directions since the ears will always be directed from the node being
  processed towards the end of the ear.  To compute the ear however, we
  resort to an SPF to have the possibility of better ears (path
  lengths) thus giving more flexibility than the restricted use of
  lowpoint/dfs parents.

  Regarding ears involving a block root, unlike the SPF method, which
  ignored interfaces of the block root after the first ear, in the
  hybrid method we would have to process all interfaces of the block
  root before moving on to other nodes in the block since the direction



Enyedi, et al.               Standards Track                  [Page 115]

RFC 7811                    MRT-FRR Algorithm                  June 2016


  of an ear is predetermined.  Thus, whenever the block already has an
  ear computed, and we are processing an interface of the block root,
  we mark the block root as unusable before the SPF run that computes
  the ear.  This ensures that the SPF terminates at some node other
  than the block-root.  This in turn guarantees that the block-root has
  only one incoming interface in each block, which is necessary for
  correctly computing the next hops on the GADAG.

  As in the SPF GADAG, bridge ears are handled as a special case.

  The entire algorithm is shown below in Figure 34.

     find_spf_stack_ear(stack, x, y, xy_intf, block_root)
        if L(y) == D(y)
           // Special case for cut-links
           xy_intf.UNDIRECTED = false
           xy_intf.remote_intf.UNDIRECTED = false
           xy_intf.OUTGOING = true
           xy_intf.INCOMING = true
           xy_intf.remote_intf.OUTGOING = true
           xy_intf.remote_intf.INCOMING = true
           xy_intf.remote_node.IN_GADAG = true
           push y onto stack
           return
        else
           if (y.local_root == x) &&
                check_if_block_has_ear(x,y.block_id)
              //Avoid the block root during the SPF
              Mark x as TEMP_UNUSABLE
           end_ear = SPF_for_Ear(x,y,block_root,hybrid)
           If x was set as TEMP_UNUSABLE, clear it
           cur = end_ear
           while (cur != y)
              intf = cur.spf_prev_hop
              prev = intf.local_node
              intf.UNDIRECTED = false
              intf.remote_intf.UNDIRECTED = false
              intf.OUTGOING = true
              intf.remote_intf.INCOMING = true
              push prev onto stack
           cur = prev
           xy_intf.UNDIRECTED = false
           xy_intf.remote_intf.UNDIRECTED = false
           xy_intf.OUTGOING = true
           xy_intf.remote_intf.INCOMING = true
           return





Enyedi, et al.               Standards Track                  [Page 116]

RFC 7811                    MRT-FRR Algorithm                  June 2016


     Construct_GADAG_via_hybrid(topology,root)
        Compute_Localroot (root,root)
        Assign_Block_ID(root,0)
        root.IN_GADAG = true
        Initialize Stack to empty
        push root onto Stack
        while (Stack is not empty)
           x = pop(Stack)
           for each interface intf of x
              y = intf.remote_node
              if y.IN_GADAG is false
                 find_spf_stack_ear(stack, x, y, intf, y.block_root)

               Figure 34: Hybrid GADAG Construction Method

Acknowledgements

  The authors would like to thank Shraddha Hegde, Eric Wu, Janos
  Farkas, Stewart Bryant, Alvaro Retana, and Deccan (Shaofu Peng) for
  their suggestions and review.  We would also like to thank Anil Kumar
  SN for his assistance in clarifying the algorithm description and
  pseudocode.





























Enyedi, et al.               Standards Track                  [Page 117]

RFC 7811                    MRT-FRR Algorithm                  June 2016


Authors' Addresses

  Gabor Sandor Enyedi
  Ericsson
  Konyves Kalman krt 11
  Budapest  1097
  Hungary

  Email: [email protected]


  Andras Csaszar
  Ericsson
  Konyves Kalman krt 11
  Budapest  1097
  Hungary

  Email: [email protected]


  Alia Atlas
  Juniper Networks
  10 Technology Park Drive
  Westford, MA  01886
  United States

  Email: [email protected]


  Chris Bowers
  Juniper Networks
  1194 N. Mathilda Ave.
  Sunnyvale, CA  94089
  United States

  Email: [email protected]


  Abishek Gopalan
  University of Arizona
  1230 E Speedway Blvd.
  Tucson, AZ  85721
  United States

  Email: [email protected]






Enyedi, et al.               Standards Track                  [Page 118]