Internet Engineering Task Force (IETF)                     A. Malis, Ed.
Request for Comments: 7771                                  L. Andersson
Updates: 6870                              Huawei Technologies Co., Ltd.
Category: Standards Track                                H. van Helvoort
ISSN: 2070-1721                                           Hai Gaoming BV
                                                                J. Shin
                                                             SK Telecom
                                                                L. Wang
                                                           China Mobile
                                                        A. D'Alessandro
                                                         Telecom Italia
                                                           January 2016


Switching Provider Edge (S-PE) Protection for MPLS and MPLS Transport
          Profile (MPLS-TP) Static Multi-Segment Pseudowires

Abstract

  In MPLS and MPLS Transport Profile (MPLS-TP) environments, statically
  provisioned Single-Segment Pseudowires (SS-PWs) are protected against
  tunnel failure via MPLS-level and MPLS-TP-level tunnel protection.
  With statically provisioned Multi-Segment Pseudowires (MS-PWs), each
  segment of the MS-PW is likewise protected from tunnel failures via
  MPLS-level and MPLS-TP-level tunnel protection.  However, static MS-
  PWs are not protected end-to-end against failure of one of the
  Switching Provider Edge Routers (S-PEs) along the path of the MS-PW.
  This document describes how to achieve this protection via redundant
  MS-PWs by updating the existing procedures in RFC 6870.  It also
  contains an optional approach based on MPLS-TP Linear Protection.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7771.







Malis, et al.                Standards Track                    [Page 1]

RFC 7771                    MS-PW Protection                January 2016


Copyright Notice

  Copyright (c) 2016 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
    1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   3
  2.  Extension to RFC 6870 to Protect Statically Provisioned
      SS-PWs and MS-PWs . . . . . . . . . . . . . . . . . . . . . .   3
  3.  Operational Considerations  . . . . . . . . . . . . . . . . .   5
  4.  Security Considerations . . . . . . . . . . . . . . . . . . .   5
  5.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   5
    5.1.  Normative References  . . . . . . . . . . . . . . . . . .   5
    5.2.  Informative References  . . . . . . . . . . . . . . . . .   6
  Appendix A.  Optional Linear Protection Approach  . . . . . . . .   7
    A.1.  Introduction  . . . . . . . . . . . . . . . . . . . . . .   7
    A.2.  Encapsulation of the PSC Protocol for Pseudowires . . . .   8
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .   8
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .   9

1.  Introduction

  In MPLS and MPLS Transport Profile (MPLS-TP) Packet Switched Networks
  (PSNs), pseudowires (PWs) are transported by MPLS(-TP) Label Switched
  Paths (LSPs), also known as tunnels.

  As described in RFC 5659 [RFC5659], Multi-Segment Pseudowires (MS-
  PWs) consist of Terminating Provider Edge Routers PEs (T-PEs), one or
  more Switching Provider Edge Routers (S-PEs), and a sequence of
  tunneled PW segments that connects one of the T-PEs with its
  "adjacent" S-PE, connects this S-PE with the next S-PE in the
  sequence, and so on until the last S-PE is connected by the last PW
  segment to the remaining T-PE.  In MPLS and MPLS-TP environments,
  statically provisioned Single-Segment Pseudowires (SS-PWs) are
  protected against tunnel failure via MPLS-level and MPLS-TP-level
  tunnel protection.  With statically provisioned Multi-Segment



Malis, et al.                Standards Track                    [Page 2]

RFC 7771                    MS-PW Protection                January 2016


  Pseudowires (MS-PWs), each PW segment of the MS-PW is likewise
  protected from tunnel failure via MPLS-level and MPLS-TP-level tunnel
  protection.  However, tunnel protection does not protect static MS-
  PWs from failures of S-PEs along the path of the MS-PW.

  RFC 6718 [RFC6718] provides a general framework for PW protection,
  and RFC 6870 [RFC6870], which is based upon that framework, describes
  protection procedures for MS-PWs that are dynamically signaled using
  LDP.  This document describes how to achieve protection against S-PE
  failure in a static MS-PW by extending RFC 6870 to be applicable for
  statically provisioned MS-PWs pseudowires (PWs) as well.

  This document also contains an OPTIONAL alternative approach based on
  MPLS-TP Linear Protection.  This approach, described in Appendix A,
  MUST be identically provisioned in the PE endpoints for the protected
  MS-PW in order to be used.  See Appendix A for further details on
  this alternative approach.

  This document differs from [PW-REDUNDANCY] in that it provides end-
  to-end resiliency for static MS-PWs, whereas [PW-REDUNDANCY] provides
  resiliency at intermediate S-PEs and resiliency for both dynamically
  signaled and static MS-PWs.

  PWs based on the Layer 2 Tunneling Protocol Version 3 (L2TPv3) are
  outside the scope of this document.

1.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

2.  Extension to RFC 6870 to Protect Statically Provisioned SS-PWs and
   MS-PWs

  Section 3.2.3 of RFC 6718 and Appendix A.5 of RFC 6870 document how
  to use redundant MS-PWs to protect an MS-PW against S-PE failure in
  the case of a singly homed Customer Edge (CE), using the following
  network model from RFC 6718:












Malis, et al.                Standards Track                    [Page 3]

RFC 7771                    MS-PW Protection                January 2016


      Native   |<----------- Pseudowires ----------->|  Native
      Service  |                                     |  Service
       (AC)    |     |<-PSN1-->|     |<-PSN2-->|     |  (AC)
         |     V     V         V     V         V     V   |
         |     +-----+         +-----+         +-----+   |
  +----+ |     |T-PE1|=========|S-PE1|=========|T-PE2|   |   +----+
  |    |-------|......PW1-Seg1.......|.PW1-Seg2......|-------|    |
  | CE1|       |     |=========|     |=========|     |       | CE2|
  |    |       +-----+         +-----+         +-----+       |    |
  +----+        |.||.|                          |.||.|       +----+
                |.||.|         +-----+          |.||.|
                |.||.|=========|     |========== .||.|
                |.||...PW2-Seg1......|.PW2-Seg2...||.|
                |.| ===========|S-PE2|============ |.|
                |.|            +-----+             |.|
                |.|============+-----+============= .|
                |.....PW3-Seg1.|     | PW3-Seg2......|
                 ==============|S-PE3|===============
                               |     |
                               +-----+

             Figure 1: Single-Homed CE with Redundant MS-PWs

  In this figure, Customer Edge Router 1 (CE1) is connected to T-PE1,
  and CE2 is connected to T-PE2 via Attachment Circuits (ACs).  There
  are three MS-PWs.  PW1 is switched at S-PE1, PW2 is switched at
  S-PE2, and PW3 is switched at S-PE3.  This scenario provides N:1
  protection against S-PE failure for the subset of the path of the
  emulated service from T-PE1 to T-PE2.

  The procedures in RFCs 6718 and 6870 rely on LDP-based PW status
  signaling to signal the state of the primary MS-PW that is being
  protected, and the precedence in which redundant MS-PW(s) should be
  used to protect the primary MS-PW should it fail.  These procedures
  make use of information carried by the PW Status TLV, which, for
  dynamically signaled PWs, is carried by the LDP.

  However, statically provisioned PWs (SS-PWs or MS-PWs) do not use the
  LDP for PW setup and signaling; rather, they are provisioned by
  network management systems or other means at each T-PE and S-PE along
  their paths.  They also do not use the LDP for status signaling.
  Rather, they use procedures defined in RFC 6478 [RFC6478] for status
  signaling via the PW Operations, Administration, and Maintenance
  (OAM) message using the PW Associated Channel Header (ACH).  The PW
  Status TLV carried via this status signaling is itself identical to
  the PW Status TLV carried via LDP-based status signaling, including
  the identical PW Status Codes.




Malis, et al.                Standards Track                    [Page 4]

RFC 7771                    MS-PW Protection                January 2016


  Sections 6 and 7 of RFC 6870 describe the management of a primary PW
  and its secondary PW(s) to provide resiliency to the failure of the
  primary PW.  They use status codes transmitted between endpoint T-PEs
  using the PW Status TLV transmitted by LDP.  For this management to
  apply to statically provisioned PWs, the PW status signaling defined
  in RFC 6478 MUST be used for the primary and secondary PWs.  In that
  case, the endpoint T-PEs can then use the PW status signaling
  provided by RFC 6478 in place of LDP-based status signaling, so that
  the status-signaling-based procedures in RFC 6870 operate identically
  to when used with LDP-based status signaling.  Note that the optional
  S-PE Bypass Mode defined in Section 5.5 of RFC 6478 cannot be used,
  as it requires LDP signaling.

3.  Operational Considerations

  Because LDP is not used between the T-PEs for statically provisioned
  MS-PWs, the negotiation procedures described in RFC 6870 cannot be
  used.  Thus, operational care must be taken so that the endpoint
  T-PEs are identically provisioned regarding the use of this document,
  specifically whether or not MS-PW redundancy is being used, and for
  each protected MS-PW, the identity of the primary MS-PW and the
  precedence of the secondary MS-PWs.

4.  Security Considerations

  The security considerations defined for RFC 6478 apply to this
  document as well.  As the security considerations in RFCs 6718 and
  6870 are related to their use of LDP, they are not required for this
  document.

  If the alternative approach in Appendix A is used, then the security
  considerations defined for RFCs 6378, 7271, and 7324 also apply.

5.  References

5.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC6378]  Weingarten, Y., Ed., Bryant, S., Osborne, E., Sprecher,
             N., and A. Fulignoli, Ed., "MPLS Transport Profile (MPLS-
             TP) Linear Protection", RFC 6378, DOI 10.17487/RFC6378,
             October 2011, <http://www.rfc-editor.org/info/rfc6378>.





Malis, et al.                Standards Track                    [Page 5]

RFC 7771                    MS-PW Protection                January 2016


  [RFC6478]  Martini, L., Swallow, G., Heron, G., and M. Bocci,
             "Pseudowire Status for Static Pseudowires", RFC 6478,
             DOI 10.17487/RFC6478, May 2012,
             <http://www.rfc-editor.org/info/rfc6478>.

  [RFC6870]  Muley, P., Ed. and M. Aissaoui, Ed., "Pseudowire
             Preferential Forwarding Status Bit", RFC 6870,
             DOI 10.17487/RFC6870, February 2013,
             <http://www.rfc-editor.org/info/rfc6870>.

  [RFC7271]  Ryoo, J., Ed., Gray, E., Ed., van Helvoort, H.,
             D'Alessandro, A., Cheung, T., and E. Osborne, "MPLS
             Transport Profile (MPLS-TP) Linear Protection to Match the
             Operational Expectations of Synchronous Digital Hierarchy,
             Optical Transport Network, and Ethernet Transport Network
             Operators", RFC 7271, DOI 10.17487/RFC7271, June 2014,
             <http://www.rfc-editor.org/info/rfc7271>.

  [RFC7324]  Osborne, E., "Updates to MPLS Transport Profile Linear
             Protection", RFC 7324, DOI 10.17487/RFC7324, July 2014,
             <http://www.rfc-editor.org/info/rfc7324>.

5.2.  Informative References

  [PW-REDUNDANCY]
             Dong, J. and H. Wang, "Pseudowire Redundancy on S-PE",
             Work in Progress, draft-ietf-pals-redundancy-spe-02,
             August 2015.

  [RFC5659]  Bocci, M. and S. Bryant, "An Architecture for Multi-
             Segment Pseudowire Emulation Edge-to-Edge", RFC 5659,
             DOI 10.17487/RFC5659, October 2009,
             <http://www.rfc-editor.org/info/rfc5659>.

  [RFC6718]  Muley, P., Aissaoui, M., and M. Bocci, "Pseudowire
             Redundancy", RFC 6718, DOI 10.17487/RFC6718, August 2012,
             <http://www.rfc-editor.org/info/rfc6718>.














Malis, et al.                Standards Track                    [Page 6]

RFC 7771                    MS-PW Protection                January 2016


Appendix A.  Optional Linear Protection Approach

A.1.  Introduction

  In "MPLS Transport Profile (MPLS-TP) Linear Protection" [RFC6378], as
  well as in the later updates of that RFC "MPLS Transport Profile
  (MPLS-TP) Linear Protection to Match the Operational Expectations of
  Synchronous Digital Hierarchy, Optical Transport Network, and
  Ethernet Transport Network Operators" [RFC7271] and "Updates to MPLS
  Transport Profile Linear Protection" [RFC7324], the Protection State
  Coordination (PSC) protocol was defined for MPLS LSPs only.

  This appendix extends these RFCs to be applicable for PWs (SS-PW and
  MS-PW) as well.  This is useful especially in the case of end-to-end
  static provisioned MS-PWs running over MPLS-TP where tunnel
  protection alone cannot be relied upon for end-to-end protection of
  PWs against S-PE failure.  It also enables a uniform operational
  approach for protection at LSP and PW layers and an easier management
  integration for networks that already implement the approach in RFCs
  6378, 7271, and 7324.

  The protection architectures are those defined in [RFC6378].  For the
  purposes of this appendix, we define the protection domain of a
  point-to-point PW as consisting of two terminating PEs (T-PEs) and
  the transport paths that connect them (see Figure 2).

                +-----+ //=======================\\ +-----+
                |T-PE1|//     Working Path        \\|T-PE2|
                |    /|                             |\    |
                |  ?< |                             | >?  |
                |    \|                             |/    |
                |     |\\    Protection Path      //|     |
                +-----+ \\=======================// +-----+

                    |<-------Protection Domain------->|

                       Figure 2: Protection Domain

  This Appendix is an OPTIONAL alternative approach to the one in
  Section 2.  For interoperability, all implementations MUST include
  the approach in Section 2, even if this alternative approach is used.
  The operational considerations in Section 3 continue to apply when
  this approach is used, and operational care must be taken so that the
  endpoint T-PEs are identically provisioned regarding the use of this
  document.






Malis, et al.                Standards Track                    [Page 7]

RFC 7771                    MS-PW Protection                January 2016


A.2.  Encapsulation of the PSC Protocol for Pseudowires

  The PSC protocol can be used to protect against defects on any LSP
  (segment, link, or path).  In the case of MS-PW, the PSC protocol can
  also protect failed intermediate nodes (S-PE).  Linear protection
  protects an LSP or PW end-to-end and if a failure is detected,
  switches traffic over to another (redundant) set of resources.

  Obviously, the protected entity does not need to be of the same type
  as the protecting entity.  For example, it is possible to protect a
  link by a path.  Likewise, it is possible to protect an SS-PW with an
  MS-PW, and vice versa.

  From a PSC protocol point of view, it is possible to view an SS-PW as
  a single-hop LSP and an MS-PW as a multiple-hop LSP.  Thus, this
  provides end-to-end protection for the SS-PW or MS-PW.  The Generic
  Associated Channel (G-Ach) carrying the PSC protocol information is
  placed in the label stack directly beneath the PW identifier.  The
  PSC protocol will then work as specified in RFCs 6378, 7271, and
  7324.

Acknowledgements

  The authors would like to thank Matthew Bocci, Yaakov Stein, David
  Sinicrope, Sasha Vainshtein, and Italo Busi for their comments on
  this document.

  Figure 1 and the explanatory paragraph following the figure were
  taken from RFC 6718.  Figure 2 was adapted from RFC 6378.






















Malis, et al.                Standards Track                    [Page 8]

RFC 7771                    MS-PW Protection                January 2016


Authors' Addresses

  Andrew G. Malis (editor)
  Huawei Technologies Co., Ltd.

  Email: [email protected]


  Loa Andersson
  Huawei Technologies Co., Ltd.

  Email: [email protected]


  Huub van Helvoort
  Hai Gaoming BV

  Email: [email protected]


  Jongyoon Shin
  SK Telecom

  Email: [email protected]


  Lei Wang
  China Mobile

  Email: [email protected]


  Alessandro D'Alessandro
  Telecom Italia

  Email: [email protected]















Malis, et al.                Standards Track                    [Page 9]