Internet Engineering Task Force (IETF)                        T. Mizrahi
Request for Comments: 7758                                      Y. Moses
Category: Experimental                                          Technion
ISSN: 2070-1721                                            February 2016


                      Time Capability in NETCONF

Abstract

  This document defines a capability-based extension to the Network
  Configuration Protocol (NETCONF) that allows time-triggered
  configuration and management operations.  This extension allows
  NETCONF clients to invoke configuration updates according to
  scheduled times and allows NETCONF servers to attach timestamps to
  the data they send to NETCONF clients.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for examination, experimental implementation, and
  evaluation.

  This document defines an Experimental Protocol for the Internet
  community.  This document is a product of the Internet Engineering
  Task Force (IETF).  It represents the consensus of the IETF
  community.  It has received public review and has been approved for
  publication by the Internet Engineering Steering Group (IESG).  Not
  all documents approved by the IESG are a candidate for any level of
  Internet Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7758.

















Mizrahi & Moses               Experimental                      [Page 1]

RFC 7758               Time Capability in NETCONF          February 2016


Copyright Notice

  Copyright (c) 2016 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.





































Mizrahi & Moses               Experimental                      [Page 2]

RFC 7758               Time Capability in NETCONF          February 2016


Table of Contents

  1. Introduction ....................................................4
  2. Conventions Used in This Document ...............................4
     2.1. Key Words ..................................................4
     2.2. Abbreviations ..............................................5
     2.3. Terminology ................................................5
  3. Using Time in NETCONF ...........................................5
     3.1. The Time Capability in a Nutshell ..........................5
     3.2. Notifications and Cancellation Messages ....................7
     3.3. Synchronization Aspects ....................................9
     3.4. Scheduled Time Format .....................................10
     3.5. Scheduling Tolerance ......................................10
     3.6. Scheduling the Near vs. Far Future ........................11
     3.7. Time-Interval Format ......................................13
  4. Time Capability ................................................14
     4.1. Overview ..................................................14
     4.2. Dependencies ..............................................14
     4.3. Capability Identifier .....................................14
     4.4. New Operations ............................................14
     4.5. Modifications to Existing Operations ......................15
          4.5.1. Affected Operations ................................15
          4.5.2. Processing Scheduled Operations ....................16
     4.6. Interactions with Other Capabilities ......................16
  5. Examples .......................................................17
     5.1. <scheduled-time> Example ..................................17
     5.2. <get-time> Example ........................................18
     5.3. Error Example .............................................19
  6. Security Considerations ........................................19
     6.1. General Security Considerations ...........................19
     6.2. YANG Module Security Considerations .......................20
  7. IANA Considerations ............................................21
  8. References .....................................................22
     8.1. Normative References ......................................22
     8.2. Informative References ....................................22
  Appendix A. YANG Module for the Time Capability ...................24
  Acknowledgments ...................................................32
  Authors' Addresses ................................................32













Mizrahi & Moses               Experimental                      [Page 3]

RFC 7758               Time Capability in NETCONF          February 2016


1.  Introduction

  The Network Configuration Protocol (NETCONF), defined in [RFC6241],
  provides mechanisms to install, manipulate, and delete the
  configuration of network devices.  NETCONF allows clients to
  configure and monitor NETCONF servers using remote procedure calls
  (RPCs).

  NETCONF is asynchronous; when a client invokes an RPC, it has no
  control over the time at which the RPC is executed, nor does it have
  any feedback from the server about the execution time.

  Time-based configuration ([OneClock] [Time4]) can be a useful tool
  that enables an entire class of coordinated and scheduled
  configuration procedures.  Time-triggered configuration allows
  coordinated network updates in multiple devices; a client can invoke
  a coordinated configuration change by sending RPCs to multiple
  servers with the same scheduled execution time.  A client can also
  invoke a time-based sequence of updates by sending n RPCs with n
  different update times, T1, T2, ..., Tn, determining the order in
  which the RPCs are executed.

  This memo defines the :time capability in NETCONF.  This extension
  allows clients to determine the scheduled execution time of RPCs they
  send.  It also allows a server that receives an RPC to report its
  actual execution time to the client.

  The NETCONF time capability is intended for scheduling RPCs that
  should be performed in the near future, allowing the coordination of
  simultaneous configuration changes or specification of an order of
  configuration updates.  Time-of-day-based policies and far-future
  scheduling, e.g., [Cond], are outside the scope of this memo.

  This memo is defined for experimental purposes and will allow the
  community to experiment with the NETCONF time capability.  Based on
  the lessons learned from this experience, it is expected that the
  NETCONF working group will be able to consider whether to adopt the
  time capability.

2.  Conventions Used in This Document

2.1.  Key Words

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].





Mizrahi & Moses               Experimental                      [Page 4]

RFC 7758               Time Capability in NETCONF          February 2016


2.2.  Abbreviations

  NETCONF  Network Configuration Protocol

  RPC      Remote Procedure Call

2.3.  Terminology

  o  Capability [RFC6241]: A functionality that supplements the base
     NETCONF specification.

  o  Client [RFC6241]: Invokes protocol operations on a server.  In
     addition, a client can subscribe to receive notifications from a
     server.

  o  Execution time: The execution time of an RPC is defined as the
     time at which a server completes the execution of an RPC, before
     it sends the <rpc-reply> message.

  o  Scheduled RPC: an RPC that is scheduled to be performed at a
     predetermined time, which is included in the <rpc> message.

  o  Scheduled time: The scheduled time of an RPC is the time at which
     the RPC should be started, as determined by the client.  It is the
     server's role to enforce the execution of the scheduled time.

  o  Server [RFC6241]: Executes protocol operations invoked by a
     client.  In addition, a server can send notifications to a client.

3.  Using Time in NETCONF

3.1.  The Time Capability in a Nutshell

  The :time capability provides two main functions:

  o  Scheduling:

     When a client sends an RPC to a server, the <rpc> message MAY
     include the scheduled-time element, denoted by Ts in Figure 1.
     The server then executes the RPC at the scheduled time Ts; once
     completed, the server can respond with an RPC reply message.










Mizrahi & Moses               Experimental                      [Page 5]

RFC 7758               Time Capability in NETCONF          February 2016


  o  Reporting:

     When a client sends an RPC to a server, the <rpc> message MAY
     include a get-time element (see Figure 2), requesting the server
     to return the execution time of the RPC.  In this case, after the
     server performs the RPC, it responds with an RPC reply that
     includes the execution time, Te.

                     RPC _________
                   executed       \
                                  \/
                                  Ts
           server  ---------------+-------------        ----> time
                             /\      \
                         rpc /        \ rpc-reply
                        (Ts)/          \
                           /           \/
           client  -----------------------------

           Figure 1: Scheduled RPC

                  RPC _________
                executed       \
                               \/
                               Te
           server  ------------+----------------        ----> time
                             /\   \
                      rpc    /     \ rpc-reply
                  (get-time)/       \ (Te)
                           /        \/
           client  -----------------------------

           Figure 2: Reporting the Execution Time of an RPC

  Example 1.  A client needs to trigger a commit at n servers, so that
  the n servers perform the commit as close as possible to
  simultaneously.  Without the time capability, the client sends a
  sequence of n commit messages; thus, each server performs the commit
  at a different time.  By using the time capability, the client can
  send commit messages that are scheduled to take place at a chosen
  time Ts, for example, 5 seconds in the future, causing the servers to
  invoke the commit as close as possible to time Ts.

  Example 2.  In many applications, it is desirable to monitor events
  or collect statistics regarding a common time reference.  A client
  can send a set of get-config messages that is scheduled to be
  executed at multiple servers at the same time, providing a




Mizrahi & Moses               Experimental                      [Page 6]

RFC 7758               Time Capability in NETCONF          February 2016


  simultaneous system-wide view of the state of the servers.  Moreover,
  a client can use the get-time element in its get-config messages,
  providing a time reference to the sampled element.

  The scenarios of Figures 1 and 2 imply that a third scenario can also
  be supported (Figure 3), where the client invokes an RPC that
  includes a scheduled time, Ts, as well as the get-time element.  This
  allows the client to receive feedback about the actual execution
  time, Te.  Ideally, Ts=Te.  However, the server may execute the RPC
  at a slightly different time than Ts, for example, if the server is
  tied up with other tasks at Ts.

                     RPC _________
                   executed       \
                                  \/
                               Ts Te
           server  -------------+-+-------------        ----> time
                           /\        \
                  rpc      /          \ rpc-reply
           (Ts + get-time)/            \ (Te)
                         /             \/
           client  -----------------------------

           Figure 3: Scheduling and Reporting

3.2.  Notifications and Cancellation Messages

  Notifications

     As illustrated in Figure 1, after a scheduled RPC is executed, the
     server sends an <rpc-reply>.  The <rpc-reply> may arrive a long
     period of time after the RPC was sent by the client, leaving the
     client without a clear indication of whether the RPC was received.

     This document defines a new notification, the netconf-scheduled-
     message notification, which provides an immediate acknowledgement
     of the scheduled RPC.

     The <netconf-scheduled-message> notification is sent to the client
     if it is subscribed to the NETCONF notifications [RFC6470]; as
     illustrated in Figure 4, when the server receives a scheduled RPC,
     it sends a notification to the client.









Mizrahi & Moses               Experimental                      [Page 7]

RFC 7758               Time Capability in NETCONF          February 2016


     The <netconf-scheduled-message> notification includes a <schedule-
     id> element.  The <schedule-id> is a unique identifier that the
     server assigns to every scheduled RPC it receives.  Thus, a client
     can keep track of all the pending scheduled RPCs; a client can
     uniquely identify a scheduled RPC by the tuple {server, schedule-
     id}.

                     RPC ____________
                   executed          \
                                     \/
                                     Ts
           server  -------------------+---------        ----> time
                       /\  \            \
                   rpc /    \notifi-     \ rpc-reply
                  (Ts)/      \cation      \
                     /       \/           \/
           client  -----------------------------

           Figure 4: Scheduled RPC with Notification

  Cancellation Messages

     A client can cancel a scheduled RPC by sending a <cancel-schedule>
     RPC.  The <cancel-schedule> RPC includes the <schedule-id> of the
     scheduled RPC that needs to be cancelled.

     The <cancel-schedule> RPC, defined in this document, can be used
     to perform a coordinated all-or-none procedure, where either all
     the servers perform the operation on schedule or the operation is
     aborted.

     Example 3.  A client sends scheduled <rpc> messages to server 1
     and server 2, both scheduled to be performed at time Ts.  Server 1
     sends a notification indicating that it has successfully scheduled
     the RPC, while server 2 replies with an unknown-element error
     [RFC6241] that indicates that it does not support the time
     capability.  The client sends a <cancel-schedule> RPC to server 1
     and receives an <rpc-reply>.  The message exchange between the
     client and server 1 in this example is illustrated in Figure 5.












Mizrahi & Moses               Experimental                      [Page 8]

RFC 7758               Time Capability in NETCONF          February 2016


                               RPC not __________
                               executed          \
                                                 \/
                                                  Ts
           server  --------------------------------+---      ----> time
                       /\ \            /\        \
                   rpc /   \notifi-    /cancel-   \ rpc-reply
                  (Ts)/     \cation   /schedule    \
                     /      \/       /             \/
           client  ------------------------------------

                 Figure 5: Cancellation Message

  A <cancel-schedule> RPC MUST NOT include the scheduled-time
  parameter.  A server that receives a <cancel-schedule> RPC should try
  to cancel the schedule as soon as possible.  If the server is unable
  to cancel the scheduled RPC, for example, because it has already been
  executed, it should respond with an <rpc-error> [RFC6241], in which
  the error-type is 'protocol', and the error-tag is 'operation-
  failed'.

3.3.  Synchronization Aspects

  The time capability defined in this document requires clients and
  servers to maintain clocks.  It is assumed that clocks are
  synchronized by a method that is outside the scope of this document,
  e.g., [RFC5905] or [IEEE1588].

  This document does not define any requirements pertaining to the
  degree of accuracy of performing scheduled RPCs.  Note that two
  factors affect how accurately the server can perform a scheduled RPC:
  one factor is the accuracy of the clock synchronization method used
  to synchronize the clients and servers and the second factor is the
  server's ability to execute real-time configuration changes, which
  greatly depends on how it is implemented.  Typical networking devices
  are implemented by a combination of hardware and software.  While the
  execution time of a hardware module can typically be predicted with a
  high level of accuracy, the execution time of a software module may
  be variable and hard to predict.  A configuration update would
  typically require the server's software to be involved, thus
  affecting how accurately the RPC can be scheduled.

  Another important aspect of synchronization is monitoring; a client
  should be able to check whether a server is synchronized to a
  reference time source.  Typical synchronization protocols, such as
  the Network Time Protocol [RFC5905], provide the means ([RFC5907],
  [RFC7317]) to verify that a clock is synchronized to a time reference
  by querying its Management Information Base (MIB).  The get-time



Mizrahi & Moses               Experimental                      [Page 9]

RFC 7758               Time Capability in NETCONF          February 2016


  feature defined in this document (see Figure 2) allows a client to
  obtain a rough estimate of the time offset between the client's clock
  and the server's clock.

  Since servers do not perform configuration changes instantaneously,
  the processing time of an RPC should not be overlooked.  The
  scheduled time always refers to the start time of the RPC, and the
  execution time always refers to its completion time.

3.4.  Scheduled Time Format

  The scheduled time and execution time fields in <rpc> messages use a
  common time format field.

  The time format used in this document is the date-and-time format,
  defined in Section 5.6 of [RFC3339] and Section 3 of [RFC6991].

      leaf scheduled-time {
        type yang:date-and-time;
        description
        "The time at which the RPC is scheduled to be performed.";
      }

      leaf execution-time {
        type yang:date-and-time;
        description
        "The time at which the RPC was executed.";
      }

3.5.  Scheduling Tolerance

  When a client sends an RPC that is scheduled to Ts, the server MUST
  verify that the value Ts is not too far in the past or in the future.
  As illustrated in Figure 6, the server verifies that Ts is within the
  scheduling-tolerance range.
















Mizrahi & Moses               Experimental                     [Page 10]

RFC 7758               Time Capability in NETCONF          February 2016


                 RPC _________
               received       \
                              \/
                                    Ts
           -----+--------------+-----+------------+-------> time

                 <------------> <---------------->
                 sched-max-past  sched-max-future

                 <------------------------------->
                      scheduling tolerance

              Figure 6: Scheduling Tolerance

  The scheduling tolerance is determined by two parameters: sched-max-
  future and sched-max-past.  These two parameters use the time-
  interval format (Section 3.7.), and their default value is 15
  seconds.

  If the scheduled time, Ts, is within the scheduling-tolerance range,
  the scheduled RPC is performed; if Ts occurs in the past and within
  the scheduling tolerance, the server performs the RPC as soon as
  possible; whereas if Ts is a future time, the server performs the RPC
  at Ts.

  If Ts is not within the scheduling-tolerance range, the scheduled RPC
  is discarded, and the server responds with an error message [RFC6241]
  including a bad-element error-tag.  An example is provided in Section
  5.3.

3.6.  Scheduling the Near vs. Far Future

  The scheduling bound defined by sched-max-future guarantees that
  every scheduled RPC is restricted to a scheduling time in the near
  future.

  The scheduling mechanism defined in this document is intended for
  near-future scheduling, on the order of seconds.  Far-future
  scheduling is outside the scope of this document.

  Example 1 is a typical example of using near-future scheduling; the
  goal in the example is to perform the RPC at multiple servers at the
  same time; therefore, it is best to schedule the RPC to be performed
  a few seconds in the future.







Mizrahi & Moses               Experimental                     [Page 11]

RFC 7758               Time Capability in NETCONF          February 2016


  The Challenges of Far-Future Scheduling

     When an RPC is scheduled to be performed at a far-future time,
     during the long period between the time at which the RPC is sent
     and the time at which it is scheduled to be executed, the
     following erroneous events may occur:

     o  The server may restart.

     o  The client's authorization level may be changed.

     o  The client may restart and send a conflicting RPC.

     o  A different client may send a conflicting RPC.

     In these cases, if the server performs the scheduled operation, it
     may perform an action that is inconsistent with the current
     network policy or inconsistent with the currently active clients.

     Near-future scheduling guarantees that external events, such as
     the examples above, have a low probability of occurring during the
     sched-max-future period, and even when they do, the period of
     inconsistency is limited to sched-max-future, which is a short
     period of time.

  The Trade-off in Setting the sched-max-future Value

     The sched-max-future parameter should be configured to a value
     that is high enough to allow the client to:

     1. Send the scheduled RPC, potentially to multiple servers.

     2. Receive notifications or <rpc-error> messages from the
        server(s) or wait for a timeout and decide that if no response
        has arrived then something is wrong.

     3. If necessary, send a cancellation message, potentially to
        multiple servers.

     On the other hand, sched-max-future should be configured to a
     value that is low enough to allow a low probability of the
     erroneous events above, typically on the order of a few seconds.
     Note that, even if sched-max-future is configured to a low value,
     it is still possible (with a low probability) that an erroneous
     event will occur.  However, this short, potentially hazardous
     period is not significantly worse than in conventional
     (unscheduled) RPCs, as even a conventional RPC may in some cases
     be executed a few seconds after it was sent by the client.



Mizrahi & Moses               Experimental                     [Page 12]

RFC 7758               Time Capability in NETCONF          February 2016


  The Default Value of sched-max-future

     The default value of sched-max-future is defined to be 15 seconds.
     This duration is long enough to allow the scheduled RPC to be sent
     by the client, potentially to multiple servers, and in some cases
     to send a cancellation message, as described in Section 3.2.  On
     the other hand, the 15-second duration yields a very low
     probability of a reboot or a permission change.

3.7.  Time-Interval Format

  The time-interval format is used for representing the length of a
  time interval and is based on the date-and-time format.  It is used
  for representing the scheduling tolerance parameters, as described in
  the previous section.

  While the date-and-time type uniquely represents a specific point in
  time, the time-interval type defined below can be used to represent
  the length of a time interval without specifying a specific date.

  The time-interval type is defined as follows:

     typedef time-interval {
       type string {
         pattern '\d{2}:\d{2}:\d{2}(\.\d+)?';
       }
       description
         "Defines a time interval, up to 24 hours.
          The format is specified as HH:mm:ss.f,
          consisting of two digits for hours,
          two digits for minutes, two digits
          for seconds, and zero or more digits
          representing second fractions.";
     }

  Example

  The sched-max-future parameter is defined (Appendix A) as a time-
  interval, as follows:

     leaf sched-max-future {
       type time-interval;
       default 00:00:15.0;
     }

  The default value specified for sched-max-future is 0 hours, 0
  minutes, and 15 seconds.




Mizrahi & Moses               Experimental                     [Page 13]

RFC 7758               Time Capability in NETCONF          February 2016


4.  Time Capability

  The structure of this section is as defined in Appendix D of
  [RFC6241].

4.1.  Overview

  A server that supports the time capability can perform time-triggered
  operations as defined in this document.

  A server implementing the :time capability:

  o  MUST support the ability to receive <rpc> messages that include a
     time element and perform a time-triggered operation accordingly.

  o  MUST support the ability to include a time element in the <rpc-
     reply> messages that it transmits.

4.2.  Dependencies

  With-defaults Capability

     The time-capability YANG module (Appendix A) uses default values;
     thus, it is assumed that the with-defaults capability [RFC6243] is
     supported.

4.3.  Capability Identifier

  The :time capability is identified by the following capability
  string:

  urn:ietf:params:netconf:capability:time:1.0

4.4.  New Operations

  <cancel-schedule>

     The <cancel-schedule> RPC is used for cancelling an RPC that was
     previously scheduled.

     A <cancel-schedule> RPC MUST include the <cancelled-message-id>
     element, which specifies the message ID of the scheduled RPC that
     needs to be cancelled.

     A <cancel-schedule> RPC MAY include the <get-time> element.  In
     this case, the <rpc-reply> includes the <execution-time> element,
     specifying the time at which the scheduled RPC was cancelled.




Mizrahi & Moses               Experimental                     [Page 14]

RFC 7758               Time Capability in NETCONF          February 2016


4.5.  Modifications to Existing Operations

4.5.1.  Affected Operations

  The :time capability defined in this memo can be applied to any of
  the following operations:

  o  get-config

  o  get

  o  copy-config

  o  edit-config

  o  delete-config

  o  lock

  o  unlock

  o  commit

  Three new elements are added to each of these operations:

  o  <scheduled-time> This element is added to the input of each
     operation, indicating the time at which the server is scheduled to
     invoke the operation.  Every <rpc> message MAY include the
     <scheduled-time> element.  A server that supports the :time
     capability and receives an <rpc> message with a <scheduled-time>
     element MUST perform the operation as close as possible to the
     scheduled time.

     The <scheduled-time> element uses the date-and-time format
     (Section 3.4.).

  o  <get-time> This element is added to the input of each operation.
     An <rpc> message MAY include a <get-time> element, indicating that
     the server MUST include an <execution-time> element in its
     corresponding <rpc-reply>.

  o  <execution-time> This element is added to the output of each
     operation, indicating the time at which the server completed the
     operation.  An <rpc-reply> MAY include the <execution-time>
     element.  A server that supports the :time capability and receives
     an operation with the <get-time> element MUST include the
     execution time in its response.




Mizrahi & Moses               Experimental                     [Page 15]

RFC 7758               Time Capability in NETCONF          February 2016


     The <execution-time> element uses the date-and-time format
     (Section 3.4.).

4.5.2.  Processing Scheduled Operations

  A server that receives a scheduled RPC MUST start executing the RPC
  as close as possible to its scheduled execution time.

  If a session between a client and a server is terminated, the server
  MUST cancel all pending scheduled RPCs that were received in this
  session.

  Scheduled RPCs are processed serially, in an order that is defined by
  their scheduled times.  Thus, the server sends <rpc-reply> messages
  to scheduled RPCs according to the order of their corresponding
  schedules.  Note that this is a modification to the behavior defined
  in [RFC6241], which states that replies are sent in the order the
  requests were received.  Interoperability with [RFC6241] is
  guaranteed by the NETCONF capability exchange; a server that does not
  support the :time capability responds to RPCs in the order the
  requests were received.  A server that supports the :time capability
  replies to conventional (non-scheduled) RPCs in the order they were
  received and replies to scheduled RPCs in the order of their
  scheduled times.

  If a server receives two or more RPCs that are scheduled to be
  performed at the same time, the server executes the RPCs serially in
  an arbitrary order.

4.6.  Interactions with Other Capabilities

  Confirmed Commit Capability

     The confirmed commit capability is defined in Section 8.4 of
     [RFC6241].  According to that document, a confirmed <commit>
     operation MUST be reverted if a confirming commit is not issued
     within the timeout period (which is 600 seconds by default).

     When the time capability is supported, and a confirmed <commit>
     operation is used with the <scheduled-time> element, the
     confirmation timeout MUST be counted from the scheduled time,
     i.e., the client begins the timeout measurement starting at the
     scheduled time.








Mizrahi & Moses               Experimental                     [Page 16]

RFC 7758               Time Capability in NETCONF          February 2016


5.  Examples

5.1.  <scheduled-time> Example

  The following example extends the example presented in Section 7.2 of
  [RFC6241] by adding the time capability.  In this example, the
  <scheduled-time> element is used to specify the scheduled execution
  time of the configuration update (as shown in Figure 1).

  <rpc message-id="101"
      xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <edit-config>
      <target>
        <running/>
      </target>
      <scheduled-time
         xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-time">
          2015-10-21T04:29:00.235Z
      </scheduled-time>
      <config>
        <top xmlns="http://example.com/schema/1.2/config">
          <interface>
            <name>Ethernet0/0</name>
            <mtu>1500</mtu>
          </interface>
        </top>
      </config>
    </edit-config>
  </rpc>

  <rpc-reply message-id="101"
       xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <ok/>
  </rpc-reply>

















Mizrahi & Moses               Experimental                     [Page 17]

RFC 7758               Time Capability in NETCONF          February 2016


5.2.  <get-time> Example

  The following example is similar to the one presented in Section 5.1,
  except that, in this example, the client includes a <get-time>
  element in its RPC and the server consequently responds with an
  <execution-time> element (as shown in Figure 2).

  <rpc message-id="101"
      xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <edit-config>
      <target>
        <running/>
      </target>
      <get-time
       xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-time">
      </get-time>
      <config>
        <top xmlns="http://example.com/schema/1.2/config">
          <interface>
            <name>Ethernet0/0</name>
            <mtu>1500</mtu>
          </interface>
        </top>
      </config>
    </edit-config>
  </rpc>

  <rpc-reply message-id="101"
       xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <ok/>
    <execution-time>
        2015-10-21T04:29:00.235Z
    </execution-time>
  </rpc-reply>

















Mizrahi & Moses               Experimental                     [Page 18]

RFC 7758               Time Capability in NETCONF          February 2016


5.3.  Error Example

  The following example presents a scenario in which the scheduled-time
  is not within the scheduling tolerance, i.e., it is too far in the
  past; therefore, an <rpc-error> is returned.

  <rpc message-id="101"
      xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <edit-config>
      <target>
        <running/>
      </target>
      <scheduled-time
         xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-time">
          2010-10-21T04:29:00.235Z
      </scheduled-time>
      <config>
        <top xmlns="http://example.com/schema/1.2/config">
          <interface>
            <name>Ethernet0/0</name>
            <mtu>1500</mtu>
          </interface>
        </top>
      </config>
    </edit-config>
  </rpc>

  <rpc-reply message-id="101"
       xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
    <rpc-error>
      <error-type>application</error-type>
      <error-tag>bad-element</error-tag>
      <error-severity>error</error-severity>
      <error-info>
        <bad-element>scheduled-time</bad-element>
      </error-info>
    </rpc-error>
  </rpc-reply>

6.  Security Considerations

6.1.  General Security Considerations

  The security considerations of the NETCONF protocol in general are
  discussed in [RFC6241].






Mizrahi & Moses               Experimental                     [Page 19]

RFC 7758               Time Capability in NETCONF          February 2016


  The usage of the time capability defined in this document can assist
  an attacker in gathering information about the system, such as the
  exact time of future configuration changes.  Moreover, the time
  elements can potentially allow an attacker to learn information about
  the system's performance.  Furthermore, an attacker that sends
  malicious <rpc> messages can use the time capability to amplify her
  attack; for example, by sending multiple <rpc> messages with the same
  scheduled time.  It is important to note that the security measures
  described in [RFC6241] can prevent these vulnerabilities.

  The time capability relies on an underlying time synchronization
  protocol.  Thus, by attacking the time protocol, an attack can
  potentially compromise NETCONF when using the time capability.  A
  detailed discussion about the threats against time protocols and how
  to mitigate them is presented in [RFC7384].

  The time capability can allow an attacker to attack a NETCONF server
  by sending malicious RPCs that are scheduled to take place in the
  future.  For example, an attacker can send multiple scheduled RPCs
  that are scheduled to be performed at the same time.  Another
  possible attack is to send a large number of scheduled RPCs to a
  NETCONF server, potentially causing the server's buffers to overflow.
  These attacks can be mitigated by a carefully designed NETCONF
  server; when a server receives a scheduled RPC that exceeds its
  currently available resources, it should reply with an <rpc-error>
  and discard the scheduled RPC.

  Note that if an attacker has been detected and revoked, its future
  scheduled RPCs are not executed; as defined in Section 4.5.2, once
  the session with the attacker has been terminated, the corresponding
  scheduled RPCs are discarded.

6.2.  YANG Module Security Considerations

  This memo defines a new YANG module, as specified in Appendix A.

  The YANG module defined in this memo is designed to be accessed via
  the NETCONF protocol [RFC6241].  The lowest NETCONF layer is the
  secure transport layer and the mandatory-to-implement secure
  transport is Secure SHell (SSH) [RFC6242].  The NETCONF access
  control model [RFC6536] provides the means to restrict access for
  particular NETCONF users to a preconfigured subset of all available
  NETCONF protocol operations and content.

  This YANG module defines <sched-max-future> and <sched-max-past>,
  which are writable/creatable/deletable.  These data nodes may be
  considered sensitive or vulnerable in some network environments.  An
  attacker may attempt to maliciously configure these parameters to a



Mizrahi & Moses               Experimental                     [Page 20]

RFC 7758               Time Capability in NETCONF          February 2016


  low value, thereby causing all scheduled RPCs to be discarded.  For
  instance, if a client expects <sched-max-future> to be 15 seconds,
  but in practice it is maliciously configured to 1 second, then a
  legitimate scheduled RPC that is scheduled to be performed 5 seconds
  in the future will be discarded by the server.

  This YANG module defines the <cancel-schedule> RPC.  This RPC may be
  considered sensitive or vulnerable in some network environments.
  Since the value of the <schedule-id> is known to all the clients that
  are subscribed to notifications from the server, the <cancel-
  schedule> RPC may be used maliciously to attack servers by cancelling
  their pending RPCs.  This attack is addressed in two layers: (i)
  security at the transport layer, limiting the attack only to clients
  that have successfully initiated a secure session with the server,
  and (ii) the authorization level required to cancel an RPC should be
  the same as the level required to schedule it, limiting the attack
  only to attackers with an authorization level that is equal to or
  higher than that of the client that initiated the scheduled RPC.

7.  IANA Considerations

  The following capability identifier URN has been registered in the
  "Network Configuration Protocol (NETCONF) Capability URNs" registry:

     urn:ietf:params:netconf:capability:time:1.0

  The following XML namespace URN has been registered in the "IETF XML
  Registry", following the format defined in [RFC3688]:

     URI: urn:ietf:params:xml:ns:yang:ietf-netconf-time

     Registrant Contact: The IESG.

     XML: N/A, the requested URI is an XML namespace.

  The following module name has been registered in the "YANG Module
  Names" registry, defined in [RFC6020].

     name: ietf-netconf-time

     prefix: nct

     namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-time

     RFC: 7758






Mizrahi & Moses               Experimental                     [Page 21]

RFC 7758               Time Capability in NETCONF          February 2016


8.  References

8.1.  Normative References

  [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

  [RFC3339]   Klyne, G. and C. Newman, "Date and Time on the Internet:
              Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
              <http://www.rfc-editor.org/info/rfc3339>.

  [RFC3688]   Mealling, M., "The IETF XML Registry", BCP 81,
              RFC 3688, DOI 10.17487/RFC3688, January 2004,
              <http://www.rfc-editor.org/info/rfc3688>.

  [RFC6241]   Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,
              Ed., and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
              <http://www.rfc-editor.org/info/rfc6241>.

  [RFC6470]   Bierman, A., "Network Configuration Protocol (NETCONF)
              Base Notifications", RFC 6470, DOI 10.17487/RFC6470,
              February 2012,
              <http://www.rfc-editor.org/info/rfc6470>.

  [RFC6991]   Schoenwaelder, J., Ed., "Common YANG Data Types",
              RFC 6991, DOI 10.17487/RFC6991, July 2013,
              <http://www.rfc-editor.org/info/rfc6991>.

8.2.  Informative References

  [Cond]      Watsen, K., "Conditional Enablement of Configuration
              Nodes", draft-kwatsen-conditional-enablement-00, Work in
              Progress, February 2013.

  [IEEE1588]  IEEE, "IEEE Standard for a Precision Clock
              Synchronization Protocol for Networked Measurement and
              Control Systems Version 2", IEEE Standard 1588.

  [OneClock]  Mizrahi, T. and Y. Moses, "OneClock to Rule Them All:
              Using Time in Networked Applications", IEEE/IFIP Network
              Operations and Management Symposium (NOMS), 2016.







Mizrahi & Moses               Experimental                     [Page 22]

RFC 7758               Time Capability in NETCONF          February 2016


  [RFC5905]   Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
              "Network Time Protocol Version 4: Protocol and Algorithms
              Specification", RFC 5905,
              DOI 10.17487/RFC5905, June 2010,
              <http://www.rfc-editor.org/info/rfc5905>.

  [RFC5907]   Gerstung, H., Elliott, C., and B. Haberman, Ed.,
              "Definitions of Managed Objects for Network Time Protocol
              Version 4 (NTPv4)", RFC 5907,
              DOI 10.17487/RFC5907, June 2010,
              <http://www.rfc-editor.org/info/rfc5907>.

  [RFC6020]   Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)",
              RFC 6020, DOI 10.17487/RFC6020, October 2010,
              <http://www.rfc-editor.org/info/rfc6020>.

  [RFC6242]   Wasserman, M., "Using the NETCONF Protocol over Secure
              Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
              <http://www.rfc-editor.org/info/rfc6242>.

  [RFC6243]   Bierman, A. and B. Lengyel, "With-defaults Capability for
              NETCONF", RFC 6243, DOI 10.17487/RFC6243, June 2011,
              <http://www.rfc-editor.org/info/rfc6243>.

  [RFC6536]   Bierman, A. and M. Bjorklund, "Network Configuration
              Protocol (NETCONF) Access Control Model", RFC 6536, DOI
              10.17487/RFC6536, March 2012,
              <http://www.rfc-editor.org/info/rfc6536>.

  [RFC7317]   Bierman, A. and M. Bjorklund, "A YANG Data Model for
              System Management", RFC 7317, DOI 10.17487/RFC7317,
              August 2014, <http://www.rfc-editor.org/info/rfc7317>.

  [RFC7384]   Mizrahi, T., "Security Requirements of Time Protocols in
              Packet Switched Networks", RFC 7384,
              DOI 10.17487/RFC7384, October 2014,
              <http://www.rfc-editor.org/info/rfc7384>.

  [Time4]     Mizrahi, T. and Y. Moses, "Software Defined Networks:
              It's About Time", IEEE INFOCOM, 2016.










Mizrahi & Moses               Experimental                     [Page 23]

RFC 7758               Time Capability in NETCONF          February 2016


Appendix A.  YANG Module for the Time Capability

  This section is normative.

<CODE BEGINS> file "[email protected]"

module ietf-netconf-time {

  namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-time";

  prefix nct;
  import ietf-netconf { prefix nc; }

  import ietf-yang-types { prefix yang; }

  import ietf-netconf-monitoring { prefix ncm; }

  organization
    "IETF";

  contact
    "Editor: Tal Mizrahi
        <[email protected]>
     Editor: Yoram Moses
        <[email protected]>";

  description
    "This module defines a capability-based extension to the
     Network Configuration Protocol (NETCONF) that allows
     time-triggered configuration and management operations.
     This extension allows NETCONF clients to invoke configuration
     updates according to scheduled times and allows NETCONF
     servers to attach timestamps to the data they send to NETCONF
     clients.

     Copyright (c) 2016 IETF Trust and the persons identified as
     the authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject
     to the license terms contained in, the Simplified BSD License
     set forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (http://trustee.ietf.org/license-info).";

  revision 2016-01-26 {
    description
      "Initial version.";



Mizrahi & Moses               Experimental                     [Page 24]

RFC 7758               Time Capability in NETCONF          February 2016


    reference
      "RFC 7758:
       Time Capability in NETCONF";
  }

  typedef time-interval {
    type string {
      pattern '\d{2}:\d{2}:\d{2}(\.\d+)?';
    }
    description
      "Defines a time interval, up to 24 hours.
       The format is specified as HH:mm:ss.f,
       consisting of two digits for hours,
       two digits for minutes, two digits
       for seconds, and zero or more digits
       representing second fractions.";
  }

  grouping scheduling-tolerance-parameters {
    leaf sched-max-future {
      type time-interval;
      default 00:00:15.0;
      description
        "When the scheduled time is in the future, i.e., greater
         than the present time, this leaf defines the maximal
         difference between the scheduled time
         and the present time that the server is willing to
         accept.  If the difference exceeds this number, the
         server responds with an error.";
    }

    leaf sched-max-past {
      type time-interval;
      default 00:00:15.0;
      description
        "When the scheduled time is in the past, i.e., less
         than the present time, this leaf defines the maximal
         difference between the present time
         and the scheduled time that the server is willing to
         accept.  If the difference exceeds this number, the
         server responds with an error.";
    }

    description
      "Contains the parameters of the scheduling tolerance.";
  }
  // extending the get-config operation
  augment /nc:get-config/nc:input {



Mizrahi & Moses               Experimental                     [Page 25]

RFC 7758               Time Capability in NETCONF          February 2016


    leaf scheduled-time {
      type yang:date-and-time;
      description
        "The time at which the RPC is scheduled to be performed.";
    }

    leaf get-time {
      type empty;
      description
        "Indicates that the rpc-reply should include the
         execution-time.";
    }

    description
      "Adds the time element to <get-config>.";
  }

  augment /nc:get-config/nc:output {
    leaf execution-time {
      type yang:date-and-time;
      description
        "The time at which the RPC was executed.";
    }

    description
      "Adds the time element to <get-config>.";
  }

  augment /nc:get/nc:input {
    leaf scheduled-time {
      type yang:date-and-time;
      description
        "The time at which the RPC is scheduled to be performed.";
    }

    leaf get-time {
      type empty;
      description
        "Indicates that the rpc-reply should include the
         execution-time.";
    }

    description
      "Adds the time element to <get>.";
  }

  augment /nc:get/nc:output {
    leaf execution-time {



Mizrahi & Moses               Experimental                     [Page 26]

RFC 7758               Time Capability in NETCONF          February 2016


      type yang:date-and-time;
      description
        "The time at which the RPC was executed.";
    }

    description
      "Adds the time element to <get>.";
  }

  augment /nc:copy-config/nc:input {
    leaf scheduled-time {
      type yang:date-and-time;
      description
        "The time at which the RPC is scheduled to be performed.";
    }

    leaf get-time {
      type empty;
      description
        "Indicates that the rpc-reply should include the
         execution-time.";
    }

    description
      "Adds the time element to <copy-config>.";
  }

  augment /nc:copy-config/nc:output {
    leaf execution-time {
      type yang:date-and-time;
      description
        "The time at which the RPC was executed.";
    }

    description
      "Adds the time element to <copy-config>.";
  }

  augment /nc:edit-config/nc:input {
    leaf scheduled-time {
      type yang:date-and-time;
      description
        "The time at which the RPC is scheduled to be performed.";
    }

    leaf get-time {
      type empty;
      description



Mizrahi & Moses               Experimental                     [Page 27]

RFC 7758               Time Capability in NETCONF          February 2016


        "Indicates that the rpc-reply should include the
         execution-time.";
    }

    description
      "Adds the time element to <edit-config>.";
  }

  augment /nc:edit-config/nc:output {
    leaf execution-time {
      type yang:date-and-time;
      description
        "The time at which the RPC was executed.";
    }

    description
      "Adds the time element to <edit-config>.";
  }

  augment /nc:delete-config/nc:input {
    leaf scheduled-time {
      type yang:date-and-time;
      description
        "The time at which the RPC is scheduled to be performed.";
    }

    leaf get-time {
      type empty;
      description
        "Indicates that the rpc-reply should include the
         execution-time.";
    }

    description
     "Adds the time element to <delete-config>.";
  }

  augment /nc:delete-config/nc:output {
    leaf execution-time {
      type yang:date-and-time;
      description
        "The time at which the RPC was executed.";
    }
    description
      "Adds the time element to <delete-config>.";
  }

  augment /nc:lock/nc:input {



Mizrahi & Moses               Experimental                     [Page 28]

RFC 7758               Time Capability in NETCONF          February 2016


    leaf scheduled-time {
      type yang:date-and-time;
      description
        "The time at which the RPC is scheduled to be performed.";
    }

    leaf get-time {
      type empty;
      description
        "Indicates that the rpc-reply should include the
         execution-time.";
    }

    description
      "Adds the time element to <lock>.";
  }
  augment /nc:lock/nc:output {
    leaf execution-time {
      type yang:date-and-time;
      description
        "The time at which the RPC was executed.";
    }

    description
      "Adds the time element to <lock>.";
  }

  augment /nc:unlock/nc:input {
    leaf scheduled-time {
      type yang:date-and-time;
      description
        "The time at which the RPC is scheduled to be performed.";
    }

    leaf get-time {
      type empty;
      description
        "Indicates that the rpc-reply should include the
         execution-time.";
    }

    description
      "Adds the time element to <unlock>.";
  }

  augment /nc:unlock/nc:output {
    leaf execution-time {
      type yang:date-and-time;



Mizrahi & Moses               Experimental                     [Page 29]

RFC 7758               Time Capability in NETCONF          February 2016


      description
        "The time at which the RPC was executed.";
    }

    description
      "Adds the time element to <unlock>.";
  }
  augment /nc:commit/nc:input {
    leaf scheduled-time {
      type yang:date-and-time;
      description
        "The time at which the RPC is scheduled to be performed.";
    }

    leaf get-time {
      type empty;
      description
        "Indicates that the rpc-reply should include the
         execution-time.";
    }

    description
      "Adds the time element to <commit>.";
  }

  augment /nc:commit/nc:output {
    leaf execution-time {
      type yang:date-and-time;
      description
        "The time at which the RPC was executed.";
    }

    description
      "Adds the time element to <commit>.";
  }

  augment /ncm:netconf-state {
    container scheduling-tolerance {
      uses scheduling-tolerance-parameters;
      description
        "The scheduling tolerance when the time capability
         is enabled.";
    }
    description
      "The scheduling tolerance of the server.";
  }

  rpc cancel-schedule {



Mizrahi & Moses               Experimental                     [Page 30]

RFC 7758               Time Capability in NETCONF          February 2016


    description
      "Cancels a scheduled message.";
    reference
      "RFC 7758:
       Time Capability in NETCONF";

    input {
      leaf cancelled-message-id {
        type string;
        description
          "The ID of the message to be cancelled.";
      }
      leaf get-time {
        type empty;
        description
          "Indicates that the rpc-reply should include
           the execution-time.";
      }
    }
    output {
      leaf execution-time {
        type yang:date-and-time;
        description
          "The time at which the RPC was executed.";
      }
    }
  }

  notification netconf-scheduled-message {
    leaf schedule-id {
      type string;
      description
        "The ID of the scheduled message.";
    }

    leaf scheduled-time {
      type yang:date-and-time;
      description
        "The time at which the RPC is scheduled to be performed.";
    }
    description
      "Indicates that a scheduled message was received.";
    reference
      "RFC 7758:
       Time Capability in NETCONF";
  }

}



Mizrahi & Moses               Experimental                     [Page 31]

RFC 7758               Time Capability in NETCONF          February 2016


<CODE ENDS>

Acknowledgments

  The authors gratefully acknowledge Joe Marcus Clarke, Andy Bierman,
  Balazs Lengyel, Jonathan Hansford, John Heasley, Robert Sparks, Al
  Morton, Olafur Gudmundsson, Juergen Schoenwaelder, Joel Jaeggli, Alon
  Schneider, and Eylon Egozi for their insightful comments.

  This work was supported in part by Israel Science Foundation grant
  ISF 1520/11.

Authors' Addresses

  Tal Mizrahi
  Department of Electrical Engineering
  Technion - Israel Institute of Technology
  Technion City, Haifa, 32000
  Israel

  Email: [email protected]


  Yoram Moses
  Department of Electrical Engineering
  Technion - Israel Institute of Technology
  Technion City, Haifa, 32000
  Israel

  Email: [email protected]





















Mizrahi & Moses               Experimental                     [Page 32]