Internet Engineering Task Force (IETF)                            J. Hui
Request for Comments: 7731                                     Nest Labs
Category: Standards Track                                      R. Kelsey
ISSN: 2070-1721                                             Silicon Labs
                                                          February 2016


      Multicast Protocol for Low-Power and Lossy Networks (MPL)

Abstract

  This document specifies the Multicast Protocol for Low-Power and
  Lossy Networks (MPL), which provides IPv6 multicast forwarding in
  constrained networks.  MPL avoids the need to construct or maintain
  any multicast forwarding topology, disseminating messages to all MPL
  Forwarders in an MPL Domain.

  MPL has two modes of operation.  One mode uses the Trickle algorithm
  to manage control-plane and data-plane message transmissions and is
  applicable for deployments with few multicast sources.  The other
  mode uses classic flooding.  By providing both modes and
  parameterization of the Trickle algorithm, an MPL implementation can
  be used in a variety of multicast deployments and can trade between
  dissemination latency and transmission efficiency.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7731.













Hui & Kelsey                 Standards Track                    [Page 1]

RFC 7731                           MPL                     February 2016


Copyright Notice

  Copyright (c) 2016 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.





































Hui & Kelsey                 Standards Track                    [Page 2]

RFC 7731                           MPL                     February 2016


Table of Contents

  1. Introduction ....................................................4
  2. Terminology .....................................................5
  3. Applicability Statement .........................................6
  4. MPL Protocol Overview ...........................................7
     4.1. MPL Domains ................................................7
     4.2. Information Base Overview ..................................8
     4.3. Protocol Overview ..........................................8
     4.4. Signaling Overview ........................................10
  5. MPL Parameters and Constants ...................................11
     5.1. MPL Multicast Addresses ...................................11
     5.2. MPL Message Types .........................................11
     5.3. MPL Seed Identifiers ......................................11
     5.4. MPL Parameters ............................................11
  6. Protocol Message Formats .......................................14
     6.1. MPL Option ................................................14
     6.2. MPL Control Message .......................................15
     6.3. MPL Seed Info .............................................16
  7. Information Base ...............................................17
     7.1. Local Interface Set .......................................17
     7.2. Domain Set ................................................18
     7.3. Seed Set ..................................................18
     7.4. Buffered Message Set ......................................18
  8. MPL Seed Sequence Numbers ......................................19
  9. MPL Data Messages ..............................................19
     9.1. MPL Data Message Generation ...............................19
     9.2. MPL Data Message Transmission .............................20
     9.3. MPL Data Message Processing ...............................21
  10. MPL Control Messages ..........................................22
     10.1. MPL Control Message Generation ...........................22
     10.2. MPL Control Message Transmission .........................22
     10.3. MPL Control Message Processing ...........................23
  11. IANA Considerations ...........................................24
     11.1. MPL Option Type ..........................................24
     11.2. MPL ICMPv6 Type ..........................................25
     11.3. Well-Known Multicast Addresses ...........................25
  12. Security Considerations .......................................25
  13. References ....................................................26
     13.1. Normative References .....................................26
     13.2. Informative References ...................................28
  Acknowledgements ..................................................29
  Authors' Addresses ................................................29








Hui & Kelsey                 Standards Track                    [Page 3]

RFC 7731                           MPL                     February 2016


1.  Introduction

  Low-Power and Lossy Networks (LLNs) typically operate with strict
  resource constraints in communication, computation, memory, and
  energy.  Such resource constraints may preclude the use of existing
  IPv6 multicast routing and forwarding mechanisms.  Traditional IP
  multicast delivery typically relies on topology maintenance
  mechanisms to discover and maintain routes to all subscribers of a
  multicast group (e.g., [RFC3973] [RFC4601]).  However, maintaining
  such topologies in LLNs is costly and may not be feasible given the
  available resources.

  Memory constraints may limit devices to maintaining links/routes to
  one or a few neighbors.  For this reason, the Routing Protocol for
  LLNs (RPL) specifies both storing and non-storing modes [RFC6550].
  The latter allows RPL routers to maintain only one or a few default
  routes towards an LLN Border Router (LBR) and use source routing to
  forward messages away from the LBR.  For the same reasons, an LLN
  device may not be able to maintain a multicast routing topology when
  operating with limited memory.

  Furthermore, the dynamic properties of wireless networks can make the
  cost of maintaining a multicast routing topology prohibitively
  expensive.  In wireless environments, topology maintenance may
  involve selecting a connected dominating set used to forward
  multicast messages to all nodes in an administrative domain.
  However, existing mechanisms often require two-hop topology
  information, and the cost of maintaining such information grows
  polynomially with network density.

  This document specifies the Multicast Protocol for Low-Power and
  Lossy Networks (MPL), which provides IPv6 multicast forwarding in
  constrained networks.  MPL avoids the need to construct or maintain
  any multicast routing topology, disseminating multicast messages to
  all MPL Forwarders in an MPL Domain.  By using the Trickle algorithm
  [RFC6206], MPL requires only small, constant state for each MPL
  device that initiates disseminations.  The Trickle algorithm also
  allows MPL to be density aware, allowing the communication rate to
  scale logarithmically with density.












Hui & Kelsey                 Standards Track                    [Page 4]

RFC 7731                           MPL                     February 2016


2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  [RFC2119].

  The following terms are used throughout this document:

  MPL Forwarder  - A router that implements MPL.  An MPL Forwarder is
     equipped with at least one MPL Interface.

  MPL Interface  - An MPL Forwarder's attachment to a communications
     medium, over which it transmits and receives MPL Data Messages and
     MPL Control Messages according to this specification.  An MPL
     Interface is assigned one or more unicast addresses and is
     subscribed to one or more MPL Domain Addresses.

  MPL Domain Address  - A multicast address that identifies the set of
     MPL Interfaces within an MPL Domain.  MPL Data Messages
     disseminated in an MPL Domain have the associated MPL Domain
     Address as their destination address.

  MPL Domain  - A scope zone, as defined in [RFC4007], in which MPL
     Interfaces subscribe to the same MPL Domain Address and
     participate in disseminating MPL Data Messages.

  MPL Data Message  - A multicast message that is used to communicate a
     multicast payload between MPL Forwarders within an MPL Domain.  An
     MPL Data Message contains an MPL Option in the IPv6 header and has
     as its destination address the MPL Domain Address corresponding to
     the MPL Domain.

  MPL Control Message  - A link-local multicast message that is used to
     communicate information about recently received MPL Data Messages
     to neighboring MPL Forwarders.

  MPL Seed  - An MPL Forwarder that generates MPL Data Messages and
     serves as an entry point into an MPL Domain.

  MPL Seed Identifier  - An unsigned integer that uniquely identifies
     an MPL Seed within an MPL Domain.

  Node  - Used within this document to refer to an MPL Forwarder.







Hui & Kelsey                 Standards Track                    [Page 5]

RFC 7731                           MPL                     February 2016


3.  Applicability Statement

  MPL is an IPv6 multicast forwarding protocol designed for the
  communication characteristics and resource constraints of LLNs.  By
  implementing controlled disseminations of multicast messages using
  the Trickle algorithm, MPL is designed for networks that communicate
  using low-power and lossy links with widely varying topologies in
  both the space and time dimensions.

  While designed specifically for LLNs, MPL is not limited to use over
  such networks.  MPL may be applicable to any network where no
  multicast routing state is desired.  MPL may also be used in
  environments where only a subset of links are considered low-power
  and lossy links.

  A host need not be aware that their multicast is supported by MPL as
  long as its attachment router forwards multicast messages between the
  MPL Domain and the host.  However, a host may choose to implement MPL
  so that it can take advantage of the broadcast medium inherent in
  many LLNs and receive multicast messages carried by MPL directly.

  MPL is parameterized to support different dissemination techniques.
  In one parameterization, MPL may utilize the classic flooding method
  that involves having each device receiving a message rebroadcast the
  message.  In another parameterization, MPL may utilize Trickle's
  [RFC6206] "polite gossip" method, which involves transmission
  suppression and adaptive timing techniques.  [Clausen2013] questions
  the efficiency of Trickle's "polite gossip" mechanism in some
  multicast scenarios, so by also including a classic flooding mode of
  operation MPL aims to be able to perform satisfactorily in a variety
  of situations.

  To support efficient message delivery in networks that have many poor
  links, MPL supports a reactive forwarding mode that utilizes MPL
  Control Messages to summarize the current multicast state.  The MPL
  Control Message size grows linearly with the number of simultaneous
  MPL Seeds in the MPL Domain -- 4 octets per MPL Seed.  When reactive
  forwarding is not enabled, MPL Control Messages are not transmitted,
  and the associated overhead is not incurred.

  This document does not specify a cryptographic security mechanism for
  MPL to ensure that MPL messages are not spoofed by anyone with access
  to the LLN.  In general, the basic ability to inject messages into an
  LLN may be used as a denial-of-service attack, regardless of what
  forwarding protocol is used.  For these reasons, LLNs typically
  employ link-layer security mechanisms to mitigate an attacker's
  ability to inject messages.  For example, the IEEE 802.15.4
  [IEEE802.15.4] standard specifies frame security mechanisms using



Hui & Kelsey                 Standards Track                    [Page 6]

RFC 7731                           MPL                     February 2016


  AES-128 to support access control, message integrity, message
  confidentiality, and replay protection.  However, if the attack
  vector includes attackers that have access to the LLN, then MPL
  SHOULD NOT be used.

4.  MPL Protocol Overview

  The goal of MPL is to deliver multicast messages to all interfaces
  that subscribe to the multicast messages' destination address within
  an MPL Domain.

4.1.  MPL Domains

  An MPL Domain is a scope zone, as defined in [RFC4007], in which MPL
  Interfaces subscribe to the same MPL Domain Address and participate
  in disseminating MPL Data Messages.

  When participating in only one MPL Domain, the MPL Domain Address is
  the ALL_MPL_FORWARDERS multicast address with Realm-Local scope
  ("scop" value 3) [RFC7346].

  When an MPL Forwarder participates in multiple MPL Domains
  simultaneously, at most one MPL Domain may be assigned an MPL Domain
  Address equal to the ALL_MPL_FORWARDERS multicast address.  All other
  MPL Domains MUST be assigned a unique MPL Domain Address that allows
  the MPL Forwarder to identify each MPL Domain.  The MPL Domains
  SHOULD be configured automatically based on some underlying topology.
  For example, when using RPL [RFC6550], MPL Domains may be configured
  based on RPL Instances.

  When MPL is used in deployments that use administratively defined
  scopes that cover, for example, multiple subnets based on different
  underlying network technologies, Admin-Local scope (scop value 4) or
  Site-Local scope (scop value 5) SHOULD be used.

  An MPL Forwarder MAY participate in additional MPL Domains identified
  by other multicast addresses.  An MPL Interface MUST subscribe to the
  MPL Domain Addresses for the MPL Domains that it participates in.
  The assignment of other multicast addresses is out of scope.

  For each MPL Domain Address that an MPL Interface subscribes to, the
  MPL Interface MUST also subscribe to the same MPL Domain Address with
  Link-Local scope (scop value 2) when reactive forwarding is in use
  (i.e., when communicating MPL Control Messages).







Hui & Kelsey                 Standards Track                    [Page 7]

RFC 7731                           MPL                     February 2016


4.2.  Information Base Overview

  A node records necessary protocol state in the following
  information sets:

  o  The Local Interface Set records the set of local MPL Interfaces
     and the unicast addresses assigned to those MPL Interfaces.

  o  The Domain Set records the set of MPL Domain Addresses and the
     local MPL Interfaces that subscribe to those addresses.

  o  A Seed Set records information about received MPL Data Messages
     received from an MPL Seed within an MPL Domain.  Each MPL Domain
     has an associated Seed Set.  A Seed Set maintains the minimum
     sequence number for MPL Data Messages that the MPL Forwarder is
     willing to receive or has buffered in its Buffered Message Set
     from an MPL Seed.  MPL uses Seed Sets and Buffered Message Sets to
     determine when to accept an MPL Data Message, process its payload,
     and retransmit it.

  o  A Buffered Message Set records recently received MPL Data Messages
     from an MPL Seed within an MPL Domain.  Each MPL Domain has an
     associated Buffered Message Set.  MPL Data Messages resident in a
     Buffered Message Set have sequence numbers that are greater than
     or equal to the minimum threshold maintained in the corresponding
     Seed Set.  MPL uses Buffered Message Sets to store MPL Data
     Messages that may be transmitted by the MPL Forwarder for
     forwarding.

4.3.  Protocol Overview

  MPL achieves its goal by implementing a controlled flood that
  attempts to disseminate the multicast data message to all interfaces
  within an MPL Domain.  MPL performs the following tasks to
  disseminate a multicast message:

  o  When having a multicast message to forward into an MPL Domain, the
     MPL Seed generates an MPL Data Message that includes the MPL
     Domain Address as the IPv6 Destination Address, the MPL Seed
     Identifier, a newly generated sequence number, and the multicast
     message.  If the multicast destination address is not the MPL
     Domain Address, IP-in-IP tunneling [RFC2473] is used to
     encapsulate the multicast message in an MPL Data Message,
     preserving the original IPv6 Destination Address.







Hui & Kelsey                 Standards Track                    [Page 8]

RFC 7731                           MPL                     February 2016


  o  Upon receiving an MPL Data Message, the MPL Forwarder extracts the
     MPL Seed and sequence number and determines whether or not the MPL
     Data Message was previously received using the MPL Domain's Seed
     Set and Buffered Message Set.

     *  If the sequence number is less than the lower-bound sequence
        number maintained in the Seed Set or a message with the same
        sequence number exists within the Buffered Message Set, the MPL
        Forwarder marks the MPL Data Message as old.

     *  Otherwise, the MPL Forwarder marks the MPL Data Message as new.

  o  For each newly received MPL Data Message, an MPL Forwarder updates
     the Seed Set, adds the MPL Data Message into the Buffered Message
     Set, processes its payload, and multicasts the MPL Data Message a
     number of times on all MPL Interfaces participating in the same
     MPL Domain to forward the message.

  o  Each MPL Forwarder may periodically link-local multicast MPL
     Control Messages on MPL Interfaces to communicate information
     contained in an MPL Domain's Seed Set and Buffered Message Set.

  o  Upon receiving an MPL Control Message, an MPL Forwarder determines
     whether or not there are any new MPL Data Messages that have yet
     to be received by the MPL Control Message's source and multicasts
     those MPL Data Messages.

  MPL's configuration parameters allow two forwarding strategies for
  disseminating MPL Data Messages via MPL Interfaces:

  Proactive Forwarding  - With proactive forwarding, an MPL Forwarder
     schedules transmissions of MPL Data Messages using the Trickle
     algorithm, without any prior indication that neighboring nodes
     have yet to receive the message.  After transmitting the MPL Data
     Message a limited number of times, the MPL Forwarder may terminate
     proactive forwarding for the MPL Data Message.

  Reactive Forwarding  - With reactive forwarding, an MPL Forwarder
     link-local multicasts MPL Control Messages using the Trickle
     algorithm [RFC6206].  MPL Forwarders use MPL Control Messages to
     discover new MPL Data Messages that have not yet been received.
     When discovering that a neighboring MPL Forwarder has not yet
     received an MPL Data Message, the MPL Forwarder schedules those
     MPL Data Messages for transmission using the Trickle algorithm.







Hui & Kelsey                 Standards Track                    [Page 9]

RFC 7731                           MPL                     February 2016


  Note that, when used within the same MPL Domain, proactive and
  reactive forwarding strategies are not mutually exclusive and may be
  used simultaneously.  For example, upon receiving a new MPL Data
  Message when both proactive and reactive forwarding techniques are
  enabled, an MPL Forwarder will proactively retransmit the MPL Data
  Message a limited number of times and schedule further transmissions
  upon receiving MPL Control Messages.

4.4.  Signaling Overview

  MPL generates and processes the following messages:

  MPL Data Message  - Generated by an MPL Seed to deliver a multicast
     message across an MPL Domain.  The MPL Data Message's source is an
     address in the Local Interface Set of the MPL Seed that generated
     the message and is valid within the MPL Domain.  The MPL Data
     Message's destination is the MPL Domain Address corresponding to
     the MPL Domain.  An MPL Data Message contains:

     *  The Seed Identifier of the MPL Seed that generated the MPL Data
        Message.

     *  The sequence number of the MPL Seed that generated the MPL Data
        Message.

     *  The original multicast message.

  MPL Control Message  - Generated by an MPL Forwarder to communicate
     information contained in an MPL Domain's Seed Set and Buffered
     Message Set to neighboring MPL Forwarders.  An MPL Control Message
     contains a list of tuples for each entry in the Seed Set.  Each
     tuple contains:

     *  The minimum sequence number maintained in the Seed Set for the
        MPL Seed.

     *  A bit-vector indicating the sequence numbers of MPL Data
        Messages resident in the Buffered Message Set for the MPL Seed,
        where the first bit represents a sequence number equal to the
        minimum threshold maintained in the Seed Set.

     *  The length of the bit-vector.









Hui & Kelsey                 Standards Track                   [Page 10]

RFC 7731                           MPL                     February 2016


5.  MPL Parameters and Constants

  This section describes various program and networking parameters and
  constants used by MPL.

5.1.  MPL Multicast Addresses

  MPL makes use of MPL Domain Addresses to identify MPL Interfaces of
  an MPL Domain.  By default, MPL Forwarders subscribe to the
  ALL_MPL_FORWARDERS multicast address with Realm-Local scope (scop
  value 3) [RFC7346].

  For each MPL Domain Address that an MPL Interface subscribes to, the
  MPL Interface MUST also subscribe to the MPL Domain Address with
  Link-Local scope (scop value 2) when reactive forwarding is in use.
  MPL Forwarders use the link-scoped MPL Domain Address to communicate
  MPL Control Messages to neighboring (i.e., on-link) MPL Forwarders.

5.2.  MPL Message Types

  MPL defines an IPv6 Option for carrying an MPL Seed Identifier and a
  sequence number within an MPL Data Message.  The IPv6 Option Type has
  value 0x6D.

  MPL defines an ICMPv6 Message (MPL Control Message) for communicating
  information contained in an MPL Domain's Seed Set and Buffered
  Message Set to neighboring MPL Forwarders.  The MPL Control Message
  has ICMPv6 Type 159.

5.3.  MPL Seed Identifiers

  MPL uses MPL Seed Identifiers to uniquely identify MPL Seeds within
  an MPL Domain.  For each MPL Domain that the MPL Forwarder serves as
  an MPL Seed, the MPL Forwarder MUST have an associated MPL Seed
  Identifier.  An MPL Forwarder MAY use the same MPL Seed Identifier
  across multiple MPL Domains, but the MPL Seed Identifier MUST be
  unique within each MPL Domain.  The mechanism for assigning and
  verifying uniqueness of MPL Seed Identifiers is not specified in this
  document.

5.4.  MPL Parameters

  PROACTIVE_FORWARDING  - A boolean value that indicates whether or not
     the MPL Forwarder schedules MPL Data Message transmissions after
     receiving them for the first time.  PROACTIVE_FORWARDING has a
     default value of TRUE.  All MPL Interfaces on the same link SHOULD
     be configured with the same value of PROACTIVE_FORWARDING.  An
     implementation MAY choose to vary the value of



Hui & Kelsey                 Standards Track                   [Page 11]

RFC 7731                           MPL                     February 2016


     PROACTIVE_FORWARDING across interfaces on the same link if
     reactive forwarding is also in use.  The mechanism for setting
     PROACTIVE_FORWARDING is not specified within this document.

  SEED_SET_ENTRY_LIFETIME  - The minimum lifetime for an entry in the
     Seed Set.  SEED_SET_ENTRY_LIFETIME has a default value of
     30 minutes.  It is RECOMMENDED that all MPL Forwarders use the
     same value for SEED_SET_ENTRY_LIFETIME for a given MPL Domain and
     use a default value of 30 minutes.  Using a value of
     SEED_SET_ENTRY_LIFETIME that is too small can cause the duplicate
     detection mechanism to fail, resulting in an MPL Forwarder
     receiving a given MPL Data Message more than once.  The mechanism
     for setting SEED_SET_ENTRY_LIFETIME is not specified within this
     document.

  As specified in [RFC6206], a Trickle timer runs for a defined
  interval and has three configuration parameters: the minimum interval
  size Imin, the maximum interval size Imax, and a redundancy
  constant k.

  This specification defines a fourth Trickle configuration parameter,
  TimerExpirations, which indicates the number of Trickle timer
  expiration events that occur before terminating the Trickle algorithm
  for a given MPL Data Message or MPL Control Message.

  Each MPL Interface uses the following Trickle parameters for MPL Data
  Message and MPL Control Message transmissions:

  DATA_MESSAGE_IMIN  - The minimum Trickle timer interval, as defined
     in [RFC6206], for MPL Data Message transmissions.
     DATA_MESSAGE_IMIN has a default value of 10 times the expected
     link-layer latency.

  DATA_MESSAGE_IMAX  - The maximum Trickle timer interval, as defined
     in [RFC6206], for MPL Data Message transmissions.
     DATA_MESSAGE_IMAX has a default value equal to DATA_MESSAGE_IMIN.

  DATA_MESSAGE_K  - The redundancy constant, as defined in [RFC6206],
     for MPL Data Message transmissions.  DATA_MESSAGE_K has a default
     value of 1.

  DATA_MESSAGE_TIMER_EXPIRATIONS  - The number of Trickle timer
     expirations that occur before terminating the Trickle algorithm's
     retransmission of a given MPL Data Message.
     DATA_MESSAGE_TIMER_EXPIRATIONS has a default value of 3.






Hui & Kelsey                 Standards Track                   [Page 12]

RFC 7731                           MPL                     February 2016


  CONTROL_MESSAGE_IMIN  - The minimum Trickle timer interval, as
     defined in [RFC6206], for MPL Control Message transmissions.
     CONTROL_MESSAGE_IMIN has a default value of 10 times the
     worst-case link-layer latency.

  CONTROL_MESSAGE_IMAX  - The maximum Trickle timer interval, as
     defined in [RFC6206], for MPL Control Message transmissions.
     CONTROL_MESSAGE_IMAX has a default value of 5 minutes.

  CONTROL_MESSAGE_K  - The redundancy constant, as defined in
     [RFC6206], for MPL Control Message transmissions.
     CONTROL_MESSAGE_K has a default value of 1.

  CONTROL_MESSAGE_TIMER_EXPIRATIONS  - The number of Trickle timer
     expirations that occur before terminating the Trickle algorithm
     for MPL Control Message transmissions.
     CONTROL_MESSAGE_TIMER_EXPIRATIONS has a default value of 10.

  As described in [RFC6206], if different nodes have different
  configuration parameters, Trickle may have unintended behaviors.
  Therefore, it is RECOMMENDED that all MPL Interfaces attached to the
  same link of a given MPL Domain use the same values for the Trickle
  parameters above for a given MPL Domain.  The mechanism for setting
  the Trickle parameters is not specified within this document.

  The default MPL parameters specify a forwarding strategy that
  utilizes both proactive and reactive techniques.  Using these default
  values, an MPL Forwarder proactively transmits any new MPL Data
  Messages it receives and then uses MPL Control Messages to trigger
  additional MPL Data Message retransmissions where message drops are
  detected.  Setting DATA_MESSAGE_IMAX to the same value as
  DATA_MESSAGE_IMIN in this case is acceptable, since subsequent MPL
  Data Message retransmissions are triggered by MPL Control Messages,
  where CONTROL_MESSAGE_IMAX is greater than CONTROL_MESSAGE_IMIN.

















Hui & Kelsey                 Standards Track                   [Page 13]

RFC 7731                           MPL                     February 2016


6.  Protocol Message Formats

  Messages generated and processed by an MPL Forwarder are described in
  this section.

6.1.  MPL Option

  The MPL Option is carried in MPL Data Messages in an IPv6 Hop-by-Hop
  Options header, immediately following the IPv6 header.  The MPL
  Option has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
                                    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                    |  Option Type  |  Opt Data Len |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | S |M|V|  rsv  |   sequence    |      seed-id (optional)       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Option Type    0x6D.

  Opt Data Len   Length of the Option Data field [RFC2460] in octets.

  S              2-bit unsigned integer.  Identifies the length of the
                 seed-id.  '0' indicates that the seed-id is the IPv6
                 Source Address and not included in the MPL Option.
                 '1' indicates that the seed-id is a 16-bit unsigned
                 integer.  '2' indicates that the seed-id is a 64-bit
                 unsigned integer.  '3' indicates that the seed-id is a
                 128-bit unsigned integer.

  M              1-bit flag.  '1' indicates that the value in the
                 sequence field is known to be the largest sequence
                 number that was received from the MPL Seed.

  V              1-bit flag.  '0' indicates that the MPL Option
                 conforms to this specification.  MPL Data Messages
                 with an MPL Option in which this flag is set to 1 MUST
                 be dropped.

  rsv            4-bit reserved field.  MUST be set to 0 on
                 transmission and ignored on reception.









Hui & Kelsey                 Standards Track                   [Page 14]

RFC 7731                           MPL                     February 2016


  sequence       8-bit unsigned integer.  Identifies relative ordering
                 of MPL Data Messages from the MPL Seed identified by
                 the seed-id.

  seed-id        Uniquely identifies the MPL Seed that initiated
                 dissemination of the MPL Data Message.  The size of
                 the seed-id is indicated by the S field.

  The Option Data (specifically, the M flag) of the MPL Option is
  updated by MPL Forwarders as the MPL Data Message is forwarded.
  Nodes that do not understand the MPL Option MUST discard the MPL Data
  Message.  Thus, according to [RFC2460], the three high-order bits of
  the Option Type are set to '011'.  The Option Data length is
  variable.

  The seed-id uniquely identifies an MPL Seed.  When the seed-id is
  128 bits (S=3), the MPL Seed MAY use an IPv6 address assigned to one
  of its interfaces that is unique within the MPL Domain.  Managing MPL
  Seed Identifiers is not within the scope of this document.

  The sequence field establishes a total ordering of MPL Data Messages
  generated by an MPL Seed for an MPL Domain.  The MPL Seed MUST
  increment the sequence field's value on each new MPL Data Message
  that it generates for an MPL Domain.  Implementations MUST follow the
  Serial Number Arithmetic as defined in [RFC1982] when incrementing a
  sequence value or comparing two sequence values.

  Future updates to this specification may define additional fields
  following the seed-id field.

6.2.  MPL Control Message

  An MPL Forwarder uses ICMPv6 Messages to communicate information
  contained in an MPL Domain's Seed Set and Buffered Message Set to
  neighboring MPL Forwarders.  The MPL Control Message has the
  following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Type      |     Code      |          Checksum             |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    .                      MPL Seed Info[0..n]                      .
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+





Hui & Kelsey                 Standards Track                   [Page 15]

RFC 7731                           MPL                     February 2016


  IP Fields:

  Source Address        An IPv6 address in the AddressSet of the
                        corresponding MPL Interface.  MUST be valid
                        within the MPL Domain.

  Destination Address   The link-scoped MPL Domain Address
                        corresponding to the MPL Domain.

  Hop Limit             255


  ICMPv6 Fields:

  Type                  159

  Code                  0

  Checksum              The ICMP checksum.  See [RFC4443].

  MPL Seed Info[0..n]   List of zero or more MPL Seed Info entries.

  The MPL Control Message indicates the sequence numbers of MPL Data
  Messages that are within the MPL Domain's Buffered Message Set.  The
  MPL Control Message also indicates the sequence numbers of MPL Data
  Messages that an MPL Forwarder is willing to receive.  The MPL
  Control Message allows neighboring MPL Forwarders to determine
  whether or not there are any new MPL Data Messages to exchange.

6.3.  MPL Seed Info

  The MPL Seed Info encodes the minimum sequence number for an MPL Seed
  maintained in the MPL Domain's Seed Set.  The MPL Seed Info also
  indicates the sequence numbers of MPL Data Messages generated by the
  MPL Seed that are stored within the MPL Domain's Buffered Message
  Set.  The MPL Seed Info has the following format:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   min-seqno   |  bm-len   | S |   seed-id (0/2/8/16 octets)   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    .            buffered-mpl-messages (variable length)            .
    .                                                               .
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+





Hui & Kelsey                 Standards Track                   [Page 16]

RFC 7731                           MPL                     February 2016


  min-seqno               8-bit unsigned integer.  The lower-bound
                          sequence number for the MPL Seed.

  bm-len                  6-bit unsigned integer.  The size of
                          buffered-mpl-messages in octets.

  S                       2-bit unsigned integer.  Identifies the
                          length of the seed-id.  '0' indicates that
                          the seed-id value is the IPv6 Source Address
                          and not included in the MPL Seed Info.  '1'
                          indicates that the seed-id value is a 16-bit
                          unsigned integer.  '2' indicates that the
                          seed-id value is a 64-bit unsigned integer.
                          '3' indicates that the seed-id is a 128-bit
                          unsigned integer.

  seed-id                 Variable-length unsigned integer.  Indicates
                          the MPL Seed associated with this MPL
                          Seed Info.

  buffered-mpl-messages   Variable-length bit-vector.  Identifies the
                          sequence numbers of MPL Data Messages
                          maintained in the corresponding Buffered
                          Message Set for the MPL Seed.  The i-th bit
                          represents a sequence number of min-seqno
                          + i.  '0' indicates that the corresponding
                          MPL Data Message does not exist in the
                          Buffered Message Set.  '1' indicates that the
                          corresponding MPL Data Message does exist in
                          the Buffered Message Set.

  The MPL Seed Info does not have any octet alignment requirement.

7.  Information Base

7.1.  Local Interface Set

  The Local Interface Set records the local MPL Interfaces of an MPL
  Forwarder.  The Local Interface Set consists of Local Interface
  Tuples, one per MPL Interface: (AddressSet).

  AddressSet  - a set of unicast addresses assigned to the MPL
     Interface.








Hui & Kelsey                 Standards Track                   [Page 17]

RFC 7731                           MPL                     February 2016


7.2.  Domain Set

  The Domain Set records the MPL Interfaces that subscribe to each MPL
  Domain Address.  The Domain Set consists of MPL Domain Tuples, one
  per MPL Domain: (MPLInterfaceSet).

  MPLInterfaceSet  - a set of MPL Interfaces that subscribe to the MPL
     Domain Address that identifies the MPL Domain.

7.3.  Seed Set

  A Seed Set records a sliding window used to determine the sequence
  numbers of MPL Data Messages (generated by the MPL Seed) that an MPL
  Forwarder is willing to accept.  An MPL Forwarder maintains a Seed
  Set for each MPL Domain that it participates in.  A Seed Set consists
  of MPL Seed Tuples: (SeedID, MinSequence, Lifetime).

  SeedID  - the identifier for the MPL Seed.

  MinSequence  - a lower-bound sequence number that represents the
     sequence number of the oldest MPL Data Message the MPL Forwarder
     is willing to receive or transmit.  An MPL Forwarder MUST ignore
     any MPL Data Message that has a sequence value less than
     MinSequence.

  Lifetime  - indicates the minimum remaining lifetime of the Seed Set
     entry.  An MPL Forwarder MUST NOT free a Seed Set entry before the
     remaining lifetime expires.

7.4.  Buffered Message Set

  A Buffered Message Set records recently received MPL Data Messages
  from an MPL Seed within an MPL Domain.  An MPL Forwarder uses a
  Buffered Message Set to buffer MPL Data Messages while the MPL
  Forwarder is forwarding the MPL Data Messages.  An MPL Forwarder
  maintains a Buffered Message Set for each MPL Domain that it
  participates in.  A Buffered Message Set consists of Buffered Message
  Tuples: (SeedID, SequenceNumber, DataMessage).

  SeedID  - the identifier for the MPL Seed that generated the MPL Data
     Message.

  SequenceNumber  - the sequence number for the MPL Data Message.

  DataMessage  - the MPL Data Message.






Hui & Kelsey                 Standards Track                   [Page 18]

RFC 7731                           MPL                     February 2016


  All MPL Data Messages within a Buffered Message Set MUST have a
  sequence number greater than or equal to MinSequence for the
  corresponding SeedID.  When increasing MinSequence for an MPL Seed,
  the MPL Forwarder MUST delete any MPL Data Messages from the
  corresponding Buffered Message Set that have sequence numbers less
  than MinSequence.

8.  MPL Seed Sequence Numbers

  Each MPL Seed maintains a sequence number for each MPL Domain that it
  serves.  The sequence numbers are included in MPL Data Messages
  generated by the MPL Seed.  The MPL Seed MUST increment the sequence
  number for each MPL Data Message that it generates for an MPL Domain.
  Implementations MUST follow the Serial Number Arithmetic as defined
  in [RFC1982] when incrementing a sequence value or comparing two
  sequence values.  This sequence number is used to establish a total
  ordering of MPL Data Messages generated by an MPL Seed for an MPL
  Domain.

9.  MPL Data Messages

9.1.  MPL Data Message Generation

  MPL Data Messages are generated by MPL Seeds when these messages
  enter the MPL Domain.  All MPL Data Messages have the following
  properties:

  o  The IPv6 Source Address MUST be an address in the AddressSet of a
     corresponding MPL Interface and MUST be valid within the MPL
     Domain.

  o  The IPv6 Destination Address MUST be set to the MPL Domain Address
     corresponding to the MPL Domain.

  o  An MPL Data Message MUST contain an MPL Option in its IPv6 header
     to identify the MPL Seed that generated the message and the
     ordering relative to other MPL Data Messages generated by the
     MPL Seed.

  When the destination address is an MPL Domain Address and the source
  address is in the AddressList of an MPL Interface that belongs to
  that MPL Domain Address, the application message and the MPL Data
  Message MAY be identical.  In other words, the MPL Data Message may
  contain a single IPv6 header that includes the MPL Option.

  Otherwise, IPv6-in-IPv6 encapsulation MUST be used to satisfy the MPL
  Data Message requirements listed above [RFC2473].  The complete
  IPv6-in-IPv6 message forms an MPL Data Message.  The outer IPv6



Hui & Kelsey                 Standards Track                   [Page 19]

RFC 7731                           MPL                     February 2016


  header conforms to the MPL Data Message requirements listed above.
  The encapsulated IPv6 datagram encodes the multicast data message
  that is communicated beyond the MPL Domain.

9.2.  MPL Data Message Transmission

  An MPL Forwarder manages transmission of MPL Data Messages in its
  Buffered Message Sets using the Trickle algorithm [RFC6206].  An MPL
  Forwarder MUST use a separate Trickle timer for each MPL Data Message
  that it is actively forwarding.  In accordance with Section 5 of
  RFC 6206 [RFC6206], the following items apply:

  o  This document defines a "consistent" transmission as receiving an
     MPL Data Message that has the same MPL Domain Address, seed-id,
     and sequence value as the MPL Data Message managed by the
     Trickle timer.

  o  This document defines an "inconsistent" transmission as receiving
     an MPL Data Message that has the same MPL Domain Address, seed-id
     value, and the M flag set, but has a sequence value less than that
     of the MPL Data Message managed by the Trickle timer.

  o  This document does not define any external "events".

  o  This document defines MPL Data Messages as Trickle messages.

  o  The actions outside the Trickle algorithm that MPL takes involve
     managing the MPL Domain's Seed Set and Buffered Message Set.

  As specified in [RFC6206], a Trickle timer has three variables: the
  current interval size I, a time within the current interval t, and a
  counter c.  MPL defines a fourth variable, e, which counts the number
  of Trickle timer expiration events since the Trickle timer was last
  reset.

  After DATA_MESSAGE_TIMER_EXPIRATIONS Trickle timer events, the MPL
  Forwarder MUST disable the Trickle timer.  When a buffered MPL Data
  Message does not have an associated Trickle timer, the MPL Forwarder
  MAY delete the message from the Buffered Message Set by advancing the
  MinSequence value of the corresponding MPL Seed in the Seed Set.
  When the MPL Forwarder no longer buffers any messages for an MPL
  Seed, the MPL Forwarder MUST NOT increment MinSequence for that
  MPL Seed.

  When transmitting an MPL Data Message, the MPL Forwarder MUST either
  set the M flag to zero or set it to a level that indicates whether or
  not the message's sequence number is the largest value that has been
  received from the MPL Seed.



Hui & Kelsey                 Standards Track                   [Page 20]

RFC 7731                           MPL                     February 2016


9.3.  MPL Data Message Processing

  Upon receiving an MPL Data Message, the MPL Forwarder first processes
  the MPL Option and updates the Trickle timer associated with the MPL
  Data Message if one exists.

  Upon receiving an MPL Data Message, an MPL Forwarder MUST perform one
  of the following actions:

  o  Accept the message and enter the MPL Data Message in the MPL
     Domain's Buffered Message Set.

  o  Accept the message and update the corresponding MinSequence in
     the MPL Domain's Seed Set to 1 greater than the message's
     sequence number.

  o  Discard the message without any change to the MPL
     Information Base.

  If a Seed Set entry exists for the MPL Seed, the MPL Forwarder MUST
  discard the MPL Data Message if its sequence number is less than
  MinSequence or exists in the Buffered Message Set.

  If a Seed Set entry does not exist for the MPL Seed, the MPL
  Forwarder MUST create a new entry for the MPL Seed before accepting
  the MPL Data Message.

  If memory is limited, an MPL Forwarder SHOULD reclaim memory
  resources by:

  o  Incrementing MinSequence entries in a Seed Set and deleting MPL
     Data Messages in the corresponding Buffered Message Set that fall
     below the MinSequence value.

  o  Deleting other Seed Set entries that have expired and the
     corresponding MPL Data Messages in the Buffered Message Set.

  If the MPL Forwarder accepts the MPL Data Message, the MPL Forwarder
  MUST perform the following actions:

  o  Reset the Lifetime of the corresponding Seed Set entry to
     SEED_SET_ENTRY_LIFETIME.

  o  If PROACTIVE_FORWARDING is TRUE, the MPL Forwarder MUST initialize
     and start a Trickle timer for the MPL Data Message.






Hui & Kelsey                 Standards Track                   [Page 21]

RFC 7731                           MPL                     February 2016


  o  If the MPL Control Message Trickle timer is not running and
     CONTROL_MESSAGE_TIMER_EXPIRATIONS is non-zero, the MPL Forwarder
     MUST initialize and start the MPL Control Message Trickle timer.

  o  If the MPL Control Message Trickle timer is running, the MPL
     Forwarder MUST reset the MPL Control Message Trickle timer.

10.  MPL Control Messages

10.1.  MPL Control Message Generation

  An MPL Forwarder generates MPL Control Messages to communicate an MPL
  Domain's Seed Set and Buffered Message Set to neighboring MPL
  Forwarders.  Each MPL Control Message is generated according to
  Section 6.2, with an MPL Seed Info entry for each entry in the MPL
  Domain's Seed Set.  Each MPL Seed Info entry has the following
  content:

  o  S set to the size of the seed-id field in the MPL Seed Info entry.

  o  min-seqno set to the MinSequence value of the MPL Seed.

  o  bm-len set to the size of buffered-mpl-messages in octets.

  o  seed-id set to the MPL Seed Identifier.

  o  buffered-mpl-messages with each bit representing whether or not an
     MPL Data Message with the corresponding sequence number exists in
     the Buffered Message Set.  The i-th bit represents a sequence
     number of min-seqno + i.  '0' indicates that the corresponding MPL
     Data Message does not exist in the Buffered Message Set.  '1'
     indicates that the corresponding MPL Data Message does exist in
     the Buffered Message Set.

10.2.  MPL Control Message Transmission

  An MPL Forwarder transmits MPL Control Messages using the Trickle
  algorithm.  An MPL Forwarder maintains a single Trickle timer for
  each MPL Domain.  When CONTROL_MESSAGE_TIMER_EXPIRATIONS is 0, the
  MPL Forwarder does not execute the Trickle algorithm and does not
  transmit MPL Control Messages.  In accordance with Section 5 of
  RFC 6206 [RFC6206], the following items apply:

  o  This document defines a "consistent" transmission as receiving an
     MPL Control Message that results in a determination that neither
     the receiving nor transmitting node has any new MPL Data Messages
     to offer.




Hui & Kelsey                 Standards Track                   [Page 22]

RFC 7731                           MPL                     February 2016


  o  This document defines an "inconsistent" transmission as receiving
     an MPL Control Message that results in a determination that either
     the receiving or transmitting node has at least one new MPL Data
     Message to offer.

  o  The Trickle timer is reset in response to external "events".  This
     document defines an "event" as increasing the MinSequence value of
     any entry in the corresponding Seed Set or adding a message to the
     corresponding Buffered Message Set.

  o  This document defines an MPL Control Message as a Trickle message.

  As specified in [RFC6206], a Trickle timer has three variables: the
  current interval size I, a time within the current interval t, and a
  counter c.  MPL defines a fourth variable, e, which counts the number
  of Trickle timer expiration events since the Trickle timer was last
  reset.  After CONTROL_MESSAGE_TIMER_EXPIRATIONS Trickle timer events,
  the MPL Forwarder MUST disable the Trickle timer.

10.3.  MPL Control Message Processing

  An MPL Forwarder processes each MPL Control Message that it receives
  to determine if it has any new MPL Data Messages to receive or offer.

  An MPL Forwarder determines if a new MPL Data Message has not been
  received from a neighboring node if any of the following conditions
  hold true:

  o  The MPL Control Message includes an MPL Seed that does not exist
     in the MPL Domain's Seed Set.

  o  The MPL Control Message indicates that the neighbor has an MPL
     Data Message in its Buffered Message Set with sequence number
     greater than MinSequence (i.e., the i-th bit is set to 1 and
     min-seqno + i > MinSequence) and is not included in the MPL
     Domain's Buffered Message Set.

  When an MPL Forwarder determines that it has not yet received an MPL
  Data Message buffered by a neighboring device, the MPL Forwarder MUST
  reset its Trickle timer associated with MPL Control Message
  transmissions.  If an MPL Control Message Trickle timer is not
  running, the MPL Forwarder MUST initialize and start a new
  Trickle timer.








Hui & Kelsey                 Standards Track                   [Page 23]

RFC 7731                           MPL                     February 2016


  An MPL Forwarder determines if an MPL Data Message in the Buffered
  Message Set has not yet been received by a neighboring MPL Forwarder
  if any of the following conditions hold true:

  o  The MPL Control Message does not include an MPL Seed for the MPL
     Data Message.

  o  The MPL Data Message's sequence number is greater than or equal to
     min-seqno and not included in the neighbor's corresponding
     Buffered Message Set (i.e., the MPL Data Message's sequence number
     does not have a corresponding bit in buffered-mpl-messages
     set to 1).

  When an MPL Forwarder determines that it has at least one MPL Data
  Message in its corresponding Buffered Message Set that has not yet
  been received by a neighbor, the MPL Forwarder MUST reset the MPL
  Control Message Trickle timer.  Additionally, for each of those
  entries in the Buffered Message Set, the MPL Forwarder MUST reset the
  Trickle timer and reset e to 0.  If a Trickle timer is not associated
  with the MPL Data Message, the MPL Forwarder MUST initialize and
  start a new Trickle timer.

11.  IANA Considerations

  This document defines one IPv6 Option, a type that has been allocated
  from the IPv6 "Destination Options and Hop-by-Hop Options" registry
  of [RFC2780].

  This document defines one ICMPv6 Message, a type that has been
  allocated from the "ICMPv6 'type' Numbers" registry of [RFC4443].

  This document registers a well-known multicast address from the
  "Variable Scope Multicast Addresses" registry of [RFC3307].

11.1.  MPL Option Type

  IANA has allocated an IPv6 Option Type from the IPv6 "Destination
  Options and Hop-by-Hop Options" registry of [RFC2780], as specified
  in Table 1 below:

       +-----------+-----+-----+-------+-------------+-----------+
       | Hex Value | act | chg |  rest | Description | Reference |
       +-----------+-----+-----+-------+-------------+-----------+
       |    0x6D   |  01 |  1  | 01101 |  MPL Option |  RFC 7731 |
       +-----------+-----+-----+-------+-------------+-----------+

                  Table 1: IPv6 Option Type Allocation




Hui & Kelsey                 Standards Track                   [Page 24]

RFC 7731                           MPL                     February 2016


  Note: IANA has marked the value 0x4D (previously "MPL Option") as
  "Deprecated".

11.2.  MPL ICMPv6 Type

  IANA has allocated an ICMPv6 Type from the "ICMPv6 'type' Numbers"
  registry of [RFC4443], as specified in Table 2 below:

               +------+---------------------+-----------+
               | Type |         Name        | Reference |
               +------+---------------------+-----------+
               | 159  | MPL Control Message |  RFC 7731 |
               +------+---------------------+-----------+

                     Table 2: ICMPv6 Type Allocation

11.3.  Well-Known Multicast Addresses

  IANA has allocated an IPv6 multicast address, with Group ID in the
  range [0x01,0xFF] for IPv6 over Low-Power Wireless Personal Area
  Network (6LoWPAN) compression [RFC6282], "ALL_MPL_FORWARDERS" from
  the "Variable Scope Multicast Addresses" sub-registry of the "IPv6
  Multicast Address Space Registry" [RFC3307], as specified in Table 3
  below:

  +---------------------+--------------------+-----------+------------+
  |     Address(es)     |    Description     | Reference |    Date    |
  |                     |                    |           | Registered |
  +---------------------+--------------------+-----------+------------+
  | FF0X:0:0:0:0:0:0:FC | ALL_MPL_FORWARDERS |  RFC 7731 | 2013-04-10 |
  +---------------------+--------------------+-----------+------------+

          Table 3: Variable Scope Multicast Address Allocation

12.  Security Considerations

  MPL uses sequence numbers to maintain a total ordering of MPL Data
  Messages from an MPL Seed.  The use of sequence numbers allows a
  denial-of-service attack where an attacker can spoof a message with a
  sufficiently large sequence number to (i) flush messages from the
  Buffered Message List and (ii) increase the MinSequence value for an
  MPL Seed in the corresponding Seed Set.  In both cases, the side
  effect allows an attacker to halt the forwarding process of any MPL
  Data Messages being disseminated and prevents MPL Forwarders from
  accepting new MPL Data Messages that an MPL Seed generates while the
  sequence number is less than MinSequence or until the corresponding
  Seed Set Entry expires.  The net effect applies to both proactive and
  reactive forwarding modes.



Hui & Kelsey                 Standards Track                   [Page 25]

RFC 7731                           MPL                     February 2016


  In general, the basic ability to inject messages into an LLN may be
  used as a denial-of-service attack, regardless of what forwarding
  protocol is used.  Because MPL is a dissemination protocol, the
  ability to spoof MPL messages allows an attacker to affect an entire
  MPL Domain.  For these reasons, LLNs typically employ link-layer
  security mechanisms to mitigate an attacker's ability to inject
  messages.  For example, the IEEE 802.15.4 [IEEE802.15.4] standard
  specifies frame security mechanisms using AES-128 to support access
  control, message integrity, message confidentiality, and replay
  protection.  However, if the attack vector includes attackers that
  have access to the LLN, then MPL SHOULD NOT be used.

  To prevent attackers from injecting packets through an MPL Forwarder,
  the MPL Forwarder MUST NOT accept or forward MPL Data Messages from a
  communication interface that does not subscribe to the MPL Domain
  Address identified in the message's destination address.

  MPL uses the Trickle algorithm to manage message transmissions;
  therefore, the security considerations described in [RFC6206] apply.

13.  References

13.1.  Normative References

  [RFC1982]  Elz, R. and R. Bush, "Serial Number Arithmetic", RFC 1982,
             DOI 10.17487/RFC1982, August 1996,
             <http://www.rfc-editor.org/info/rfc1982>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC2460]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
             (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
             December 1998, <http://www.rfc-editor.org/info/rfc2460>.

  [RFC2473]  Conta, A. and S. Deering, "Generic Packet Tunneling in
             IPv6 Specification", RFC 2473, DOI 10.17487/RFC2473,
             December 1998, <http://www.rfc-editor.org/info/rfc2473>.

  [RFC2780]  Bradner, S. and V. Paxson, "IANA Allocation Guidelines For
             Values In the Internet Protocol and Related Headers",
             BCP 37, RFC 2780, DOI 10.17487/RFC2780, March 2000,
             <http://www.rfc-editor.org/info/rfc2780>.






Hui & Kelsey                 Standards Track                   [Page 26]

RFC 7731                           MPL                     February 2016


  [RFC3307]  Haberman, B., "Allocation Guidelines for IPv6 Multicast
             Addresses", RFC 3307, DOI 10.17487/RFC3307, August 2002,
             <http://www.rfc-editor.org/info/rfc3307>.

  [RFC4007]  Deering, S., Haberman, B., Jinmei, T., Nordmark, E., and
             B. Zill, "IPv6 Scoped Address Architecture", RFC 4007,
             DOI 10.17487/RFC4007, March 2005,
             <http://www.rfc-editor.org/info/rfc4007>.

  [RFC4443]  Conta, A., Deering, S., and M. Gupta, Ed., "Internet
             Control Message Protocol (ICMPv6) for the Internet
             Protocol Version 6 (IPv6) Specification", RFC 4443,
             DOI 10.17487/RFC4443, March 2006,
             <http://www.rfc-editor.org/info/rfc4443>.

  [RFC6206]  Levis, P., Clausen, T., Hui, J., Gnawali, O., and J. Ko,
             "The Trickle Algorithm", RFC 6206, DOI 10.17487/RFC6206,
             March 2011, <http://www.rfc-editor.org/info/rfc6206>.

  [RFC6282]  Hui, J., Ed., and P. Thubert, "Compression Format for IPv6
             Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
             DOI 10.17487/RFC6282, September 2011,
             <http://www.rfc-editor.org/info/rfc6282>.

  [RFC6550]  Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J.,
             Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,
             JP., and R. Alexander, "RPL: IPv6 Routing Protocol for
             Low-Power and Lossy Networks", RFC 6550,
             DOI 10.17487/RFC6550, March 2012,
             <http://www.rfc-editor.org/info/rfc6550>.

  [RFC7346]  Droms, R., "IPv6 Multicast Address Scopes", RFC 7346,
             DOI 10.17487/RFC7346, August 2014,
             <http://www.rfc-editor.org/info/rfc7346>.

















Hui & Kelsey                 Standards Track                   [Page 27]

RFC 7731                           MPL                     February 2016


13.2.  Informative References

  [Clausen2013]
             Clausen, T., de Verdiere, A., and J. Yi, "Performance
             Analysis of Trickle as a Flooding Mechanism", The 15th
             IEEE International Conference on Communication
             Technology (ICCT2013), DOI 10.1109/ICCT.2013.6820439,
             November 2013.

  [IEEE802.15.4]
             IEEE, "IEEE Standard for Local and metropolitan area
             networks--Part 15.4: Low-Rate Wireless Personal Area
             Networks (LR-WPANs)", IEEE 802.15.4,
             DOI 10.1109/ieeestd.2011.6012487,
             <http://ieeexplore.ieee.org/servlet/
             opac?punumber=6012485>.

  [RFC3973]  Adams, A., Nicholas, J., and W. Siadak, "Protocol
             Independent Multicast - Dense Mode (PIM-DM): Protocol
             Specification (Revised)", RFC 3973, DOI 10.17487/RFC3973,
             January 2005, <http://www.rfc-editor.org/info/rfc3973>.

  [RFC4601]  Fenner, B., Handley, M., Holbrook, H., and I. Kouvelas,
             "Protocol Independent Multicast - Sparse Mode (PIM-SM):
             Protocol Specification (Revised)", RFC 4601,
             DOI 10.17487/RFC4601, August 2006,
             <http://www.rfc-editor.org/info/rfc4601>.
























Hui & Kelsey                 Standards Track                   [Page 28]

RFC 7731                           MPL                     February 2016


Acknowledgements

  The authors would like to acknowledge the helpful comments of Robert
  Cragie, Esko Dijk, Ralph Droms, Paul Duffy, Adrian Farrel, Ulrich
  Herberg, Owen Kirby, Philip Levis, Kerry Lynn, Joseph Reddy, Michael
  Richardson, Ines Robles, Don Sturek, Dario Tedeschi, and Peter
  van der Stok, which greatly improved the document.

Authors' Addresses

  Jonathan W. Hui
  Nest Labs
  3400 Hillview Ave.
  Palo Alto, California  94304
  United States

  Phone: +650 253 2770
  Email: [email protected]


  Richard Kelsey
  Silicon Labs
  25 Thomson Place
  Boston, Massachusetts  02210
  United States

  Phone: +617 951 1225
  Email: [email protected]























Hui & Kelsey                 Standards Track                   [Page 29]