Internet Engineering Task Force (IETF)                          M. Zhang
Request for Comments: 7727                                        H. Wen
Category: Standards Track                                         Huawei
ISSN: 2070-1721                                                    J. Hu
                                                          China Telecom
                                                           January 2016


               Spanning Tree Protocol (STP) Application
          of the Inter-Chassis Communication Protocol (ICCP)

Abstract

  The Inter-Chassis Communication Protocol (ICCP) supports an inter-
  chassis redundancy mechanism that is used to support high network
  availability.

  In this document, Provider Edge (PE) devices in a Redundancy Group
  (RG) running ICCP are used to offer multihomed connectivity to
  Spanning Tree Protocol (STP) networks to improve availability of the
  STP networks.  The ICCP TLVs and usage for the ICCP STP application
  are defined.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7727.















Zhang, et al.                Standards Track                    [Page 1]

RFC 7727                 STP Application of ICCP            January 2016


Copyright Notice

  Copyright (c) 2016 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.





































Zhang, et al.                Standards Track                    [Page 2]

RFC 7727                 STP Application of ICCP            January 2016


Table of Contents

  1. Introduction ....................................................4
     1.1. Conventions Used in This Document ..........................4
     1.2. Terminology ................................................4
  2. Use Case ........................................................5
  3. Spanning Tree Protocol Application TLVs .........................6
     3.1. STP Connect TLV ............................................6
     3.2. STP Disconnect TLV .........................................7
          3.2.1. STP Disconnect Cause Sub-TLV ........................8
     3.3. STP Configuration TLVs .....................................8
          3.3.1. STP System Config ...................................9
          3.3.2. STP Region Name ....................................10
          3.3.3. STP Revision Level .................................10
          3.3.4. STP Instance Priority ..............................11
          3.3.5. STP Configuration Digest ...........................12
     3.4. STP State TLVs ............................................12
          3.4.1. STP Topology Changed Instances .....................12
          3.4.2. STP CIST Root Time Parameters ......................14
          3.4.3. STP MSTI Root Time Parameter .......................15
     3.5. STP Synchronization Request TLV ...........................16
     3.6. STP Synchronization Data TLV ..............................17
  4. Operations .....................................................18
     4.1. Common AC Procedures ......................................18
          4.1.1. Remote PE Node Failure or Isolation ................19
          4.1.2. Local PE Isolation .................................19
     4.2. ICCP STP Application Procedures ...........................19
          4.2.1. Initial Setup ......................................19
          4.2.2. Configuration Synchronization ......................20
          4.2.3. State Synchronization ..............................21
          4.2.4. Failure and Recovery ...............................22
  5. Security Considerations ........................................22
  6. IANA Considerations ............................................23
  7. References .....................................................23
     7.1. Normative References ......................................23
     7.2. Informative References ....................................24
  Acknowledgements ................................................. 24
  Authors' Addresses ............................................... 25













Zhang, et al.                Standards Track                    [Page 3]

RFC 7727                 STP Application of ICCP            January 2016


1.  Introduction

  Inter-Chassis Communication Protocol (ICCP [RFC7275]) specifies a
  multi-chassis redundancy mechanism that enables Provider Edge (PE)
  devices located in a multi-chassis arrangement to act as a single
  Redundancy Group (RG).

  With the Spanning Tree Protocol (STP), a spanning tree will be formed
  over connected bridges by blocking some links between these bridges
  so that forwarding loops are avoided.  This document introduces
  support of STP as a new application of ICCP.  When a bridged STP
  network is connected to an RG, this STP application of ICCP enables
  the RG members to act as a single root bridge participating in the
  operations of STP.

  STP-relevant information needs to be exchanged and synchronized among
  the RG members.  New ICCP TLVs for the ICCP STP application are
  specified for this purpose.

  From the point of view of the customer, the Service Provider is
  providing a Virtual Private LAN Service (VPLS) [RFC4762].

1.1.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

1.2.  Terminology

  ICCP: Inter-Chassis Communication Protocol
  VPLS: Virtual Private LAN Service
  STP:  Spanning Tree Protocol
  MSTP: Multiple Spanning Tree Protocol
  MST:  Multiple Spanning Trees
  CIST: Common and Internal Spanning Tree ([802.1q], Section 3.27)
  MSTI: Multiple Spanning Tree Instance ([802.1q], Section 3.138)
  BPDU: Bridge Protocol Data Unit

  In this document, unless otherwise explicitly noted, the term "STP"
  also covers MSTP.










Zhang, et al.                Standards Track                    [Page 4]

RFC 7727                 STP Application of ICCP            January 2016


2.  Use Case

  Customers widely use Ethernet as an access technology [RFC4762].
  It's common that one customer's Local Area Network (LAN) has multiple
  bridges connected to a carrier's network at different locations for
  reliability purposes.  Requirements for this use case are listed as
  follows.

  o  Customers desire to balance the load among their available
     connections to the carrier's network; therefore, all the
     connections need to be active.

  o  When one connection to the carrier network fails, customers
     require a connection in another location to continue to work after
     the reconvergence of the STP rather than compromising the whole
     STP network.  The failure of the connection may be due to the
     failure of the PE, the attachment circuit (AC), or even the
     Customer Edge (CE) device itself.

  In order to meet these requirements, the 'ICCP-STP' model is
  proposed.  It introduces STP as a new application of ICCP.

            +--------------+       +=============+
            |              |       |             |
            |              |       |             |
            |       +---+  |       |  +-----+|<--|--Pseudowire-->|
            |   +---+CE1+<6>-------<5>+ PE1 ||   |               |
            |  <1>  +---+  |       |  +-----+|<--|--Pseudowire-->|
            | +-+-+        |       |     ||      |
            | |CE3|        |       |     ||ICCP  |--> Towards the Core
            | +-+-+        |       |     ||      |
            |  <2>  +---+  |       |  +-----+|<--|--Pseudowire-->|
            |   +---+CE2+<3>-------<4>+ PE2 ||   |               |
            |       +---+  |       |  +-----+|<--|--Pseudowire-->|
            |              |       |             |
            | Multihomed   |       |  Redundancy |
            | STP Network  |       |    Group    |
            +--------------+       +=============+

       Figure 1: A STP network is multihomed to an RG running ICCP

  Figure 1 shows an example topology of this model.  With ICCP, the
  whole RG will be virtualized to be a single bridge.  Each RG member
  has its BridgeIdentifier (the MAC address).  The numerically lowest
  one is used as the BridgeIdentifier of the 'virtualized root bridge'.
  The RG acts as if the ports connected to the STP network (ports <4>
  and <5>) are for the same root bridge.  All these ports send the
  configuration BPDU with the highest root priority to trigger the



Zhang, et al.                Standards Track                    [Page 5]

RFC 7727                 STP Application of ICCP            January 2016


  construction of the spanning tree.  The link between the peering PEs
  is not visible to the bridge domains of the STP network.  In this
  way, the STP will always break a possible loop within the multihomed
  STP network by breaking the whole network into separate islands so
  that each is attached to one PE.  That forces all PEs in the RG to be
  active.  This is different from a generic VPLS [RFC4762] where the
  root bridge resides in the customer network and the multihomed PEs
  act in the active-standby mode.  Note that the specification of VPLS
  remains unchanged other than for this operation.  For instance, a
  full-mesh of pseudowires (PWs) is established between PEs, and the
  "split horizon" rule is still used to perform the loop-breaking
  through the core.

3.  Spanning Tree Protocol Application TLVs

  This section specifies the ICCP TLVs for the ICCP STP application.
  The Unknown TLV bit (U-bit) and the Forward unknown TLV bit (F-bit)
  of the following TLVs MUST be sent as cleared and processed on
  receipt as specified in [RFC7275].

3.1.  STP Connect TLV

  This TLV is included in the RG Connect Message to signal the
  initiation of an ICCP STP application connection.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |U|F|   Type=0x2000               |    Length                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      Protocol Version         |A|         Reserved            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Optional Sub-TLVs                        |
  ~                                                               ~
  |                                                               |
  +                                 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |             ...                 |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     - U=F=0

     - Type

       Set to 0x2000 for "STP Connect TLV"







Zhang, et al.                Standards Track                    [Page 6]

RFC 7727                 STP Application of ICCP            January 2016


     - Length

       Length of the TLV in octets excluding the U-bit, F-bit, Type,
       and Length fields.

     - Protocol Version

       The version of ICCP STP application protocol.  This document
       defines version 0x0001.

     - A bit

       Acknowledgement Bit.  Set to 1 if the sender has received a STP
       Connect TLV from the recipient.  Otherwise, set to 0.

     - Reserved

       Reserved for future use.  These bits MUST be sent as 0 and
       ignored on receipt.

     - Optional Sub-TLVs

       There are no optional Sub-TLVs defined for this version of the
       protocol.

3.2.  STP Disconnect TLV

  This TLV is used in the RG Disconnect Message to indicate that the
  connection for the ICCP STP application is to be terminated.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |U|F|   Type=0x2001               |    Length                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       Optional Sub-TLVs                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     - U=F=0

     - Type

       Set to 0x2001 for "STP Disconnect TLV"

     - Length

       Length of the TLV in octets excluding the U-bit, F-bit, Type,
       and Length fields.



Zhang, et al.                Standards Track                    [Page 7]

RFC 7727                 STP Application of ICCP            January 2016


     - Optional Sub-TLVs

       The only optional Sub-TLV defined for this version of the
       protocol is the "STP Disconnect Cause" sub-TLV, defined below:

3.2.1.  STP Disconnect Cause Sub-TLV

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |U|F|   Type=0x200C              |    Length                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                      Disconnect Cause String                  |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     - U=F=0

     - Type

       Set to 0x200C for "STP Disconnect Cause TLV"

     - Length

       Length of the TLV in octets excluding the U-bit, F-bit, Type,
       and Length fields.

     - Disconnect Cause String

       Variable-length string specifying the reason for the disconnect,
       encoded in UTF-8 [RFC3629] format.  Used for operational
       purposes.

3.3.  STP Configuration TLVs

  The STP Configuration TLVs are sent in the RG Application Data
  Message.  When an STP Config TLV is received by a peer RG member, the
  member MUST synchronize with the configuration information contained
  in the TLV.  TLVs specified in Sections 3.3.1 to 3.3.5 define
  specific configuration information.











Zhang, et al.                Standards Track                    [Page 8]

RFC 7727                 STP Application of ICCP            January 2016


3.3.1.  STP System Config

  This TLV announces the local node's STP System Parameters to the RG
  peers.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |U|F|   Type=0x2002               |    Length                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                              ROID                             |
  +                                                               +
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         MAC Address                           |
  +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     - U=F=0

     - Type

       Set to 0x2002 for "STP System Config TLV"

     - Length

       Length of the ROID plus the MAC address in octets.  Always set
       to 14.

     - ROID

       Redundant Object Identifier; format defined in Section 6.1.3 of
       [RFC7275].

     - MAC Address

       The MAC address of the sender.  This MAC address is set to the
       BridgeIdentifier of the sender, as defined in [802.1q], Section
       13.26.2.  The numerically lowest 48-bit unsigned value of
       BridgeIdentifier is used as the MAC address of the Virtual Root
       Bridge mentioned in Section 2.









Zhang, et al.                Standards Track                    [Page 9]

RFC 7727                 STP Application of ICCP            January 2016


3.3.2.  STP Region Name

  This TLV carries the value of Region Name.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |U|F|   Type=0x2003               |    Length                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                          Region Name                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     - U=F=0

     - Type

       Set to 0x2003 for "STP Region Name TLV"

     - Length

       Length of the TLV in octets excluding the U-bit, F-bit, Type,
       and Length fields.

     - Region Name

       The Name of the MST Region as specified in [802.1q], Section
       3.142.

3.3.3.  STP Revision Level

  This TLV carries the value of Revision Level.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |U|F|   Type=0x2004               |    Length                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       Revision Level          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     - U=F=0

     - Type

       Set to 0x2004 for "STP Revision Level TLV".






Zhang, et al.                Standards Track                   [Page 10]

RFC 7727                 STP Application of ICCP            January 2016


     - Length

       Length of the TLV in octets excluding the U-bit, F-bit, Type,
       and Length fields.  Always set to 2.

     - Revision Level

       The Revision Level as specified in [802.1q], Section 13.8, item
       c.

3.3.4.  STP Instance Priority

  This TLV carries the value of Instance Priority to other members in
  the RG.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |U|F|   Type=0x2005               |    Length                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Pri  |      InstanceID       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     - U=F=0

     - Type

       Set to 0x2005 for "STP Instance Priority TLV"

     - Length

       Length of the TLV in octets excluding the U-bit, F-bit, Type,
       and Length fields.

     - Pri

       The Instance Priority.  It is interpreted as unsigned integer
       with higher value indicating a higher priority.

     - InstanceID

       The 12-bit Instance Identifier of the CIST or MSTI.  This
       parameter takes a value in the range 1 through 4094 for MSTI (as
       defined in [802.1q], Section 12.8.1.2.2) and takes value of 0
       for CIST.






Zhang, et al.                Standards Track                   [Page 11]

RFC 7727                 STP Application of ICCP            January 2016


3.3.5.  STP Configuration Digest

  This TLV carries the value of STP VLAN Instance Mapping.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |U|F|   Type=0x2006             |    Length                     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                    Configuration Digest                       |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     - U=F=0

     - Type

       Set to 0x2006 for "STP Configuration Digest TLV"

     - Length

       Length of the STP Configuration Digest in octets.  Always set to
       16.

     - Configuration Digest

       As specified in [802.1q], Section 13.8, item d.

3.4.  STP State TLVs

  The STP State TLVs are sent in the RG Application Data Message.  They
  are used by a PE device to report its STP status to other members in
  the RG.  Such TLVs are specified in the following subsections.

3.4.1.  STP Topology Changed Instances

  This TLV is used to report the Topology Changed Instances to other
  members of the RG.  The sender monitors Topology Change Notification
  (TCN) messages and generates this list.  The receiving RG member MUST
  initiate the Topology Change event, including sending BPDU with the
  Topology Change flag set to 1 out of the designated port(s) of the
  Topology Changed bridge domains of the STP network, and flushing out
  MAC addresses relevant to the instances listed in this TLV.

  If the PE device supports MAC Address Withdrawal (see Section 6.2 of
  [RFC4762]), it SHOULD send a Label Distribution Protocol (LDP)
  Address Withdraw Message with the list of MAC addresses towards the
  core over the corresponding LDP sessions.  It is not necessary to



Zhang, et al.                Standards Track                   [Page 12]

RFC 7727                 STP Application of ICCP            January 2016


  send such a message to PEs of the same RG since the flushing of their
  MAC address tables should have been performed upon receipt of the STP
  Topology Changed Instances TLV.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |U|F|   Type=0x2007               |    Length                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       InstanceID List                         |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     - U=F=0

     - Type

       Set to 0x2007 for "STP Topology Changed Instances TLV"

     - Length

       Length of the TLV in octets excluding the U-bit, F-bit, Type,
       and Length fields.

     - InstanceID List

       The list of the InstanceIDs of the CIST or MSTIs whose
       topologies have changed as indicated by the TCN messages as
       specified in [802.1q], Section 13.14.  The list is formatted by
       padding each InstanceID value to the 16-bit boundary as follows,
       where the bits in the "R" fields MUST be sent as 0 and ignored
       on receipt.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |R|R|R|R| InstanceID#1          |R|R|R|R| InstanceID#2          |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     ~                             ... ...                           ~
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+











Zhang, et al.                Standards Track                   [Page 13]

RFC 7727                 STP Application of ICCP            January 2016


3.4.2.  STP CIST Root Time Parameters

  This TLV is used to report the Value of CIST Root Time Parameters
  ([802.1q], Section 13.26.7) to other members of the RG.  All time
  parameter values are in seconds with a granularity of 1.  For ranges
  and default values of these parameter values, refer to [802.1d1998],
  Section 8.10.2, Table 8-3; [802.1d2004] Section 17.14, Table 17-1;
  and [802.1q], Section 13.26.7.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |U|F|   Type=0x2008               |    Length                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    MaxAge                     |   MessageAge                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    FwdDelay                   |   HelloTime                   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | RemainingHops |
  +-+-+-+-+-+-+-+-+

     - U=F=0

     - Type

       Set to 0x2008 for "STP CIST Root Time TLV"

     - Length

       Length of the TLV in octets excluding the U-bit, F-bit, Type,
       and Length fields.  Always set to 9.

     - MaxAge

       The Max Age of the CIST.  It is the maximum age of the
       information transmitted by the bridge when it is the Root Bridge
       ([802.1d2004], Section 17.13.8).

     - MessageAge

       The Message Age of the CIST (see [802.1q], Section 13.26.7).

     - FwdDelay

       The Forward Delay of the CIST.  It is the delay used by STP
       Bridges to transition Root and Designated Ports to Forwarding
       ([802.1d2004], Section 17.13.5).




Zhang, et al.                Standards Track                   [Page 14]

RFC 7727                 STP Application of ICCP            January 2016


     - HelloTime

       The Hello Time of the CIST.  It is the interval between periodic
       transmissions of Configuration Messages by Designated Ports
       ([802.1d2004], Section 17.13.6).

     - RemainingHops

       The remainingHops of the CIST ([802.1q], Section 13.26.7).

3.4.3.  STP MSTI Root Time Parameter

  This TLV is used to report the parameter value of MSTI Root Time to
  other members of the RG.  As defined in [802.1q], Section 13.26.7, it
  is the value of remainingHops for the given MSTI.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |U|F|   Type=0x2009              |    Length                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Pri  |  InstanceID           | RemainingHops |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     - U=F=0

     - Type

       Set to 0x2009 for "STP MSTI Root Time TLV"

     - Length

       Length of the TLV in octets excluding the U-bit, F-bit, Type,
       and Length fields.  Always set to 3.

     - Pri

       The Instance Priority.  It is interpreted as an unsigned integer
       with higher value indicating a higher priority.

     - InstanceID

       The 12-bit Instance Identifier of the Multiple Spanning Tree
       Instance (MSTID).  As defined in [802.1q], Section 12.8.1.2.2,
       this parameter takes a value in the range 1 through 4094.






Zhang, et al.                Standards Track                   [Page 15]

RFC 7727                 STP Application of ICCP            January 2016


     - RemainingHops

       The remainingHops of the MSTI.  It is encoded in the same way as
       in [802.1q], Section 14.4.1, item f.

3.5.  STP Synchronization Request TLV

  The STP Synchronization Request TLV is used in the RG Application
  Data Message.  This TLV is used by a device to request that its peer
  retransmit configuration or operational state.  The following
  information can be requested:

     - configuration and/or state of the STP system,
     - configuration and/or state for a given list of instances.

  The format of the TLV is as follows:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |U|F|   Type=0x200A              |    Length                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      Request Number           |C|S|   Request Type            |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                       InstanceID List                         |
  ~                                                               ~
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     - U=F=0

     - Type

       Set to 0x200A for "STP Synchronization Request TLV"

     - Length

       Length of the TLV in octets excluding the U-bit, F-bit, Type,
       and Length fields.  Always set to 4.

     - Request Number

       2 octets.  Unsigned integer uniquely identifying the request.
       Used to match the request with a corresponding response.  The
       value of 0 is reserved for unsolicited synchronization, and it
       MUST NOT be used in the STP Synchronization Request TLV.  As
       indicated in [RFC7275], given the use of TCP, there are no
       issues associated with the wrap-around of the Request Number.




Zhang, et al.                Standards Track                   [Page 16]

RFC 7727                 STP Application of ICCP            January 2016


     - C-bit

       Set to 1 if the request is for configuration data.  Otherwise,
       set to 0.

     - S-bit

       Set to 1 if the request is for running state data.  Otherwise,
       set to 0.

     - Request Type

       14 bits specifying the request type, encoded as follows:

           0x00   Request System Data
           0x01   Request data of the listed instances
           0x3FFF Request System Data and data of all instances

     - InstanceID List

       The InstanceIDs of the CIST or MSTIs; format specified in
       Section 3.4.1.

3.6.  STP Synchronization Data TLV

  The pair of STP Synchronization Data TLVs are used by the sender to
  delimit a set of TLVs that are being transmitted in response to an
  STP Synchronization Request TLV.  The delimiting TLVs signal the
  start and end of the synchronization data, and they associate the
  response with its corresponding request via the Request Number field.
  It's REQUIRED that each pair of STP Synchronization Data TLVs occur
  in the same fragment.  When the total size of the TLVs to be
  transmitted exceeds the maximal size of a fragment, these TLVs MUST
  be divided into multiple sets, delimited by multiple pairs of STP
  Synchronization Data TLVs, and filled into multiple fragments.  With
  the Request Number, lost fragments can be identified and
  re-requested.

  The STP Synchronization Data TLVs are also used for unsolicited
  advertisements of complete STP configuration and operational state
  data.  The Request Number field MUST be set to 0 in this case.










Zhang, et al.                Standards Track                   [Page 17]

RFC 7727                 STP Application of ICCP            January 2016


  STP Synchronization Data TLV has the following format:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |U|F|   Type=0x200B              |    Length                    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Request Number            |    Reserved                 |S|
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

     - U=F=0

     - Type

       set to 0x200B for "STP Synchronization Data TLV"

     - Length

       Length of the TLV in octets excluding the U-bit, F-bit, Type,
       and Length fields.  Always set to 4.

     - Request Number

       2 octets.  Unsigned integer identifying the Request Number of
       the "STP Synchronization Request TLV" that initiated this
       synchronization data response.

     - Reserved

       Reserved bits for future use.  These MUST be sent as 0 and
       ignored on receipt.

     - S

       S = 0: Synchronization Data Start
       S = 1: Synchronization Data End

4.  Operations

  Operational procedures for AC redundancy applications have been
  specified in Section 9.2 of [RFC7275].  The operational procedures of
  the ICCP STP application should follow those procedures, with the
  changes presented in this section.

4.1.  Common AC Procedures

  The following changes are introduced to the generic procedures of AC
  redundancy applications defined in Section 9.2.1 of [RFC7275].



Zhang, et al.                Standards Track                   [Page 18]

RFC 7727                 STP Application of ICCP            January 2016


4.1.1.  Remote PE Node Failure or Isolation

  When a local PE device detects that a remote PE device that is a
  member of the same RG is no longer reachable (using the mechanisms
  described in Section 5 of [RFC7275]), the local PE device checks if
  it has redundancy ACs for the affected services.  If redundant ACs
  are present, and if the local PE device has the new highest bridge
  priority, the local PE device becomes the virtual root bridge for
  corresponding ACs.

4.1.2.  Local PE Isolation

  When a PE device detects that it has been isolated from the core
  network, then it needs to ensure that its AC redundancy mechanism
  will change the status of all active ACs to standby.  The AC
  redundancy application SHOULD then send an RG Application Data
  Message in order to trigger failover to another active PE device in
  the RG.  Note that this works only in the case of dedicated
  interconnect (Sections 3.2.1 and 3.2.3), since ICCP will still have
  the path to the peer, even though the PE device is isolated from the
  MPLS core network.

4.2.  ICCP STP Application Procedures

  This section defines the procedures of the ICCP STP application that
  are applicable for Ethernet ACs.

4.2.1.  Initial Setup

  When an RG is configured on a system that supports the ICCP STP
  application, such systems MUST send an RG Connect Message with an STP
  Connect TLV to each PE device that is a member of the RG.  The
  sending PE device MUST set the A bit to 1 in that TLV if it has
  received a corresponding STP Connect TLV from its peer PE; otherwise,
  the sending PE device MUST set the A bit to 0.  If a PE device
  receives an STP Connect TLV from its peer after sending its own TLV
  with the A bit set to 0, it MUST resend the TLV with the A bit set to
  1.  A system considers the ICCP STP application connection to be
  operational when it has both sent and received STP Connect TLVs with
  the A bit set to 1.  When the ICCP STP application connection between
  a pair of PEs is operational, the two devices can start exchanging RG
  Application Data Messages for the ICCP STP application.  This
  involves having each PE device advertise its STP configuration and
  operational state in an unsolicited manner.  A PE device SHOULD
  follow the order below when advertising its STP state upon initial
  application connection setup:





Zhang, et al.                Standards Track                   [Page 19]

RFC 7727                 STP Application of ICCP            January 2016


     - Advertise the STP System Config TLV
     - Advertise remaining Configuration TLVs
     - Advertise State TLVs

  The update of the information contained in the State TLVs depends on
  that in the Configuration TLVs.  By sending the TLVs in the above
  order, the two peers may begin to update STP state as early as
  possible in the middle of exchanging these TLVs.

  A PE device MUST use a pair of STP Synchronization Data TLVs to
  delimit the entire set of TLVs that are being sent as part of this
  unsolicited advertisement.

  If a system receives an RG Connect Message with an STP Connect TLV
  that has a differing Protocol Version, it MUST follow the procedures
  outlined in the Section 4.4.1 ("Application Versioning") of
  [RFC7275].

  After the ICCP STP application connection has been established, every
  PE device MUST communicate its system-level configuration to its
  peers via the use of STP System Config TLV.

  When the ICCP STP application is administratively disabled on the PE,
  or on the particular RG, the system MUST send an RG Disconnect
  Message containing STP Disconnect TLV.

4.2.2.  Configuration Synchronization

  A system that supports ICCP STP application MUST synchronize the
  configuration with other RG members.  This is achieved via the use of
  STP Configuration TLVs.  The PEs in the RG MUST all agree on the
  common MAC address to be associated with the virtual root bridge.  It
  is possible to achieve this via consistent configuration on member
  PEs.  However, in order to protect against possible
  misconfigurations, a virtual root bridge identifier MUST be set to
  the MAC address advertised by the PE device with the numerically
  lowest BridgeIdentifier (i.e., the MAC address of the bridge) in the
  RG.

  Furthermore, for a given ICCP STP application, an implementation MUST
  advertise the configuration prior to advertising its corresponding
  state.  If a PE device receives any STP State TLV that it had not
  learned of before via an appropriate STP Configuration TLV, then the
  PE device MUST request synchronization of the configuration and state
  from its peer.  If during such synchronization a PE device receives a
  State TLV that it has not learned before, then the PE device MUST
  send a NAK TLV for that particular TLV.  The PE device MUST NOT
  request resynchronization in this case.



Zhang, et al.                Standards Track                   [Page 20]

RFC 7727                 STP Application of ICCP            January 2016


4.2.3.  State Synchronization

  PEs within the RG need to synchronize their state for proper STP
  operation.  This is achieved by having each system advertise its
  running state in STP State TLVs.  Whenever any STP parameter either
  on the CE or PE side is changed, the system MUST transmit an updated
  TLV for the affected STP instances.  Moreover, when the
  administrative or operational state changes, the system MUST transmit
  an updated State TLV to its peers.

  A PE device MAY request its peer to retransmit previously advertised
  state.  This is useful in case the PE device is recovering from a
  soft failure and attempting to relearn state.  To request such
  retransmissions, a PE device MUST send a set of one or more STP
  Synchronization Request TLVs.

  A PE device MUST respond to a STP Synchronization Request TLV by
  sending the requested data in a set of one or more STP Configuration
  or State TLVs delimited by a pair of STP Synchronization Data TLVs.

  Note that the response may span across multiple RG Application Data
  Messages, for example, when MTU limits are exceeded; however, the
  above ordering MUST be retained across messages, and only a single
  pair of Synchronization Data TLVs MUST be used to delimit the
  response across all RG Application Data Messages.

  A PE device MAY readvertise its STP state in an unsolicited manner.
  This is done by sending the appropriate State TLVs delimited by a
  pair of STP Synchronization Data TLVs and using a Request Number of
  0.

  While a PE device has sent out a synchronization request for a
  particular PE device, it SHOULD silently ignore all TLVs that are
  from that node, are received prior to the synchronization response,
  and carry the same type of information being requested.  This saves
  the system from the burden of updating state that will ultimately be
  overwritten by the synchronization response.  Note that TLVs
  pertaining to other systems should continue to be processed normally.

  If a PE device receives a synchronization request for an instance
  that doesn't exist or is not known to the PE, then it MUST trigger
  the unsolicited synchronization of all information by restarting the
  initialization.

  If during the synchronization operation a PE device receives an
  advertisement of a Node ID value that is different from the value
  previously advertised, then the PE device MUST purge all state data
  previously received from that peer prior to the last synchronization.



Zhang, et al.                Standards Track                   [Page 21]

RFC 7727                 STP Application of ICCP            January 2016


4.2.4.  Failure and Recovery

  When a PE device that is active for the ICCP STP application
  encounters a core isolation fault [RFC7275], it SHOULD attempt to
  fail over to a peer PE device that hosts the same RG.  The default
  failover procedure is to have the failed PE device bring down the
  link(s) towards the multihomed STP network.  This will cause the STP
  network to reconverge and to use the other links that are connected
  to the other PE devices in the RG.  Other procedures for triggering
  failover are possible and are outside the scope of this document.

  If the isolated PE device is the one that has the numerically lowest
  BridgeIdentifier, PEs in the RG MUST synchronize STP Configuration
  and State TLVs and determine a new virtual root bridge as specified
  in Section 4.2.2.

  Upon recovery from a previous fault, a PE device SHOULD NOT reclaim
  the role of the virtual root for the STP network even if it has the
  numerically lowest BridgeIdentifier among the RG.  This minimizes
  traffic disruption.

  Whenever the virtual root bridge changes, the STP Topology Changed
  Instances TLV lists the instances that are affected by the change.
  These instances MUST undergo a STP reconvergence procedure when this
  TLV is received as defined in Section 3.4.1.

5.  Security Considerations

  This document specifies an application running on the channel
  provided by ICCP [RFC7275].  The security considerations on ICCP
  apply in this document as well.

  For the ICCP STP application, an attack on a channel (running in the
  provider's network) can break not only the ability to deliver traffic
  across the provider's network, but also the ability to route traffic
  within the customer's network.  That is, a careful attack on a
  channel (such as the DoS attacks as described in [RFC7275]) can break
  STP within the customer network.  Implementations need to provide
  mechanisms to mitigate these types of attacks.  For example, the port
  between the PE device and the malicious CE device may be blocked.











Zhang, et al.                Standards Track                   [Page 22]

RFC 7727                 STP Application of ICCP            January 2016


6.  IANA Considerations

  The IANA maintains a top-level registry called "Pseudowire Name
  Spaces (PWE3)".  It has a subregistry called "ICC RG Parameter
  Types".

  IANA has made 13 allocations from this registry as shown below.  IANA
  has allocated the codepoints from the range marked for assignment by
  IETF Review (0x2000-0x2FFF) [RFC5226].  Each assignment references
  this document.

     Parameter Type Description
     -------------- ---------------------------------
     0x2000         STP Connect TLV
     0x2001         STP Disconnect TLV
     0x2002         STP System Config TLV
     0x2003         STP Region Name TLV
     0x2004         STP Revision Level TLV
     0x2005         STP Instance Priority TLV
     0x2006         STP Configuration Digest TLV
     0x2007         STP Topology Changed Instances TLV
     0x2008         STP CIST Root Time TLV
     0x2009         STP MSTI Root Time TLV
     0x200A         STP Synchronization Request TLV
     0x200B         STP Synchronization Data TLV
     0x200C         STP Disconnect Cause TLV

7.  References

7.1.  Normative References

  [RFC2119]    Bradner, S., "Key words for use in RFCs to Indicate
               Requirement Levels", BCP 14, RFC 2119,
               DOI 10.17487/RFC2119, March 1997,
               <http://www.rfc-editor.org/info/rfc2119>.

  [RFC3629]    Yergeau, F., "UTF-8, a transformation format of ISO
               10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
               2003, <http://www.rfc-editor.org/info/rfc3629>.

  [RFC4762]    Lasserre, M., Ed., and V. Kompella, Ed., "Virtual
               Private LAN Service (VPLS) Using Label Distribution
               Protocol (LDP) Signaling", RFC 4762,
               DOI 10.17487/RFC4762, January 2007,
               <http://www.rfc-editor.org/info/rfc4762>.






Zhang, et al.                Standards Track                   [Page 23]

RFC 7727                 STP Application of ICCP            January 2016


  [RFC7275]    Martini, L., Salam, S., Sajassi, A., Bocci, M.,
               Matsushima, S., and T. Nadeau, "Inter-Chassis
               Communication Protocol for Layer 2 Virtual Private
               Network (L2VPN) Provider Edge (PE) Redundancy",
               RFC 7275, DOI 10.17487/RFC7275, June 2014,
               <http://www.rfc-editor.org/info/rfc7275>.

  [802.1q]     IEEE, "IEEE Standard for Local and Metropolitan Area
               Networks -- Bridges and Bridged Networks", IEEE Std
               802.1Q-2014, DOI 10.1109/IEEESTD.2014.6991462, 2014.

  [802.1d1998] IEEE, "Information technology -- Telecommunications and
               information exchange between systems -- Local and
               metropolitan area networks -- Common specifications --
               Part 3: Media Access Control (MAC) Bridges", ANSI/IEEE
               Std 802.1D-1998, DOI 10.1109/IEEESTD.1998.95619, 1998.

  [802.1d2004] IEEE, "IEEE Standard for Local and metropolitan area
               networks -- Media Access Control (MAC) Bridges", IEEE
               Std 802.1D-2004, DOI 10.1109/ieeestd.2004.94569, 2004.

7.2.  Informative References

  [RFC5226]    Narten, T. and H. Alvestrand, "Guidelines for Writing an
               IANA Considerations Section in RFCs", BCP 26, RFC 5226,
               DOI 10.17487/RFC5226, May 2008,
               <http://www.rfc-editor.org/info/rfc5226>.

Acknowledgements

  The authors would like to thank the comments and suggestions from
  Ignas Bagdonas, Adrian Farrel, Andrew G. Malis, Gregory Mirsky, and
  Alexander Vainshtein.


















Zhang, et al.                Standards Track                   [Page 24]

RFC 7727                 STP Application of ICCP            January 2016


Authors' Addresses

  Mingui Zhang
  Huawei Technologies
  No. 156 Beiqing Rd. Haidian District,
  Beijing 100095
  China

  Email: [email protected]


  Huafeng Wen
  Huawei Technologies
  101 Software Avenue,
  Nanjing 210012
  China

  Email: [email protected]


  Jie Hu
  China Telecom
  Beijing Information Science & Technology Innovation Park
  Beiqijia Town Changping District,
  Beijing 102209
  China

  Email: [email protected]























Zhang, et al.                Standards Track                   [Page 25]