Internet Engineering Task Force (IETF)               K. Pentikousis, Ed.
Request for Comments: 7717                                          EICT
Updates: 4656, 5357                                             E. Zhang
Category: Standards Track                                         Y. Cui
ISSN: 2070-1721                                      Huawei Technologies
                                                          December 2015


                 IKEv2-Derived Shared Secret Key for
         the One-Way Active Measurement Protocol (OWAMP) and
             Two-Way Active Measurement Protocol (TWAMP)

Abstract

  The One-Way Active Measurement Protocol (OWAMP) and Two-Way Active
  Measurement Protocol (TWAMP) security mechanisms require that both
  the client and server endpoints possess a shared secret.  This
  document describes the use of keys derived from an IKEv2 security
  association (SA) as the shared key in OWAMP or TWAMP.  If the shared
  key can be derived from the IKEv2 SA, OWAMP or TWAMP can support
  certificate-based key exchange; this would allow for more operational
  flexibility and efficiency.  The key derivation presented in this
  document can also facilitate automatic key management.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7717.














Pentikousis, et al.          Standards Track                    [Page 1]

RFC 7717              Shared Secret Key for O/TWAMP        December 2015


Copyright Notice

  Copyright (c) 2015 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
  2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   4
  3.  Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . .   5
  4.  O/TWAMP Security  . . . . . . . . . . . . . . . . . . . . . .   5
    4.1.  O/TWAMP-Control Security  . . . . . . . . . . . . . . . .   5
    4.2.  O/TWAMP-Test Security . . . . . . . . . . . . . . . . . .   6
    4.3.  O/TWAMP Security Root . . . . . . . . . . . . . . . . . .   7
  5.  O/TWAMP for IPsec Networks  . . . . . . . . . . . . . . . . .   7
    5.1.  Shared Key Derivation . . . . . . . . . . . . . . . . . .   7
    5.2.  Server Greeting Message Update  . . . . . . . . . . . . .   8
    5.3.  Set-Up-Response Update  . . . . . . . . . . . . . . . . .   9
    5.4.  O/TWAMP over an IPsec Tunnel  . . . . . . . . . . . . . .  11
  6.  Security Considerations . . . . . . . . . . . . . . . . . . .  11
  7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  11
  8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  12
    8.1.  Normative References  . . . . . . . . . . . . . . . . . .  12
    8.2.  Informative References  . . . . . . . . . . . . . . . . .  13
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  14
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  15















Pentikousis, et al.          Standards Track                    [Page 2]

RFC 7717              Shared Secret Key for O/TWAMP        December 2015


1.  Introduction

  The One-Way Active Measurement Protocol (OWAMP) [RFC4656] and the
  Two-Way Active Measurement Protocol (TWAMP) [RFC5357] can be used to
  measure network performance parameters such as latency, bandwidth,
  and packet loss by sending probe packets and monitoring their
  experience in the network.  In order to guarantee the accuracy of
  network measurement results, security aspects must be considered.
  Otherwise, attacks may occur and the authenticity of the measurement
  results may be violated.  For example, if no protection is provided,
  an adversary in the middle may modify packet timestamps, thus
  altering the measurement results.

  According to [RFC4656] and [RFC5357], the OWAMP and TWAMP (O/TWAMP)
  security mechanisms require that endpoints (i.e., both the client and
  the server) possess a shared secret.  In today's network deployments,
  however, the use of pre-shared keys is far from optimal.  For
  example, in wireless infrastructure networks, certain network
  elements (which can be seen as the two endpoints from an O/TWAMP
  perspective) support certificate-based security.  For instance,
  consider the case in which one wants to measure IP performance
  between an E-UTRAN Evolved Node B (eNB) and Security Gateway (SeGW),
  both of which are 3GPP Long Term Evolution (LTE) nodes and support
  certificate mode and the Internet Key Exchange Protocol version 2
  (IKEv2).

  The O/TWAMP security mechanism specified in [RFC4656] and [RFC5357]
  supports the pre-shared key (PSK) mode only, hindering large-scale
  deployment of O/TWAMP: provisioning and management of "shared
  secrets" for massive deployments consumes a tremendous amount of
  effort and is prone to human error.  At the same time, recent trends
  point to wider IKEv2 deployment that, in turn, calls for mechanisms
  and methods that enable tunnel end-users, as well as operators, to
  measure one-way and two-way network performance in a standardized
  manner.

  With IKEv2 widely deployed, employing shared keys derived from an
  IKEv2 security association (SA) can be considered a viable
  alternative through the method described in this document.  If the
  shared key can be derived from the IKEv2 SA, O/TWAMP can support
  certificate-based key exchange and practically increase operational
  flexibility and efficiency.  The use of IKEv2 also makes it easier to
  extend automatic key management.

  In general, O/TWAMP measurement packets can be transmitted inside the
  IPsec tunnel, as typical user traffic is, or transmitted outside the
  IPsec tunnel.  This may depend on the operator's policy and the
  performance evaluation goal, and it is orthogonal to the mechanism



Pentikousis, et al.          Standards Track                    [Page 3]

RFC 7717              Shared Secret Key for O/TWAMP        December 2015


  described in this document.  When IPsec is deployed, protecting
  O/TWAMP traffic in unauthenticated mode using IPsec is one option.
  Another option is to protect O/TWAMP traffic using the O/TWAMP
  security established using the PSK derived from IKEv2 and bypassing
  the IPsec tunnel.

  Protecting unauthenticated O/TWAMP control and/or test traffic via
  the Authentication Header (AH) [RFC4302] or Encapsulating Security
  Payload (ESP) [RFC4303] cannot provide various security options,
  e.g., it cannot authenticate part of an O/TWAMP packet as mentioned
  in [RFC4656].  For measuring latency, a timestamp is carried in O/
  TWAMP test traffic.  The sender has to fetch the timestamp, encrypt
  it, and send it.  When the mechanism described in this document is
  used, partial authentication of O/TWAMP packets is possible and
  therefore the middle step can be skipped, potentially improving
  accuracy as the sequence number can be encrypted and authenticated
  before the timestamp is fetched.  The receiver obtains the timestamp
  without the need for the corresponding decryption step.  In such
  cases, protecting O/TWAMP traffic using O/TWAMP security but
  bypassing the IPsec tunnel has its advantages.

  This document specifies a method for enabling network measurements
  between a TWAMP client and a TWAMP server.  In short, the shared key
  used for securing TWAMP traffic is derived from IKEv2 [RFC7296].
  TWAMP implementations signal the use of this method by setting
  IKEv2Derived (see Section 7).  IKEv2-derived keys SHOULD be used
  instead of shared secrets when O/TWAMP is employed in a deployment
  using IKEv2.  From an operations and management perspective
  [RFC5706], the mechanism described in this document requires that
  both the TWAMP Control-Client and Server support IPsec.

  The remainder of this document is organized as follows.  Section 4
  summarizes O/TWAMP protocol operation with respect to security.
  Section 5 presents the method for binding TWAMP and IKEv2 for network
  measurements between the client and the server that both support
  IKEv2.  Finally, Section 6 discusses the security considerations
  arising from the proposed mechanisms.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].








Pentikousis, et al.          Standards Track                    [Page 4]

RFC 7717              Shared Secret Key for O/TWAMP        December 2015


3.  Scope

  This document specifies a method using keys derived from an IKEv2 SA
  as the shared key in O/TWAMP.  O/TWAMP implementations signal the use
  of this method by setting IKEv2Derived (see Section 7).

4.  O/TWAMP Security

  Security for O/TWAMP-Control and O/TWAMP-Test are briefly reviewed in
  the following subsections.

4.1.  O/TWAMP-Control Security

  O/TWAMP uses a simple cryptographic protocol that relies on

  o  AES-CBC for confidentiality

  o  HMAC-SHA1 truncated to 128 bits for message authentication

  Three modes of operation are supported in the OWAMP-Control protocol:
  unauthenticated, authenticated, and encrypted.  In addition to these
  modes, the TWAMP-Control protocol also supports a mixed mode, i.e.,
  the TWAMP-Control protocol operates in encrypted mode while TWAMP-
  Test protocol operates in unauthenticated mode.  The authenticated,
  encrypted, and mixed modes require that endpoints possess a shared
  secret, typically a passphrase.  The secret key is derived from the
  passphrase using a password-based key derivation function PBKDF2
  (PKCS #5) [RFC2898].

  In the unauthenticated mode, the security parameters are left unused.
  In the authenticated, encrypted, and mixed modes, the security
  parameters are negotiated during the control connection
  establishment.

  Figure 1 illustrates the initiation stage of the O/TWAMP-Control
  protocol between a Control-Client and a Server.  In short, the
  Control-Client opens a TCP connection to the Server in order to be
  able to send O/TWAMP-Control commands.  The Server responds with a
  Server Greeting, which contains the Modes, Challenge, Salt, Count,
  and MBZ ("MUST be zero") fields (see Section 3.1 of [RFC4656]).  If
  the Control-Client preferred mode is available, the client responds
  with a Set-Up-Response message, wherein the selected Mode, as well as
  the KeyID, Token, and Client initialization vector (IV) are included.
  The Token is the concatenation of a 16-octet Challenge, a 16-octet
  AES Session-key used for encryption, and a 32-octet HMAC-SHA1
  Session-key used for authentication.  The Token is encrypted using
  AES-CBC.




Pentikousis, et al.          Standards Track                    [Page 5]

RFC 7717              Shared Secret Key for O/TWAMP        December 2015


  +----------------+                  +--------+
  | Control-Client |                  | Server |
  +----------------+                  +--------+
           |                               |
           |<------ TCP Connection-- ----->|
           |                               |
           |<------ Greeting message ------|
           |                               |
           |------- Set-Up-Response ------>|
           |                               |
           |<------ Server-Start ----------|
           |                               |

                 Figure 1: Initiation of O/TWAMP-Control

  Encryption uses a key derived from the shared secret associated with
  KeyID.  In the authenticated, encrypted, and mixed modes, all further
  communication is encrypted using the AES Session-key and
  authenticated with the HMAC Session-key.  After receiving the Set-Up-
  Response, the Server responds with a Server-Start message containing
  the Server-IV.  The Control-Client encrypts everything it transmits
  through the just established O/TWAMP-Control connection using stream
  encryption with Client-IV as the IV.  Correspondingly, the Server
  encrypts its side of the connection using Server-IV as the IV.  The
  IVs themselves are transmitted in cleartext.  Encryption starts with
  the block immediately following that containing the IV.

  The AES Session-key and HMAC Session-key are generated randomly by
  the Control-Client.  The HMAC Session-key is communicated along with
  the AES Session-key during O/TWAMP-Control connection setup.  The
  HMAC Session-key is derived independently of the AES Session-key.

4.2.  O/TWAMP-Test Security

  The O/TWAMP-Test protocol runs over UDP, using the Session-Sender and
  Session-Reflector IP and port numbers that were negotiated during the
  Request-Session exchange.  O/TWAMP-Test has the same mode with O/
  TWAMP-Control and all O/TWAMP-Test sessions inherit the corresponding
  O/TWAMP-Control session mode except when operating in mixed mode.

  The O/TWAMP-Test packet format is the same in authenticated and
  encrypted modes.  The encryption and authentication operations are,
  however, different.  Similarly, with the respective O/TWAMP-Control
  session, each O/TWAMP-Test session has two keys: an AES Session-key
  and an HMAC Session-key.  However, there is a difference in how the
  keys are obtained:





Pentikousis, et al.          Standards Track                    [Page 6]

RFC 7717              Shared Secret Key for O/TWAMP        December 2015


  O/TWAMP-Control:  the keys are generated by the Control-Client and
          communicated to the Server during the control connection
          establishment with the Set-Up-Response message (as part of
          the Token).

  O/TWAMP-Test:  the keys are derived from the O/TWAMP-Control keys and
          the session identifier (SID), which serve as inputs to the
          key derivation function (KDF).  The O/TWAMP-Test AES Session-
          key is generated using the O/TWAMP-Control AES Session-key,
          with the 16-octet SID, for encrypting and decrypting the
          packets of the particular O/TWAMP-Test session.  The O/TWAMP-
          Test HMAC Session-key is generated using the O/TWAMP-Control
          HMAC Session-key, with the 16-octet SID, for authenticating
          the packets of the particular O/TWAMP-Test session.

4.3.  O/TWAMP Security Root

  As discussed above, the O/TWAMP-Test AES Session-key and HMAC
  Session-key are derived, respectively, from the O/TWAMP-Control AES
  Session-key and HMAC Session-key.  The AES Session-key and HMAC
  Session-key used in the O/TWAMP-Control protocol are generated
  randomly by the Control-Client, and encrypted with the shared secret
  associated with KeyID.  Therefore, the security root is the shared
  secret key.  Thus, for large deployments, key provision and
  management may become overly complicated.  Comparatively, a
  certificate-based approach using IKEv2 can automatically manage the
  security root and solve this problem, as we explain in Section 5.

5.  O/TWAMP for IPsec Networks

  This section presents a method of binding O/TWAMP and IKEv2 for
  network measurements between a client and a server that both support
  IPsec.  In short, the shared key used for securing O/TWAMP traffic is
  derived using IKEv2 [RFC7296].

5.1.  Shared Key Derivation

  In the authenticated, encrypted, and mixed modes, the shared secret
  key MUST be derived from the IKEv2 SA.  Note that we explicitly opt
  to derive the shared secret key from the IKEv2 SA, rather than the
  child SA, since it is possible that an IKEv2 SA is created without
  generating any child SA [RFC6023].

  When the shared secret key is derived from the IKEv2 SA, SK_d must be
  generated first.  SK_d must be computed as per [RFC7296].






Pentikousis, et al.          Standards Track                    [Page 7]

RFC 7717              Shared Secret Key for O/TWAMP        December 2015


  The shared secret key MUST be generated as follows:

     Shared secret key = prf( SK_d, "IPPM" )

  Wherein the string "IPPM" is encoded in ASCII and "prf" is a
  pseudorandom function.

  It is recommended that the shared secret key is derived in the IPsec
  layer so that IPsec keying material is not exposed to the O/TWAMP
  client.  Note, however, that the interaction between the O/TWAMP and
  IPsec layers is host internal and implementation specific.
  Therefore, this is clearly outside the scope of this document, which
  focuses on the interaction between the O/TWAMP client and server.
  That said, one possible way could be the following: at the Control-
  Client side, the IPsec layer can perform a lookup in the Security
  Association Database (SAD) using the IP address of the Server and
  thus match the corresponding IKEv2 SA.  At the Server side, the IPsec
  layer can look up the corresponding IKEv2 SA by using the Security
  Parameter Indexes (SPIs) sent by the Control-Client (see
  Section 5.3), and therefore extract the shared secret key.

  If both the client and server do support IKEv2 but there is no
  current IKEv2 SA, two alternative ways could be considered.  First,
  the O/TWAMP Control-Client initiates the establishment of the IKEv2
  SA, logs this operation, and selects the mode that supports IKEv2.
  Alternatively, the O/TWAMP Control-Client does not initiate the
  establishment of the IKEv2 SA, logs an error for operational
  management purposes, and proceeds with the modes defined in
  [RFC4656], [RFC5357], and [RFC5618].  Again, although both
  alternatives are feasible, they are in fact implementation specific.

  If rekeying for the IKEv2 SA or deletion of the IKEv2 SA occurs, the
  corresponding shared secret key generated from the SA MUST continue
  to be used until the O/TWAMP session terminates.

5.2.  Server Greeting Message Update

  To trigger a binding association between the key generated from IKEv2
  and the O/TWAMP shared secret key, the Modes field in the Server
  Greeting Message (Figure 2) must support key derivation as discussed
  in Section 5.1.  Support for deriving the shared key from the IKEv2
  SA is indicated by setting IKEv2Derived (see Section 7).  Therefore,
  when this method is used, the Modes value extension MUST be
  supported.







Pentikousis, et al.          Standards Track                    [Page 8]

RFC 7717              Shared Secret Key for O/TWAMP        December 2015


  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                       Unused (12 octets)                      |
  |                                                               |
  |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                           Modes                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                     Challenge (16 octets)                     |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                        Salt (16 octets)                       |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                        Count (4 octets)                       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                        MBZ (12 octets)                        |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 2: Server Greeting Format

  The choice of this set of Modes values poses no backwards-
  compatibility problems to existing O/TWAMP clients.  Robust legacy
  Control-Client implementations would disregard the fact that the
  IKEv2Derived Modes bit in the Server Greeting is set.  On the other
  hand, a Control-Client implementing this method can identify that the
  O/TWAMP Server contacted does not support this specification.  If the
  Server supports other Modes, as one could assume, the Control-Client
  would then decide which Mode to use and indicate such accordingly as
  per [RFC4656] and [RFC5357].  A Control-Client that is implementing
  this method and decides not to employ IKEv2 derivation can simply
  behave as a client that is purely compatible with [RFC4656] and
  [RFC5357].

5.3.  Set-Up-Response Update

  The Set-Up-Response message Figure 3 is updated as follows.  When an
  O/TWAMP Control-Client implementing this method receives a Server
  Greeting indicating support for Mode IKEv2Derived, it SHOULD reply to
  the O/TWAMP Server with a Set-Up-Response that indicates so.  For




Pentikousis, et al.          Standards Track                    [Page 9]

RFC 7717              Shared Secret Key for O/TWAMP        December 2015


  example, a compatible O/TWAMP Control-Client choosing the
  authenticated mode with IKEv2 shared secret key derivation should set
  the Mode bits as per Section 7.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                            Mode                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                      KeyID (80 octets)                        |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                     Token (16 octets)                         |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                    Client-IV (12 octets)                      |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 3: Set-Up-Response Message

  The Security Parameter Index (SPI), as described in [RFC4301] and
  [RFC7296], uniquely identifies the SA.  If the Control-Client
  supports shared secret key derivation for the IKEv2 SA, it will
  choose the corresponding Mode value and carry SPIi and SPIr in the
  KeyID field.  SPIi and SPIr MUST be included in the KeyID field of
  the Set-Up-Response Message to indicate the IKEv2 SA from which the
  O/TWAMP shared secret key was derived.  The length of SPI is 8
  octets.  Therefore, the first 8 octets of the KeyID field MUST carry
  SPIi, and the second 8 octets MUST carry SPIr.  The remaining bits of
  the KeyID field MUST be set to zero.

  An O/TWAMP Server implementation MUST obtain the SPIi and SPIr from
  the first 16 octets and ignore the remaining octets of the KeyID
  field.  Then, the Control-Client and the Server can derive the shared
  secret key based on the Mode value and SPI.  If the O/TWAMP Server
  cannot find the IKEv2 SA corresponding to the SPIi and SPIr received,
  it MUST log the event for operational management purposes.  In
  addition, the O/TWAMP Server SHOULD set the Accept field of the
  Server-Start message to the value 6 to indicate that the Server is
  not willing to conduct further transactions in this O/TWAMP-Control
  session since it cannot find the corresponding IKEv2 SA.




Pentikousis, et al.          Standards Track                   [Page 10]

RFC 7717              Shared Secret Key for O/TWAMP        December 2015


5.4.  O/TWAMP over an IPsec Tunnel

  The IPsec Authentication Header (AH) [RFC4302] and Encapsulating
  Security Payload (ESP) [RFC4303] provide confidentiality and data
  integrity to IP datagrams.  An IPsec tunnel can be used to provide
  the protection needed for O/TWAMP Control and Test packets, even if
  the peers choose the unauthenticated mode of operation.  In order to
  ensure authenticity and security, O/TWAMP packets between two IKEv2
  systems SHOULD be configured to use the corresponding IPsec tunnel
  running over an external network even when using the O/TWAMP
  unauthenticated mode.

6.  Security Considerations

  As the shared secret key is derived from the IKEv2 SA, the key
  derivation algorithm strength and limitations are as per [RFC7296].
  The strength of a key derived from a Diffie-Hellman exchange using
  any of the groups defined here depends on the inherent strength of
  the group, the size of the exponent used, and the entropy provided by
  the random number generator employed.  The strength of all keys and
  implementation vulnerabilities, particularly denial-of-service (DoS)
  attacks are as defined in [RFC7296].

7.  IANA Considerations

  During the production of this document, the authors and reviewers
  noticed that the TWAMP-Modes registry should describe a field of
  single bit position flags, rather than the existing registry
  construction with assignment of integer values.  In addition, the
  Semantics Definition column seemed to have spurious information in
  it.  The registry has been reformatted to simplify future
  assignments.  Thus, the contents of the TWAMP-Modes registry are as
  follows:

  Bit|Description                               |Semantics   |Reference
  Pos|                                          |Definition  |
  ---|------------------------------------------|------------|---------
  0   Unauthenticated                            Section 3.1  [RFC4656]
  1   Authenticated                              Section 3.1  [RFC4656]
  2   Encrypted                                  Section 3.1  [RFC4656]
  3   Unauth. TEST protocol, Encrypted CONTROL   Section 3.1  [RFC5618]
  4   Individual Session Control                              [RFC5938]
  5   Reflect Octets Capability                               [RFC6038]
  6   Symmetrical Size Sender Test Packet Format              [RFC6038]

                          Figure 4: TWAMP Modes





Pentikousis, et al.          Standards Track                   [Page 11]

RFC 7717              Shared Secret Key for O/TWAMP        December 2015


  The new description and registry management instructions follow.

  Registry Specification: TWAMP-Modes are specified in TWAMP Server
  Greeting messages and Set-Up-Response messages consistent with
  Section 3.1 of [RFC5357].  Modes are indicated by setting single bits
  in the 32-bit Modes field.

  Registry Management: Because the "TWAMP-Modes" are based on only 32
  bit positions with each position conveying a unique feature, and
  because TWAMP is an IETF protocol, this registry must be updated only
  by "IETF Review" as specified in [RFC5226].  IANA SHOULD allocate
  monotonically increasing bit positions when requested.

  Experimental Numbers: No experimental bit positions are currently
  assigned in the Modes registry, as indicated in the initial contents
  above.

  In addition, per this document, a new entry has been added to the
  TWAMP-Modes registry:

  Bit|Description                               |Semantics   |Reference
  Pos|                                          |Definition  |
  ---|------------------------------------------|------------|---------
  7   IKEv2Derived Mode Capability               Section 5    RFC 7717

              Figure 5: TWAMP IKEv2-Derived Mode Capability

  For the new OWAMP-Modes registry, see the IANA Considerations in
  [RFC7718].

8.  References

8.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC4656]  Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M.
             Zekauskas, "A One-way Active Measurement Protocol
             (OWAMP)", RFC 4656, DOI 10.17487/RFC4656, September 2006,
             <http://www.rfc-editor.org/info/rfc4656>.

  [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 5226,
             DOI 10.17487/RFC5226, May 2008,
             <http://www.rfc-editor.org/info/rfc5226>.



Pentikousis, et al.          Standards Track                   [Page 12]

RFC 7717              Shared Secret Key for O/TWAMP        December 2015


  [RFC5357]  Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J.
             Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)",
             RFC 5357, DOI 10.17487/RFC5357, October 2008,
             <http://www.rfc-editor.org/info/rfc5357>.

  [RFC5618]  Morton, A. and K. Hedayat, "Mixed Security Mode for the
             Two-Way Active Measurement Protocol (TWAMP)", RFC 5618,
             DOI 10.17487/RFC5618, August 2009,
             <http://www.rfc-editor.org/info/rfc5618>.

  [RFC7296]  Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
             Kivinen, "Internet Key Exchange Protocol Version 2
             (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
             2014, <http://www.rfc-editor.org/info/rfc7296>.

  [RFC7718]  Morton, A., "Registries for the One-Way Active Measurement
             Protocol (OWAMP)", RFC 7718, DOI 10.17487/RFC7718,
             December 2015, <http://www.rfc-editor.org/info/rfc7718>.

8.2.  Informative References

  [RFC2898]  Kaliski, B., "PKCS #5: Password-Based Cryptography
             Specification Version 2.0", RFC 2898,
             DOI 10.17487/RFC2898, September 2000,
             <http://www.rfc-editor.org/info/rfc2898>.

  [RFC4301]  Kent, S. and K. Seo, "Security Architecture for the
             Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
             December 2005, <http://www.rfc-editor.org/info/rfc4301>.

  [RFC4302]  Kent, S., "IP Authentication Header", RFC 4302,
             DOI 10.17487/RFC4302, December 2005,
             <http://www.rfc-editor.org/info/rfc4302>.

  [RFC4303]  Kent, S., "IP Encapsulating Security Payload (ESP)",
             RFC 4303, DOI 10.17487/RFC4303, December 2005,
             <http://www.rfc-editor.org/info/rfc4303>.

  [RFC5706]  Harrington, D., "Guidelines for Considering Operations and
             Management of New Protocols and Protocol Extensions",
             RFC 5706, DOI 10.17487/RFC5706, November 2009,
             <http://www.rfc-editor.org/info/rfc5706>.

  [RFC5938]  Morton, A. and M. Chiba, "Individual Session Control
             Feature for the Two-Way Active Measurement Protocol
             (TWAMP)", RFC 5938, DOI 10.17487/RFC5938, August 2010,
             <http://www.rfc-editor.org/info/rfc5938>.




Pentikousis, et al.          Standards Track                   [Page 13]

RFC 7717              Shared Secret Key for O/TWAMP        December 2015


  [RFC6023]  Nir, Y., Tschofenig, H., Deng, H., and R. Singh, "A
             Childless Initiation of the Internet Key Exchange Version
             2 (IKEv2) Security Association (SA)", RFC 6023,
             DOI 10.17487/RFC6023, October 2010,
             <http://www.rfc-editor.org/info/rfc6023>.

  [RFC6038]  Morton, A. and L. Ciavattone, "Two-Way Active Measurement
             Protocol (TWAMP) Reflect Octets and Symmetrical Size
             Features", RFC 6038, DOI 10.17487/RFC6038, October 2010,
             <http://www.rfc-editor.org/info/rfc6038>.

Acknowledgements

  We thank Eric Chen, Yaakov Stein, Brian Trammell, Emily Bi, John
  Mattsson, Steve Baillargeon, Spencer Dawkins, Tero Kivinen, Fred
  Baker, Meral Shirazipour, Hannes Tschofenig, Ben Campbell, Stephen
  Farrell, Brian Haberman, and Barry Leiba for their reviews, comments,
  and text suggestions.

  Al Morton deserves a special mention for his thorough reviews and
  text contributions to this document as well as the constructive
  discussions over several IPPM meetings.





























Pentikousis, et al.          Standards Track                   [Page 14]

RFC 7717              Shared Secret Key for O/TWAMP        December 2015


Authors' Addresses

  Kostas Pentikousis (editor)
  EICT GmbH
  EUREF-Campus Haus 13
  Torgauer Strasse 12-15
  10829 Berlin
  Germany

  Email: [email protected]


  Emma Zhang
  Huawei Technologies
  Huawei Building, No.3, Rd. XinXi
  Haidian District, Beijing  100095
  China

  Email: [email protected]


  Yang Cui
  Huawei Technologies
  Otemachi First Square 1-5-1 Otemachi
  Chiyoda-ku, Tokyo  100-0004
  Japan

  Email: [email protected]























Pentikousis, et al.          Standards Track                   [Page 15]