Internet Engineering Task Force (IETF)                         D. McGrew
Request for Comments: 7714                           Cisco Systems, Inc.
Category: Standards Track                                        K. Igoe
ISSN: 2070-1721                                 National Security Agency
                                                          December 2015


                   AES-GCM Authenticated Encryption
          in the Secure Real-time Transport Protocol (SRTP)

Abstract

  This document defines how the AES-GCM Authenticated Encryption with
  Associated Data family of algorithms can be used to provide
  confidentiality and data authentication in the Secure Real-time
  Transport Protocol (SRTP).

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7714.

Copyright Notice

  Copyright (c) 2015 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.






McGrew & Igoe                Standards Track                    [Page 1]

RFC 7714                    AES-GCM for SRTP               December 2015


Table of Contents

  1. Introduction ....................................................3
  2. Conventions Used in This Document ...............................4
  3. Overview of the SRTP/SRTCP AEAD Security Architecture ...........4
  4. Terminology .....................................................5
  5. Generic AEAD Processing .........................................6
     5.1. Types of Input Data ........................................6
     5.2. AEAD Invocation Inputs and Outputs .........................6
          5.2.1. Encrypt Mode ........................................6
          5.2.2. Decrypt Mode ........................................7
     5.3. Handling of AEAD Authentication ............................7
  6. Counter Mode Encryption .........................................7
  7. Unneeded SRTP/SRTCP Fields ......................................8
     7.1. SRTP/SRTCP Authentication Tag Field ........................8
     7.2. RTP Padding ................................................9
  8. AES-GCM Processing for SRTP .....................................9
     8.1. SRTP IV Formation for AES-GCM ..............................9
     8.2. Data Types in SRTP Packets ................................10
     8.3. Handling Header Extensions ................................11
     8.4. Prevention of SRTP IV Reuse ...............................12
  9. AES-GCM Processing of SRTCP Compound Packets ...................13
     9.1. SRTCP IV Formation for AES-GCM ............................13
     9.2. Data Types in Encrypted SRTCP Compound Packets ............14
     9.3. Data Types in Unencrypted SRTCP Compound Packets ..........16
     9.4. Prevention of SRTCP IV Reuse ..............................17
  10. Constraints on AEAD for SRTP and SRTCP ........................17
  11. Key Derivation Functions ......................................18
  12. Summary of AES-GCM in SRTP/SRTCP ..............................19
  13. Security Considerations .......................................20
     13.1. Handling of Security-Critical Parameters .................20
     13.2. Size of the Authentication Tag ...........................21
  14. IANA Considerations ...........................................21
     14.1. SDES .....................................................21
     14.2. DTLS-SRTP ................................................22
     14.3. MIKEY ....................................................23
  15. Parameters for Use with MIKEY .................................23
  16. Some RTP Test Vectors .........................................24
     16.1. SRTP AEAD_AES_128_GCM ....................................25
          16.1.1. SRTP AEAD_AES_128_GCM Encryption ..................25
          16.1.2. SRTP AEAD_AES_128_GCM Decryption ..................27
          16.1.3. SRTP AEAD_AES_128_GCM Authentication Tagging ......29
          16.1.4. SRTP AEAD_AES_128_GCM Tag Verification ............30
     16.2. SRTP AEAD_AES_256_GCM ....................................31
          16.2.1. SRTP AEAD_AES_256_GCM Encryption ..................31
          16.2.2. SRTP AEAD_AES_256_GCM Decryption ..................33
          16.2.3. SRTP AEAD_AES_256_GCM Authentication Tagging ......35
          16.2.4. SRTP AEAD_AES_256_GCM Tag Verification ............36



McGrew & Igoe                Standards Track                    [Page 2]

RFC 7714                    AES-GCM for SRTP               December 2015


  17. RTCP Test Vectors .............................................37
     17.1. SRTCP AEAD_AES_128_GCM Encryption and Tagging ............39
     17.2. SRTCP AEAD_AES_256_GCM Verification and Decryption .......41
     17.3. SRTCP AEAD_AES_128_GCM Tagging Only ......................43
     17.4. SRTCP AEAD_AES_256_GCM Tag Verification ..................44
  18. References ....................................................45
     18.1. Normative References .....................................45
     18.2. Informative References ...................................47
  Acknowledgements ..................................................48
  Authors' Addresses ................................................48

1.  Introduction

  The Secure Real-time Transport Protocol (SRTP) [RFC3711] is a profile
  of the Real-time Transport Protocol (RTP) [RFC3550], which can
  provide confidentiality, message authentication, and replay
  protection to the RTP traffic and to the control traffic for RTP, the
  Real-time Transport Control Protocol (RTCP).  It is important to note
  that the outgoing SRTP packets from a single endpoint may be
  originating from several independent data sources.

  Authenticated Encryption [BN00] is a form of encryption that, in
  addition to providing confidentiality for the Plaintext that is
  encrypted, provides a way to check its integrity and authenticity.
  Authenticated Encryption with Associated Data, or AEAD [R02], adds
  the ability to check the integrity and authenticity of some
  Associated Data (AD), also called "Additional Authenticated Data"
  (AAD), that is not encrypted.  This specification makes use of the
  interface to a generic AEAD algorithm as defined in [RFC5116].

  The Advanced Encryption Standard (AES) is a block cipher that
  provides a high level of security and can accept different key sizes.
  AES Galois/Counter Mode (AES-GCM) [GCM] is a family of AEAD
  algorithms based upon AES.  This specification makes use of the AES
  versions that use 128-bit and 256-bit keys, which we call "AES-128"
  and "AES-256", respectively.

  Any AEAD algorithm provides an intrinsic authentication tag.  In many
  applications, the authentication tag is truncated to less than full
  length.  In this specification, the authentication tag MUST NOT be
  truncated.  The authentications tags MUST be a full 16 octets in
  length.  When used in SRTP/SRTCP, AES-GCM will have two
  configurations:

     AEAD_AES_128_GCM      AES-128 with a 16-octet authentication tag
     AEAD_AES_256_GCM      AES-256 with a 16-octet authentication tag





McGrew & Igoe                Standards Track                    [Page 3]

RFC 7714                    AES-GCM for SRTP               December 2015


  The key size is set when the session is initiated and SHOULD NOT be
  altered.

  The Galois/Counter Mode of operation (GCM) is an AEAD mode of
  operation for block ciphers.  GCM uses Counter Mode to encrypt the
  data, an operation that can be efficiently pipelined.  Further, GCM
  authentication uses operations that are particularly well suited to
  efficient implementation in hardware, making it especially appealing
  for high-speed implementations, or for implementations in an
  efficient and compact circuit.

  In summary, this document defines how to use an AEAD algorithm,
  particularly AES-GCM, to provide confidentiality and message
  authentication within SRTP and SRTCP packets.

2.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  [RFC2119].

3.  Overview of the SRTP/SRTCP AEAD Security Architecture

  SRTP/SRTCP AEAD security is based upon the following principles:

     a) Both privacy and authentication are based upon the use of
        symmetric algorithms.  An AEAD algorithm such as AES-GCM
        combines privacy and authentication into a single process.

     b) A secret master key is shared by all participating endpoints --
        both those originating SRTP/SRTCP packets and those receiving
        these packets.  Any given master key MAY be used simultaneously
        by several endpoints to originate SRTP/SRTCP packets (as well
        as one or more endpoints using this master key to process
        inbound data).

     c) A Key Derivation Function (KDF) is applied to the shared master
        key value to form separate encryption keys, authentication
        keys, and salting keys for SRTP and for SRTCP (a total of six
        keys).  This process is described in Section 4.3 of [RFC3711].
        The master key MUST be at least as large as the encryption key
        derived from it.  Since AEAD algorithms such as AES-GCM combine
        encryption and authentication into a single process, AEAD
        algorithms do not make use of separate authentication keys.






McGrew & Igoe                Standards Track                    [Page 4]

RFC 7714                    AES-GCM for SRTP               December 2015


     d) Aside from making modifications to IANA registries to allow
        AES-GCM to work with Security Descriptions (SDES), Datagram
        Transport Layer Security for Secure RTP (DTLS-SRTP), and
        Multimedia Internet KEYing (MIKEY), the details of how the
        master key is established and shared between the participants
        are outside the scope of this document.  Similarly, any
        mechanism for rekeying an existing session is outside the scope
        of the document.

     e) Each time an instantiation of AES-GCM is invoked to encrypt and
        authenticate an SRTP or SRTCP data packet, a new Initialization
        Vector (IV) is used.  SRTP combines the 4-octet Synchronization
        Source (SSRC) identifier, the 4-octet Rollover Counter (ROC),
        and the 2-octet Sequence Number (SEQ) with the 12-octet
        encryption salt to form a 12-octet IV (see Section 8.1).
        SRTCP combines the SSRC and 31-bit SRTCP index with the
        encryption salt to form a 12-octet IV (see Section 9.1).

4.  Terminology

  The following terms have very specific meanings in the context of
  this RFC:

     Instantiation: In AEAD, an instantiation is an (Encryption_key,
                    salt) pair together with all of the data structures
                    (for example, counters) needed for it to function
                    properly.  In SRTP/SRTCP, each endpoint will need
                    two instantiations of the AEAD algorithm for each
                    master key in its possession: one instantiation for
                    SRTP traffic and one instantiation for SRTCP
                    traffic.

     Invocation:    SRTP/SRTCP data streams are broken into packets.
                    Each packet is processed by a single invocation of
                    the appropriate instantiation of the AEAD
                    algorithm.

  In many applications, each endpoint will have one master key for
  processing outbound data but may have one or more separate master
  keys for processing inbound data.











McGrew & Igoe                Standards Track                    [Page 5]

RFC 7714                    AES-GCM for SRTP               December 2015


5.  Generic AEAD Processing

5.1.  Types of Input Data

     Associated Data: Data that is to be authenticated but not
                      encrypted.

     Plaintext:       Data that is to be both encrypted and
                      authenticated.

     Raw Data:        Data that is to be neither encrypted nor
                      authenticated.

  Which portions of SRTP/SRTCP packets that are to be treated as
  Associated Data, which are to be treated as Plaintext, and which are
  to be treated as Raw Data are covered in Sections 8.2, 9.2, and 9.3.

5.2.  AEAD Invocation Inputs and Outputs

5.2.1.  Encrypt Mode

     Inputs:
       Encryption_key              Octet string, either 16 or
                                     32 octets long
       Initialization_Vector       Octet string, 12 octets long
       Associated_Data             Octet string of variable length
       Plaintext                   Octet string of variable length

     Outputs:
       Ciphertext*                 Octet string, length =
                                     length(Plaintext) + tag_length

     (*): In AEAD, the authentication tag in embedded in the
          ciphertext.  When GCM is being used, the ciphertext
          consists of the encrypted Plaintext followed by the
          authentication tag.















McGrew & Igoe                Standards Track                    [Page 6]

RFC 7714                    AES-GCM for SRTP               December 2015


5.2.2.  Decrypt Mode

     Inputs:
       Encryption_key              Octet string, either 16 or
                                     32 octets long
       Initialization_Vector       Octet string, 12 octets long
       Associated_Data             Octet string of variable length
       Ciphertext                  Octet string of variable length

     Outputs:
       Plaintext                   Octet string, length =
                                     length(Ciphertext) - tag_length
       Validity_Flag               Boolean, TRUE if valid,
                                     FALSE otherwise

5.3.  Handling of AEAD Authentication

  AEAD requires that all incoming packets MUST pass AEAD authentication
  before any other action takes place.  Plaintext and Associated Data
  MUST NOT be released until the AEAD authentication tag has been
  validated.  Further, the ciphertext MUST NOT be decrypted until the
  AEAD tag has been validated.

  Should the AEAD tag prove to be invalid, the packet in question is to
  be discarded and a Validation Error flag raised.  Local policy
  determines how this flag is to be handled and is outside the scope of
  this document.

6.  Counter Mode Encryption

  Each outbound packet uses a 12-octet IV and an encryption key to form
  two outputs:

  o  a 16-octet first_key_block, which is used in forming the
     authentication tag, and

  o  a keystream of octets, formed in blocks of 16 octets each














McGrew & Igoe                Standards Track                    [Page 7]

RFC 7714                    AES-GCM for SRTP               December 2015


  The first 16-octet block of the key is saved for use in forming the
  authentication tag, and the remainder of the keystream is XORed to
  the Plaintext to form the cipher.  This keystream is formed one block
  at a time by inputting the concatenation of a 12-octet IV (see
  Sections 8.1 and 9.1) with a 4-octet block to AES.  The pseudocode
  below illustrates this process:

   def GCM_keystream( Plaintext_len, IV, Encryption_key ):
       assert Plaintext_len <= (2**36) - 32 ## measured in octets
       key_stream = ""
       block_counter = 1
       first_key_block = AES_ENC( data=IV||block_counter,
                                  key=Encryption_key )
       while len(key_stream) < Plaintext_len:
           block_counter = block_counter + 1
           key_block = AES_ENC( data=IV||block_counter,
                                key=Encryption_key )
           key_stream = key_stream||key_block
       key_stream = truncate( key_stream, Plaintext_len )
       return( first_key_block, key_stream )

  In theory, this keystream generation process allows for the
  encryption of up to (2^36) - 32 octets per invocation (i.e., per
  packet), far longer than is actually required.

  With any counter mode, if the same (IV, Encryption_key) pair is used
  twice, precisely the same keystream is formed.  As explained in
  Section 9.1 of [RFC3711], this is a cryptographic disaster.  For GCM,
  the consequences are even worse, since such a reuse compromises GCM's
  integrity mechanism not only for the current packet stream but for
  all future uses of the current encryption_key.

7.  Unneeded SRTP/SRTCP Fields

  AEAD Counter Mode encryption removes the need for certain existing
  SRTP/SRTCP mechanisms.

7.1.  SRTP/SRTCP Authentication Tag Field

  The AEAD message authentication mechanism MUST be the primary message
  authentication mechanism for AEAD SRTP/SRTCP.  Additional SRTP/SRTCP
  authentication mechanisms SHOULD NOT be used with any AEAD algorithm,
  and the optional SRTP/SRTCP authentication tags are NOT RECOMMENDED
  and SHOULD NOT be present.  Note that this contradicts Section 3.4 of
  [RFC3711], which makes the use of the SRTCP authentication tag field
  mandatory, but the presence of the AEAD authentication renders the
  older authentication methods redundant.




McGrew & Igoe                Standards Track                    [Page 8]

RFC 7714                    AES-GCM for SRTP               December 2015


     Rationale: Some applications use the SRTP/SRTCP authentication tag
     as a means of conveying additional information, notably [RFC4771].
     This document retains the authentication tag field primarily to
     preserve compatibility with these applications.

7.2.  RTP Padding

  AES-GCM does not require that the data be padded out to a specific
  block size, reducing the need to use the padding mechanism provided
  by RTP.  It is RECOMMENDED that the RTP padding mechanism not be used
  unless it is necessary to disguise the length of the underlying
  Plaintext.

8.  AES-GCM Processing for SRTP

8.1.  SRTP IV Formation for AES-GCM

                  0  0  0  0  0  0  0  0  0  0  1  1
                  0  1  2  3  4  5  6  7  8  9  0  1
                +--+--+--+--+--+--+--+--+--+--+--+--+
                |00|00|    SSRC   |     ROC   | SEQ |---+
                +--+--+--+--+--+--+--+--+--+--+--+--+   |
                                                        |
                +--+--+--+--+--+--+--+--+--+--+--+--+   |
                |         Encryption Salt           |->(+)
                +--+--+--+--+--+--+--+--+--+--+--+--+   |
                                                        |
                +--+--+--+--+--+--+--+--+--+--+--+--+   |
                |       Initialization Vector       |<--+
                +--+--+--+--+--+--+--+--+--+--+--+--+

         Figure 1: AES-GCM SRTP Initialization Vector Formation

  The 12-octet IV used by AES-GCM SRTP is formed by first concatenating
  2 octets of zeroes, the 4-octet SSRC, the 4-octet rollover counter
  (ROC), and the 2-octet sequence number (SEQ).  The resulting 12-octet
  value is then XORed to the 12-octet salt to form the 12-octet IV.














McGrew & Igoe                Standards Track                    [Page 9]

RFC 7714                    AES-GCM for SRTP               December 2015


8.2.  Data Types in SRTP Packets

  All SRTP packets MUST be both authenticated and encrypted.  The data
  fields within the RTP packets are broken into Associated Data,
  Plaintext, and Raw Data, as follows (see Figure 2):

     Associated Data: The version V (2 bits), padding flag P (1 bit),
                      extension flag X (1 bit), Contributing Source
                      (CSRC) count CC (4 bits), marker M (1 bit),
                      Payload Type PT (7 bits), sequence number
                      (16 bits), timestamp (32 bits), SSRC (32 bits),
                      optional CSRC identifiers (32 bits each), and
                      optional RTP extension (variable length).

     Plaintext:       The RTP payload (variable length), RTP padding
                      (if used, variable length), and RTP pad count (if
                      used, 1 octet).

     Raw Data:        The optional variable-length SRTP Master Key
                      Identifier (MKI) and SRTP authentication tag
                      (whose use is NOT RECOMMENDED).  These fields are
                      appended after encryption has been performed.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   A  |V=2|P|X|  CC   |M|     PT      |       sequence number         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   A  |                           timestamp                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   A  |           synchronization source (SSRC) identifier            |
      +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
   A  |      contributing source (CSRC) identifiers (optional)        |
   A  |                               ....                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   A  |                   RTP extension (OPTIONAL)                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   P  |                          payload  ...                         |
   P  |                               +-------------------------------+
   P  |                               | RTP padding   | RTP pad count |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               P = Plaintext (to be encrypted and authenticated)
               A = Associated Data (to be authenticated only)

  Figure 2: Structure of an RTP Packet before Authenticated Encryption





McGrew & Igoe                Standards Track                   [Page 10]

RFC 7714                    AES-GCM for SRTP               December 2015


  Since the AEAD ciphertext is larger than the Plaintext by exactly the
  length of the AEAD authentication tag, the corresponding
  SRTP-encrypted packet replaces the Plaintext field with a slightly
  larger field containing the cipher.  Even if the Plaintext field is
  empty, AEAD encryption must still be performed, with the resulting
  cipher consisting solely of the authentication tag.  This tag is to
  be placed immediately before the optional variable-length SRTP MKI
  and SRTP authentication tag fields.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   A  |V=2|P|X|  CC   |M|     PT      |       sequence number         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   A  |                           timestamp                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   A  |           synchronization source (SSRC) identifier            |
      +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
   A  |      contributing source (CSRC) identifiers (optional)        |
   A  |                               ....                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   A  |                   RTP extension (OPTIONAL)                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   C  |                             cipher                            |
   C  |                               ...                             |
   C  |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   R  :                     SRTP MKI (OPTIONAL)                       :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   R  :           SRTP authentication tag (NOT RECOMMENDED)           :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               C = Ciphertext (encrypted and authenticated)
               A = Associated Data (authenticated only)
               R = neither encrypted nor authenticated, added
                   after Authenticated Encryption completed

  Figure 3: Structure of an SRTP Packet after Authenticated Encryption

8.3.  Handling Header Extensions

  RTP header extensions were first defined in [RFC3550].  [RFC6904]
  describes how these header extensions are to be encrypted in SRTP.

  When RFC 6904 is in use, a separate keystream is generated to encrypt
  selected RTP header extension elements.  For the AEAD_AES_128_GCM
  algorithm, this keystream MUST be generated in the manner defined in
  [RFC6904], using the AES Counter Mode (AES-CM) transform.  For the



McGrew & Igoe                Standards Track                   [Page 11]

RFC 7714                    AES-GCM for SRTP               December 2015


  AEAD_AES_256_GCM algorithm, the keystream MUST be generated in the
  manner defined for the AES_256_CM transform.  The originator must
  perform any required header extension encryption before the AEAD
  algorithm is invoked.

  As with the other fields contained within the RTP header, both
  encrypted and unencrypted header extensions are to be treated by the
  AEAD algorithm as Associated Data (AD).  Thus, the AEAD algorithm
  does not provide any additional privacy for the header extensions,
  but it does provide integrity and authentication.

8.4.  Prevention of SRTP IV Reuse

  In order to prevent IV reuse, we must ensure that the (ROC,SEQ,SSRC)
  triple is never used twice with the same master key.  The following
  two scenarios illustrate this issue:

     Counter Management: A rekey MUST be performed to establish a new
                         master key before the (ROC,SEQ) pair cycles
                         back to its original value.  Note that this
                         scenario implicitly assumes that either
                         (1) the outgoing RTP process is trusted to not
                         attempt to repeat a (ROC,SEQ) value or (2) the
                         encryption process ensures that both the SEQ
                         and ROC numbers of the packets presented to it
                         are always incremented in the proper fashion.
                         This is particularly important for GCM, since
                         using the same (ROC,SEQ) value twice
                         compromises the authentication mechanism.  For
                         GCM, the (ROC,SEQ) and SSRC values used MUST
                         be generated or checked by either the SRTP
                         implementation or a module (e.g., the RTP
                         application) that can be considered equally
                         trustworthy.  While [RFC3711] allows the
                         detection of SSRC collisions after they
                         happen, SRTP using GCM with shared master keys
                         MUST prevent an SSRC collision from happening
                         even once.

     SSRC Management:    For a given master key, the set of all SSRC
                         values used with that master key must be
                         partitioned into disjoint pools, one pool for
                         each endpoint using that master key to
                         originate outbound data.  Each such
                         originating endpoint MUST only issue SSRC
                         values from the pool it has been assigned.
                         Further, each originating endpoint MUST
                         maintain a history of outbound SSRC



McGrew & Igoe                Standards Track                   [Page 12]

RFC 7714                    AES-GCM for SRTP               December 2015


                         identifiers that it has issued within the
                         lifetime of the current master key, and when a
                         new SSRC requests an SSRC identifier it
                         MUST NOT be given an identifier that has been
                         previously issued.  A rekey MUST be performed
                         before any of the originating endpoints using
                         that master key exhaust their pools of SSRC
                         values.  Further, the identity of the entity
                         giving out SSRC values MUST be verified, and
                         the SSRC signaling MUST be integrity
                         protected.

9.  AES-GCM Processing of SRTCP Compound Packets

  All SRTCP compound packets MUST be authenticated, but unlike SRTP,
  SRTCP packet encryption is optional.  A sender can select which
  packets to encrypt and indicates this choice with a 1-bit
  Encryption flag (located just before the 31-bit SRTCP index).

9.1.  SRTCP IV Formation for AES-GCM

  The 12-octet IV used by AES-GCM SRTCP is formed by first
  concatenating 2 octets of zeroes, the 4-octet SSRC identifier,
  2 octets of zeroes, a single "0" bit, and the 31-bit SRTCP index.
  The resulting 12-octet value is then XORed to the 12-octet salt to
  form the 12-octet IV.

                  0  1  2  3  4  5  6  7  8  9 10 11
                +--+--+--+--+--+--+--+--+--+--+--+--+
                |00|00|    SSRC   |00|00|0+SRTCP Idx|---+
                +--+--+--+--+--+--+--+--+--+--+--+--+   |
                                                        |
                +--+--+--+--+--+--+--+--+--+--+--+--+   |
                |         Encryption Salt           |->(+)
                +--+--+--+--+--+--+--+--+--+--+--+--+   |
                                                        |
                +--+--+--+--+--+--+--+--+--+--+--+--+   |
                |       Initialization Vector       |<--+
                +--+--+--+--+--+--+--+--+--+--+--+--+

             Figure 4: SRTCP Initialization Vector Formation










McGrew & Igoe                Standards Track                   [Page 13]

RFC 7714                    AES-GCM for SRTP               December 2015


9.2.  Data Types in Encrypted SRTCP Compound Packets

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   A  |V=2|P|   RC    |  Packet Type  |            length             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   A  |           synchronization source (SSRC) of sender             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   P  |                         sender info                           :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   P  |                        report block 1                         :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   P  |                        report block 2                         :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   P  |                              ...                              :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   P  |V=2|P|   SC    |  Packet Type  |              length           |
      +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
   P  |                          SSRC/CSRC_1                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   P  |                           SDES items                          :
      +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
   P  |                              ...                              :
      +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
   A  |1|                         SRTCP index                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   R  |                  SRTCP MKI (optional) index                   :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   R  :           SRTCP authentication tag (NOT RECOMMENDED)          :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               P = Plaintext (to be encrypted and authenticated)
               A = Associated Data (to be authenticated only)
               R = neither encrypted nor authenticated, added after
                   encryption

          Figure 5: AEAD SRTCP Inputs When Encryption Flag = 1
                  (The fields are defined in RFC 3550.)












McGrew & Igoe                Standards Track                   [Page 14]

RFC 7714                    AES-GCM for SRTP               December 2015


  When the Encryption flag is set to 1, the SRTCP packet is broken into
  Plaintext, Associated Data, and Raw (untouched) Data (as shown above
  in Figure 5):

     Associated Data: The packet version V (2 bits), padding flag P
                      (1 bit), reception report count RC (5 bits),
                      Packet Type (8 bits), length (2 octets), SSRC
                      (4 octets), Encryption flag (1 bit), and SRTCP
                      index (31 bits).

     Raw Data:        The optional variable-length SRTCP MKI and SRTCP
                      authentication tag (whose use is
                      NOT RECOMMENDED).

     Plaintext:       All other data.

  Note that the Plaintext comes in one contiguous field.  Since the
  AEAD cipher is larger than the Plaintext by exactly the length of the
  AEAD authentication tag, the corresponding SRTCP-encrypted packet
  replaces the Plaintext field with a slightly larger field containing
  the cipher.  Even if the Plaintext field is empty, AEAD encryption
  must still be performed, with the resulting cipher consisting solely
  of the authentication tag.  This tag is to be placed immediately
  before the Encryption flag and SRTCP index.



























McGrew & Igoe                Standards Track                   [Page 15]

RFC 7714                    AES-GCM for SRTP               December 2015


9.3.  Data Types in Unencrypted SRTCP Compound Packets

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   A  |V=2|P|   RC    |  Packet Type  |            length             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   A  |           synchronization source (SSRC) of sender             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   A  |                         sender info                           :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   A  |                        report block 1                         :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   A  |                        report block 2                         :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   A  |                              ...                              :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   A  |V=2|P|   SC    |  Packet Type  |              length           |
      +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
   A  |                          SSRC/CSRC_1                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   A  |                           SDES items                          :
      +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
   A  |                              ...                              :
      +=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
   A  |0|                         SRTCP index                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   R  |                  SRTCP MKI (optional) index                   :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   R  :              authentication tag (NOT RECOMMENDED)             :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               A = Associated Data (to be authenticated only)
               R = neither encrypted nor authenticated, added after
                   encryption

          Figure 6: AEAD SRTCP Inputs When Encryption Flag = 0














McGrew & Igoe                Standards Track                   [Page 16]

RFC 7714                    AES-GCM for SRTP               December 2015


  When the Encryption flag is set to 0, the SRTCP compound packet is
  broken into Plaintext, Associated Data, and Raw (untouched) Data, as
  follows (see Figure 6):

     Plaintext:       None.

     Raw Data:        The variable-length optional SRTCP MKI and SRTCP
                      authentication tag (whose use is
                      NOT RECOMMENDED).

     Associated Data: All other data.

  Even though there is no ciphertext in this RTCP packet, AEAD
  encryption returns a cipher field that is precisely the length of the
  AEAD authentication tag.  This cipher is to be placed before the
  Encryption flag and the SRTCP index in the authenticated SRTCP
  packet.

9.4.  Prevention of SRTCP IV Reuse

  A new master key MUST be established before the 31-bit SRTCP index
  cycles back to its original value.  Ideally, a rekey should be
  performed and a new master key put in place well before the SRTCP
  index cycles back to the starting value.

  The comments on SSRC management in Section 8.4 also apply.

10.  Constraints on AEAD for SRTP and SRTCP

  In general, any AEAD algorithm can accept inputs with varying
  lengths, but each algorithm can accept only a limited range of
  lengths for a specific parameter.  In this section, we describe the
  constraints on the parameter lengths that any AEAD algorithm must
  support to be used in AEAD-SRTP.  Additionally, we specify a complete
  parameter set for one specific family of AEAD algorithms, namely
  AES-GCM.















McGrew & Igoe                Standards Track                   [Page 17]

RFC 7714                    AES-GCM for SRTP               December 2015


  All AEAD algorithms used with SRTP/SRTCP MUST satisfy the five
  constraints listed below:

  Parameter  Meaning                  Value
  ---------------------------------------------------------------------
  A_MAX      maximum Associated       MUST be at least 12 octets.
             Data length

  N_MIN      minimum nonce (IV)       MUST be 12 octets.
             length

  N_MAX      maximum nonce (IV)       MUST be 12 octets.
             length

  P_MAX      maximum Plaintext        GCM: MUST be <= 2^36 - 32 octets.
             length per invocation

  C_MAX      maximum ciphertext       GCM: MUST be <= 2^36 - 16 octets.
             length per invocation

  For the sake of clarity, we specify three additional parameters:

     AEAD authentication tag length   MUST be 16 octets

     Maximum number of invocations    SRTP: MUST be at most 2^48
        for a given instantiation     SRTCP: MUST be at most 2^31

     Block Counter size               GCM: MUST be 32 bits

  The reader is reminded that the ciphertext is longer than the
  Plaintext by exactly the length of the AEAD authentication tag.

11.  Key Derivation Functions

  A Key Derivation Function (KDF) is used to derive all of the required
  encryption and authentication keys from a secret value shared by the
  endpoints.  The AEAD_AES_128_GCM algorithm MUST use the (128-bit)
  AES_CM PRF KDF described in [RFC3711].  AEAD_AES_256_GCM MUST use the
  AES_256_CM_PRF KDF described in [RFC6188].












McGrew & Igoe                Standards Track                   [Page 18]

RFC 7714                    AES-GCM for SRTP               December 2015


12.  Summary of AES-GCM in SRTP/SRTCP

  For convenience, much of the information about the use of the AES-GCM
  family of algorithms in SRTP is collected in the tables contained in
  this section.

  The AES-GCM family of AEAD algorithms is built around the AES block
  cipher algorithm.  AES-GCM uses AES-CM for encryption and Galois
  Message Authentication Code (GMAC) for authentication.  A detailed
  description of the AES-GCM family can be found in [RFC5116].  The
  following members of the AES-GCM family may be used with SRTP/SRTCP:

    Name                 Key Size      AEAD Tag Size      Reference
    ================================================================
    AEAD_AES_128_GCM     16 octets     16 octets          [RFC5116]
    AEAD_AES_256_GCM     32 octets     16 octets          [RFC5116]

               Table 1: AES-GCM Algorithms for SRTP/SRTCP

  Any implementation of AES-GCM SRTP MUST support both AEAD_AES_128_GCM
  and AEAD_AES_256_GCM.  Below, we summarize parameters associated with
  these two GCM algorithms:

    +--------------------------------+------------------------------+
    | Parameter                      | Value                        |
    +--------------------------------+------------------------------+
    | Master key length              | 128 bits                     |
    | Master salt length             | 96 bits                      |
    | Key Derivation Function        | AES_CM PRF [RFC3711]         |
    | Maximum key lifetime (SRTP)    | 2^48 packets                 |
    | Maximum key lifetime (SRTCP)   | 2^31 packets                 |
    | Cipher (for SRTP and SRTCP)    | AEAD_AES_128_GCM             |
    | AEAD authentication tag length | 128 bits                     |
    +--------------------------------+------------------------------+

               Table 2: The AEAD_AES_128_GCM Crypto Suite















McGrew & Igoe                Standards Track                   [Page 19]

RFC 7714                    AES-GCM for SRTP               December 2015


    +--------------------------------+------------------------------+
    | Parameter                      | Value                        |
    +--------------------------------+------------------------------+
    | Master key length              | 256 bits                     |
    | Master salt length             | 96 bits                      |
    | Key Derivation Function        | AES_256_CM_PRF [RFC6188]     |
    | Maximum key lifetime (SRTP)    | 2^48 packets                 |
    | Maximum key lifetime (SRTCP)   | 2^31 packets                 |
    | Cipher (for SRTP and SRTCP)    | AEAD_AES_256_GCM             |
    | AEAD authentication tag length | 128 bits                     |
    +--------------------------------+------------------------------+

               Table 3: The AEAD_AES_256_GCM Crypto Suite

13.  Security Considerations

13.1.  Handling of Security-Critical Parameters

  As with any security process, the implementer must take care to
  ensure that cryptographically sensitive parameters are properly
  handled.  Many of these recommendations hold for all SRTP
  cryptographic algorithms, but we include them here to emphasize their
  importance.

  - If the master salt is to be kept secret, it MUST be properly erased
    when no longer needed.

  - The secret master key and all keys derived from it MUST be kept
    secret.  All keys MUST be properly erased when no longer needed.

  - At the start of each packet, the Block Counter MUST be reset to 1.
    The Block Counter is incremented after each block key has been
    produced, but it MUST NOT be allowed to exceed 2^32 - 1 for GCM.
    Note that even though the Block Counter is reset at the start of
    each packet, IV uniqueness is ensured by the inclusion of
    SSRC/ROC/SEQ or the SRTCP index in the IV.  (The reader is reminded
    that the first block of key produced is reserved for use in
    authenticating the packet and is not used to encrypt Plaintext.)

  - Each time a rekey occurs, the initial values of both the 31-bit
    SRTCP index and the 48-bit SRTP packet index (ROC||SEQ) MUST be
    saved in order to prevent IV reuse.

  - Processing MUST cease if either the 31-bit SRTCP index or the
    48-bit SRTP packet index (ROC||SEQ) cycles back to its initial
    value.  Processing MUST NOT resume until a new SRTP/SRTCP session
    has been established using a new SRTP master key.  Ideally, a rekey
    should be done well before any of these counters cycle.



McGrew & Igoe                Standards Track                   [Page 20]

RFC 7714                    AES-GCM for SRTP               December 2015


13.2.  Size of the Authentication Tag

  We require that the AEAD authentication tag be 16 octets, in order to
  effectively eliminate the risk of an adversary successfully
  introducing fraudulent data.  Though other protocols may allow the
  use of truncated authentication tags, the consensus of the authors
  and the working group is that risks associated with using truncated
  AES-GCM tags are deemed too high to allow the use of truncated
  authentication tags in SRTP/SRTCP.

14.  IANA Considerations

14.1.  SDES

  "Session Description Protocol (SDP) Security Descriptions for Media
  Streams" [RFC4568] defines SRTP "crypto suites".  A crypto suite
  corresponds to a particular AEAD algorithm in SRTP.  In order to
  allow security descriptions to signal the use of the algorithms
  defined in this document, IANA has registered the following crypto
  suites in the "SRTP Crypto Suite Registrations" subregistry of the
  "Session Description Protocol (SDP) Security Descriptions" registry.
  The ABNF [RFC5234] syntax is as follows:

     srtp-crypto-suite-ext = "AEAD_AES_128_GCM"    /
                             "AEAD_AES_256_GCM"    /
                             srtp-crypto-suite-ext

























McGrew & Igoe                Standards Track                   [Page 21]

RFC 7714                    AES-GCM for SRTP               December 2015


14.2.  DTLS-SRTP

  DTLS-SRTP [RFC5764] defines DTLS-SRTP "SRTP protection profiles".
  These profiles also correspond to the use of an AEAD algorithm in
  SRTP.  In order to allow the use of the algorithms defined in this
  document in DTLS-SRTP, IANA has registered the following SRTP
  protection profiles:

        SRTP_AEAD_AES_128_GCM    = {0x00, 0x07}
        SRTP_AEAD_AES_256_GCM    = {0x00, 0x08}

  Below, we list the SRTP transform parameters for each of these
  protection profiles.  Unless separate parameters for SRTP and SRTCP
  are explicitly listed, these parameters apply to both SRTP and SRTCP.

   SRTP_AEAD_AES_128_GCM
        cipher:                 AES_128_GCM
        cipher_key_length:      128 bits
        cipher_salt_length:     96 bits
        aead_auth_tag_length:   16 octets
        auth_function:          NULL
        auth_key_length:        N/A
        auth_tag_length:        N/A
        maximum lifetime:       at most 2^31 SRTCP packets and
                                  at most 2^48 SRTP packets

   SRTP_AEAD_AES_256_GCM
        cipher:                 AES_256_GCM
        cipher_key_length:      256 bits
        cipher_salt_length:     96 bits
        aead_auth_tag_length:   16 octets
        auth_function:          NULL
        auth_key_length:        N/A
        auth_tag_length:        N/A
        maximum lifetime:       at most 2^31 SRTCP packets and
                                  at most 2^48 SRTP packets

  Note that these SRTP protection profiles do not specify an
  auth_function, auth_key_length, or auth_tag_length, because all
  of these profiles use AEAD algorithms and thus do not use a
  separate auth_function, auth_key, or auth_tag.  The term
  "aead_auth_tag_length" is used to emphasize that this refers to
  the authentication tag provided by the AEAD algorithm and that
  this tag is not located in the authentication tag field provided by
  SRTP/SRTCP.






McGrew & Igoe                Standards Track                   [Page 22]

RFC 7714                    AES-GCM for SRTP               December 2015


14.3.  MIKEY

  In accordance with "MIKEY: Multimedia Internet KEYing" [RFC3830],
  IANA maintains several subregistries under "Multimedia Internet
  KEYing (MIKEY) Payload Name Spaces".  Per this document, additions
  have been made to two of the MIKEY subregistries.

  In the "MIKEY Security Protocol Parameters" subregistry, the
  following has been added:

     Type | Meaning                         | Possible Values
     --------------------------------------------------------
       20 | AEAD authentication tag length  | 16 octets

  This list is, of course, intended for use with GCM.  It is
  conceivable that new AEAD algorithms introduced at some point in the
  future may require a different set of authentication tag lengths.

  In the "Encryption algorithm (Value 0)" subregistry (derived from
  Table 6.10.1.b of [RFC3830]), the following has been added:

       SRTP Encr. | Value | Default Session   |  Default Auth.
       Algorithm  |       | Encr. Key Length  |   Tag Length
     -----------------------------------------------------------
       AES-GCM    |    6  |    16 octets      |  16 octets

  The encryption algorithm, session encryption key length, and AEAD
  authentication tag sizes received from MIKEY fully determine the AEAD
  algorithm to be used.  The exact mapping is described in Section 15.

15.  Parameters for Use with MIKEY

  MIKEY specifies the algorithm family separately from the key length
  (which is specified by the Session Encryption key length) and the
  authentication tag length (specified by the AEAD authentication tag
  length).

                          +------------+-------------+-------------+
                          | Encryption | Encryption  |  AEAD Auth. |
                          | Algorithm  | Key Length  |  Tag Length |
                          +============+=============+=============+
     AEAD_AES_128_GCM     |  AES-GCM   | 16 octets   | 16 octets   |
                          +------------+-------------+-------------+
     AEAD_AES_256_GCM     |  AES-GCM   | 32 octets   | 16 octets   |
                          +============+=============+=============+

          Table 4: Mapping MIKEY Parameters to AEAD Algorithms




McGrew & Igoe                Standards Track                   [Page 23]

RFC 7714                    AES-GCM for SRTP               December 2015


  Section 11 of this document restricts the choice of KDF for AEAD
  algorithms.  To enforce this restriction in MIKEY, we require that
  the SRTP Pseudorandom Function (PRF) has value AES-CM whenever an
  AEAD algorithm is used.  Note that, according to Section 6.10.1 of
  [RFC3830], the input key length of the KDF (i.e., the SRTP master key
  length) is always equal to the session encryption key length.  This
  means, for example, that AEAD_AES_256_GCM will use AES_256_CM_PRF as
  the KDF.

16.  Some RTP Test Vectors

  The examples in this section are all based upon the same RTP packet

           8040f17b 8041f8d3 5501a0b2 47616c6c
           69612065 7374206f 6d6e6973 20646976
           69736120 696e2070 61727465 73207472
           6573

  consisting of a 12-octet header (8040f17b 8041f8d3 5501a0b2) and a
  38-octet payload (47616c6c 69612065 7374206f 6d6e6973 20646976
  69736120 696e2070 61727465 73207472 6573), which is just the ASCII
  string "Gallia est omnis divisa in partes tres".  The salt used
  (51756964 2070726f 2071756f) comes from the ASCII string "Quid pro
  quo".  The 16-octet (128-bit) key is 00 01 02 ... 0f, and the
  32-octet (256-bit) key is 00 01 02 ... 1f.  At the time this document
  was written, the RTP payload type (1000000 binary = 64 decimal) was
  an unassigned value.

  As shown in Section 8.1, the IV is formed by XORing two 12-octet
  values.  The first 12-octet value is formed by concatenating two
  zero octets, the 4-octet SSRC (found in the ninth through 12th octets
  of the packet), the 4-octet rollover counter (ROC) maintained at each
  end of the link, and the 2-octet sequence number (SEQ) (found in the
  third and fourth octets of the packet).  The second 12-octet value is
  the salt, a value that is held constant at least until the key is
  changed.

             | Pad |   SSRC    |    ROC    | SEQ |
              00 00 55 01 a0 b2 00 00 00 00 f1 7b
       salt   51 75 69 64 20 70 72 6f 20 71 75 6f
              ------------------------------------
         IV   51 75 3c 65 80 c2 72 6f 20 71 84 14

  All of the RTP examples use this IV.







McGrew & Igoe                Standards Track                   [Page 24]

RFC 7714                    AES-GCM for SRTP               December 2015


16.1.  SRTP AEAD_AES_128_GCM

16.1.1.  SRTP AEAD_AES_128_GCM Encryption

  Encrypting the following packet:

       8040f17b 8041f8d3 5501a0b2 47616c6c
       69612065 7374206f 6d6e6973 20646976
       69736120 696e2070 61727465 73207472
       6573

  Form the IV
         | Pad |   SSRC    |    ROC    | SEQ |
          00 00 55 01 a0 b2 00 00 00 00 f1 7b
    salt: 51 75 69 64 20 70 72 6f 20 71 75 6f
      IV: 51 75 3c 65 80 c2 72 6f 20 71 84 14

  Key: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
  AAD: 8040f17b 8041f8d3 5501a0b2
   PT: 47616c6c 69612065 7374206f 6d6e6973
       20646976 69736120 696e2070 61727465
       73207472 6573
   IV: 51 75 3c 65 80 c2 72 6f 20 71 84 14
    H: c6a13b37878f5b826f4f8162a1c8d879

  Encrypt the Plaintext
    block # 0
      IV||blk_cntr: 51753c6580c2726f2071841400000002
         key_block: b5 2c 8f cf 92 55 fe 09 df ce a6 73 f0 10 22 b9
       plain_block: 47 61 6c 6c 69 61 20 65 73 74 20 6f 6d 6e 69 73
      cipher_block: f2 4d e3 a3 fb 34 de 6c ac ba 86 1c 9d 7e 4b ca
    block # 1
      IV||blk_cntr: 51753c6580c2726f2071841400000003
         key_block: 9e 07 52 a3 64 5a 2f 4f 2b cb d4 0a 30 b5 a5 fe
       plain_block: 20 64 69 76 69 73 61 20 69 6e 20 70 61 72 74 65
      cipher_block: be 63 3b d5 0d 29 4e 6f 42 a5 f4 7a 51 c7 d1 9b
    block # 2
      IV||blk_cntr: 51753c6580c2726f2071841400000004
         key_block: 45 fe 4e ad ed 40 0a 5d 1a f3 63 f9 0c e1 49 3b
       plain_block: 73 20 74 72 65 73
      cipher_block: 36 de 3a df 88 33

  Cipher before tag appended
       f24de3a3 fb34de6c acba861c 9d7e4bca
       be633bd5 0d294e6f 42a5f47a 51c7d19b
       36de3adf 8833





McGrew & Igoe                Standards Track                   [Page 25]

RFC 7714                    AES-GCM for SRTP               December 2015


  Compute the GMAC tag

    Process the AAD
          AAD word: 8040f17b8041f8d35501a0b200000000
      partial hash: bcfb3d1d0e6e3e78ba45403377dba11b

    Process the cipher
       cipher word: f24de3a3fb34de6cacba861c9d7e4bca
      partial hash: 0ebc0abe1b15b32fedd2b07888c1ef61
       cipher word: be633bd50d294e6f42a5f47a51c7d19b
      partial hash: 438e5797011ea860585709a2899f4685
       cipher word: 36de3adf883300000000000000000000
      partial hash: 336fb643310d7bac2aeaa76247f6036d

    Process the length word
       length word: 00000000000000600000000000000130
      partial hash: 1b964067078c408c4e442a8f015e5264

  Turn GHASH into GMAC
             GHASH: 1b 96 40 67 07 8c 40 8c 4e 44 2a 8f 01 5e 52 64
                K0: 92 0b 3f 40 b9 3d 2a 1d 1c 8b 5c d1 e5 67 5e aa
         full GMAC: 89 9d 7f 27 be b1 6a 91 52 cf 76 5e e4 39 0c ce

  Cipher with tag
       f24de3a3 fb34de6c acba861c 9d7e4bca
       be633bd5 0d294e6f 42a5f47a 51c7d19b
       36de3adf 8833899d 7f27beb1 6a9152cf
       765ee439 0cce

  Encrypted and tagged packet:
       8040f17b 8041f8d3 5501a0b2 f24de3a3
       fb34de6c acba861c 9d7e4bca be633bd5
       0d294e6f 42a5f47a 51c7d19b 36de3adf
       8833899d 7f27beb1 6a9152cf 765ee439
       0cce
















McGrew & Igoe                Standards Track                   [Page 26]

RFC 7714                    AES-GCM for SRTP               December 2015


16.1.2.  SRTP AEAD_AES_128_GCM Decryption

  Decrypting the following packet:

       8040f17b 8041f8d3 5501a0b2 f24de3a3
       fb34de6c acba861c 9d7e4bca be633bd5
       0d294e6f 42a5f47a 51c7d19b 36de3adf
       8833899d 7f27beb1 6a9152cf 765ee439
       0cce

  Form the IV
         | Pad |   SSRC    |    ROC    | SEQ |
          00 00 55 01 a0 b2 00 00 00 00 f1 7b
    salt: 51 75 69 64 20 70 72 6f 20 71 75 6f
      IV: 51 75 3c 65 80 c2 72 6f 20 71 84 14

  Key: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
  AAD: 8040f17b 8041f8d3 5501a0b2
   CT: f24de3a3 fb34de6c acba861c 9d7e4bca
       be633bd5 0d294e6f 42a5f47a 51c7d19b
       36de3adf 8833899d 7f27beb1 6a9152cf
       765ee439 0cce
   IV: 51 75 3c 65 80 c2 72 6f 20 71 84 14
    H: c6a13b37878f5b826f4f8162a1c8d879

  Verify the received tag
     89 9d 7f 27 be b1 6a 91 52 cf 76 5e e4 39 0c ce

    Process the AAD
          AAD word: 8040f17b8041f8d35501a0b200000000
      partial hash: bcfb3d1d0e6e3e78ba45403377dba11b

    Process the cipher
       cipher word: f24de3a3fb34de6cacba861c9d7e4bca
      partial hash: 0ebc0abe1b15b32fedd2b07888c1ef61
       cipher word: be633bd50d294e6f42a5f47a51c7d19b
      partial hash: 438e5797011ea860585709a2899f4685
       cipher word: 36de3adf883300000000000000000000
      partial hash: 336fb643310d7bac2aeaa76247f6036d

    Process the length word
       length word: 00000000000000600000000000000130
      partial hash: 1b964067078c408c4e442a8f015e5264








McGrew & Igoe                Standards Track                   [Page 27]

RFC 7714                    AES-GCM for SRTP               December 2015


  Turn GHASH into GMAC
             GHASH: 1b 96 40 67 07 8c 40 8c 4e 44 2a 8f 01 5e 52 64
                K0: 92 0b 3f 40 b9 3d 2a 1d 1c 8b 5c d1 e5 67 5e aa
         full GMAC: 89 9d 7f 27 be b1 6a 91 52 cf 76 5e e4 39 0c ce

       Received tag = 899d7f27 beb16a91 52cf765e e4390cce
       Computed tag = 899d7f27 beb16a91 52cf765e e4390cce
    Received tag verified.

  Decrypt the cipher
    block # 0
      IV||blk_cntr: 51753c6580c2726f2071841400000002
         key_block: b5 2c 8f cf 92 55 fe 09 df ce a6 73 f0 10 22 b9
      cipher_block: f2 4d e3 a3 fb 34 de 6c ac ba 86 1c 9d 7e 4b ca
       plain_block: 47 61 6c 6c 69 61 20 65 73 74 20 6f 6d 6e 69 73
    block # 1
      IV||blk_cntr: 51753c6580c2726f2071841400000003
         key_block: 9e 07 52 a3 64 5a 2f 4f 2b cb d4 0a 30 b5 a5 fe
      cipher_block: be 63 3b d5 0d 29 4e 6f 42 a5 f4 7a 51 c7 d1 9b
       plain_block: 20 64 69 76 69 73 61 20 69 6e 20 70 61 72 74 65
    block # 2
      IV||blk_cntr: 51753c6580c2726f2071841400000004
         key_block: 45 fe 4e ad ed 40 0a 5d 1a f3 63 f9 0c e1 49 3b
      cipher_block: 36 de 3a df 88 33
       plain_block: 73 20 74 72 65 73

  Verified and tagged packet:
       47616c6c 69612065 7374206f 6d6e6973
       20646976 69736120 696e2070 61727465
       73207472 6573





















McGrew & Igoe                Standards Track                   [Page 28]

RFC 7714                    AES-GCM for SRTP               December 2015


16.1.3.  SRTP AEAD_AES_128_GCM Authentication Tagging

  Tagging the following packet:

       8040f17b 8041f8d3 5501a0b2 47616c6c
       69612065 7374206f 6d6e6973 20646976
       69736120 696e2070 61727465 73207472
       6573

  Form the IV
         | Pad |   SSRC    |    ROC    | SEQ |
          00 00 55 01 a0 b2 00 00 00 00 f1 7b
    salt: 51 75 69 64 20 70 72 6f 20 71 75 6f
      IV: 51 75 3c 65 80 c2 72 6f 20 71 84 14

  Key: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
  AAD: 8040f17b 8041f8d3 5501a0b2 47616c6c
       69612065 7374206f 6d6e6973 20646976
       69736120 696e2070 61727465 73207472
       6573
   IV: 51 75 3c 65 80 c2 72 6f 20 71 84 14
    H: c6a13b37878f5b826f4f8162a1c8d879

  Compute the GMAC tag

    Process the AAD
          AAD word: 8040f17b8041f8d35501a0b247616c6c
      partial hash: 79f41fea34a474a77609d8925e9f2b22
          AAD word: 696120657374206f6d6e697320646976
      partial hash: 84093a2f85abf17ab37d3ce2f706138f
          AAD word: 69736120696e20706172746573207472
      partial hash: ab2760fee24e6dec754739d8059cd144
          AAD word: 65730000000000000000000000000000
      partial hash: e84f3c55d287fc561c41d09a8aada4be

    Process the length word
       length word: 00000000000001900000000000000000
      partial hash: b04200c26b81c98af55cc2eafccd1cbc

  Turn GHASH into GMAC
             GHASH: b0 42 00 c2 6b 81 c9 8a f5 5c c2 ea fc cd 1c bc
                K0: 92 0b 3f 40 b9 3d 2a 1d 1c 8b 5c d1 e5 67 5e aa
         full GMAC: 22 49 3f 82 d2 bc e3 97 e9 d7 9e 3b 19 aa 42 16

  Cipher with tag
       22493f82 d2bce397 e9d79e3b 19aa4216





McGrew & Igoe                Standards Track                   [Page 29]

RFC 7714                    AES-GCM for SRTP               December 2015


  Tagged packet:
       8040f17b 8041f8d3 5501a0b2 47616c6c
       69612065 7374206f 6d6e6973 20646976
       69736120 696e2070 61727465 73207472
       65732249 3f82d2bc e397e9d7 9e3b19aa
       4216

16.1.4.  SRTP AEAD_AES_128_GCM Tag Verification

  Verifying the following packet:

       8040f17b 8041f8d3 5501a0b2 47616c6c
       69612065 7374206f 6d6e6973 20646976
       69736120 696e2070 61727465 73207472
       65732249 3f82d2bc e397e9d7 9e3b19aa
       4216

  Form the IV
         | Pad |   SSRC    |    ROC    | SEQ |
          00 00 55 01 a0 b2 00 00 00 00 f1 7b
    salt: 51 75 69 64 20 70 72 6f 20 71 75 6f
      IV: 51 75 3c 65 80 c2 72 6f 20 71 84 14

  Key: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
  AAD: 8040f17b 8041f8d3 5501a0b2 47616c6c
       69612065 7374206f 6d6e6973 20646976
       69736120 696e2070 61727465 73207472
       6573
   CT: 22493f82 d2bce397 e9d79e3b 19aa4216
   IV: 51 75 3c 65 80 c2 72 6f 20 71 84 14
    H: c6a13b37878f5b826f4f8162a1c8d879

  Verify the received tag
     22 49 3f 82 d2 bc e3 97 e9 d7 9e 3b 19 aa 42 16

    Process the AAD
          AAD word: 8040f17b8041f8d35501a0b247616c6c
      partial hash: 79f41fea34a474a77609d8925e9f2b22
          AAD word: 696120657374206f6d6e697320646976
      partial hash: 84093a2f85abf17ab37d3ce2f706138f
          AAD word: 69736120696e20706172746573207472
      partial hash: ab2760fee24e6dec754739d8059cd144
          AAD word: 65730000000000000000000000000000
      partial hash: e84f3c55d287fc561c41d09a8aada4be

    Process the length word
       length word: 00000000000001900000000000000000
      partial hash: b04200c26b81c98af55cc2eafccd1cbc



McGrew & Igoe                Standards Track                   [Page 30]

RFC 7714                    AES-GCM for SRTP               December 2015


  Turn GHASH into GMAC
             GHASH: b0 42 00 c2 6b 81 c9 8a f5 5c c2 ea fc cd 1c bc
                K0: 92 0b 3f 40 b9 3d 2a 1d 1c 8b 5c d1 e5 67 5e aa
         full GMAC: 22 49 3f 82 d2 bc e3 97 e9 d7 9e 3b 19 aa 42 16

       Received tag = 22493f82 d2bce397 e9d79e3b 19aa4216
       Computed tag = 22493f82 d2bce397 e9d79e3b 19aa4216
    Received tag verified.

16.2.  SRTP AEAD_AES_256_GCM

16.2.1.  SRTP AEAD_AES_256_GCM Encryption

  Encrypting the following packet:

       8040f17b 8041f8d3 5501a0b2 47616c6c
       69612065 7374206f 6d6e6973 20646976
       69736120 696e2070 61727465 73207472
       6573

  Form the IV
         | Pad |   SSRC    |    ROC    | SEQ |
          00 00 55 01 a0 b2 00 00 00 00 f1 7b
    salt: 51 75 69 64 20 70 72 6f 20 71 75 6f
      IV: 51 75 3c 65 80 c2 72 6f 20 71 84 14

  Key: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
       10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
  AAD: 8040f17b 8041f8d3 5501a0b2
   PT: 47616c6c 69612065 7374206f 6d6e6973
       20646976 69736120 696e2070 61727465
       73207472 6573
   IV: 51 75 3c 65 80 c2 72 6f 20 71 84 14
    H: f29000b62a499fd0a9f39a6add2e7780

















McGrew & Igoe                Standards Track                   [Page 31]

RFC 7714                    AES-GCM for SRTP               December 2015


  Encrypt the Plaintext
    block # 0
      IV||blk_cntr: 51753c6580c2726f2071841400000002
         key_block: 75 d0 b2 14 c1 43 de 77 9c eb 58 95 5e 40 5a d9
       plain_block: 47 61 6c 6c 69 61 20 65 73 74 20 6f 6d 6e 69 73
      cipher_block: 32 b1 de 78 a8 22 fe 12 ef 9f 78 fa 33 2e 33 aa
    block # 1
      IV||blk_cntr: 51753c6580c2726f2071841400000003
         key_block: 91 e4 7b 4e f3 2b 83 d3 dc 65 0a 72 17 8d da 6a
       plain_block: 20 64 69 76 69 73 61 20 69 6e 20 70 61 72 74 65
      cipher_block: b1 80 12 38 9a 58 e2 f3 b5 0b 2a 02 76 ff ae 0f
    block # 2
      IV||blk_cntr: 51753c6580c2726f2071841400000004
         key_block: 68 86 43 eb dd 08 07 98 16 3a 16 d5 e5 04 f6 3a
       plain_block: 73 20 74 72 65 73
      cipher_block: 1b a6 37 99 b8 7b

  Cipher before tag appended
       32b1de78 a822fe12 ef9f78fa 332e33aa
       b1801238 9a58e2f3 b50b2a02 76ffae0f
       1ba63799 b87b

  Compute the GMAC tag

    Process the AAD
          AAD word: 8040f17b8041f8d35501a0b200000000
      partial hash: 0154dcb75485b71880e1957c877351bd

    Process the cipher
       cipher word: 32b1de78a822fe12ef9f78fa332e33aa
      partial hash: c3f07db9a8b9cb4345eb07f793d322d2
       cipher word: b18012389a58e2f3b50b2a0276ffae0f
      partial hash: 6d1e66fe32eb32ecd8906ceab09db996
       cipher word: 1ba63799b87b00000000000000000000
      partial hash: b3d1d2f1fa3b366619bc42cd2eedafee

    Process the length word
       length word: 00000000000000600000000000000130
      partial hash: 7debf5fa1fac3bd318d5e1a7ee401091

  Turn GHASH into GMAC
             GHASH: 7d eb f5 fa 1f ac 3b d3 18 d5 e1 a7 ee 40 10 91
                K0: 07 48 2e cc c0 53 ed 63 e1 6e 99 df 39 e7 7c 82
         full GMAC: 7a a3 db 36 df ff d6 b0 f9 bb 78 78 d7 a7 6c 13







McGrew & Igoe                Standards Track                   [Page 32]

RFC 7714                    AES-GCM for SRTP               December 2015


  Cipher with tag
       32b1de78 a822fe12 ef9f78fa 332e33aa
       b1801238 9a58e2f3 b50b2a02 76ffae0f
       1ba63799 b87b7aa3 db36dfff d6b0f9bb
       7878d7a7 6c13

  Encrypted and tagged packet:
       8040f17b 8041f8d3 5501a0b2 32b1de78
       a822fe12 ef9f78fa 332e33aa b1801238
       9a58e2f3 b50b2a02 76ffae0f 1ba63799
       b87b7aa3 db36dfff d6b0f9bb 7878d7a7
       6c13

16.2.2.  SRTP AEAD_AES_256_GCM Decryption

  Decrypting the following packet:

       8040f17b 8041f8d3 5501a0b2 32b1de78
       a822fe12 ef9f78fa 332e33aa b1801238
       9a58e2f3 b50b2a02 76ffae0f 1ba63799
       b87b7aa3 db36dfff d6b0f9bb 7878d7a7
       6c13

  Form the IV
         | Pad |   SSRC    |    ROC    | SEQ |
          00 00 55 01 a0 b2 00 00 00 00 f1 7b
    salt: 51 75 69 64 20 70 72 6f 20 71 75 6f
      IV: 51 75 3c 65 80 c2 72 6f 20 71 84 14

  Key: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
       10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
  AAD: 8040f17b 8041f8d3 5501a0b2
   CT: 32b1de78 a822fe12 ef9f78fa 332e33aa
       b1801238 9a58e2f3 b50b2a02 76ffae0f
       1ba63799 b87b7aa3 db36dfff d6b0f9bb
       7878d7a7 6c13
   IV: 51 75 3c 65 80 c2 72 6f 20 71 84 14
    H: f29000b62a499fd0a9f39a6add2e7780

  Verify the received tag
     7a a3 db 36 df ff d6 b0 f9 bb 78 78 d7 a7 6c 13

    Process the AAD
          AAD word: 8040f17b8041f8d35501a0b200000000
      partial hash: 0154dcb75485b71880e1957c877351bd






McGrew & Igoe                Standards Track                   [Page 33]

RFC 7714                    AES-GCM for SRTP               December 2015


    Process the cipher
       cipher word: 32b1de78a822fe12ef9f78fa332e33aa
      partial hash: c3f07db9a8b9cb4345eb07f793d322d2
       cipher word: b18012389a58e2f3b50b2a0276ffae0f
      partial hash: 6d1e66fe32eb32ecd8906ceab09db996
       cipher word: 1ba63799b87b00000000000000000000
      partial hash: b3d1d2f1fa3b366619bc42cd2eedafee

    Process the length word
       length word: 00000000000000600000000000000130
      partial hash: 7debf5fa1fac3bd318d5e1a7ee401091

  Turn GHASH into GMAC
             GHASH: 7d eb f5 fa 1f ac 3b d3 18 d5 e1 a7 ee 40 10 91
                K0: 07 48 2e cc c0 53 ed 63 e1 6e 99 df 39 e7 7c 82
         full GMAC: 7a a3 db 36 df ff d6 b0 f9 bb 78 78 d7 a7 6c 13

       Received tag = 7aa3db36 dfffd6b0 f9bb7878 d7a76c13
       Computed tag = 7aa3db36 dfffd6b0 f9bb7878 d7a76c13
    Received tag verified.

  Decrypt the cipher
    block # 0
      IV||blk_cntr: 51753c6580c2726f2071841400000002
         key_block: 75 d0 b2 14 c1 43 de 77 9c eb 58 95 5e 40 5a d9
      cipher_block: 32 b1 de 78 a8 22 fe 12 ef 9f 78 fa 33 2e 33 aa
       plain_block: 47 61 6c 6c 69 61 20 65 73 74 20 6f 6d 6e 69 73
    block # 1
      IV||blk_cntr: 51753c6580c2726f2071841400000003
         key_block: 91 e4 7b 4e f3 2b 83 d3 dc 65 0a 72 17 8d da 6a
      cipher_block: b1 80 12 38 9a 58 e2 f3 b5 0b 2a 02 76 ff ae 0f
       plain_block: 20 64 69 76 69 73 61 20 69 6e 20 70 61 72 74 65
    block # 2
      IV||blk_cntr: 51753c6580c2726f2071841400000004
         key_block: 68 86 43 eb dd 08 07 98 16 3a 16 d5 e5 04 f6 3a
      cipher_block: 1b a6 37 99 b8 7b
       plain_block: 73 20 74 72 65 73

  Verified and tagged packet:
       47616c6c 69612065 7374206f 6d6e6973
       20646976 69736120 696e2070 61727465
       73207472 6573









McGrew & Igoe                Standards Track                   [Page 34]

RFC 7714                    AES-GCM for SRTP               December 2015


16.2.3.  SRTP AEAD_AES_256_GCM Authentication Tagging

  Tagging the following packet:

       8040f17b 8041f8d3 5501a0b2 47616c6c
       69612065 7374206f 6d6e6973 20646976
       69736120 696e2070 61727465 73207472
       6573

  Form the IV
         | Pad |   SSRC    |    ROC    | SEQ |
          00 00 55 01 a0 b2 00 00 00 00 f1 7b
    salt: 51 75 69 64 20 70 72 6f 20 71 75 6f
      IV: 51 75 3c 65 80 c2 72 6f 20 71 84 14

  Key: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
       10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
  AAD: 8040f17b 8041f8d3 5501a0b2 47616c6c
       69612065 7374206f 6d6e6973 20646976
       69736120 696e2070 61727465 73207472
       6573
   IV: 51 75 3c 65 80 c2 72 6f 20 71 84 14
    H: f29000b62a499fd0a9f39a6add2e7780

  Compute the GMAC tag

    Process the AAD
          AAD word: 8040f17b8041f8d35501a0b247616c6c
      partial hash: c059753e6763791762ca630d8ef97714
          AAD word: 696120657374206f6d6e697320646976
      partial hash: a4e3401e712900dc4f1d2303bc4b2675
          AAD word: 69736120696e20706172746573207472
      partial hash: 1c8c1af883de0d67878f379a19c65987
          AAD word: 65730000000000000000000000000000
      partial hash: 958462781aa8e8feacce6d93b54472ac

    Process the length word
       length word: 00000000000001900000000000000000
      partial hash: af2efb5dcfdb9900e7127721fdb56956

  Turn GHASH into GMAC
             GHASH: af 2e fb 5d cf db 99 00 e7 12 77 21 fd b5 69 56
                K0: 07 48 2e cc c0 53 ed 63 e1 6e 99 df 39 e7 7c 82
         full GMAC: a8 66 d5 91 0f 88 74 63 06 7c ee fe c4 52 15 d4

  Cipher with tag
       a866d591 0f887463 067ceefe c45215d4




McGrew & Igoe                Standards Track                   [Page 35]

RFC 7714                    AES-GCM for SRTP               December 2015


  Tagged packet:
       8040f17b 8041f8d3 5501a0b2 47616c6c
       69612065 7374206f 6d6e6973 20646976
       69736120 696e2070 61727465 73207472
       6573a866 d5910f88 7463067c eefec452
       15d4

16.2.4.  SRTP AEAD_AES_256_GCM Tag Verification

  Verifying the following packet:

       8040f17b 8041f8d3 5501a0b2 47616c6c
       69612065 7374206f 6d6e6973 20646976
       69736120 696e2070 61727465 73207472
       6573a866 d5910f88 7463067c eefec452
       15d4

  Form the IV
         | Pad |   SSRC    |    ROC    | SEQ |
          00 00 55 01 a0 b2 00 00 00 00 f1 7b
    salt: 51 75 69 64 20 70 72 6f 20 71 75 6f
      IV: 51 75 3c 65 80 c2 72 6f 20 71 84 14

  Key: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
       10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
  AAD: 8040f17b 8041f8d3 5501a0b2 47616c6c
       69612065 7374206f 6d6e6973 20646976
       69736120 696e2070 61727465 73207472
       6573
   CT: a866d591 0f887463 067ceefe c45215d4
   IV: 51 75 3c 65 80 c2 72 6f 20 71 84 14
    H: f29000b62a499fd0a9f39a6add2e7780

  Verify the received tag
     a8 66 d5 91 0f 88 74 63 06 7c ee fe c4 52 15 d4

    Process the AAD
          AAD word: 8040f17b8041f8d35501a0b247616c6c
      partial hash: c059753e6763791762ca630d8ef97714
          AAD word: 696120657374206f6d6e697320646976
      partial hash: a4e3401e712900dc4f1d2303bc4b2675
          AAD word: 69736120696e20706172746573207472
      partial hash: 1c8c1af883de0d67878f379a19c65987
          AAD word: 65730000000000000000000000000000
      partial hash: 958462781aa8e8feacce6d93b54472ac






McGrew & Igoe                Standards Track                   [Page 36]

RFC 7714                    AES-GCM for SRTP               December 2015


    Process the length word
       length word: 00000000000001900000000000000000
      partial hash: af2efb5dcfdb9900e7127721fdb56956

  Turn GHASH into GMAC
             GHASH: af 2e fb 5d cf db 99 00 e7 12 77 21 fd b5 69 56
                K0: 07 48 2e cc c0 53 ed 63 e1 6e 99 df 39 e7 7c 82
         full GMAC: a8 66 d5 91 0f 88 74 63 06 7c ee fe c4 52 15 d4

       Received tag = a866d591 0f887463 067ceefe c45215d4
       Computed tag = a866d591 0f887463 067ceefe c45215d4
    Received tag verified.

17.  RTCP Test Vectors

  The examples in this section are all based upon the same RTCP packet:

           81c8000e 4d617273 4e545031 4e545031
           52545020 0000042a 0000eb98 4c756e61
           deadbeef deadbeef deadbeef deadbeef
           deadbeef

  with 32-bit SRTCP index 000005d4.

  As shown in Section 9.1, the IV is formed by XORing two 12-octet
  values.  The first 12-octet value is formed by concatenating
  two zero octets, the 4-octet SSRC (found in the fifth through
  eighth octets of the RTP packet), another two padding octets, and the
  31-bit SRTCP index, right-justified in a 32-bit = 4-octet field with
  a single "0" bit prepended as padding.  An example of SRTCP IV
  formation is shown below:

            | Pad |   SSRC    | Pad |  0+SRTCP  |
             00 00 4d 61 72 73 00 00 00 00 05 d4
      salt   51 75 69 64 20 70 72 6f 20 71 75 6f
             ------------------------------------
        IV   51 75 24 05 52 03 72 6f 20 71 70 bb

  In an SRTCP packet, a 1-bit Encryption flag is prepended to the
  31-bit SRTCP index to form a 32-bit value we shall call the
  "ESRTCP word".  The E-flag is one if the SRTCP packet has been
  encrypted and zero if it has been tagged but not encrypted.  Note
  that the ESRTCP field is only present in an SRTCP packet, not in an
  RTCP packet.  The full ESRTCP word is part of the AAD.







McGrew & Igoe                Standards Track                   [Page 37]

RFC 7714                    AES-GCM for SRTP               December 2015


  When encrypting and tagging an RTCP packet (E-flag = 1), the SRTCP
  packet consists of the following fields in the following order:

  - The first 8 octets of the RTCP packet (part of the AAD).

  - The cipher.

  - The ESRTCP word (the final part of the AAD).

  - Any Raw Data that might have been appended to the end of the
    original RTCP packet.

  Recall that AEAD treats the authentication tag as an integral part of
  the cipher, and in fact the authentication tag is the last 8 or
  16 octets of the cipher.

  The reader is reminded that when the RTCP packet is to be tagged but
  not encrypted (E-flag = 0), GCM will produce a cipher that consists
  solely of the 8-octet or 16-octet authentication tag.  The tagged
  SRTCP consists of the following fields in the order listed below:

  - All of the AAD, except for the ESRTCP word.

  - The cipher (= the authentication tag).

  - The ESRTCP word (the final part of the AAD).

  - Any Raw Data that might have been appended to the end of the
    original RTCP packet.






















McGrew & Igoe                Standards Track                   [Page 38]

RFC 7714                    AES-GCM for SRTP               December 2015


17.1.  SRTCP AEAD_AES_128_GCM Encryption and Tagging

  Encrypting the following packet:

       81c8000d 4d617273 4e545031 4e545032
       52545020 0000042a 0000e930 4c756e61
       deadbeef deadbeef deadbeef deadbeef
       deadbeef

  Key size = 128 bits
  Tag size =  16 octets

  Form the IV
         | Pad |   SSRC    | Pad |   SRTCP   |
          00 00 4d 61 72 73 00 00 00 00 05 d4
    salt: 51 75 69 64 20 70 72 6f 20 71 75 6f
      IV: 51 75 24 05 52 03 72 6f 20 71 70 bb

  Key: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
  AAD: 81c8000d 4d617273 800005d4
   PT: 4e545031 4e545032 52545020 0000042a
       0000e930 4c756e61 deadbeef deadbeef
       deadbeef deadbeef deadbeef
   IV: 51 75 24 05 52 03 72 6f 20 71 70 bb
    H: c6a13b37878f5b826f4f8162a1c8d879

  Encrypt the Plaintext
    block # 0
      IV||blk_cntr: 517524055203726f207170bb00000002
         key_block: 2d bd 18 b4 92 8e e6 4e f5 73 87 46 2f 6b 7a b3
       plain_block: 4e 54 50 31 4e 54 50 32 52 54 50 20 00 00 04 2a
      cipher_block: 63 e9 48 85 dc da b6 7c a7 27 d7 66 2f 6b 7e 99
    block # 1
      IV||blk_cntr: 517524055203726f207170bb00000003
         key_block: 7f f5 29 c7 20 73 9d 4c 18 db 1b 1e ad a0 d1 35
       plain_block: 00 00 e9 30 4c 75 6e 61 de ad be ef de ad be ef
      cipher_block: 7f f5 c0 f7 6c 06 f3 2d c6 76 a5 f1 73 0d 6f da
    block # 2
      IV||blk_cntr: 517524055203726f207170bb00000004
         key_block: 92 4d 25 a9 58 9d 83 02 d5 14 99 b4 e0 14 78 15
       plain_block: de ad be ef de ad be ef de ad be ef
      cipher_block: 4c e0 9b 46 86 30 3d ed 0b b9 27 5b

  Cipher before tag appended
       63e94885 dcdab67c a727d766 2f6b7e99
       7ff5c0f7 6c06f32d c676a5f1 730d6fda
       4ce09b46 86303ded 0bb9275b




McGrew & Igoe                Standards Track                   [Page 39]

RFC 7714                    AES-GCM for SRTP               December 2015


  Compute the GMAC tag

    Process the AAD
          AAD word: 81c8000d4d617273800005d400000000
      partial hash: 085d6eb166c555aa62982f630430ec6e

    Process the cipher
       cipher word: 63e94885dcdab67ca727d7662f6b7e99
      partial hash: 8c9221be93466d68bbb16fa0d42b0187
       cipher word: 7ff5c0f76c06f32dc676a5f1730d6fda
      partial hash: 221ebb044ec9fd0bf116d7780f198792
       cipher word: 4ce09b4686303ded0bb9275b00000000
      partial hash: 50f70b9ca110ab312dce212657328dae

    Process the length word
       length word: 00000000000000600000000000000160
      partial hash: 7296107c9716534371dfc1a30c5ffeb5

  Turn GHASH into GMAC
             GHASH: 72 96 10 7c 97 16 53 43 71 df c1 a3 0c 5f fe b5
                K0: ba dc b4 24 01 d9 1e 6c b4 74 39 d1 49 86 14 6b
         full GMAC: c8 4a a4 58 96 cf 4d 2f c5 ab f8 72 45 d9 ea de

  Cipher with tag
       63e94885 dcdab67c a727d766 2f6b7e99
       7ff5c0f7 6c06f32d c676a5f1 730d6fda
       4ce09b46 86303ded 0bb9275b c84aa458
       96cf4d2f c5abf872 45d9eade

  Append the ESRTCP word with the E-flag set
       63e94885 dcdab67c a727d766 2f6b7e99
       7ff5c0f7 6c06f32d c676a5f1 730d6fda
       4ce09b46 86303ded 0bb9275b c84aa458
       96cf4d2f c5abf872 45d9eade 800005d4

  Encrypted and tagged packet:
       81c8000d 4d617273 63e94885 dcdab67c
       a727d766 2f6b7e99 7ff5c0f7 6c06f32d
       c676a5f1 730d6fda 4ce09b46 86303ded
       0bb9275b c84aa458 96cf4d2f c5abf872
       45d9eade 800005d4










McGrew & Igoe                Standards Track                   [Page 40]

RFC 7714                    AES-GCM for SRTP               December 2015


17.2.  SRTCP AEAD_AES_256_GCM Verification and Decryption

  Key size = 256 bits
  Tag size =  16 octets

    Process the length word

  Decrypting the following packet:

       81c8000d 4d617273 d50ae4d1 f5ce5d30
       4ba297e4 7d470c28 2c3ece5d bffe0a50
       a2eaa5c1 110555be 8415f658 c61de047
       6f1b6fad 1d1eb30c 4446839f 57ff6f6c
       b26ac3be 800005d4

  Key size = 256 bits
  Key size =  16 octets

  Form the IV
         | Pad |   SSRC    | Pad |   SRTCP   |
          00 00 4d 61 72 73 00 00 00 00 05 d4
    salt: 51 75 69 64 20 70 72 6f 20 71 75 6f
      IV: 51 75 24 05 52 03 72 6f 20 71 70 bb

  Key: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
       10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
  AAD: 81c8000d 4d617273 800005d4
   CT: d50ae4d1 f5ce5d30 4ba297e4 7d470c28
       2c3ece5d bffe0a50 a2eaa5c1 110555be
       8415f658 c61de047 6f1b6fad 1d1eb30c
       4446839f 57ff6f6c b26ac3be
   IV: 51 75 24 05 52 03 72 6f 20 71 70 bb
    H: f29000b62a499fd0a9f39a6add2e7780

  Verify the received tag
     1d 1e b3 0c 44 46 83 9f 57 ff 6f 6c b2 6a c3 be

    Process the AAD
          AAD word: 81c8000d4d617273800005d400000000
      partial hash: 3ae5afd36dead5280b18950400176b5b

    Process the cipher
       cipher word: d50ae4d1f5ce5d304ba297e47d470c28
      partial hash: e90fab7546f6940781227227ac926ebe
       cipher word: 2c3ece5dbffe0a50a2eaa5c1110555be
      partial hash: 9b236807d8b2dab07583adce367aa88f
       cipher word: 8415f658c61de0476f1b6fad00000000
      partial hash: e69313f423a75e3e0b7eb93321700e86



McGrew & Igoe                Standards Track                   [Page 41]

RFC 7714                    AES-GCM for SRTP               December 2015


    Process the length word
       length word: 00000000000000600000000000000160
      partial hash: 3a284af2616fdf505faf37eec39fbc8b

  Turn GHASH into GMAC
             GHASH: 3a 28 4a f2 61 6f df 50 5f af 37 ee c3 9f bc 8b
                K0: 27 36 f9 fe 25 29 5c cf 08 50 58 82 71 f5 7f 35
         full GMAC: 1d 1e b3 0c 44 46 83 9f 57 ff 6f 6c b2 6a c3 be

       Received tag = 1d1eb30c 4446839f 57ff6f6c b26ac3be
       Computed tag = 1d1eb30c 4446839f 57ff6f6c b26ac3be
    Received tag verified.

  Decrypt the cipher
    block # 0
      IV||blk_cntr: 517524055203726f207170bb00000002
         key_block: 9b 5e b4 e0 bb 9a 0d 02 19 f6 c7 c4 7d 47 08 02
      cipher_block: d5 0a e4 d1 f5 ce 5d 30 4b a2 97 e4 7d 47 0c 28
       plain_block: 4e 54 50 31 4e 54 50 32 52 54 50 20 00 00 04 2a
    block # 1
      IV||blk_cntr: 517524055203726f207170bb00000003
         key_block: 2c 3e 27 6d f3 8b 64 31 7c 47 1b 2e cf a8 eb 51
      cipher_block: 2c 3e ce 5d bf fe 0a 50 a2 ea a5 c1 11 05 55 be
       plain_block: 00 00 e9 30 4c 75 6e 61 de ad be ef de ad be ef
    block # 2
      IV||blk_cntr: 517524055203726f207170bb00000004
         key_block: 5a b8 48 b7 18 b0 5e a8 b1 b6 d1 42 3b 74 39 55
      cipher_block: 84 15 f6 58 c6 1d e0 47 6f 1b 6f ad
       plain_block: de ad be ef de ad be ef de ad be ef

  Verified and decrypted packet:
       81c8000d 4d617273 4e545031 4e545032
       52545020 0000042a 0000e930 4c756e61
       deadbeef deadbeef deadbeef deadbeef
       deadbeef
















McGrew & Igoe                Standards Track                   [Page 42]

RFC 7714                    AES-GCM for SRTP               December 2015


17.3.  SRTCP AEAD_AES_128_GCM Tagging Only

  Tagging the following packet:

       81c8000d 4d617273 4e545031 4e545032
       52545020 0000042a 0000e930 4c756e61
       deadbeef deadbeef deadbeef deadbeef
       deadbeef

  Key size = 128 bits
  Tag size =  16 octets

  Form the IV
         | Pad |   SSRC    | Pad |   SRTCP   |
          00 00 4d 61 72 73 00 00 00 00 05 d4
    salt: 51 75 69 64 20 70 72 6f 20 71 75 6f
      IV: 51 75 24 05 52 03 72 6f 20 71 70 bb

  Key: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
  AAD: 81c8000d 4d617273 4e545031 4e545032
       52545020 0000042a 0000e930 4c756e61
       deadbeef deadbeef deadbeef deadbeef
       deadbeef 000005d4
   IV: 51 75 24 05 52 03 72 6f 20 71 70 bb
    H: c6a13b37878f5b826f4f8162a1c8d879

  Compute the GMAC tag

    Process the AAD
          AAD word: 81c8000d4d6172734e5450314e545032
      partial hash: f8dbbe278e06afe17fb4fb2e67f0a22e
          AAD word: 525450200000042a0000e9304c756e61
      partial hash: 6ccd900dfd0eb292f68f8a410d0648ec
          AAD word: deadbeefdeadbeefdeadbeefdeadbeef
      partial hash: 6a14be0ea384c6b746235ba955a57ff5
          AAD word: deadbeef000005d40000000000000000
      partial hash: cc81f14905670a1e37f8bc81a91997cd

    Process the length word
       length word: 00000000000001c00000000000000000
      partial hash: 3ec16d4c3c0e90a59e91be415bd976d8

  Turn GHASH into GMAC
             GHASH: 3e c1 6d 4c 3c 0e 90 a5 9e 91 be 41 5b d9 76 d8
                K0: ba dc b4 24 01 d9 1e 6c b4 74 39 d1 49 86 14 6b
         full GMAC: 84 1d d9 68 3d d7 8e c9 2a e5 87 90 12 5f 62 b3





McGrew & Igoe                Standards Track                   [Page 43]

RFC 7714                    AES-GCM for SRTP               December 2015


  Cipher with tag
       841dd968 3dd78ec9 2ae58790 125f62b3

  Tagged packet:
       81c8000d 4d617273 4e545031 4e545032
       52545020 0000042a 0000e930 4c756e61
       deadbeef deadbeef deadbeef deadbeef
       deadbeef 841dd968 3dd78ec9 2ae58790
       125f62b3 000005d4

17.4.  SRTCP AEAD_AES_256_GCM Tag Verification

  Key size = 256 bits
  Tag size =  16 octets

    Process the length word
  Verifying the following packet:

       81c8000d 4d617273 4e545031 4e545032
       52545020 0000042a 0000e930 4c756e61
       deadbeef deadbeef deadbeef deadbeef
       deadbeef 91db4afb feee5a97 8fab4393
       ed2615fe 000005d4

  Key size = 256 bits
  Key size =  16 octets

  Form the IV
         | Pad |   SSRC    | Pad |   SRTCP   |
          00 00 4d 61 72 73 00 00 00 00 05 d4
    salt: 51 75 69 64 20 70 72 6f 20 71 75 6f
      IV: 51 75 24 05 52 03 72 6f 20 71 70 bb

  Key: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
       10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
  AAD: 81c8000d 4d617273 4e545031 4e545032
       52545020 0000042a 0000e930 4c756e61
       deadbeef deadbeef deadbeef deadbeef
       deadbeef 000005d4
   CT: 91db4afb feee5a97 8fab4393 ed2615fe
   IV: 51 75 24 05 52 03 72 6f 20 71 70 bb
    H: f29000b62a499fd0a9f39a6add2e7780

  Verify the received tag
     91 db 4a fb fe ee 5a 97 8f ab 43 93 ed 26 15 fe






McGrew & Igoe                Standards Track                   [Page 44]

RFC 7714                    AES-GCM for SRTP               December 2015


    Process the AAD
          AAD word: 81c8000d4d6172734e5450314e545032
      partial hash: 7bc665c71676a5a5f663b3229af4b85c
          AAD word: 525450200000042a0000e9304c756e61
      partial hash: 34ed77752703ab7d69f44237910e3bc0
          AAD word: deadbeefdeadbeefdeadbeefdeadbeef
      partial hash: 74a59f1a99282344d64ab1c8a2be6cf8
          AAD word: deadbeef000005d40000000000000000
      partial hash: 126335c0baa7ab1b79416ceeb9f7a518

    Process the length word
       length word: 00000000000001c00000000000000000
      partial hash: b6edb305dbc7065887fb1b119cd36acb

  Turn GHASH into GMAC
             GHASH: b6 ed b3 05 db c7 06 58 87 fb 1b 11 9c d3 6a cb
                K0: 27 36 f9 fe 25 29 5c cf 08 50 58 82 71 f5 7f 35
         full GMAC: 91 db 4a fb fe ee 5a 97 8f ab 43 93 ed 26 15 fe

       Received tag = 91db4afb feee5a97 8fab4393 ed2615fe
       Computed tag = 91db4afb feee5a97 8fab4393 ed2615fe
    Received tag verified.

  Verified packet:
       81c8000d 4d617273 4e545031 4e545032
       52545020 0000042a 0000e930 4c756e61
       deadbeef deadbeef deadbeef deadbeef
       deadbeef

18.  References

18.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC3550]  Schulzrinne, H., Casner, S., Frederick, R., and V.
             Jacobson, "RTP: A Transport Protocol for Real-Time
             Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,
             July 2003, <http://www.rfc-editor.org/info/rfc3550>.

  [RFC3711]  Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
             Norrman, "The Secure Real-time Transport Protocol (SRTP)",
             RFC 3711, DOI 10.17487/RFC3711, March 2004,
             <http://www.rfc-editor.org/info/rfc3711>.




McGrew & Igoe                Standards Track                   [Page 45]

RFC 7714                    AES-GCM for SRTP               December 2015


  [RFC3830]  Arkko, J., Carrara, E., Lindholm, F., Naslund, M., and K.
             Norrman, "MIKEY: Multimedia Internet KEYing", RFC 3830,
             DOI 10.17487/RFC3830, August 2004,
             <http://www.rfc-editor.org/info/rfc3830>.

  [RFC4568]  Andreasen, F., Baugher, M., and D. Wing, "Session
             Description Protocol (SDP) Security Descriptions for Media
             Streams", RFC 4568, DOI 10.17487/RFC4568, July 2006,
             <http://www.rfc-editor.org/info/rfc4568>.

  [RFC5116]  McGrew, D., "An Interface and Algorithms for Authenticated
             Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
             <http://www.rfc-editor.org/info/rfc5116>.

  [RFC5234]  Crocker, D., Ed., and P. Overell, "Augmented BNF for
             Syntax Specifications: ABNF", STD 68, RFC 5234,
             DOI 10.17487/RFC5234, January 2008,
             <http://www.rfc-editor.org/info/rfc5234>.

  [RFC5764]  McGrew, D. and E. Rescorla, "Datagram Transport Layer
             Security (DTLS) Extension to Establish Keys for the Secure
             Real-time Transport Protocol (SRTP)", RFC 5764,
             DOI 10.17487/RFC5764, May 2010,
             <http://www.rfc-editor.org/info/rfc5764>.

  [RFC6188]  McGrew, D., "The Use of AES-192 and AES-256 in Secure
             RTP", RFC 6188, DOI 10.17487/RFC6188, March 2011,
             <http://www.rfc-editor.org/info/rfc6188>.

  [RFC6904]  Lennox, J., "Encryption of Header Extensions in the Secure
             Real-time Transport Protocol (SRTP)", RFC 6904,
             DOI 10.17487/RFC6904, April 2013,
             <http://www.rfc-editor.org/info/rfc6904>.


















McGrew & Igoe                Standards Track                   [Page 46]

RFC 7714                    AES-GCM for SRTP               December 2015


18.2.  Informative References

  [BN00]     Bellare, M. and C. Namprempre, "Authenticated Encryption:
             Relations among notions and analysis of the generic
             composition paradigm", Proceedings of ASIACRYPT 2000,
             Springer-Verlag, LNCS 1976, pp. 531-545,
             DOI 10.1007/3-540-44448-3_41,
             <http://www-cse.ucsd.edu/users/mihir/papers/oem.html>.

  [GCM]      Dworkin, M., "NIST Special Publication 800-38D:
             Recommendation for Block Cipher Modes of Operation:
             Galois/Counter Mode (GCM) and GMAC", U.S. National
             Institute of Standards and Technology, November 2007,
             <http://csrc.nist.gov/publications/nistpubs/
             800-38D/SP-800-38D.pdf>.

  [R02]      Rogaway, P., "Authenticated-Encryption with Associated-
             Data", ACM Conference on Computer and Communications
             Security (CCS'02), pp. 98-107, ACM Press,
             DOI 10.1145/586110.586125, September 2002,
             <http://www.cs.ucdavis.edu/~rogaway/papers/ad.html>.

  [RFC4771]  Lehtovirta, V., Naslund, M., and K. Norrman, "Integrity
             Transform Carrying Roll-Over Counter for the Secure
             Real-time Transport Protocol (SRTP)", RFC 4771,
             DOI 10.17487/RFC4771, January 2007,
             <http://www.rfc-editor.org/info/rfc4771>.
























McGrew & Igoe                Standards Track                   [Page 47]

RFC 7714                    AES-GCM for SRTP               December 2015


Acknowledgements

  The authors would like to thank Michael Peck, Michael Torla, Qin Wu,
  Magnus Westerlund, Oscar Ohllson, Woo-Hwan Kim, John Mattsson,
  Richard Barnes, Morris Dworkin, Stephen Farrell, and many other
  reviewers who provided valuable comments on earlier draft versions of
  this document.

Authors' Addresses

  David A. McGrew
  Cisco Systems, Inc.
  510 McCarthy Blvd.
  Milpitas, CA  95035
  United States
  Phone: (408) 525 8651

  Email: [email protected]
  URI:   http://www.mindspring.com/~dmcgrew/dam.htm


  Kevin M. Igoe
  NSA/CSS Commercial Solutions Center
  National Security Agency

  Email: [email protected]

























McGrew & Igoe                Standards Track                   [Page 48]