Internet Engineering Task Force (IETF)                      C. Pignataro
Request for Comments: 7676                                 Cisco Systems
Category: Standards Track                                      R. Bonica
ISSN: 2070-1721                                         Juniper Networks
                                                            S. Krishnan
                                                               Ericsson
                                                           October 2015


         IPv6 Support for Generic Routing Encapsulation (GRE)

Abstract

  Generic Routing Encapsulation (GRE) can be used to carry any network-
  layer payload protocol over any network-layer delivery protocol.
  Currently, GRE procedures are specified for IPv4, used as either the
  payload or delivery protocol.  However, GRE procedures are not
  specified for IPv6.

  This document specifies GRE procedures for IPv6, used as either the
  payload or delivery protocol.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7676.
















Pignataro, et al.            Standards Track                    [Page 1]

RFC 7676                        GRE IPv6                    October 2015


Copyright Notice

  Copyright (c) 2015 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
    1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   3
    1.2.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   3
  2.  GRE Header Fields . . . . . . . . . . . . . . . . . . . . . .   4
    2.1.  Checksum Present  . . . . . . . . . . . . . . . . . . . .   4
  3.  IPv6 as GRE Payload . . . . . . . . . . . . . . . . . . . . .   5
    3.1.  GRE Protocol Type Considerations  . . . . . . . . . . . .   5
    3.2.  MTU Considerations  . . . . . . . . . . . . . . . . . . .   5
    3.3.  Fragmentation Considerations  . . . . . . . . . . . . . .   5
  4.  IPv6 as GRE Delivery Protocol . . . . . . . . . . . . . . . .   6
    4.1.  Next Header Considerations  . . . . . . . . . . . . . . .   6
    4.2.  Checksum Considerations . . . . . . . . . . . . . . . . .   6
    4.3.  MTU Considerations  . . . . . . . . . . . . . . . . . . .   8
  5.  Security Considerations . . . . . . . . . . . . . . . . . . .   8
  6.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   8
    6.1.  Normative References  . . . . . . . . . . . . . . . . . .   8
    6.2.  Informative References  . . . . . . . . . . . . . . . . .   9
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  10
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  11















Pignataro, et al.            Standards Track                    [Page 2]

RFC 7676                        GRE IPv6                    October 2015


1.  Introduction

  Generic Routing Encapsulation (GRE) [RFC2784] [RFC2890] can be used
  to carry any network-layer payload protocol over any network-layer
  delivery protocol.  Currently, GRE procedures are specified for IPv4
  [RFC791], used as either the payload or delivery protocol.  However,
  GRE procedures are not specified for IPv6 [RFC2460].

  This document specifies GRE procedures for IPv6, used as either the
  payload or delivery protocol.  Like RFC 2784, this document describes
  how GRE has been implemented by several vendors.

1.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

1.2.  Terminology

  The following terms are used in this document:

  o  GRE delivery header: An IPv4 or IPv6 header whose source address
     represents the GRE ingress node and whose destination address
     represents the GRE egress node.  The GRE delivery header
     encapsulates a GRE header.

  o  GRE header: The GRE protocol header.  The GRE header is
     encapsulated in the GRE delivery header and encapsulates the GRE
     payload.

  o  GRE payload: A network-layer packet that is encapsulated by the
     GRE header.

  o  GRE overhead: The combined size of the GRE delivery header and the
     GRE header, measured in octets.

  o  Path MTU (PMTU): The minimum MTU of all the links in a path
     between a source node and a destination node.  If the source and
     destination node are connected through Equal-Cost Multipath
     (ECMP), the PMTU is equal to the minimum link MTU of all links
     contributing to the multipath.

  o  Path MTU Discovery (PMTUD): A procedure for dynamically
     discovering the PMTU between two nodes on the Internet.  PMTUD
     procedures for IPv6 are defined in [RFC1981].





Pignataro, et al.            Standards Track                    [Page 3]

RFC 7676                        GRE IPv6                    October 2015


  o  GRE MTU (GMTU): The maximum transmission unit, i.e., maximum
     packet size in octets, that can be conveyed over a GRE tunnel
     without fragmentation of any kind.  The GMTU is equal to the PMTU
     associated with the path between the GRE ingress and the GRE
     egress, minus the GRE overhead.

2.  GRE Header Fields

  This document does not change the GRE header format or any behaviors
  specified by RFC 2784 or RFC 2890.

2.1.  Checksum Present

  The GRE ingress node SHOULD set the Checksum Present field in the GRE
  header to zero.  However, implementations MAY support a configuration
  option that causes the GRE ingress node to set the Checksum Present
  field to one.

  As per Section 2.2 of RFC 2784, the GRE egress node uses the Checksum
  Present field to calculate the length of the GRE header.  If the
  Checksum Present field is set to one, the GRE egress node MUST use
  the GRE Checksum to verify the integrity of the GRE header and
  payload.

  Setting the Checksum Present field to zero reduces the computational
  cost of GRE encapsulation and decapsulation.  In many cases, the GRE
  Checksum is partially redundant with other checksums.  For example:

  o  If the payload protocol is IPv4, the IPv4 header is protected by
     both the GRE Checksum and the IPv4 Checksum.

  o  If the payload carries TCP [RFC793], the TCP pseudo header, TCP
     header, and TCP payload are protected by both the GRE Checksum and
     TCP Checksum.

  o  If the payload carries UDP [RFC768], the UDP pseudo header, UDP
     header, and UDP payload are protected by both the GRE Checksum and
     UDP Checksum.

  However, if the GRE Checksum Present field is set to zero, the GRE
  header is not protected by any checksum.  Furthermore, depending on
  which of the above-mentioned conditions are true, selected portions
  of the GRE payload will not be protected by any checksum.

  Network operators should evaluate risk factors in their networks and
  configure GRE ingress nodes appropriately.





Pignataro, et al.            Standards Track                    [Page 4]

RFC 7676                        GRE IPv6                    October 2015


3.  IPv6 as GRE Payload

  The following considerations apply to GRE tunnels that carry an IPv6
  payload.

3.1.  GRE Protocol Type Considerations

  The Protocol Type field in the GRE header MUST be set to Ether Type
  [RFC7042] 0x86DD (IPv6).

3.2.  MTU Considerations

  A GRE tunnel MUST be able to carry a 1280-octet IPv6 packet from
  ingress to egress, without fragmenting the payload packet.  All GRE
  tunnels with a GMTU of 1280 octets or greater satisfy this
  requirement.  GRE tunnels that can fragment and reassemble delivery
  packets also satisfy this requirement, regardless of their GMTU.
  However, the ability to fragment and reassemble delivery packets is
  not a requirement of this specification.  This specification requires
  only that GRE ingress nodes refrain from activating GRE tunnels that
  do not satisfy the above-mentioned requirement.

  Before activating a GRE tunnel and periodically thereafter, the GRE
  ingress node MUST verify the tunnel's ability to carry a 1280-octet
  IPv6 payload packet from ingress to egress, without fragmenting the
  payload.  Having executed those procedures, the GRE ingress node MUST
  activate or deactivate the tunnel accordingly.

  Implementation details regarding the above-mentioned verification
  procedures are beyond the scope of this document.  However, a GRE
  ingress node can verify tunnel capabilities by sending a 1280-octet
  IPv6 packet addressed to itself through the tunnel under test.

  Many existing implementations [RFC7588] do not support the above-
  mentioned verification procedures.  Unless deployed in environments
  where the GMTU is guaranteed to be greater than 1280, these
  implementations MUST be configured so that the GRE endpoints can
  fragment and reassemble the GRE delivery packet.

3.3.  Fragmentation Considerations

  When the GRE ingress receives an IPv6 payload packet whose length is
  less than or equal to the GMTU, it can encapsulate and forward the
  packet without fragmentation of any kind.  In this case, the GRE
  ingress router MUST NOT fragment the payload or delivery packets.






Pignataro, et al.            Standards Track                    [Page 5]

RFC 7676                        GRE IPv6                    October 2015


  When the GRE ingress receives an IPv6 payload packet whose length is
  greater than the GMTU, and the GMTU is greater than or equal to 1280
  octets, the GRE ingress router MUST:

  o  discard the IPv6 payload packet

  o  send an ICMPv6 Packet Too Big (PTB) [RFC4443] message to the IPv6
     payload packet source.  The MTU field in the ICMPv6 PTB message is
     set to the GMTU.

  When the GRE ingress receives an IPv6 payload packet whose length is
  greater than the GMTU, and the GMTU is less than 1280 octets, the GRE
  ingress router MUST:

  o  encapsulate the entire IPv6 packet in a single GRE header and IP
     delivery header

  o  fragment the delivery header, so that it can be reassembled by the
     GRE egress

4.  IPv6 as GRE Delivery Protocol

  The following considerations apply when the delivery protocol is
  IPv6.

4.1.  Next Header Considerations

  When the GRE delivery protocol is IPv6, the GRE header MAY
  immediately follow the GRE delivery header.  Alternatively, IPv6
  extension headers MAY be inserted between the GRE delivery header and
  the GRE header.

  If the GRE header immediately follows the GRE delivery header, the
  Next Header field in the IPv6 header of the GRE delivery packet MUST
  be set to 47.  If extension headers are inserted between the GRE
  delivery header and the GRE header, the Next Header field in the last
  IPv6 extension header MUST be set to 47.

4.2.  Checksum Considerations

  As stated in [RFC2784], the GRE header can contain a checksum.  If
  present, the GRE header checksum can be used to detect corruption of
  the GRE header and GRE payload.

  The GRE header checksum cannot be used to detect corruption of the
  IPv6 delivery header.  Furthermore, the IPv6 delivery header does not
  contain a checksum of its own.  Therefore, no available checksum can
  be used to detect corruption of the IPv6 delivery header.



Pignataro, et al.            Standards Track                    [Page 6]

RFC 7676                        GRE IPv6                    October 2015


  In one failure scenario, the destination address in the IPv6 delivery
  header is corrupted.  As a result, the IPv6 delivery packet is
  delivered to a node other than the intended GRE egress node.
  Depending upon the state and configuration of that node, it will
  either:

  a.  Drop the packet

  b.  Decapsulate the payload and forward it to its intended
      destination

  c.  Decapsulate the payload and forward it to a node other than its
      intended destination.

  Behaviors a) and b) are acceptable.  Behavior c) is not acceptable.

  Behavior c) is possible only when the following conditions are true:

  1.  The intended GRE egress node is a Virtual Private Network (VPN)
      Provider Edge (PE) router.

  2.  The node to which the GRE delivery packet is mistakenly delivered
      is also a VPN PE router.

  3.  VPNs are attached to both of the above-mentioned nodes.  At least
      two of these VPN's number hosts are from a non-unique (e.g.,
      [RFC1918]) address space.

  4.  The intended GRE egress node maintains state that causes it to
      decapsulate the packet and forward the payload to its intended
      destination

  5.  The node to which the GRE delivery packet is mistakenly delivered
      maintains state that causes it to decapsulate the packet and
      forward the payload to an identically numbered host in another
      VPN.

  While the failure scenario described above is extremely unlikely, a
  single misdelivered packet can adversely impact applications running
  on the node to which the packet is misdelivered.  Furthermore,
  leaking packets across VPN boundaries also constitutes a security
  breach.  The risk associated with behavior c) could be mitigated with
  end-to-end authentication of the payload.

  Before deploying GRE over IPv6, network operators should consider the
  likelihood of behavior c) in their network.  GRE over IPv6 MUST NOT
  be deployed other than where the network operator deems the risk
  associated with behavior c) to be acceptable.



Pignataro, et al.            Standards Track                    [Page 7]

RFC 7676                        GRE IPv6                    October 2015


4.3.  MTU Considerations

  By default, the GRE ingress node cannot fragment the IPv6 delivery
  header.  However, implementations MAY support an optional
  configuration in which the GRE ingress node can fragment the IPv6
  delivery header.

  Also by default, the GRE egress node cannot reassemble the IPv6
  delivery header.  However, implementations MAY support an optional
  configuration in which the GRE egress node can reassemble the IPv6
  delivery header.

5.  Security Considerations

  The Security Considerations section of [RFC4023] identifies threats
  encountered when MPLS is delivered over GRE.  These threats apply to
  any GRE payload.  As stated in RFC 4023, these various threats can be
  mitigated through options such as authenticating and/or encrypting
  the delivery packet using IPsec [RFC4301].  Alternatively, when the
  payload is IPv6, these threats can also be mitigated by
  authenticating and/or encrypting the payload using IPsec, instead of
  the delivery packet.  Otherwise, the current specification introduces
  no security considerations beyond those mentioned in RFC 2784.

  More generally, security considerations for IPv6 are discussed in
  [RFC4942].  Operational security for IPv6 is discussed in [OPSEC-V6],
  and security concerns for tunnels in general are discussed in
  [RFC6169].

6.  References

6.1.  Normative References

  [RFC768]   Postel, J., "User Datagram Protocol", STD 6, RFC 768,
             DOI 10.17487/RFC0768, August 1980,
             <http://www.rfc-editor.org/info/rfc768>.

  [RFC791]   Postel, J., "Internet Protocol", STD 5, RFC 791,
             DOI 10.17487/RFC0791, September 1981,
             <http://www.rfc-editor.org/info/rfc791>.

  [RFC793]   Postel, J., "Transmission Control Protocol", STD 7,
             RFC 793, DOI 10.17487/RFC0793, September 1981,
             <http://www.rfc-editor.org/info/rfc793>.

  [RFC1981]  McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
             for IP version 6", RFC 1981, DOI 10.17487/RFC1981, August
             1996, <http://www.rfc-editor.org/info/rfc1981>.



Pignataro, et al.            Standards Track                    [Page 8]

RFC 7676                        GRE IPv6                    October 2015


  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC2460]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
             (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
             December 1998, <http://www.rfc-editor.org/info/rfc2460>.

  [RFC2784]  Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
             Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
             DOI 10.17487/RFC2784, March 2000,
             <http://www.rfc-editor.org/info/rfc2784>.

  [RFC2890]  Dommety, G., "Key and Sequence Number Extensions to GRE",
             RFC 2890, DOI 10.17487/RFC2890, September 2000,
             <http://www.rfc-editor.org/info/rfc2890>.

  [RFC4023]  Worster, T., Rekhter, Y., and E. Rosen, Ed.,
             "Encapsulating MPLS in IP or Generic Routing Encapsulation
             (GRE)", RFC 4023, DOI 10.17487/RFC4023, March 2005,
             <http://www.rfc-editor.org/info/rfc4023>.

  [RFC4301]  Kent, S. and K. Seo, "Security Architecture for the
             Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
             December 2005, <http://www.rfc-editor.org/info/rfc4301>.

  [RFC4443]  Conta, A., Deering, S., and M. Gupta, Ed., "Internet
             Control Message Protocol (ICMPv6) for the Internet
             Protocol Version 6 (IPv6) Specification", RFC 4443,
             DOI 10.17487/RFC4443, March 2006,
             <http://www.rfc-editor.org/info/rfc4443>.

6.2.  Informative References

  [OPSEC-V6] Chittimaneni, K., Kaeo, M., and E. Vyncke, "Operational
             Security Considerations for IPv6 Networks", Work in
             Progress, draft-ietf-opsec-v6-07, September 2015.

  [RFC1918]  Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
             and E. Lear, "Address Allocation for Private Internets",
             BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
             <http://www.rfc-editor.org/info/rfc1918>.

  [RFC4942]  Davies, E., Krishnan, S., and P. Savola, "IPv6 Transition/
             Co-existence Security Considerations", RFC 4942,
             DOI 10.17487/RFC4942, September 2007,
             <http://www.rfc-editor.org/info/rfc4942>.



Pignataro, et al.            Standards Track                    [Page 9]

RFC 7676                        GRE IPv6                    October 2015


  [RFC6169]  Krishnan, S., Thaler, D., and J. Hoagland, "Security
             Concerns with IP Tunneling", RFC 6169,
             DOI 10.17487/RFC6169, April 2011,
             <http://www.rfc-editor.org/info/rfc6169>.

  [RFC7042]  Eastlake 3rd, D. and J. Abley, "IANA Considerations and
             IETF Protocol and Documentation Usage for IEEE 802
             Parameters", BCP 141, RFC 7042, DOI 10.17487/RFC7042,
             October 2013, <http://www.rfc-editor.org/info/rfc7042>.

  [RFC7588]  Bonica, R., Pignataro, C., and J. Touch, "A Widely
             Deployed Solution to the Generic Routing Encapsulation
             (GRE) Fragmentation Problem", RFC 7588,
             DOI 10.17487/RFC7588, July 2015,
             <http://www.rfc-editor.org/info/rfc7588>.

Acknowledgements

  The authors would like to thank Fred Baker, Stewart Bryant, Benoit
  Claise, Ben Campbell, Carlos Jesus Bernardos Cano, Spencer Dawkins,
  Dino Farinacci, David Farmer, Brian Haberman, Tom Herbert, Kathleen
  Moriarty, Fred Templin, Joe Touch, Andrew Yourtchenko, and Lucy Yong
  for their thorough review and useful comments.




























Pignataro, et al.            Standards Track                   [Page 10]

RFC 7676                        GRE IPv6                    October 2015


Authors' Addresses

  Carlos Pignataro
  Cisco Systems
  7200-12 Kit Creek Road
  Research Triangle Park, North Carolina  27709
  United States

  Email: [email protected]


  Ron Bonica
  Juniper Networks
  2251 Corporate Park Drive
  Herndon, Virginia
  United States

  Email: [email protected]


  Suresh Krishnan
  Ericsson
  8400 Decarie Blvd.
  Town of Mount Royal, QC
  Canada

  Phone: +1 514 345 7900 x42871
  Email: [email protected]























Pignataro, et al.            Standards Track                   [Page 11]