Internet Engineering Task Force (IETF)                        J. Jimenez
Request for Comments: 7650                                      Ericsson
Category: Standards Track                                  J. Lopez-Vega
ISSN: 2070-1721                                    University of Granada
                                                             J. Maenpaa
                                                           G. Camarillo
                                                               Ericsson
                                                         September 2015


           A Constrained Application Protocol (CoAP) Usage
             for REsource LOcation And Discovery (RELOAD)

Abstract

  This document defines a Constrained Application Protocol (CoAP) Usage
  for REsource LOcation And Discovery (RELOAD).  The CoAP Usage
  provides the functionality to federate Wireless Sensor Networks
  (WSNs) in a peer-to-peer fashion.  The CoAP Usage for RELOAD allows
  CoAP nodes to store resources in a RELOAD peer-to-peer overlay,
  provides a lookup service, and enables the use of RELOAD overlay as a
  cache for sensor data.  This functionality is implemented in the
  RELOAD overlay itself, without the use of centralized servers.  The
  RELOAD AppAttach method is used to establish a direct connection
  between nodes through which CoAP messages are exchanged.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7650.












Jimenez, et al.              Standards Track                    [Page 1]

RFC 7650                 A CoAP Usage for RELOAD          September 2015


Copyright Notice

  Copyright (c) 2015 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
  2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   5
  3.  Architecture  . . . . . . . . . . . . . . . . . . . . . . . .   5
  4.  Registering CoAP URIs . . . . . . . . . . . . . . . . . . . .   7
  5.  Lookup  . . . . . . . . . . . . . . . . . . . . . . . . . . .   8
  6.  Forming a Direct Connection and Reading Data  . . . . . . . .   9
  7.  Caching Mechanisms  . . . . . . . . . . . . . . . . . . . . .  11
    7.1.  ProxyCache  . . . . . . . . . . . . . . . . . . . . . . .  11
    7.2.  SensorCache . . . . . . . . . . . . . . . . . . . . . . .  13
  8.  CoAP Usage Kinds Definition . . . . . . . . . . . . . . . . .  14
    8.1.  CoAP-REGISTRATION Kind  . . . . . . . . . . . . . . . . .  14
    8.2.  CoAP-CACHING Kind . . . . . . . . . . . . . . . . . . . .  15
  9.  Access Control Rules  . . . . . . . . . . . . . . . . . . . .  15
  10. Security Considerations . . . . . . . . . . . . . . . . . . .  16
  11. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  17
    11.1.  CoAP-REGISTRATION Kind-ID  . . . . . . . . . . . . . . .  17
    11.2.  CoAP-CACHING Kind-ID . . . . . . . . . . . . . . . . . .  17
    11.3.  Access Control Policies  . . . . . . . . . . . . . . . .  17
  12. References  . . . . . . . . . . . . . . . . . . . . . . . . .  18
    12.1.  Normative References . . . . . . . . . . . . . . . . . .  18
    12.2.  Informative References . . . . . . . . . . . . . . . . .  18
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  19












Jimenez, et al.              Standards Track                    [Page 2]

RFC 7650                 A CoAP Usage for RELOAD          September 2015


1.  Introduction

  The Constrained Application Protocol (CoAP) Usage for REsource
  LOcation And Discovery (RELOAD) allows CoAP nodes to store resources
  in a RELOAD peer-to-peer overlay, provides a lookup service, and
  enables the use of RELOAD overlay as a cache for sensor data.  This
  functionality is implemented in the RELOAD overlay itself, without
  the use of centralized servers.

  This usage is intended for interconnected devices over a wide-area
  geographical coverage, such as in cases where multiple Wireless
  Sensor Networks (WSNs) need to be federated over some wider-area
  network.  These WSNs would interconnect by means of nodes that are
  equipped with long range modules (e.g., 2G, 3G, 4G) as well as short
  range ones (e.g., XBee, ZigBee, Bluetooth LE).

  Constrained devices are likely to be heterogeneous when it comes to
  their radio layer; however, we expect them to use a common
  application-layer protocol -- CoAP, which is a specialized web
  transfer protocol [RFC7252].  It realizes the Representational State
  Transfer (REST) architecture for the most constrained nodes, such as
  sensors and actuators.  CoAP can be used not only between nodes on
  the same constrained network but also between constrained nodes and
  nodes on the Internet.  The latter is possible since CoAP can be
  translated to Hypertext Transfer Protocol (HTTP) for integration with
  the web.  Application areas of CoAP include different forms of
  machine-to-machine (M2M) communication, such as home automation,
  construction, health care or transportation.  Areas with heavy use of
  sensor and actuator devices that monitor and interact with the
  surrounding environment.

  As specified in [RFC6940], RELOAD is fundamentally an overlay
  network.  It provides a layered architecture with pluggable
  application layers that can use the underlaying forwarding, storage,
  and lookup functionalities.  Figure 1 illustrates where the CoAP
  Usage is placed within the RELOAD architecture.















Jimenez, et al.              Standards Track                    [Page 3]

RFC 7650                 A CoAP Usage for RELOAD          September 2015


      Application

          +-------+
          | CoAP  |   ...
          | Usage |
          +-------+
      ------------------------------------ Messaging Service
      +------------------+     +---------+
      |     Message      |<--->| Storage |
      |    Transport     |     +---------+
      +------------------+           ^
             ^       ^               |
             |       v               v
             |     +-------------------+
             |     |    Topology       |
             |     |    Plug-in        |
             |     +-------------------+
             |         ^
             v         v
          +------------------+
          |  Forwarding &    |
          | Link Management  |
          +------------------+
      ------------------------------------ Overlay Link Service
           +-------+  +-------+
           |TLS    |  |DTLS   |  ...
           |Overlay|  |Overlay|
           |Link   |  |Link   |
           +-------+  +-------+

                         Figure 1: Architecture

  The CoAP Usage involves three basic functions:

  Registration: CoAP nodes that can use the RELOAD data storage
  functionality, can store a mapping from their CoAP URI to their Node-
  ID in the overlay.  They can also retrieve the Node-IDs of other
  nodes.  Nodes that are not RELOAD aware can use other mechanisms, for
  example [CORERESDIR] in their local network.

  Lookup: Once a CoAP node has identified the Node-ID for an URI it
  wishes to retrieve, it can use the RELOAD message routing system to
  set up a connection that can be used to exchange CoAP messages.
  Similarly as with the registration, nodes that are not RELOAD aware
  can use CoAP messages with a RELOAD Node (RN) that will in turn
  perform the lookup in the overlay.





Jimenez, et al.              Standards Track                    [Page 4]

RFC 7650                 A CoAP Usage for RELOAD          September 2015


  Caching: Nodes can use the RELOAD overlay as a caching mechanism for
  information about what CoAP resources are available on the node.
  This is especially useful for power-constrained nodes that can make
  their data available in the cache provided by the overlay while in
  sleep mode.

  For instance, a CoAP proxy (See Section 3) could register its Node-ID
  (e.g. "9996172") and a list of sensors (e.g. "/sensors/temp-1;
  /sensors/temp-2; /sensors/light, /sensors/humidity") under its URI
  (e.g. "coap://overlay-1.com/proxy-1/").

  When a node wants to discover the values associated with that URI, it
  queries the overlay for "coap://overlay-1.com/proxy-1/" and gets back
  the Node-ID of the proxy and the list of its associated sensors.  The
  requesting node can then use the RELOAD overlay to establish a direct
  connection with the proxy and to read sensor values.

  Moreover, the CoAP proxy can store the sensor information in the
  overlay.  In this way, information can be retrieved directly from the
  overlay without performing a direct connection to the storing proxy.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

  We use the terminology and definitions from the RELOAD Base Protocol
  [RFC6940] extensively in this document.  Some of those concepts are
  further described in the "Concepts and Terminology for Peer to Peer
  SIP" [P2PSIP] document.

3.  Architecture

  In our architecture we extend the different nodes present in RELOAD
  (Peer, Client) and add support for sensor devices or other
  constrained devices.  Figure 2 illustrates the overlay topology.  The
  different nodes, according to their functionality, are:

  Client
     As specified in [RFC6940], clients are nodes that do not have
     routing or storage responsibilities in the Overlay.

  Peer
     As specified in [RFC6940], peers are nodes in the overlay that can
     route messages for nodes other than those to which it is directly
     connected.




Jimenez, et al.              Standards Track                    [Page 5]

RFC 7650                 A CoAP Usage for RELOAD          September 2015


  Sensor
     Devices capable of measuring a physical quantity.  Sensors usually
     acquire quantifiable information about their surrounding
     environment such as: temperature, humidity, electric current,
     moisture, radiation, and so on.

  Actuator
     Devices capable of interacting and affecting their environment
     such as: electrical motors, pneumatic actuators, electric
     switches, and so on.

  Proxy Node
     Devices having sufficient resources to run RELOAD either as client
     or peer.  These devices are located at the edge of the sensor
     network and, in case of Wireless Sensor Networks (WSN), act as
     coordinators of the network.

  Physical devices can have one or several of the previous functional
  roles.  According to the functionalities that are present in each of
  the nodes, they can be:

  Constrained Node
     A Constrained Node (CN) is a node with limited computational
     capabilities.  CN devices belong to classes of at least C1 and C2
     devices as defined in [RFC7228], their main constraint being the
     implementation of the CoAP protocol.  If the CN is wireless, then
     it will be part of a Low-Rate Wireless Personal Area Network
     (LR-WPAN), also termed Low-Power and Lossy Network (LLN).  Lastly,
     devices will usually be in sleep mode in order to prevent battery
     drain, and will not communicate during those periods.  A CN is NOT
     part of the RELOAD overlay, therefore it cannot act as a client,
     peer, nor proxy.  A CN is always either a Sensor or an Actuator.
     In the latter case, the node is often connected to a continuous
     energy power supply.

  RELOAD Node
     A RELOAD Node (RN) MUST implement the client functionality in the
     Overlay.  Additionally, the node will often be a full RELOAD peer.
     An RN may also be sensor or actuator since it can have those
     devices connected to it.

  Proxy Node
     A Proxy Node (PN) MUST implement the RN functionality and act as a
     sink for the LR-WPAN network.  The PN connects the short range
     Wireless Network to the Wide Area Network or the Internet.  A
     Proxy Node fulfills the "Proxy Node" role as described previously
     in the Architecture.




Jimenez, et al.              Standards Track                    [Page 6]

RFC 7650                 A CoAP Usage for RELOAD          September 2015


                 +------+
                 |      |
        +--------+  RN  +---------+
        |        |      |         |
    +---+--+     +------+      +--+---+
    |      |                   |      |
    |  RN  |                   |  RN  |
    |      |                   |      |   +------------+
    +---+--+                   +--+---+   |        WSN |
        |         RELOAD          |       |     +----+ |
        |         OVERLAY         |       | +---+ CN | |
    +---+--+                   +--+---+   | |   +----+ |
    |      |                   |      +-----+          |
    |  RN  |                   |  PN  |   |            |
    |      |                   |      +-----+          |
    +---+--+     +------+      +--+---+   | |   +----+ |
        |        |      |         |       | +---+ CN | |
        +--------+  PN  +---------+       |     +----+ |
                 |      |                 +------------+
                 +-+--+-+
                   |  |
          +--------|--|--------+
          |     +--+  +--+     |
          |     |        |     |
          |  +--+-+    +-+--+  |
          |  | CN |    | CN |  |
          |  +----+    +----+  |
          |                WSN |
          +--------------------+

                       Figure 2: Overlay Topology

4.  Registering CoAP URIs

  CoAP URIs are typically resolved using a DNS.  When CoAP is needed in
  a RELOAD environment, URI resolution is provided by the overlay as a
  whole.  Instead of registering a URI, a peer stores a
  CoAPRegistration structure under a hash of its own URI.  This uses
  the CoAP REGISTRATION Kind-ID, which is formally defined in
  Section 8.1 and uses a DICTIONARY data model.

  In this example, a CoAP proxy that is located in an overlay
  overlay-1.com using a Node-ID "9996172" wants to register four
  different sensors to the URI "coap://overlay-1.com/proxy-1/.well-
  known/".  We will be using the link format specified in [RFC6690] to
  store the following mapping in the overlay:





Jimenez, et al.              Standards Track                    [Page 7]

RFC 7650                 A CoAP Usage for RELOAD          September 2015


   Resource-ID = h(coap://overlay-1.com/proxy-1/.well-known/)
   KEY =  9996172,

   VALUE = [
    </sensors/temp-1>;rt="temperature-c";if="sensor",
    </sensors/temp-2>;rt="temperature-c";if="sensor",
    </sensors/light>;rt="light-lux";if="sensor",
    </sensors/humidity>;rt="humidity-p";if="sensor"
       ]

  Note that the Resource-ID stored in the overlay is calculated as hash
  over the URI, that is -- h(URI), which in RELOAD is usually SHA-1.

  This would inform any other node performing a lookup for the previous
  URI "coap://overlay-1.com/proxy-1/.well-known" that the Node-ID value
  for proxy-1 is "9996172".  In addition, this mapping provides
  relevant information as to the number of sensors (CNs) and the URI
  path to connect to them using CoAP.

5.  Lookup

  The RELOAD overlay supports a rendezvous system that can be used for
  the lookup of other CoAP nodes.  This is done by fetching mapping
  information between CoAP URIs and Node-IDs.

  As an example, if a node RN located in the overlay overlay-1.com
  wishes to read which resources are served at an RN with URI
  coap://overlay-1.com/proxy-1/, it performs a fetch in the overlay.
  The Resource-ID used in this fetch is a SHA-1 hash over the URI
  "coap://overlay-1.com/proxy-1/.well-known/".

  After this fetch request, the overlay will return the following
  result:

   Resource-ID = h(coap://overlay-1.com/proxy-1/.well-known/)
   KEY =  9996172,

   VALUE = [
    </sensors/temp-1>;rt="temperature-c";if="sensor",
    </sensors/temp-2>;rt="temperature-c";if="sensor",
    </sensors/light>;rt="light-lux";if="sensor",
    </sensors/humidity>;rt="humidity-p";if="sensor"
    ]

  The obtained KEY is the Node-ID of the RN responsible of this KEY/
  VALUE pair.  The VALUE is the set of URIs necessary to read data from
  the CNs associated with the RN.




Jimenez, et al.              Standards Track                    [Page 8]

RFC 7650                 A CoAP Usage for RELOAD          September 2015


  Using the RELOAD DICTIONARY model allows for multiple nodes to
  perform a store to the same Resource-ID.  This can be used, for
  example, to perform a store of resources of the same type or with
  similar characteristics.  After performing a lookup, this feature
  allows the fetching of those multiple RNs that host CNs of the same
  class.

  As an example, provided that the previous peer (9996172) and another
  peer (9996173) have stored the links to their respective temperature
  resources in this same Resource-ID (temperature), an RN (e.g.,
  node-A) can do a fetch to the URI "coap://overlay-1.com/
  temperature/.well-known/", obtaining the following results:

   Resource-ID = h(coap://overlay-1.com/temperature/.well-known/)

   KEY =  9996172,
   VALUE = [
    </sensors/temp-1>;rt="temperature-c";if="sensor",
    </sensors/temp-2>;rt="temperature-c";if="sensor",
     ]

   KEY = 9996173,
   VALUE = [
    </sensors/temp-a>;rt="temperature-c";if="sensor",
          </sensors/temp-b>;rt="temperature-c";if="sensor"
     ]

6.  Forming a Direct Connection and Reading Data

  Once an RN (e.g., node-A) has obtained the lookup information for a
  node in the overlay (e.g., proxy-1), it can directly connect to that
  node.  This is performed by sending an AppAttach request to the
  Node-ID obtained during the lookup process.

  After the AppAttach negotiation, node-A can access the values of the
  CNs at proxy-1 using the information obtained during the lookup.
  Following the example in Section 5, and according to [RFC6690], the
  requests for accessing the CNs at proxy-1 would be:

   REQ: GET /sensors/temp-1
   REQ: GET /sensors/temp-2










Jimenez, et al.              Standards Track                    [Page 9]

RFC 7650                 A CoAP Usage for RELOAD          September 2015


  Figure 3 shows a sample of a node reading temperature data.

  +-----+     +---------+    +-----+          +---+
  | PNA |     | OVERLAY |    | PNB |          |CNB|
  +-----+     +---------+    +-----+          +---+
     |             |            |                |
     |             |            |                |
     | 1.RELOAD    |            |                |
     | FetchReq    |            |                |
     |+----------->|            |                |
     |             |            |                |
     | 2.RELOAD    |            |                |
     | FetchAns    |            |                |
     |<-----------+|            |                |
     |             |            |                |
     | 3.RELOAD    |            |                |
     |  AppAttach  |            |                |
     |+----------->|            |                |
     |             | 4.RELOAD   |                |
     |             | AppAttach  |                |
     |             |+---------->|                |
     |             |            |                |
     |             | 5.RELOAD   |                |
     | 6.RELOAD    |AppAttachAns|                |
     |AppAttachAns |<----------+|                |
     |<-----------+|            |                |
     |             |            |                |
     |                          |                |
     |   ---------------------  |                |
     | /        7.ICE          \|                |
     | \   connectivity checks /|                |
     |   ---------------------  |                |
     |                          |                |
     |      8.CoAP CON          |                |
     |    GET /sensors/temp-1   |                |
     |+------------------------>|                |
     |                          |  9.CoAP  GET   |
     |                          |/sensors/temp-1 |
     |                          |+-------------->|
     |                          | 10.CoAP        |
     |     11.CoAP              |    ACK 200     |
     |        ACK 200           |<--------------+|
     |<------------------------+|                |
     |                          |                |

               Figure 3: An Example of a Message Sequence





Jimenez, et al.              Standards Track                   [Page 10]

RFC 7650                 A CoAP Usage for RELOAD          September 2015


7.  Caching Mechanisms

  The CoAP protocol itself supports the caching of sensor information
  in order to reduce the response time and network bandwidth
  consumption of future, equivalent requests.  CoAP caching is
  specified in Section 5 of [RFC7252].  It consists of reusing stored
  responses when new requests arrive.  This type of storage is done in
  CoAP proxies.

  This CoAP usage for RELOAD proposes an additional caching mechanism
  for storing sensor information directly in the overlay.  In order to
  do so, it is necessary to define how the data should be stored.  Such
  caching mechanism is primarily intended for CNs with sensor
  capabilities, not for RN sensors.  This is due to the battery
  constraints of CNs, forcing them to stay in sleep mode for long
  periods of time.

  Whenever a CN wakes up, it sends the most recent data from its
  sensors to its proxy (PN), which stores the data in the overlay using
  a RELOAD StoredData structure defined in Section 6 of [RFC6940].  We
  use the StoredDataValue structure defined in Section 6.2 of
  [RFC6940], in particular we use the SingleValue format type to store
  the cached values in the overlay.  From that structure length,
  storage_time, lifetime and Signature are used in the same way.  The
  only difference is DataValue, which in our case can be either a
  ProxyCache or a SensorCache:

  enum { reserved (0), proxy_cache(1), sensor_cache(2), (255) }
               CoAPCachingType;
  struct {
   CoAPCachingType coap_caching_type;

   select(coap_caching_type) {
    case proxy_cache: ProxyCache proxy_cache_entry;
    case sensor_cache: SensorCache sensor_cache_entry;
    /* extensions */

   }
  } CoAPCaching;

7.1.  ProxyCache

  ProxyCache is meant to store values and sensor information (e.g.,
  inactivity time) for all the sensors associated with a certain proxy,
  as well as their CoAP URIs.  SensorCache, on the other hand, is used
  for storing the information and cached value of only one sensor (CoAP
  URI is not necessary, as it is the same as the one used for
  generating the Resource-ID associated to that SensorCache entry).



Jimenez, et al.              Standards Track                   [Page 11]

RFC 7650                 A CoAP Usage for RELOAD          September 2015


  ProxyCache contains the Node-ID, length, and a series of SensorEntry
  types.

  struct {
   Node-ID  Node_ID;
   uint32   length;
   SensorEntry sensors[count];
  } ProxyCache;

  Node-ID
     The Node-ID of the Proxy Node (PN) responsible for different
     sensor devices;

  length
     The length of the rest of the structure;

  Sensor-Entry
     List of sensors in the form of SensorEntry types;

  SensorEntry contains the coap_uri, sensor_info, and a series of
  SensorValue types.

  struct {
   opaque  coap_uri;
   SensorInfo  sensor_info;
   uint32  length;
   SensorValue sensor_value[count];
  } SensorEntry;

  coap_uri
     CoAP name of the sensor device in question;

  sensor_info
     contains relevant sensor information;

  length
     The length of the rest of the structure;

  sensor_value
     contains a list of values stored by the sensor;











Jimenez, et al.              Standards Track                   [Page 12]

RFC 7650                 A CoAP Usage for RELOAD          September 2015


7.2.  SensorCache

  SensorCache: contains the information related to one sensor.

  struct {
   Node-ID  Node_ID;
   SensorInfo sensor_info;
   uint32  length;
   SensorValue sensor_value[count];
  } SensorCache;

  Node_ID
     identifies the Node-ID of the Proxy Node responsible for the
     sensor;

  sensor_info
     contains relevant sensor information;

  length
     The length of the rest of the structure;

  sensor_value
     contains a list of values stored by the sensor;

  SensorInfo contains relevant sensor information that is dependent on
  the use case.  As an example, we use the sensor manufacturer as
  relevant information.

  struct {
   opaque  dev_info;

   /* extensions */

  } SensorInfo;

  dev_info
     Contains specific device information as defined in [RFC6690] --
     for example, temperature, luminosity, etc.  It can also represent
     other semantic information about the device.

  SensorValue contains the measurement_time, lifetime, and value of the
  measurement.









Jimenez, et al.              Standards Track                   [Page 13]

RFC 7650                 A CoAP Usage for RELOAD          September 2015


  struct {
   uint32  measurement_time;
   uint32  lifetime;
   opaque  value;

   /* extensions */

  } SensorValue;

  measurement_time
     indicates the moment when the measure was taken, represented as
     the number of milliseconds elapsed since midnight Jan 1, 1970 UTC
     not counting leap seconds.

  lifetime
     indicates the validity time of that measured value in milliseconds
     since measurement_time.

  value
     indicates the actual value measured.  It can be of different types
     (integer, long, string); therefore, opaque has been used.

8.  CoAP Usage Kinds Definition

  This section defines the CoAP-REGISTRATION and CoAP-CACHING Kinds.

8.1.  CoAP-REGISTRATION Kind

  Kind-IDs
     The Resource Name for the CoAP-REGISTRATION Kind-ID is the CoAP
     URI.  The data stored is a CoAPRegistration, which contains a set
     of CoAP URIs.

  Data Model
     The data model for the CoAP-REGISTRATION Kind-ID is dictionary.
     The dictionary key is the Node-ID of the storing RN.  This allows
     each RN to store a single mapping.

  Access Control
     URI-NODE-MATCH.  The "coap:" prefix needs to be removed from the
     COAP URI before matching.










Jimenez, et al.              Standards Track                   [Page 14]

RFC 7650                 A CoAP Usage for RELOAD          September 2015


  Data stored under the COAP-REGISTRATION Kind is of type
  CoAPRegistration, defined below.

  struct {
   Node-ID Node_ID;
   uint16 coap_uris_length;
   opaque coap_uris (0..2^16-1);
  } CoAPRegistration;

8.2.  CoAP-CACHING Kind

  Kind-IDs
     The Resource Name for the CoAP-CACHING Kind-ID is the CoAP URI.
     The data stored is a CoAPCaching, which contains a cached value.

  Data Model
     The data model for the CoAP-CACHING Kind-ID is single value.

  Access Control
     URI-MATCH.  The "coap:" prefix needs to be removed from the COAP
     URI before matching.

  Data stored under the CoAP-CACHING Kind is of type CoAPCaching,
  defined in Section 7.

9.  Access Control Rules

  As specified in RELOAD Base [RFC6940], every Kind that is storable in
  an overlay must be associated with an access control policy.  This
  policy defines whether a request from a given node to operate on a
  given value should succeed or fail.  Usages can define any access
  control rules they choose, including publicly writable values.

  CoAP Usage for RELOAD requires an access control policy that allows
  multiple nodes in the overlay read and write access.  This access is
  for registering and caching information using CoAP URIs as
  identifiers.  Therefore, none of the access control policies
  specified in RELOAD Base [RFC6940] are sufficient.

  This document defines two access control policies, called URI-MATCH
  and URI-NODE-MATCH.  In the URI-MATCH policy, a given value MUST be
  written and overwritten if and only if the signer's certificate
  contains an uniformResourceIdentifier entry in the subjectAltName
  Extension [RFC5280] that in canonicalized form hashes to the
  Resource-ID for the resource.  As explained in Section 6.3 of
  [RFC7252] the "coap" and "coaps" schemes conform to the generic URI,
  thus they are normalized in the generic form as explained in




Jimenez, et al.              Standards Track                   [Page 15]

RFC 7650                 A CoAP Usage for RELOAD          September 2015


  Section 6 of [RFC3986].  The hash function used is specified in
  Section 10.2 of [RFC6940].  The certificate can be generated as
  specified in Section 9 of [RFC7252], using Certificate mode.

  In the URI-NODE-MATCH policy, a given value MUST be written and
  overwritten if and only if the condition for URI-MATCH is met and, in
  addition, the dictionary key is equal to the Node-ID in the
  certificate and that Node-ID is the one indicated in the
  SignerIdentity value cert_hash.

  These Access Control Policies are specified for IANA in Section 11.3.

10.  Security Considerations

  The security considerations of RELOAD [RFC6940] and CoAP [RFC7252]
  apply to this specification.  RELOAD's security model is based on
  public key certificates, which are used for signing messages and
  stored objects.  At the connection level, RELOAD can use either TLS
  or DTLS.  In the case of CoAP, several security modes have been
  defined.  Implementations of this specification MUST follow all the
  security-related rules specified in the RELOAD [RFC6940] and CoAP
  [RFC7252] specifications.

  Additionally, in RELOAD every Kind that is storable in an overlay
  must be associated with an access control policy.  This document
  specifies two new access control policies, which are specified in
  Section 9.  These policies cover the most typical deployment
  scenarios.

  During the phase of registration and lookup, security considerations
  relevant to RELOAD apply.  A CoAP node that advertises its existence
  via this mechanism, is more likely to be attacked, compared to a node
  (especially a sleepy node) that does not advertise its existence.
  Section 11 of [RFC7252] and Section 13 of [RFC6940] have more
  information about the kinds of attack and mitigation possible.

  The caching mechanism specified in this document is additional to the
  caching already done in CoAP.  Access control is handled by the
  RELOAD overlay, where the peer storing the data is responsible for
  validating the signature on the data being stored.











Jimenez, et al.              Standards Track                   [Page 16]

RFC 7650                 A CoAP Usage for RELOAD          September 2015


11.  IANA Considerations

11.1.  CoAP-REGISTRATION Kind-ID

  This document introduces a data Kind-ID to the "RELOAD Data Kind-ID"
  registry:

      +-------------------+------------+----------+
      | Kind              |    Kind-ID |      RFC |
      +-------------------+------------+----------+
      | CoAP-REGISTRATION |      0x105 | RFC 7650 |
      +-------------------+------------+----------+

  This Kind-ID was defined in Section 8.1.

11.2.  CoAP-CACHING Kind-ID

  This document introduces another data Kind-ID to the "RELOAD Data
  Kind-ID" registry:

      +--------------+------------+----------+
      | Kind         |    Kind-ID |      RFC |
      +--------------+------------+----------+
      | CoAP-CACHING |      0x106 | RFC 7650 |
      +--------------+------------+----------+

  This Kind-ID was defined in Section 8.2.

11.3.  Access Control Policies

  IANA has created a "CoAP Usage for RELOAD Access Control Policy"
  registry.  This registry has been added to the existing RELOAD
  registry.  Entries in this registry are strings denoting access
  control policies, as described in Section 9.  New entries in this
  registry are to be registered per the Specification Required policy
  in [RFC5226].  The initial contents of this registry are:

      +-----------------+----------+
      | Access Policy   |      RFC |
      +-----------------+----------+
      | URI-NODE-MATCH  | RFC 7650 |
      | URI-MATCH       | RFC 7650 |
      +-----------------+----------+

  This access control policy was described in Section 9.






Jimenez, et al.              Standards Track                   [Page 17]

RFC 7650                 A CoAP Usage for RELOAD          September 2015


12.  References

12.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
             Resource Identifier (URI): Generic Syntax", STD 66,
             RFC 3986, DOI 10.17487/RFC3986, January 2005,
             <http://www.rfc-editor.org/info/rfc3986>.

  [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
             Housley, R., and W. Polk, "Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
             <http://www.rfc-editor.org/info/rfc5280>.

  [RFC6690]  Shelby, Z., "Constrained RESTful Environments (CoRE) Link
             Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
             <http://www.rfc-editor.org/info/rfc6690>.

  [RFC6940]  Jennings, C., Lowekamp, B., Ed., Rescorla, E., Baset, S.,
             and H. Schulzrinne, "REsource LOcation And Discovery
             (RELOAD) Base Protocol", RFC 6940, DOI 10.17487/RFC6940,
             January 2014, <http://www.rfc-editor.org/info/rfc6940>.

  [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
             Application Protocol (CoAP)", RFC 7252,
             DOI 10.17487/RFC7252, June 2014,
             <http://www.rfc-editor.org/info/rfc7252>.

12.2.  Informative References

  [CORERESDIR]
             Shelby, Z., Koster, M., Bormann, C., and P. Stok, "CoRE
             Resource Directory", Work in Progress, draft-ietf-core-
             resource-directory-04, July 2015.

  [P2PSIP]   Bryan, D., Matthews, P., Shim, E., Willis, D., and S.
             Dawkins, "Concepts and Terminology for Peer to Peer SIP",
             Work in Progress, draft-ietf-p2psip-concepts-07, May 2015.







Jimenez, et al.              Standards Track                   [Page 18]

RFC 7650                 A CoAP Usage for RELOAD          September 2015


  [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 5226,
             DOI 10.17487/RFC5226, May 2008,
             <http://www.rfc-editor.org/info/rfc5226>.

  [RFC7228]  Bormann, C., Ersue, M., and A. Keranen, "Terminology for
             Constrained-Node Networks", RFC 7228,
             DOI 10.17487/RFC7228, May 2014,
             <http://www.rfc-editor.org/info/rfc7228>.

Authors' Addresses

  Jaime Jimenez
  Ericsson
  Hirsalantie 11
  Jorvas  02420
  Finland

  Email: [email protected]


  Jose M. Lopez-Vega
  University of Granada
  CITIC UGR Periodista Rafael Gomez Montero 2
  Granada  18071
  Spain

  Email: [email protected]


  Jouni Maenpaa
  Ericsson
  Hirsalantie 11
  Jorvas  02420
  Finland

  Email: [email protected]


  Gonzalo Camarillo
  Ericsson
  Hirsalantie 11
  Jorvas  02420
  Finland

  Email: [email protected]





Jimenez, et al.              Standards Track                   [Page 19]