Internet Engineering Task Force (IETF)                  N. Sakimura, Ed.
Request for Comments: 7636                     Nomura Research Institute
Category: Standards Track                                     J. Bradley
ISSN: 2070-1721                                            Ping Identity
                                                             N. Agarwal
                                                                 Google
                                                         September 2015


         Proof Key for Code Exchange by OAuth Public Clients

Abstract

  OAuth 2.0 public clients utilizing the Authorization Code Grant are
  susceptible to the authorization code interception attack.  This
  specification describes the attack as well as a technique to mitigate
  against the threat through the use of Proof Key for Code Exchange
  (PKCE, pronounced "pixy").

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7636.

Copyright Notice

  Copyright (c) 2015 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.




Sakimura, et al.             Standards Track                    [Page 1]

RFC 7636                       OAUTH PKCE                 September 2015


Table of Contents

  1. Introduction ....................................................3
     1.1. Protocol Flow ..............................................5
  2. Notational Conventions ..........................................6
  3. Terminology .....................................................7
     3.1. Abbreviations ..............................................7
  4. Protocol ........................................................8
     4.1. Client Creates a Code Verifier .............................8
     4.2. Client Creates the Code Challenge ..........................8
     4.3. Client Sends the Code Challenge with the
          Authorization Request ......................................9
     4.4. Server Returns the Code ....................................9
          4.4.1. Error Response ......................................9
     4.5. Client Sends the Authorization Code and the Code
          Verifier to the Token Endpoint ............................10
     4.6. Server Verifies code_verifier before Returning the
          Tokens ....................................................10
  5. Compatibility ..................................................11
  6. IANA Considerations ............................................11
     6.1. OAuth Parameters Registry .................................11
     6.2. PKCE Code Challenge Method Registry .......................11
          6.2.1. Registration Template ..............................12
          6.2.2. Initial Registry Contents ..........................13
  7. Security Considerations ........................................13
     7.1. Entropy of the code_verifier ..............................13
     7.2. Protection against Eavesdroppers ..........................13
     7.3. Salting the code_challenge ................................14
     7.4. OAuth Security Considerations .............................14
     7.5. TLS Security Considerations ...............................15
  8. References .....................................................15
     8.1. Normative References ......................................15
     8.2. Informative References ....................................16
  Appendix A.  Notes on Implementing Base64url Encoding without
               Padding  .............................................17
  Appendix B.  Example for the S256 code_challenge_method ...........17
  Acknowledgements ..................................................19
  Authors' Addresses ................................................20













Sakimura, et al.             Standards Track                    [Page 2]

RFC 7636                       OAUTH PKCE                 September 2015


1.  Introduction

  OAuth 2.0 [RFC6749] public clients are susceptible to the
  authorization code interception attack.

  In this attack, the attacker intercepts the authorization code
  returned from the authorization endpoint within a communication path
  not protected by Transport Layer Security (TLS), such as inter-
  application communication within the client's operating system.

  Once the attacker has gained access to the authorization code, it can
  use it to obtain the access token.

  Figure 1 shows the attack graphically.  In step (1), the native
  application running on the end device, such as a smartphone, issues
  an OAuth 2.0 Authorization Request via the browser/operating system.
  The Redirection Endpoint URI in this case typically uses a custom URI
  scheme.  Step (1) happens through a secure API that cannot be
  intercepted, though it may potentially be observed in advanced attack
  scenarios.  The request then gets forwarded to the OAuth 2.0
  authorization server in step (2).  Because OAuth requires the use of
  TLS, this communication is protected by TLS and cannot be
  intercepted.  The authorization server returns the authorization code
  in step (3).  In step (4), the Authorization Code is returned to the
  requester via the Redirection Endpoint URI that was provided in step
  (1).

  Note that it is possible for a malicious app to register itself as a
  handler for the custom scheme in addition to the legitimate OAuth 2.0
  app.  Once it does so, the malicious app is now able to intercept the
  authorization code in step (4).  This allows the attacker to request
  and obtain an access token in steps (5) and (6), respectively.



















Sakimura, et al.             Standards Track                    [Page 3]

RFC 7636                       OAUTH PKCE                 September 2015


   +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+
   | End Device (e.g., Smartphone)  |
   |                                |
   | +-------------+   +----------+ | (6) Access Token  +----------+
   | |Legitimate   |   | Malicious|<--------------------|          |
   | |OAuth 2.0 App|   | App      |-------------------->|          |
   | +-------------+   +----------+ | (5) Authorization |          |
   |        |    ^          ^       |        Grant      |          |
   |        |     \         |       |                   |          |
   |        |      \   (4)  |       |                   |          |
   |    (1) |       \  Authz|       |                   |          |
   |   Authz|        \ Code |       |                   |  Authz   |
   | Request|         \     |       |                   |  Server  |
   |        |          \    |       |                   |          |
   |        |           \   |       |                   |          |
   |        v            \  |       |                   |          |
   | +----------------------------+ |                   |          |
   | |                            | | (3) Authz Code    |          |
   | |     Operating System/      |<--------------------|          |
   | |         Browser            |-------------------->|          |
   | |                            | | (2) Authz Request |          |
   | +----------------------------+ |                   +----------+
   +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+

            Figure 1: Authorization Code Interception Attack

  A number of pre-conditions need to hold for this attack to work:

  1. The attacker manages to register a malicious application on the
     client device and registers a custom URI scheme that is also used
     by another application.  The operating systems must allow a custom
     URI scheme to be registered by multiple applications.

  2. The OAuth 2.0 authorization code grant is used.

  3. The attacker has access to the OAuth 2.0 [RFC6749] "client_id" and
     "client_secret" (if provisioned).  All OAuth 2.0 native app
     client-instances use the same "client_id".  Secrets provisioned in
     client binary applications cannot be considered confidential.

  4. Either one of the following condition is met:

     4a. The attacker (via the installed application) is able to
         observe only the responses from the authorization endpoint.
         When "code_challenge_method" value is "plain", only this
         attack is mitigated.





Sakimura, et al.             Standards Track                    [Page 4]

RFC 7636                       OAUTH PKCE                 September 2015


     4b. A more sophisticated attack scenario allows the attacker to
         observe requests (in addition to responses) to the
         authorization endpoint.  The attacker is, however, not able to
         act as a man in the middle.  This was caused by leaking http
         log information in the OS.  To mitigate this,
         "code_challenge_method" value must be set either to "S256" or
         a value defined by a cryptographically secure
         "code_challenge_method" extension.

  While this is a long list of pre-conditions, the described attack has
  been observed in the wild and has to be considered in OAuth 2.0
  deployments.  While the OAuth 2.0 threat model (Section 4.4.1 of
  [RFC6819]) describes mitigation techniques, they are, unfortunately,
  not applicable since they rely on a per-client instance secret or a
  per-client instance redirect URI.

  To mitigate this attack, this extension utilizes a dynamically
  created cryptographically random key called "code verifier".  A
  unique code verifier is created for every authorization request, and
  its transformed value, called "code challenge", is sent to the
  authorization server to obtain the authorization code.  The
  authorization code obtained is then sent to the token endpoint with
  the "code verifier", and the server compares it with the previously
  received request code so that it can perform the proof of possession
  of the "code verifier" by the client.  This works as the mitigation
  since the attacker would not know this one-time key, since it is sent
  over TLS and cannot be intercepted.

1.1.  Protocol Flow

                                                +-------------------+
                                                |   Authz Server    |
      +--------+                                | +---------------+ |
      |        |--(A)- Authorization Request ---->|               | |
      |        |       + t(code_verifier), t_m  | | Authorization | |
      |        |                                | |    Endpoint   | |
      |        |<-(B)---- Authorization Code -----|               | |
      |        |                                | +---------------+ |
      | Client |                                |                   |
      |        |                                | +---------------+ |
      |        |--(C)-- Access Token Request ---->|               | |
      |        |          + code_verifier       | |    Token      | |
      |        |                                | |   Endpoint    | |
      |        |<-(D)------ Access Token ---------|               | |
      +--------+                                | +---------------+ |
                                                +-------------------+

                    Figure 2: Abstract Protocol Flow



Sakimura, et al.             Standards Track                    [Page 5]

RFC 7636                       OAUTH PKCE                 September 2015


  This specification adds additional parameters to the OAuth 2.0
  Authorization and Access Token Requests, shown in abstract form in
  Figure 2.

  A. The client creates and records a secret named the "code_verifier"
     and derives a transformed version "t(code_verifier)" (referred to
     as the "code_challenge"), which is sent in the OAuth 2.0
     Authorization Request along with the transformation method "t_m".

  B. The Authorization Endpoint responds as usual but records
     "t(code_verifier)" and the transformation method.

  C. The client then sends the authorization code in the Access Token
     Request as usual but includes the "code_verifier" secret generated
     at (A).

  D. The authorization server transforms "code_verifier" and compares
     it to "t(code_verifier)" from (B).  Access is denied if they are
     not equal.

  An attacker who intercepts the authorization code at (B) is unable to
  redeem it for an access token, as they are not in possession of the
  "code_verifier" secret.

2.  Notational Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  "Key words for use in RFCs to Indicate Requirement Levels" [RFC2119].
  If these words are used without being spelled in uppercase, then they
  are to be interpreted with their natural language meanings.

  This specification uses the Augmented Backus-Naur Form (ABNF)
  notation of [RFC5234].

  STRING denotes a sequence of zero or more ASCII [RFC20] characters.

  OCTETS denotes a sequence of zero or more octets.

  ASCII(STRING) denotes the octets of the ASCII [RFC20] representation
  of STRING where STRING is a sequence of zero or more ASCII
  characters.

  BASE64URL-ENCODE(OCTETS) denotes the base64url encoding of OCTETS,
  per Appendix A, producing a STRING.





Sakimura, et al.             Standards Track                    [Page 6]

RFC 7636                       OAUTH PKCE                 September 2015


  BASE64URL-DECODE(STRING) denotes the base64url decoding of STRING,
  per Appendix A, producing a sequence of octets.

  SHA256(OCTETS) denotes a SHA2 256-bit hash [RFC6234] of OCTETS.

3.  Terminology

  In addition to the terms defined in OAuth 2.0 [RFC6749], this
  specification defines the following terms:

  code verifier
     A cryptographically random string that is used to correlate the
     authorization request to the token request.

  code challenge
     A challenge derived from the code verifier that is sent in the
     authorization request, to be verified against later.

  code challenge method
     A method that was used to derive code challenge.

  Base64url Encoding
     Base64 encoding using the URL- and filename-safe character set
     defined in Section 5 of [RFC4648], with all trailing '='
     characters omitted (as permitted by Section 3.2 of [RFC4648]) and
     without the inclusion of any line breaks, whitespace, or other
     additional characters.  (See Appendix A for notes on implementing
     base64url encoding without padding.)

3.1.  Abbreviations

  ABNF   Augmented Backus-Naur Form

  Authz  Authorization

  PKCE   Proof Key for Code Exchange

  MITM   Man-in-the-middle

  MTI    Mandatory To Implement











Sakimura, et al.             Standards Track                    [Page 7]

RFC 7636                       OAUTH PKCE                 September 2015


4.  Protocol

4.1.  Client Creates a Code Verifier

  The client first creates a code verifier, "code_verifier", for each
  OAuth 2.0 [RFC6749] Authorization Request, in the following manner:

  code_verifier = high-entropy cryptographic random STRING using the
  unreserved characters [A-Z] / [a-z] / [0-9] / "-" / "." / "_" / "~"
  from Section 2.3 of [RFC3986], with a minimum length of 43 characters
  and a maximum length of 128 characters.

  ABNF for "code_verifier" is as follows.

  code-verifier = 43*128unreserved
  unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
  ALPHA = %x41-5A / %x61-7A
  DIGIT = %x30-39

  NOTE: The code verifier SHOULD have enough entropy to make it
  impractical to guess the value.  It is RECOMMENDED that the output of
  a suitable random number generator be used to create a 32-octet
  sequence.  The octet sequence is then base64url-encoded to produce a
  43-octet URL safe string to use as the code verifier.

4.2.  Client Creates the Code Challenge

  The client then creates a code challenge derived from the code
  verifier by using one of the following transformations on the code
  verifier:

  plain
     code_challenge = code_verifier

  S256
     code_challenge = BASE64URL-ENCODE(SHA256(ASCII(code_verifier)))

  If the client is capable of using "S256", it MUST use "S256", as
  "S256" is Mandatory To Implement (MTI) on the server.  Clients are
  permitted to use "plain" only if they cannot support "S256" for some
  technical reason and know via out-of-band configuration that the
  server supports "plain".

  The plain transformation is for compatibility with existing
  deployments and for constrained environments that can't use the S256
  transformation.





Sakimura, et al.             Standards Track                    [Page 8]

RFC 7636                       OAUTH PKCE                 September 2015


  ABNF for "code_challenge" is as follows.

  code-challenge = 43*128unreserved
  unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
  ALPHA = %x41-5A / %x61-7A
  DIGIT = %x30-39

4.3.  Client Sends the Code Challenge with the Authorization Request

  The client sends the code challenge as part of the OAuth 2.0
  Authorization Request (Section 4.1.1 of [RFC6749]) using the
  following additional parameters:

  code_challenge
     REQUIRED.  Code challenge.

  code_challenge_method
     OPTIONAL, defaults to "plain" if not present in the request.  Code
     verifier transformation method is "S256" or "plain".

4.4.  Server Returns the Code

  When the server issues the authorization code in the authorization
  response, it MUST associate the "code_challenge" and
  "code_challenge_method" values with the authorization code so it can
  be verified later.

  Typically, the "code_challenge" and "code_challenge_method" values
  are stored in encrypted form in the "code" itself but could
  alternatively be stored on the server associated with the code.  The
  server MUST NOT include the "code_challenge" value in client requests
  in a form that other entities can extract.

  The exact method that the server uses to associate the
  "code_challenge" with the issued "code" is out of scope for this
  specification.

4.4.1.  Error Response

  If the server requires Proof Key for Code Exchange (PKCE) by OAuth
  public clients and the client does not send the "code_challenge" in
  the request, the authorization endpoint MUST return the authorization
  error response with the "error" value set to "invalid_request".  The
  "error_description" or the response of "error_uri" SHOULD explain the
  nature of error, e.g., code challenge required.






Sakimura, et al.             Standards Track                    [Page 9]

RFC 7636                       OAUTH PKCE                 September 2015


  If the server supporting PKCE does not support the requested
  transformation, the authorization endpoint MUST return the
  authorization error response with "error" value set to
  "invalid_request".  The "error_description" or the response of
  "error_uri" SHOULD explain the nature of error, e.g., transform
  algorithm not supported.

4.5.  Client Sends the Authorization Code and the Code Verifier to the
     Token Endpoint

  Upon receipt of the Authorization Code, the client sends the Access
  Token Request to the token endpoint.  In addition to the parameters
  defined in the OAuth 2.0 Access Token Request (Section 4.1.3 of
  [RFC6749]), it sends the following parameter:

  code_verifier
     REQUIRED.  Code verifier

  The "code_challenge_method" is bound to the Authorization Code when
  the Authorization Code is issued.  That is the method that the token
  endpoint MUST use to verify the "code_verifier".

4.6.  Server Verifies code_verifier before Returning the Tokens

  Upon receipt of the request at the token endpoint, the server
  verifies it by calculating the code challenge from the received
  "code_verifier" and comparing it with the previously associated
  "code_challenge", after first transforming it according to the
  "code_challenge_method" method specified by the client.

  If the "code_challenge_method" from Section 4.3 was "S256", the
  received "code_verifier" is hashed by SHA-256, base64url-encoded, and
  then compared to the "code_challenge", i.e.:

  BASE64URL-ENCODE(SHA256(ASCII(code_verifier))) == code_challenge

  If the "code_challenge_method" from Section 4.3 was "plain", they are
  compared directly, i.e.:

  code_verifier == code_challenge.

  If the values are equal, the token endpoint MUST continue processing
  as normal (as defined by OAuth 2.0 [RFC6749]).  If the values are not
  equal, an error response indicating "invalid_grant" as described in
  Section 5.2 of [RFC6749] MUST be returned.






Sakimura, et al.             Standards Track                   [Page 10]

RFC 7636                       OAUTH PKCE                 September 2015


5.  Compatibility

  Server implementations of this specification MAY accept OAuth2.0
  clients that do not implement this extension.  If the "code_verifier"
  is not received from the client in the Authorization Request, servers
  supporting backwards compatibility revert to the OAuth 2.0 [RFC6749]
  protocol without this extension.

  As the OAuth 2.0 [RFC6749] server responses are unchanged by this
  specification, client implementations of this specification do not
  need to know if the server has implemented this specification or not
  and SHOULD send the additional parameters as defined in Section 4 to
  all servers.

6.  IANA Considerations

  IANA has made the following registrations per this document.

6.1.  OAuth Parameters Registry

  This specification registers the following parameters in the IANA
  "OAuth Parameters" registry defined in OAuth 2.0 [RFC6749].

  o  Parameter name: code_verifier
  o  Parameter usage location: token request
  o  Change controller: IESG
  o  Specification document(s): RFC 7636 (this document)

  o  Parameter name: code_challenge
  o  Parameter usage location: authorization request
  o  Change controller: IESG
  o  Specification document(s): RFC 7636 (this document)

  o  Parameter name: code_challenge_method
  o  Parameter usage location: authorization request
  o  Change controller: IESG
  o  Specification document(s): RFC 7636 (this document)

6.2.  PKCE Code Challenge Method Registry

  This specification establishes the "PKCE Code Challenge Methods"
  registry.  The new registry should be a sub-registry of the "OAuth
  Parameters" registry.

  Additional "code_challenge_method" types for use with the
  authorization endpoint are registered using the Specification
  Required policy [RFC5226], which includes review of the request by
  one or more Designated Experts (DEs).  The DEs will ensure that there



Sakimura, et al.             Standards Track                   [Page 11]

RFC 7636                       OAUTH PKCE                 September 2015


  is at least a two-week review of the request on the oauth-ext-
  [email protected] mailing list and that any discussion on that list
  converges before they respond to the request.  To allow for the
  allocation of values prior to publication, the Designated Expert(s)
  may approve registration once they are satisfied that an acceptable
  specification will be published.

  Registration requests and discussion on the [email protected]
  mailing list should use an appropriate subject, such as "Request for
  PKCE code_challenge_method: example").

  The Designated Expert(s) should consider the discussion on the
  mailing list, as well as the overall security properties of the
  challenge method when evaluating registration requests.  New methods
  should not disclose the value of the code_verifier in the request to
  the Authorization endpoint.  Denials should include an explanation
  and, if applicable, suggestions as to how to make the request
  successful.

6.2.1.  Registration Template

  Code Challenge Method Parameter Name:
     The name requested (e.g., "example").  Because a core goal of this
     specification is for the resulting representations to be compact,
     it is RECOMMENDED that the name be short -- not to exceed 8
     characters without a compelling reason to do so.  This name is
     case-sensitive.  Names may not match other registered names in a
     case-insensitive manner unless the Designated Expert(s) states
     that there is a compelling reason to allow an exception in this
     particular case.

  Change Controller:
     For Standards Track RFCs, state "IESG".  For others, give the name
     of the responsible party.  Other details (e.g., postal address,
     email address, and home page URI) may also be included.

  Specification Document(s):
     Reference to the document(s) that specifies the parameter,
     preferably including URI(s) that can be used to retrieve copies of
     the document(s).  An indication of the relevant sections may also
     be included but is not required.










Sakimura, et al.             Standards Track                   [Page 12]

RFC 7636                       OAUTH PKCE                 September 2015


6.2.2.  Initial Registry Contents

  Per this document, IANA has registered the Code Challenge Method
  Parameter Names defined in Section 4.2 in this registry.

  o  Code Challenge Method Parameter Name: plain
  o  Change Controller: IESG
  o  Specification Document(s): Section 4.2 of RFC 7636 (this document)

  o  Code Challenge Method Parameter Name: S256
  o  Change Controller: IESG
  o  Specification Document(s): Section 4.2 of RFC 7636 (this document)

7.  Security Considerations

7.1.  Entropy of the code_verifier

  The security model relies on the fact that the code verifier is not
  learned or guessed by the attacker.  It is vitally important to
  adhere to this principle.  As such, the code verifier has to be
  created in such a manner that it is cryptographically random and has
  high entropy that it is not practical for the attacker to guess.

  The client SHOULD create a "code_verifier" with a minimum of 256 bits
  of entropy.  This can be done by having a suitable random number
  generator create a 32-octet sequence.  The octet sequence can then be
  base64url-encoded to produce a 43-octet URL safe string to use as a
  "code_challenge" that has the required entropy.

7.2.  Protection against Eavesdroppers

  Clients MUST NOT downgrade to "plain" after trying the "S256" method.
  Servers that support PKCE are required to support "S256", and servers
  that do not support PKCE will simply ignore the unknown
  "code_verifier".  Because of this, an error when "S256" is presented
  can only mean that the server is faulty or that a MITM attacker is
  trying a downgrade attack.

  The "S256" method protects against eavesdroppers observing or
  intercepting the "code_challenge", because the challenge cannot be
  used without the verifier.  With the "plain" method, there is a
  chance that "code_challenge" will be observed by the attacker on the
  device or in the http request.  Since the code challenge is the same
  as the code verifier in this case, the "plain" method does not
  protect against the eavesdropping of the initial request.

  The use of "S256" protects against disclosure of the "code_verifier"
  value to an attacker.



Sakimura, et al.             Standards Track                   [Page 13]

RFC 7636                       OAUTH PKCE                 September 2015


  Because of this, "plain" SHOULD NOT be used and exists only for
  compatibility with deployed implementations where the request path is
  already protected.  The "plain" method SHOULD NOT be used in new
  implementations, unless they cannot support "S256" for some technical
  reason.

  The "S256" code challenge method or other cryptographically secure
  code challenge method extension SHOULD be used.  The "plain" code
  challenge method relies on the operating system and transport
  security not to disclose the request to an attacker.

  If the code challenge method is "plain" and the code challenge is to
  be returned inside authorization "code" to achieve a stateless
  server, it MUST be encrypted in such a manner that only the server
  can decrypt and extract it.

7.3.  Salting the code_challenge

  To reduce implementation complexity, salting is not used in the
  production of the code challenge, as the code verifier contains
  sufficient entropy to prevent brute-force attacks.  Concatenating a
  publicly known value to a code verifier (containing 256 bits of
  entropy) and then hashing it with SHA256 to produce a code challenge
  would not increase the number of attempts necessary to brute force a
  valid value for code verifier.

  While the "S256" transformation is like hashing a password, there are
  important differences.  Passwords tend to be relatively low-entropy
  words that can be hashed offline and the hash looked up in a
  dictionary.  By concatenating a unique though public value to each
  password prior to hashing, the dictionary space that an attacker
  needs to search is greatly expanded.

  Modern graphics processors now allow attackers to calculate hashes in
  real time faster than they could be looked up from a disk.  This
  eliminates the value of the salt in increasing the complexity of a
  brute-force attack for even low-entropy passwords.

7.4.  OAuth Security Considerations

  All the OAuth security analysis presented in [RFC6819] applies, so
  readers SHOULD carefully follow it.









Sakimura, et al.             Standards Track                   [Page 14]

RFC 7636                       OAUTH PKCE                 September 2015


7.5.  TLS Security Considerations

  Current security considerations can be found in "Recommendations for
  Secure Use of Transport Layer Security (TLS) and Datagram Transport
  Layer Security (DTLS)" [BCP195].  This supersedes the TLS version
  recommendations in OAuth 2.0 [RFC6749].

8.  References

8.1.  Normative References

  [BCP195]   Sheffer, Y., Holz, R., and P. Saint-Andre,
             "Recommendations for Secure Use of Transport Layer
             Security (TLS) and Datagram Transport Layer Security
             (DTLS)", BCP 195, RFC 7525, May 2015,
             <http://www.rfc-editor.org/info/bcp195>.

  [RFC20]    Cerf, V., "ASCII format for network interchange", STD 80,
             RFC 20, DOI 10.17487/RFC0020, October 1969,
             <http://www.rfc-editor.org/info/rfc20>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
             Resource Identifier (URI): Generic Syntax", STD 66, RFC
             3986, DOI 10.17487/RFC3986, January 2005,
             <http://www.rfc-editor.org/info/rfc3986>.

  [RFC4648]  Josefsson, S., "The Base16, Base32, and Base64 Data
             Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
             <http://www.rfc-editor.org/info/rfc4648>.

  [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 5226,
             DOI 10.17487/RFC5226, May 2008,
             <http://www.rfc-editor.org/info/rfc5226>.

  [RFC5234]  Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
             Specifications: ABNF", STD 68, RFC 5234,
             DOI 10.17487/RFC5234, January 2008,
             <http://www.rfc-editor.org/info/rfc5234>.







Sakimura, et al.             Standards Track                   [Page 15]

RFC 7636                       OAUTH PKCE                 September 2015


  [RFC6234]  Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
             (SHA and SHA-based HMAC and HKDF)", RFC 6234,
             DOI 10.17487/RFC6234, May 2011,
             <http://www.rfc-editor.org/info/rfc6234>.

  [RFC6749]  Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
             RFC 6749, DOI 10.17487/RFC6749, October 2012,
             <http://www.rfc-editor.org/info/rfc6749>.

8.2.  Informative References

  [RFC6819]  Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
             Threat Model and Security Considerations", RFC 6819,
             DOI 10.17487/RFC6819, January 2013,
             <http://www.rfc-editor.org/info/rfc6819>.




































Sakimura, et al.             Standards Track                   [Page 16]

RFC 7636                       OAUTH PKCE                 September 2015


Appendix A.  Notes on Implementing Base64url Encoding without Padding

  This appendix describes how to implement a base64url-encoding
  function without padding, based upon the standard base64-encoding
  function that uses padding.

  To be concrete, example C# code implementing these functions is shown
  below.  Similar code could be used in other languages.

    static string base64urlencode(byte [] arg)
    {
      string s = Convert.ToBase64String(arg); // Regular base64 encoder
      s = s.Split('=')[0]; // Remove any trailing '='s
      s = s.Replace('+', '-'); // 62nd char of encoding
      s = s.Replace('/', '_'); // 63rd char of encoding
      return s;
    }

  An example correspondence between unencoded and encoded values
  follows.  The octet sequence below encodes into the string below,
  which when decoded, reproduces the octet sequence.

  3 236 255 224 193

  A-z_4ME

Appendix B.  Example for the S256 code_challenge_method

  The client uses output of a suitable random number generator to
  create a 32-octet sequence.  The octets representing the value in
  this example (using JSON array notation) are:

     [116, 24, 223, 180, 151, 153, 224, 37, 79, 250, 96, 125, 216, 173,
     187, 186, 22, 212, 37, 77, 105, 214, 191, 240, 91, 88, 5, 88, 83,
     132, 141, 121]

  Encoding this octet sequence as base64url provides the value of the
  code_verifier:

      dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

  The code_verifier is then hashed via the SHA256 hash function to
  produce:

    [19, 211, 30, 150, 26, 26, 216, 236, 47, 22, 177, 12, 76, 152, 46,
     8, 118, 168, 120, 173, 109, 241, 68, 86, 110, 225, 137, 74, 203,
     112, 249, 195]




Sakimura, et al.             Standards Track                   [Page 17]

RFC 7636                       OAUTH PKCE                 September 2015


  Encoding this octet sequence as base64url provides the value of the
  code_challenge:

      E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM

  The authorization request includes:

      code_challenge=E9Melhoa2OwvFrEMTJguCHaoeK1t8URWbuGJSstw-cM
      &code_challenge_method=S256

  The authorization server then records the code_challenge and
  code_challenge_method along with the code that is granted to the
  client.

  In the request to the token_endpoint, the client includes the code
  received in the authorization response as well as the additional
  parameter:

      code_verifier=dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk

  The authorization server retrieves the information for the code
  grant.  Based on the recorded code_challenge_method being S256, it
  then hashes and base64url-encodes the value of code_verifier:

  BASE64URL-ENCODE(SHA256(ASCII(code_verifier)))

  The calculated value is then compared with the value of
  "code_challenge":

  BASE64URL-ENCODE(SHA256(ASCII(code_verifier))) == code_challenge

  If the two values are equal, then the authorization server can
  provide the tokens as long as there are no other errors in the
  request.  If the values are not equal, then the request must be
  rejected, and an error returned.
















Sakimura, et al.             Standards Track                   [Page 18]

RFC 7636                       OAUTH PKCE                 September 2015


Acknowledgements

  The initial draft version of this specification was created by the
  OpenID AB/Connect Working Group of the OpenID Foundation.

  This specification is the work of the OAuth Working Group, which
  includes dozens of active and dedicated participants.  In particular,
  the following individuals contributed ideas, feedback, and wording
  that shaped and formed the final specification:

     Anthony Nadalin, Microsoft
     Axel Nenker, Deutsche Telekom
     Breno de Medeiros, Google
     Brian Campbell, Ping Identity
     Chuck Mortimore, Salesforce
     Dirk Balfanz, Google
     Eduardo Gueiros, Jive Communications
     Hannes Tschonfenig, ARM
     James Manger, Telstra
     Justin Richer, MIT Kerberos
     Josh Mandel, Boston Children's Hospital
     Lewis Adam, Motorola Solutions
     Madjid Nakhjiri, Samsung
     Michael B. Jones, Microsoft
     Paul Madsen, Ping Identity
     Phil Hunt, Oracle
     Prateek Mishra, Oracle
     Ryo Ito, mixi
     Scott Tomilson, Ping Identity
     Sergey Beryozkin
     Takamichi Saito
     Torsten Lodderstedt, Deutsche Telekom
     William Denniss, Google


















Sakimura, et al.             Standards Track                   [Page 19]

RFC 7636                       OAUTH PKCE                 September 2015


Authors' Addresses

  Nat Sakimura (editor)
  Nomura Research Institute
  1-6-5 Marunouchi, Marunouchi Kitaguchi Bldg.
  Chiyoda-ku, Tokyo  100-0005
  Japan

  Phone: +81-3-5533-2111
  Email: [email protected]
  URI:   http://nat.sakimura.org/


  John Bradley
  Ping Identity
  Casilla 177, Sucursal Talagante
  Talagante, RM
  Chile

  Phone: +44 20 8133 3718
  Email: [email protected]
  URI:   http://www.thread-safe.com/


  Naveen Agarwal
  Google
  1600 Amphitheatre Parkway
  Mountain View, CA  94043
  United States

  Phone: +1 650-253-0000
  Email: [email protected]
  URI:   http://google.com/


















Sakimura, et al.             Standards Track                   [Page 20]