Internet Engineering Task Force (IETF)                          W. Mills
Request for Comments: 7628                                     Microsoft
Category: Standards Track                                   T. Showalter
ISSN: 2070-1721
                                                          H. Tschofenig
                                                               ARM Ltd.
                                                            August 2015


 A Set of Simple Authentication and Security Layer (SASL) Mechanisms
                              for OAuth

Abstract

  OAuth enables a third-party application to obtain limited access to a
  protected resource, either on behalf of a resource owner by
  orchestrating an approval interaction or by allowing the third-party
  application to obtain access on its own behalf.

  This document defines how an application client uses credentials
  obtained via OAuth over the Simple Authentication and Security Layer
  (SASL) to access a protected resource at a resource server.  Thereby,
  it enables schemes defined within the OAuth framework for non-HTTP-
  based application protocols.

  Clients typically store the user's long-term credential.  This does,
  however, lead to significant security vulnerabilities, for example,
  when such a credential leaks.  A significant benefit of OAuth for
  usage in those clients is that the password is replaced by a shared
  secret with higher entropy, i.e., the token.  Tokens typically
  provide limited access rights and can be managed and revoked
  separately from the user's long-term password.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7628.





Mills, et al.                Standards Track                    [Page 1]

RFC 7628                       SASL OAuth                    August 2015


Copyright Notice

  Copyright (c) 2015 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
  2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   5
  3.  OAuth SASL Mechanism Specifications . . . . . . . . . . . . .   6
    3.1.  Initial Client Response . . . . . . . . . . . . . . . . .   7
      3.1.1.  Reserved Key/Values . . . . . . . . . . . . . . . . .   8
    3.2.  Server's Response . . . . . . . . . . . . . . . . . . . .   8
      3.2.1.  OAuth Identifiers in the SASL Context . . . . . . . .   9
      3.2.2.  Server Response to Failed Authentication  . . . . . .   9
      3.2.3.  Completing an Error Message Sequence  . . . . . . . .  10
    3.3.  OAuth Access Token Types using Keyed Message Digests  . .  11
  4.  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . .  12
    4.1.  Successful Bearer Token Exchange  . . . . . . . . . . . .  12
    4.2.  Successful OAuth 1.0a Token Exchange  . . . . . . . . . .  13
    4.3.  Failed Exchange . . . . . . . . . . . . . . . . . . . . .  14
    4.4.  SMTP Example of a Failed Negotiation  . . . . . . . . . .  15
  5.  Security Considerations . . . . . . . . . . . . . . . . . . .  16
  6.  Internationalization Considerations . . . . . . . . . . . . .  17
  7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  18
    7.1.  SASL Registration . . . . . . . . . . . . . . . . . . . .  18
  8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  19
    8.1.  Normative References  . . . . . . . . . . . . . . . . . .  19
    8.2.  Informative References  . . . . . . . . . . . . . . . . .  20
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  21
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  21










Mills, et al.                Standards Track                    [Page 2]

RFC 7628                       SASL OAuth                    August 2015


1.  Introduction

  OAuth 1.0a [RFC5849] and OAuth 2.0 [RFC6749] are protocol frameworks
  that enable a third-party application to obtain limited access to a
  protected resource, either by orchestrating an approval interaction
  on behalf of a resource owner or by allowing the third-party
  application to obtain access on its own behalf.

  The core OAuth 2.0 specification [RFC6749] specifies the interaction
  between the OAuth client and the authorization server; it does not
  define the interaction between the OAuth client and the resource
  server for the access to a protected resource using an access token.
  Instead, the OAuth client to resource server interaction is described
  in separate specifications, such as the bearer token specification
  [RFC6750].  OAuth 1.0a includes the protocol specification for the
  communication between the OAuth client and the resource server in
  [RFC5849].

  The main use cases for OAuth 1.0a and OAuth 2.0 have so far focused
  on an HTTP-based [RFC7230] environment only.  This document
  integrates OAuth 1.0a and OAuth 2.0 into non-HTTP-based applications
  using the integration into the Simple Authentication and Security
  Layer (SASL) [RFC4422].  Hence, this document takes advantage of the
  OAuth protocol and its deployment base to provide a way to use SASL
  to gain access to resources when using non-HTTP-based protocols, such
  as the Internet Message Access Protocol (IMAP) [RFC3501] and the
  Simple Mail Transfer Protocol (SMTP) [RFC5321].  This document gives
  examples of use in IMAP and SMTP.

  To illustrate the impact of integrating this specification into an
  OAuth-enabled application environment, Figure 1 shows the abstract
  message flow of OAuth 2.0 [RFC6749].  As indicated in the figure,
  this document impacts the exchange of messages (E) and (F) since SASL
  is used for interaction between the client and the resource server
  instead of HTTP.
















Mills, et al.                Standards Track                    [Page 3]

RFC 7628                       SASL OAuth                    August 2015


                                                             ----+
  +--------+                                  +---------------+  |
  |        |--(A)-- Authorization Request --->|   Resource    |  |
  |        |                                  |    Owner      |  |Plain
  |        |<-(B)------ Access Grant ---------|               |  |OAuth
  |        |                                  +---------------+  |2.0
  |        |                                                     |
  |        |         Client Credentials &     +---------------+  |
  |        |--(C)------ Access Grant -------->| Authorization |  |
  | Client |                                  |    Server     |  |
  |        |<-(D)------ Access Token ---------|               |  |
  |        |      (w/ Optional Refresh Token) +---------------+  |
  |        |                                                 ----+
  |        |                                                 ----+
  |        |                                  +---------------+  |
  |        |                                  |               |  |OAuth
  |        |--(E)------ Access Token -------->|   Resource    |  |over
  |        |                                  |    Server     |  |SASL
  |        |<-(F)---- Protected Resource -----|               |  |
  |        |                                  |               |  |
  +--------+                                  +---------------+  |
                                                             ----+

                    Figure 1: OAuth 2.0 Protocol Flow

  SASL is a framework for providing authentication and data security
  services in connection-oriented protocols via replaceable
  authentication mechanisms.  It provides a structured interface
  between protocols and mechanisms.  The resulting framework allows new
  protocols to reuse existing authentication mechanisms and allows old
  protocols to make use of new authentication mechanisms.  The
  framework also provides a protocol for securing subsequent exchanges
  within a data security layer.

  When OAuth is integrated into SASL, the high-level steps are as
  follows:

  (A)  The client requests authorization from the resource owner.  The
       authorization request can be made directly to the resource owner
       (as shown) or indirectly via the authorization server as an
       intermediary.

  (B)  The client receives an authorization grant, which is a
       credential representing the resource owner's authorization,
       expressed using one of the grant types defined in [RFC6749] or
       [RFC5849] or using an extension grant type.  The authorization
       grant type depends on the method used by the client to request




Mills, et al.                Standards Track                    [Page 4]

RFC 7628                       SASL OAuth                    August 2015


       authorization and the types supported by the authorization
       server.

  (C)  The client requests an access token by authenticating with the
       authorization server and presenting the authorization grant.

  (D)  The authorization server authenticates the client and validates
       the authorization grant, and if valid, it issues an access
       token.

  (E)  The client requests the protected resource from the resource
       server and authenticates it by presenting the access token.

  (F)  The resource server validates the access token, and if valid, it
       indicates a successful authentication.

  Again, steps (E) and (F) are not defined in [RFC6749] (but are
  described in, for example, [RFC6750] for the OAuth bearer token
  instead) and are the main functionality specified within this
  document.  Consequently, the message exchange shown in Figure 1 is
  the result of this specification.  The client will generally need to
  determine the authentication endpoints (and perhaps the service
  endpoints) before the OAuth 2.0 protocol exchange messages in steps
  (A)-(D) are executed.  The discovery of the resource owner,
  authorization server endpoints, and client registration are outside
  the scope of this specification.  The client must discover the
  authorization endpoints using a discovery mechanism such as OpenID
  Connect Discovery (OIDCD) [OpenID.Discovery] or WebFinger using host-
  meta [RFC7033].  Once credentials are obtained, the client proceeds
  to steps (E) and (F) defined in this specification.  Authorization
  endpoints MAY require client registration, and generic clients SHOULD
  support the Dynamic Client Registration protocol [RFC7591].

  OAuth 1.0a follows a similar model but uses a different terminology
  and does not separate the resource server from the authorization
  server.

2.  Terminology

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  [RFC2119].

  The reader is assumed to be familiar with the terms used in the OAuth
  2.0 specification [RFC6749] and SASL [RFC4422].





Mills, et al.                Standards Track                    [Page 5]

RFC 7628                       SASL OAuth                    August 2015


  In examples, "C:" and "S:" indicate lines sent by the client and
  server, respectively.  Line breaks have been inserted for
  readability.

  Note that the IMAP SASL specification requires base64 encoding, as
  specified in Section 4 of [RFC4648].

3.  OAuth SASL Mechanism Specifications

  SASL is used as an authentication framework in a variety of
  application-layer protocols.  This document defines the following
  SASL mechanisms for usage with OAuth:

     OAUTHBEARER:  OAuth 2.0 bearer tokens, as described in [RFC6750].
        RFC 6750 uses Transport Layer Security (TLS) [RFC5246] to
        secure the protocol interaction between the client and the
        resource server.

     OAUTH10A:  OAuth 1.0a Message Authentication Code (MAC) tokens
        (using the HMAC-SHA1 keyed message digest), as described in
        Section 3.4.2 of [RFC5849].

  New extensions may be defined to add additional OAuth Access Token
  Types.  Such a new SASL OAuth mechanism can be added by registering
  the new name(s) with IANA in the SASL Mechanisms registry and citing
  this specification for the further definition.

  SASL mechanisms using this document as their definition do not
  provide a data security layer; that is, they cannot provide integrity
  or confidentiality protection for application messages after the
  initial authentication.  If such protection is needed, TLS or some
  similar solution should be used.  Additionally, for the two
  mechanisms specified in this document, TLS MUST be used for
  OAUTHBEARER to protect the bearer token; for OAUTH10A, the use of TLS
  is RECOMMENDED.

  These mechanisms are client initiated and in lockstep, with the
  server always replying to a client message.  In the case where the
  client has and correctly uses a valid token, the flow is:

  1.  Client sends a valid and correct initial client response.

  2.  Server responds with a successful authentication.

  In the case where authentication fails, the server sends an error
  result; the client MUST then send an additional message to the server
  in order to allow the server to finish the exchange.  Some protocols
  and common SASL implementations do not support both sending a SASL



Mills, et al.                Standards Track                    [Page 6]

RFC 7628                       SASL OAuth                    August 2015


  message and finalizing a SASL negotiation.  The additional client
  message in the error case deals with this problem.  This exchange is:

  1.  Client sends an invalid initial client response.

  2.  Server responds with an error message.

  3.  Client sends a dummy client response.

  4.  Server fails the authentication.

3.1.  Initial Client Response

  Client responses are a GS2 [RFC5801] header followed by zero or more
  key/value pairs, or it may be empty.  The gs2-header rule is defined
  here as a placeholder for compatibility with GS2 if a GS2 mechanism
  is formally defined, but this document does not define one.  The key/
  value pairs take the place of the corresponding HTTP headers and
  values to convey the information necessary to complete an OAuth-style
  HTTP authorization.  Unknown key/value pairs MUST be ignored by the
  server.  The ABNF [RFC5234] syntax is:

    kvsep          = %x01
    key            = 1*(ALPHA)
    value          = *(VCHAR / SP / HTAB / CR / LF )
    kvpair         = key "=" value kvsep
  ;;gs2-header     = See RFC 5801
    client-resp    = (gs2-header kvsep *kvpair kvsep) / kvsep

  The GS2 header MAY include the username associated with the resource
  being accessed, the "authzid".  It is worth noting that application
  protocols are allowed to require an authzid, as are specific server
  implementations.

  The client response consisting of only a single kvsep is used only
  when authentication fails and is only valid in that context.  If sent
  as the first message from the client, the server MAY simply fail the
  authentication without returning discovery information since there is
  no user or server name indication.

  The following keys and corresponding values are defined in the client
  response:

     auth (REQUIRED):  The payload that would be in the HTTP
        Authorization header if this OAuth exchange was being carried
        out over HTTP.





Mills, et al.                Standards Track                    [Page 7]

RFC 7628                       SASL OAuth                    August 2015


     host:  Contains the hostname to which the client connected.  In an
        HTTP context, this is the value of the HTTP Host header.

     port:  Contains the destination port that the client connected to,
        represented as a decimal positive integer string without
        leading zeros.

  For OAuth token types such as OAuth 1.0a that use keyed message
  digests, the client MUST send host and port number key/values, and
  the server MUST fail an authorization request requiring keyed message
  digests that are not accompanied by host and port values.  In OAuth
  1.0a, for example, the so-called "signature base string calculation"
  includes the reconstructed HTTP URL.

3.1.1.  Reserved Key/Values

  In these mechanisms, values for path, query string and post body are
  assigned default values.  OAuth authorization schemes MAY define
  usage of these in the SASL context and extend this specification.
  For OAuth Access Token Types that include a keyed message digest of
  the request, the default values MUST be used unless explicit values
  are provided in the client response.  The following key values are
  reserved for future use:

     mthd (RESERVED):  HTTP method; the default value is "POST".

     path (RESERVED):  HTTP path data; the default value is "/".

     post (RESERVED):  HTTP post data; the default value is the empty
        string ("").

     qs (RESERVED):  The HTTP query string; the default value is the
        empty string ("").

3.2.  Server's Response

  The server validates the response according to the specification for
  the OAuth Access Token Types used.  If the OAuth Access Token Type
  utilizes a keyed message digest of the request parameters, then the
  client must provide a client response that satisfies the data
  requirements for the scheme in use.

  The server fully validates the client response before generating a
  server response; this will necessarily include the validation steps
  listed in the specification for the OAuth Access Token Type used.
  However, additional validation steps may be needed, depending on the
  particular application protocol making use of SASL.  In particular,
  values included as kvpairs in the client response (such as host and



Mills, et al.                Standards Track                    [Page 8]

RFC 7628                       SASL OAuth                    August 2015


  port) that correspond to values known to the application server by
  some other mechanism (such as an application protocol data unit or
  preconfigured values) MUST be validated to match between the initial
  client response and the other source(s) of such information.  As a
  concrete example, when SASL is used over IMAP to an IMAP server for a
  single domain, the hostname can be available via configuration; this
  hostname must be validated to match the value sent in the 'host'
  kvpair.

  The server responds to a successfully verified client message by
  completing the SASL negotiation.  The authenticated identity reported
  by the SASL mechanism is the identity securely established for the
  client with the OAuth credential.  The application, not the SASL
  mechanism, based on local access policy determines whether the
  identity reported by the mechanism is allowed access to the requested
  resource.  Note that the semantics of the authzid are specified by
  the SASL framework [RFC4422].

3.2.1.  OAuth Identifiers in the SASL Context

  In the OAuth framework, the client may be authenticated by the
  authorization server, and the resource owner is authenticated to the
  authorization server.  OAuth access tokens may contain information
  about the authentication of the resource owner and about the client
  and may therefore make this information accessible to the resource
  server.

  If both identifiers are needed by an application the developer will
  need to provide a way to communicate that from the SASL mechanism
  back to the application.

3.2.2.  Server Response to Failed Authentication

  For a failed authentication, the server returns an error result in
  JSON [RFC7159] format and fails the authentication.  The error result
  consists of the following values:

     status (REQUIRED):  The authorization error code.  Valid error
        codes are defined in the IANA "OAuth Extensions Error Registry"
        as specified in the OAuth 2.0 core specification.

     scope (OPTIONAL):  An OAuth scope that is valid to access the
        service.  This may be omitted, which implies that unscoped
        tokens are required.  If a scope is specified, then a single
        scope is preferred.  At the time this document was written,
        there are several implementations that do not properly support
        space-separated lists of scopes, so the use of a space-
        separated list of scopes is NOT RECOMMENDED.



Mills, et al.                Standards Track                    [Page 9]

RFC 7628                       SASL OAuth                    August 2015


     openid-configuration (OPTIONAL):  The URL for a document following
        the OpenID Provider Configuration Information schema as
        described in OIDCD [OpenID.Discovery], Section 3 that is
        appropriate for the user.  As specified in OIDCD, this will
        have the "https" URL scheme.  This document MUST have all
        OAuth-related data elements populated.  The server MAY return
        different URLs for users in different domains, and the client
        SHOULD NOT cache a single returned value and assume it applies
        for all users/domains that the server supports.  The returned
        discovery document SHOULD have all data elements required by
        the OpenID Connect Discovery specification populated.  In
        addition, the discovery document SHOULD contain the
        'registration_endpoint' element to identify the endpoint to be
        used with the Dynamic Client Registration protocol [RFC7591] to
        obtain the minimum number of parameters necessary for the OAuth
        protocol exchange to function.  Another comparable discovery or
        client registration mechanism MAY be used if available.

        The use of the 'offline_access' scope, as defined in
        [OpenID.Core], is RECOMMENDED to give clients the capability to
        explicitly request a refresh token.

  If the resource server provides a scope, then the client MUST always
  request scoped tokens from the token endpoint.  If the resource
  server does not return a scope, the client SHOULD presume an unscoped
  token is required to access the resource.

  Since clients may interact with a number of application servers, such
  as email servers and Extensible Messaging and Presence Protocol
  (XMPP) [RFC6120] servers, they need to have a way to determine
  whether dynamic client registration has been performed already and
  whether an already available refresh token can be reused to obtain an
  access token for the desired resource server.  This specification
  RECOMMENDS that a client uses the information in the 'iss' element
  defined in OpenID Connect Core [OpenID.Core] to make this
  determination.

3.2.3.  Completing an Error Message Sequence

  Section 3.6 of SASL [RFC4422] explicitly prohibits additional
  information in an unsuccessful authentication outcome.  Therefore,
  the error message is sent in a normal message.  The client MUST then
  send either an additional client response consisting of a single %x01
  (control A) character to the server in order to allow the server to
  finish the exchange or a SASL abort message as generally defined in
  Section 3.5 of SASL [RFC4422].  A specific example of an abort
  message is the "BAD" response to an AUTHENTICATE in IMAP [RFC3501],
  Section 6.2.2.



Mills, et al.                Standards Track                   [Page 10]

RFC 7628                       SASL OAuth                    August 2015


3.3.  OAuth Access Token Types using Keyed Message Digests

  OAuth Access Token Types may use keyed message digests, and the
  client and the resource server may need to perform a cryptographic
  computation for integrity protection and data origin authentication.

  OAuth is designed for access to resources identified by URIs.  SASL
  is designed for user authentication and has no facility for more
  fine-grained access control.  In this specification, we require or
  define default values for the data elements from an HTTP request that
  allows the signature base string to be constructed properly.  The
  default HTTP path is "/", and the default post body is empty.  These
  atoms are defined as extension points so that no changes are needed
  if there is a revision of SASL that supports more specific resource
  authorization, e.g., IMAP access to a specific folder or FTP access
  limited to a specific directory.

  Using the example in the OAuth 1.0a specification as a starting
  point, below is the authorization request in OAuth 1.0a style (with
  %x01 shown as ^A and line breaks added for readability), assuming it
  is on an IMAP server running on port 143:

  n,[email protected],^A
  host=example.com^A
  port=143^A
  auth=OAuth realm="Example",
             oauth_consumer_key="9djdj82h48djs9d2",
             oauth_token="kkk9d7dh3k39sjv7",
             oauth_signature_method="HMAC-SHA1",
             oauth_timestamp="137131201",
             oauth_nonce="7d8f3e4a",
             oauth_signature="Tm90IGEgcmVhbCBzaWduYXR1cmU"^A^A

  The signature base string would be constructed per the OAuth 1.0a
  specification [RFC5849] with the following things noted:

  o  The method value is defaulted to POST.

  o  The scheme defaults to be "http", and any port number other than
     80 is included.

  o  The path defaults to "/".

  o  The query string defaults to "".







Mills, et al.                Standards Track                   [Page 11]

RFC 7628                       SASL OAuth                    August 2015


  In this example, the signature base string with line breaks added for
  readability would be:

  POST&http%3A%2F%2Fexample.com:143%2F&oauth_consumer_key%3D9djdj82h4
  8djs9d2%26oauth_nonce%3D7d8f3e4a%26oauth_signature_method%3DHMAC-SH
  A1%26oauth_timestamp%3D137131201%26oauth_token%3Dkkk9d7dh3k39sjv7

4.  Examples

  These examples illustrate exchanges between IMAP and SMTP clients and
  servers.  All IMAP examples use SASL-IR [RFC4959] and send payload in
  the initial client response.  The bearer token examples assume
  encrypted transport; if the underlying connection is not already TLS,
  then STARTTLS MUST be used as TLS is required in the bearer token
  specification.

  Note to implementers: The SASL OAuth method names are case
  insensitive.  One example uses "Bearer" but that could as easily be
  "bearer", "BEARER", or "BeArEr".

4.1.  Successful Bearer Token Exchange

  This example shows a successful OAuth 2.0 bearer token exchange in
  IMAP.  Note that line breaks are inserted for readability.

  [Initial connection and TLS establishment...]
  S: * OK IMAP4rev1 Server Ready
  C: t0 CAPABILITY
  S: * CAPABILITY IMAP4rev1 AUTH=OAUTHBEARER SASL-IR
  S: t0 OK Completed
  C: t1 AUTHENTICATE OAUTHBEARER bixhPXVzZXJAZXhhbXBsZS5jb20sAWhv
        c3Q9c2VydmVyLmV4YW1wbGUuY29tAXBvcnQ9MTQzAWF1dGg9QmVhcmVyI
        HZGOWRmdDRxbVRjMk52YjNSbGNrQmhiSFJoZG1semRHRXVZMjl0Q2c9PQ
        EB
  S: t1 OK SASL authentication succeeded

  As required by IMAP [RFC3501], the payloads are base64 encoded.  The
  decoded initial client response (with %x01 represented as ^A and long
  lines wrapped for readability) is:

  n,[email protected],^Ahost=server.example.com^Aport=143^A
  auth=Bearer vF9dft4qmTc2Nvb3RlckBhbHRhdmlzdGEuY29tCg==^A^A









Mills, et al.                Standards Track                   [Page 12]

RFC 7628                       SASL OAuth                    August 2015


  The same credential used in an SMTP exchange is shown below.  Again,
  this example assumes that TLS is already established per the bearer
  token specification requirements.

  [connection begins]
  S: 220 mx.example.com ESMTP 12sm2095603fks.9
  C: EHLO sender.example.com
  S: 250-mx.example.com at your service,[172.31.135.47]
  S: 250-SIZE 35651584
  S: 250-8BITMIME
  S: 250-AUTH LOGIN PLAIN OAUTHBEARER
  S: 250-ENHANCEDSTATUSCODES
  S: 250-STARTTLS
  S: 250 PIPELINING
  [Negotiate TLS...]
  C: t1 AUTH OAUTHBEARER bixhPXVzZXJAZXhhbXBsZS5jb20sAWhvc3Q9c2Vy
        dmVyLmV4YW1wbGUuY29tAXBvcnQ9NTg3AWF1dGg9QmVhcmVyIHZGOWRmd
        DRxbVRjMk52YjNSbGNrQmhiSFJoZG1semRHRXVZMjl0Q2c9PQEB
  S: 235 Authentication successful.
  [connection continues...]

  The decoded initial client response is:

  n,[email protected],^Ahost=server.example.com^Aport=587^A
  auth=Bearer vF9dft4qmTc2Nvb3RlckBhbHRhdmlzdGEuY29tCg==^A^A

4.2.  Successful OAuth 1.0a Token Exchange

  This IMAP example shows a successful OAuth 1.0a token exchange.  Note
  that line breaks are inserted for readability.  This example assumes
  that TLS is already established.  Signature computation is discussed
  in Section 3.3.

  S: * OK IMAP4rev1 Server Ready
  C: t0 CAPABILITY
  S: * CAPABILITY IMAP4rev1 AUTH=OAUTHBEARER AUTH=OAUTH10A SASL-IR
  S: t0 OK Completed
  C: t1 AUTHENTICATE OAUTH10A bixhPXVzZXJAZXhhbXBsZS5jb20sAWhvc3Q9ZXhhb
        XBsZS5jb20BcG9ydD0xNDMBYXV0aD1PQXV0aCByZWFsbT0iRXhhbXBsZSIsb2F1
        dGhfY29uc3VtZXJfa2V5PSI5ZGpkajgyaDQ4ZGpzOWQyIixvYXV0aF90b2tlbj0
        ia2trOWQ3ZGgzazM5c2p2NyIsb2F1dGhfc2lnbmF0dXJlX21ldGhvZD0iSE1BQy
        1TSEExIixvYXV0aF90aW1lc3RhbXA9IjEzNzEzMTIwMSIsb2F1dGhfbm9uY2U9I
        jdkOGYzZTRhIixvYXV0aF9zaWduYXR1cmU9IlRtOTBJR0VnY21WaGJDQnphV2R1
        WVhSMWNtVSUzRCIBAQ==
  S: t1 OK SASL authentication succeeded






Mills, et al.                Standards Track                   [Page 13]

RFC 7628                       SASL OAuth                    August 2015


  As required by IMAP [RFC3501], the payloads are base64 encoded.  The
  decoded initial client response (with %x01 represented as ^A and
  lines wrapped for readability) is:

  n,[email protected],^A
  host=example.com^A
  port=143^A
  auth=OAuth realm="Example",
             oauth_consumer_key="9djdj82h48djs9d2",
             oauth_token="kkk9d7dh3k39sjv7",
             oauth_signature_method="HMAC-SHA1",
             oauth_timestamp="137131201",
             oauth_nonce="7d8f3e4a",
             oauth_signature="SSdtIGEgbGl0dGxlIHRlYSBwb3Qu"^A^A

4.3.  Failed Exchange

  This IMAP example shows a failed exchange because of the empty
  Authorization header, which is how a client can query for the needed
  scope.  Note that line breaks are inserted for readability.

  S: * OK IMAP4rev1 Server Ready
  C: t0 CAPABILITY
  S: * CAPABILITY IMAP4rev1 AUTH=OAUTHBEARER SASL-IR
  S: t0 OK Completed
  C: t1 AUTHENTICATE OAUTHBEARER bixhPXVzZXJAZXhhbXBsZS5jb20sAW
        hvc3Q9c2VydmVyLmV4YW1wbGUuY29tAXBvcnQ9MTQzAWF1dGg9AQE=
  S: + eyJzdGF0dXMiOiJpbnZhbGlkX3Rva2VuIiwic2NvcGUiOiJleGFtcGxl
       X3Njb3BlIiwib3BlbmlkLWNvbmZpZ3VyYXRpb24iOiJodHRwczovL2V4
       YW1wbGUuY29tLy53ZWxsLWtub3duL29wZW5pZC1jb25maWd1cmF0aW9u
       In0=
  C: AQ==
  S: t1 NO SASL authentication failed

  The decoded initial client response is:

  n,[email protected],^Ahost=server.example.com^A
  port=143^Aauth=^A^A

  The decoded server error response is:

 {
 "status":"invalid_token",
 "scope":"example_scope",
 "openid-configuration":"https://example.com/.well-known/openid-config"
 }





Mills, et al.                Standards Track                   [Page 14]

RFC 7628                       SASL OAuth                    August 2015


  The client responds with the required dummy response; "AQ==" is the
  base64 encoding of the ASCII value 0x01.  The same exchange using the
  IMAP-specific method of canceling an AUTHENTICATE command sends "*"
  and is shown below.

  S: * OK IMAP4rev1 Server Ready
  C: t0 CAPABILITY
  S: * CAPABILITY IMAP4rev1 AUTH=OAUTHBEARER SASL-IR IMAP4rev1
  S: t0 OK Completed
  C: t1 AUTHENTICATE OAUTHBEARER bixhPXVzZXJAZXhhbXBsZS5jb20sAW
       hvc3Q9c2VydmVyLmV4YW1wbGUuY29tAXBvcnQ9MTQzAWF1dGg9AQE=
  S: + eyJzdGF0dXMiOiJpbnZhbGlkX3Rva2VuIiwic2NvcGUiOiJleGFtcGxl
       X3Njb3BlIiwib3BlbmlkLWNvbmZpZ3VyYXRpb24iOiJodHRwczovL2V4
       YW1wbGUuY29tLy53ZWxsLWtub3duL29wZW5pZC1jb25maWd1cmF0aW9u
       In0=
  C: *
  S: t1 NO SASL authentication failed

4.4.  SMTP Example of a Failed Negotiation

  This example shows an authorization failure in an SMTP exchange.  TLS
  negotiation is not shown, but as noted above, it is required for the
  use of bearer tokens.

[connection begins]
S: 220 mx.example.com ESMTP 12sm2095603fks.9
C: EHLO sender.example.com
S: 250-mx.example.com at your service,[172.31.135.47]
S: 250-SIZE 35651584
S: 250-8BITMIME
S: 250-AUTH LOGIN PLAIN OAUTHBEARER
S: 250-ENHANCEDSTATUSCODES
S: 250 PIPELINING
[Negotiate TLS...]
C: AUTH OAUTHBEARER bix1c2VyPXNvbWV1c2VyQGV4YW1wbGUuY29tLAFhdXRoPUJlYXJl
      ciB2RjlkZnQ0cW1UYzJOdmIzUmxja0JoZEhSaGRtbHpkR0V1WTI5dENnPT0BAQ==
S: 334 eyJzdGF0dXMiOiJpbnZhbGlkX3Rva2VuIiwic2NoZW1lcyI6ImJlYXJlciBtYWMiL
      CJzY29wZSI6Imh0dHBzOi8vbWFpbC5leGFtcGxlLmNvbS8ifQ==
C: AQ==
S: 535-5.7.1 Username and Password not accepted. Learn more at
S: 535 5.7.1 http://support.example.com/mail/oauth
[connection continues...]

  The initial client response is:

  n,[email protected],^A
  auth=Bearer vF9dft4qmTc2Nvb3RlckBhdHRhdmlzdGEuY29tCg==^A^A




Mills, et al.                Standards Track                   [Page 15]

RFC 7628                       SASL OAuth                    August 2015


  The server returned an error message in the 334 SASL message; the
  client responds with the required dummy response, and the server
  finalizes the negotiation.

  {
      "status":"invalid_token",
      "schemes":"bearer mac",
      "scope":"https://mail.example.com/"
  }

5.  Security Considerations

  OAuth 1.0a and OAuth 2.0 allow for a variety of deployment scenarios,
  and the security properties of these profiles vary.  As shown in
  Figure 1, this specification is aimed to be integrated into a larger
  OAuth deployment.  Application developers therefore need to
  understand their security requirements based on a threat assessment
  before selecting a specific SASL OAuth mechanism.  For OAuth 2.0, a
  detailed security document [RFC6819] provides guidance to select
  those OAuth 2.0 components that help to mitigate threats for a given
  deployment.  For OAuth 1.0a, Section 4 of [RFC5849] provides guidance
  specific to OAuth 1.0a.

  This document specifies two SASL Mechanisms for OAuth and each comes
  with different security properties.

  OAUTHBEARER:  This mechanism borrows from OAuth 2.0 bearer tokens
     [RFC6750].  It relies on the application using TLS to protect the
     OAuth 2.0 bearer token exchange; without TLS usage at the
     application layer, this method is completely insecure.
     Consequently, TLS MUST be provided by the application when
     choosing this authentication mechanism.

  OAUTH10A:  This mechanism reuses OAuth 1.0a MAC tokens (using the
     HMAC-SHA1 keyed message digest), as described in Section 3.4.2 of
     [RFC5849].  To compute the keyed message digest in the same way as
     in RFC 5839, this specification conveys additional parameters
     between the client and the server.  This SASL mechanism only
     supports client authentication.  If server-side authentication is
     desirable, then it must be provided by the application underneath
     the SASL layer.  The use of TLS is strongly RECOMMENDED.










Mills, et al.                Standards Track                   [Page 16]

RFC 7628                       SASL OAuth                    August 2015


  Additionally, the following aspects are worth pointing out:

  An access token is not equivalent to the user's long term password.

     Care has to be taken when these OAuth credentials are used for
     actions like changing passwords (as it is possible with some
     protocols, e.g., XMPP [RFC6120]).  The resource server should
     ensure that actions taken in the authenticated channel are
     appropriate to the strength of the presented credential.

  Lifetime of the application sessions.

     It is possible that SASL will be used to authenticate a
     connection, and the life of that connection may outlast the life
     of the access token used to establish it.  This is a common
     problem in application protocols where connections are long lived
     and not a problem with this mechanism, per se.  Resource servers
     may unilaterally disconnect clients in accordance with the
     application protocol.

  Access tokens have a lifetime.

     Reducing the lifetime of an access token provides security
     benefits, and OAuth 2.0 introduces refresh tokens to obtain new
     access tokens on the fly without any need for human interaction.
     Additionally, a previously obtained access token might be revoked
     or rendered invalid at any time.  The client MAY request a new
     access token for each connection to a resource server, but it
     SHOULD cache and reuse valid credentials.

6.  Internationalization Considerations

  The identifier asserted by the OAuth authorization server about the
  resource owner inside the access token may be displayed to a human.
  For example, when SASL is used in the context of IMAP, the client may
  assert the resource owner's email address to the IMAP server for
  usage in an email-based application.  The identifier may therefore
  contain internationalized characters, and an application needs to
  ensure that the mapping between the identifier provided by OAuth is
  suitable for use with the application-layer protocol SASL is
  incorporated into.  An example of a SASL-compatible container is the
  JSON Web Token (JWT) [RFC7519], which provides a standardized format
  for exchanging authorization and identity information that supports
  internationalized characters.







Mills, et al.                Standards Track                   [Page 17]

RFC 7628                       SASL OAuth                    August 2015


7.  IANA Considerations

7.1.  SASL Registration

  The IANA has registered the following entry in the SASL Mechanisms
  registry:

     SASL mechanism name: OAUTHBEARER

     Security Considerations: See this document

     Published Specification: See this document

     For further information: Contact the authors of this document.

     Intended usage: COMMON

     Owner/Change controller: the IESG

     Note: None

  The IANA has registered the following entry in the SASL Mechanisms
  registry:

     SASL mechanism name: OAUTH10A

     Security Considerations: See this document

     Published Specification: See this document

     For further information: Contact the authors of this document.

     Intended usage: COMMON

     Owner/Change controller: the IESG

     Note: None














Mills, et al.                Standards Track                   [Page 18]

RFC 7628                       SASL OAuth                    August 2015


8.  References

8.1.  Normative References

  [OpenID.Core]
             Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
             C. Mortimore, "OpenID Connect Core 1.0", November 2014,
             <http://openid.net/specs/openid-connect-core-1_0.html>.

  [OpenID.Discovery]
             Sakimura, N., Bradley, J., Jones, M., and E. Jay, "OpenID
             Connect Discovery 1.0", November 2014,
             <http://openid.net/specs/
             openid-connect-discovery-1_0.html>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC4422]  Melnikov, A., Ed. and K. Zeilenga, Ed., "Simple
             Authentication and Security Layer (SASL)", RFC 4422,
             DOI 10.17487/RFC4422, June 2006,
             <http://www.rfc-editor.org/info/rfc4422>.

  [RFC4648]  Josefsson, S., "The Base16, Base32, and Base64 Data
             Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
             <http://www.rfc-editor.org/info/rfc4648>.

  [RFC5234]  Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
             Specifications: ABNF", STD 68, RFC 5234,
             DOI 10.17487/RFC5234, January 2008,
             <http://www.rfc-editor.org/info/rfc5234>.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246,
             DOI 10.17487/RFC5246, August 2008,
             <http://www.rfc-editor.org/info/rfc5246>.

  [RFC5801]  Josefsson, S. and N. Williams, "Using Generic Security
             Service Application Program Interface (GSS-API) Mechanisms
             in Simple Authentication and Security Layer (SASL): The
             GS2 Mechanism Family", RFC 5801, DOI 10.17487/RFC5801,
             July 2010, <http://www.rfc-editor.org/info/rfc5801>.

  [RFC5849]  Hammer-Lahav, E., Ed., "The OAuth 1.0 Protocol", RFC 5849,
             DOI 10.17487/RFC5849, April 2010,
             <http://www.rfc-editor.org/info/rfc5849>.



Mills, et al.                Standards Track                   [Page 19]

RFC 7628                       SASL OAuth                    August 2015


  [RFC6749]  Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
             RFC 6749, DOI 10.17487/RFC6749, October 2012,
             <http://www.rfc-editor.org/info/rfc6749>.

  [RFC6750]  Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
             Framework: Bearer Token Usage", RFC 6750,
             DOI 10.17487/RFC6750, October 2012,
             <http://www.rfc-editor.org/info/rfc6750>.

  [RFC7159]  Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
             Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
             2014, <http://www.rfc-editor.org/info/rfc7159>.

  [RFC7591]  Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
             P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",
             RFC 7591, DOI 10.17487/RFC7591, July 2015,
             <http://www.rfc-editor.org/info/rfc7591>.

8.2.  Informative References

  [RFC3501]  Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
             4rev1", RFC 3501, DOI 10.17487/RFC3501, March 2003,
             <http://www.rfc-editor.org/info/rfc3501>.

  [RFC4959]  Siemborski, R. and A. Gulbrandsen, "IMAP Extension for
             Simple Authentication and Security Layer (SASL) Initial
             Client Response", RFC 4959, DOI 10.17487/RFC4959,
             September 2007, <http://www.rfc-editor.org/info/rfc4959>.

  [RFC5321]  Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
             DOI 10.17487/RFC5321, October 2008,
             <http://www.rfc-editor.org/info/rfc5321>.

  [RFC6120]  Saint-Andre, P., "Extensible Messaging and Presence
             Protocol (XMPP): Core", RFC 6120, DOI 10.17487/RFC6120,
             March 2011, <http://www.rfc-editor.org/info/rfc6120>.

  [RFC6819]  Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
             Threat Model and Security Considerations", RFC 6819,
             DOI 10.17487/RFC6819, January 2013,
             <http://www.rfc-editor.org/info/rfc6819>.

  [RFC7033]  Jones, P., Salgueiro, G., Jones, M., and J. Smarr,
             "WebFinger", RFC 7033, DOI 10.17487/RFC7033, September
             2013, <http://www.rfc-editor.org/info/rfc7033>.






Mills, et al.                Standards Track                   [Page 20]

RFC 7628                       SASL OAuth                    August 2015


  [RFC7230]  Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
             Protocol (HTTP/1.1): Message Syntax and Routing",
             RFC 7230, DOI 10.17487/RFC7230, June 2014,
             <http://www.rfc-editor.org/info/rfc7230>.

  [RFC7519]  Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
             (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
             <http://www.rfc-editor.org/info/rfc7519>.

Acknowledgements

  The authors would like to thank the members of the KITTEN working
  group and in addition and specifically: Simon Josefson, Torsten
  Lodderstadt, Ryan Troll, Alexey Melnikov, Jeffrey Hutzelman, Nico
  Williams, Matt Miller, and Benjamin Kaduk.

  This document was produced under the chairmanship of Alexey Melnikov,
  Tom Yu, Shawn Emery, Josh Howlett, Sam Hartman, Matthew Miller, and
  Benjamin Kaduk.  The supervising Area Director was Stephen Farrell.

Authors' Addresses

  William Mills
  Microsoft

  Email: [email protected]


  Tim Showalter

  Email: [email protected]


  Hannes Tschofenig
  ARM Ltd.
  110 Fulbourn Rd
  Cambridge  CB1 9NJ
  United Kingdom

  Email: [email protected]
  URI:   http://www.tschofenig.priv.at










Mills, et al.                Standards Track                   [Page 21]