Independent Submission                                 M. Boucadair, Ed.
Request for Comments: 7620                                    B. Chatras
Category: Informational                                           Orange
ISSN: 2070-1721                                                 T. Reddy
                                                          Cisco Systems
                                                            B. Williams
                                                           Akamai, Inc.
                                                            B. Sarikaya
                                                                 Huawei
                                                            August 2015


           Scenarios with Host Identification Complications

Abstract

  This document describes a set of scenarios in which complications
  when identifying which policy to apply for a host are encountered.
  This problem is abstracted as "host identification".  Describing
  these scenarios allows commonalities between scenarios to be
  identified, which is helpful during the solution design phase.

  This document does not include any solution-specific discussions.

IESG Note

  This document describes use cases where IP addresses are overloaded
  with both location and identity properties.  Such semantic
  overloading is seen as a contributor to a variety of issues within
  the routing system [RFC4984].  Additionally, these use cases may be
  seen as a way to justify solutions that are not consistent with IETF
  Best Current Practices on protecting privacy [BCP160] [BCP188].

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This is a contribution to the RFC Series, independently of any other
  RFC stream.  The RFC Editor has chosen to publish this document at
  its discretion and makes no statement about its value for
  implementation or deployment.  Documents approved for publication by
  the RFC Editor are not a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7620.



Boucadair, et al.             Informational                     [Page 1]

RFC 7620             Host Identification: Scenarios          August 2015


Copyright Notice

  Copyright (c) 2015 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
  2.  Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . .   3
  3.  Scenario 1: Carrier-Grade NAT (CGN) . . . . . . . . . . . . .   4
  4.  Scenario 2: Address plus Port (A+P) . . . . . . . . . . . . .   5
  5.  Scenario 3: On-Premise Application Proxy Deployment . . . . .   6
  6.  Scenario 4: Distributed Proxy Deployment  . . . . . . . . . .   7
  7.  Scenario 5: Overlay Network . . . . . . . . . . . . . . . . .   8
  8.  Scenario 6: Policy and Charging Control Architecture (PCC)  .  10
  9.  Scenario 7: Emergency Calls . . . . . . . . . . . . . . . . .  12
  10. Other Deployment Scenarios  . . . . . . . . . . . . . . . . .  13
    10.1.  Open WLAN or Provider WLAN . . . . . . . . . . . . . . .  13
    10.2.  Cellular Networks  . . . . . . . . . . . . . . . . . . .  14
    10.3.  Femtocells . . . . . . . . . . . . . . . . . . . . . . .  14
    10.4.  Traffic Detection Function (TDF) . . . . . . . . . . . .  17
    10.5.  Fixed and Mobile Network Convergence . . . . . . . . . .  18
  11. Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . .  21
  12. Privacy Considerations  . . . . . . . . . . . . . . . . . . .  21
  13. Security Considerations . . . . . . . . . . . . . . . . . . .  22
  14. Informative References  . . . . . . . . . . . . . . . . . . .  22
  Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  25
  Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .  25
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  26















Boucadair, et al.             Informational                     [Page 2]

RFC 7620             Host Identification: Scenarios          August 2015


1.  Introduction

  The goal of this document is to enumerate scenarios that encounter
  the issue of uniquely identifying a host among those sharing the same
  IP address.  Within this document, a host can be any device directly
  connected to a network operated by a network provider, a Home
  Gateway, or a roaming device located behind a Home Gateway.

  An exhaustive list of encountered issues for the Carrier-Grade NAT
  (CGN), Address plus Port (A+P), and application proxies scenarios are
  documented in [RFC6269].  In addition to those issues, some of the
  scenarios described in this document suffer from additional issues
  such as:

  o  Identifying which policy to enforce for a host (e.g., limit access
     to the service based on some counters such as volume-based service
     offerings); enforcing the policy will have an impact on all hosts
     sharing the same IP address.
  o  Needing to correlate between the internal address:port and
     external address:port to generate and therefore enforce policies.
  o  Querying a location server for the location of an emergency caller
     based on the source IP address.

  The goal of this document is to identify scenarios the authors are
  aware of and that share the same complications in identifying which
  policy to apply for a host.  This problem is abstracted as the host
  identification problem.

  The analysis of the scenarios listed in this document indicates
  several root causes for the host identification issue:

  1.  Presence of address sharing (CGN, A+P, application proxies,
      etc.).
  2.  Use of tunnels between two administrative domains.
  3.  Combination of address sharing and presence of tunnels in the
      path.

  Even if these scenarios share the same root causes, describing the
  scenario allows to identify what is common between the scenarios, and
  then this information would help during the solution design phase.

2.  Scope

  This document can be used as a tool to design a solution(s) that
  mitigates the encountered issues.  Note, [RFC6967] focuses only on
  the CGN, A+P, and application proxies cases.  The analysis in
  [RFC6967] may not be accurate for some of the scenarios that do not
  span multiple administrative domains (e.g., Section 10.1).



Boucadair, et al.             Informational                     [Page 3]

RFC 7620             Host Identification: Scenarios          August 2015


  This document does not target means that would lead to exposing a
  host beyond what the original packet, issued from that host, would
  have already exposed.  Such means are not desirable nor required to
  solve the issues encountered in the scenarios discussed in this
  document.  The focus is exclusively on means to restore the
  information conveyed in the original packet issued by a given host.
  These means are intended to help in identifying which policy to apply
  for a given flow.  These means may rely on some bits of the source IP
  address and/or port number(s) used by the host to issue packets.

  To prevent side effects and misuses of such means on privacy, a
  solution specification document(s) should explain, in addition to
  what is already documented in [RFC6967], the following:

  o  To what extent the solution can be used to nullify the effect of
     using address sharing to preserve privacy (see, for example,
     [EFFOpenWireless]).  Note, this concern can be mitigated if the
     address-sharing platform is under the responsibility of the host's
     owner and the host does not leak information that would interfere
     with the host's privacy protection tool.

  o  To what extent the solution can be used to expose privacy
     information beyond what the original packet would have already
     exposed.  Note, the solutions discussed in [RFC6967] do not allow
     extra information to be revealed other than what is conveyed in
     the original packet.

  This document covers both IPv4 and IPv6.

  This document does not include any solution-specific discussions.  In
  particular, the document does not elaborate whether explicit
  authentication is enabled or not.

  This document does not discuss whether specific information is needed
  to be leaked in packets, whether this is achieved out of band, etc.
  Those considerations are out of scope.

3.  Scenario 1: Carrier-Grade NAT (CGN)

  Several flavors of stateful CGN have been defined.  A non-exhaustive
  list is provided below:

  1.  IPv4-to-IPv4 NAT (NAT44) [RFC6888] [STATELESS-NAT44]

  2.  DS-Lite NAT44 [RFC6333]

  3.  Network Address and Protocol Translation from IPv6 Clients to
      IPv4 Servers (NAT64) [RFC6146]



Boucadair, et al.             Informational                     [Page 4]

RFC 7620             Host Identification: Scenarios          August 2015


  4.  IPv6-to-IPv6 Network Prefix Translation (NPTv6) [RFC6296]

  As discussed in [RFC6967], remote servers are not able to distinguish
  between hosts sharing the same IP address (Figure 1).  As a reminder,
  remote servers rely on the source IP address for various purposes
  such as access control or abuse management.  The loss of the host
  identification will lead to issues discussed in [RFC6269].

  +-----------+
  |  HOST_1   |----+
  +-----------+    |        +--------------------+      +------------+
                   |        |                    |------|  Server 1  |
  +-----------+  +-----+    |                    |      +------------+
  |  HOST_2   |--| CGN |----|      INTERNET      |            ::
  +-----------+  +-----+    |                    |      +------------+
                    |       |                    |------|  Server n  |
  +-----------+     |       +--------------------+      +------------+
  |  HOST_3   |-----+
  +-----------+

                  Figure 1: CGN Reference Architecture

  Some of the above-referenced CGN scenarios will be satisfied by
  eventual completion of the transition to IPv6 across the Internet
  (e.g., NAT64), but this is not true of all CGN scenarios (e.g., NPTv6
  [RFC6296]) for which some of the issues discussed in [RFC6269] will
  be encountered (e.g., impact on geolocation).

  Privacy-related considerations discussed in [RFC6967] apply for this
  scenario.

4.  Scenario 2: Address plus Port (A+P)

  A+P [RFC6346] [RFC7596] [RFC7597] denotes a flavor of address-sharing
  solutions that does not require any additional NAT function to be
  enabled in the service provider's network.  A+P assumes subscribers
  are assigned with the same IPv4 address together with a port set.
  Subscribers assigned with the same IPv4 address should be assigned
  non-overlapping port sets.  Devices connected to an A+P-enabled
  network should be able to restrict the IPv4 source port to be within
  a configured range of ports.  To forward incoming packets to the
  appropriate host, a dedicated entity called the Port-Range Router
  (PRR) [RFC6346] is needed (Figure 2).

  Similar to the CGN case, remote servers rely on the source IP address
  for various purposes such as access control or abuse management.  The
  loss of the host identification will lead to the issues discussed in




Boucadair, et al.             Informational                     [Page 5]

RFC 7620             Host Identification: Scenarios          August 2015


  [RFC6269].  In particular, it will be impossible to identify hosts
  sharing the same IP address by remote servers.

  +-----------+
  |  HOST_1   |----+
  +-----------+    |        +--------------------+      +------------+
                   |        |                    |------|  Server 1  |
  +-----------+  +-----+    |                    |      +------------+
  |  HOST_2   |--| PRR |----|      INTERNET      |            ::
  +-----------+  +-----+    |                    |      +------------+
                    |       |                    |------|  Server n  |
  +-----------+     |       +--------------------+      +------------+
  |  HOST_3   |-----+
  +-----------+

                  Figure 2: A+P Reference Architecture

  Privacy-related considerations discussed in [RFC6967] apply for this
  scenario.

5.  Scenario 3: On-Premise Application Proxy Deployment

  This scenario is similar to the CGN scenario (Section 3).

  Remote servers are not able to distinguish hosts located behind the
  proxy.  Applying policies on the perceived external IP address as
  received from the proxy will impact all hosts connected to that
  proxy.

  Figure 3 illustrates a simple configuration involving a proxy.  Note
  several (per-application) proxies may be deployed.  This scenario is
  a typical deployment approach used within enterprise networks.

  +-----------+
  |  HOST_1   |----+
  +-----------+    |        +--------------------+      +------------+
                   |        |                    |------|  Server 1  |
  +-----------+  +-----+    |                    |      +------------+
  |  HOST_2   |--|Proxy|----|      INTERNET      |            ::
  +-----------+  +-----+    |                    |      +------------+
                    |       |                    |------|  Server n  |
  +-----------+     |       +--------------------+      +------------+
  |  HOST_3   |-----+
  +-----------+

                 Figure 3: Proxy Reference Architecture





Boucadair, et al.             Informational                     [Page 6]

RFC 7620             Host Identification: Scenarios          August 2015


  The administrator of the proxy may have many reasons for wanting to
  proxy traffic - including caching, policy enforcement, malware
  scanning, reporting on network or user behavior for compliance, or
  security monitoring.

  The same administrator may also wish to selectively hide or expose
  the internal host identity to servers.  He/she may wish to hide the
  identity to protect end-user privacy or to reduce the ability of a
  rogue agent to learn the internal structure of the network.  He/she
  may wish to allow upstream servers to identify hosts to enforce
  access policies (for example, on documents or online databases), to
  enable account identification (on subscription-based services) or to
  prevent spurious misidentification of high-traffic patterns as a DoS
  attack.  Application-specific protocols exist for enabling such
  forwarding on some plaintext protocols (e.g., Forwarded headers on
  HTTP [RFC7239] or time-stamp-line headers in SMTP [RFC5321]).

  Servers not receiving such notifications but wishing to perform host
  or user-specific processing are obliged to use other application-
  specific means of identification (e.g., cookies [RFC6265]).

  Packets/connections must be received by the proxy regardless of the
  IP address family in use.  The requirements of this scenario are not
  satisfied by eventual completion of the transition to IPv6 across the
  Internet.  Complications will arise for both IPv4 and IPv6.

  Privacy-related considerations discussed in [RFC6967] apply for this
  scenario.

6.  Scenario 4: Distributed Proxy Deployment

  This scenario is similar to the proxy deployment scenario (Section 5)
  with the same use cases.  However, in this instance part of the
  functionality of the application proxy is located in a remote site.
  This may be desirable to reduce infrastructure and administration
  costs or because the hosts in question are mobile or roaming hosts
  tied to a particular administrative zone of control but not to a
  particular network.

  In some cases, a distributed proxy is required to identify a host on
  whose behalf it is performing the caching, filtering, or other
  desired service - for example, to know which policies to enforce.
  Typically, IP addresses are used as a surrogate.  However, in the
  presence of CGN, this identification becomes difficult.  Alternative
  solutions include the use of cookies, which only work for HTTP
  traffic, tunnels, or proprietary extensions to existing protocols.





Boucadair, et al.             Informational                     [Page 7]

RFC 7620             Host Identification: Scenarios          August 2015


     +-----------+             +----------+
     |  HOST_1   |-------------|          |
     +-----------+             |          |   +-------+    +----------+
                               |          |   |       |----| Server 1 |
     +-----------+             |          |   |       |    +----------+
     |  HOST_2   |----+        | INTERNET |---| Proxy |         ::
     +-----------+  +-----+    |          |   |       |    +----------+
                    |Proxy|----|          |   |       |----| Server n |
     +-----------+  +-----+    |          |   +-------+    +----------+
     |  HOST_3   |----+        +----------+
     +-----------+

         Figure 4: Distributed Proxy Reference Architecture (1)

      +-----------+         +---+         +---+  +----------+
      |  HOST_1   +---------+ I |         | I +--+ Server 1 |
      +-----------+         | N |  +---+  | N |  +----------+
                            | T |  | P |  | T |
      +-----------+  +---+  | E |  | r |  | E |  +----------+
      |  HOST_2   +--+ P |  | R +--+ o +--+ R +--+ Server 2 |
      +-----------+  | r |  | N |  | x |  | N |  +----------+
                     | o |--+ E |  | y |  | E |      ::
      +-----------+  | x |  | T |  +---+  | T |  +----------+
      |  HOST_3   +--+ y |  |   |         |   +--+ Server N |
      +-----------+  +---+  +---+         +---+  +----------+

         Figure 5: Distributed Proxy Reference Architecture (2)

  Packets/connections must be received by the proxy regardless of the
  IP address family in use.  The requirements of this scenario are not
  satisfied by eventual completion of the transition to IPv6 across the
  Internet.  Complications will arise for both IPv4 and IPv6.

  If the proxy and the servers are under the responsibility of the same
  administrative entity (Figure 4), no privacy concerns are raised.
  Nevertheless, privacy-related considerations discussed in [RFC6967]
  apply if the proxy and the servers are not managed by the same
  administrative entity (Figure 5).

7.  Scenario 5: Overlay Network

  An overlay network is a network of machines distributed throughout
  multiple autonomous systems within the public Internet that can be
  used to improve the performance of data transport (see Figure 6).  IP
  packets from the sender are delivered first to one of the machines
  that make up the overlay network.  That machine then relays the IP





Boucadair, et al.             Informational                     [Page 8]

RFC 7620             Host Identification: Scenarios          August 2015


  packets to the receiver via one or more machines in the overlay
  network, applying various performance enhancement methods.

                   +------------------------------------+
                   |                                    |
                   |              INTERNET              |
                   |                                    |
    +-----------+  |  +------------+                    |
    |  HOST_1   |-----| OVRLY_IN_1 |-----------+        |
    +-----------+  |  +------------+           |        |
                   |                           |        |
    +-----------+  |  +------------+     +-----------+  |  +--------+
    |  HOST_2   |-----| OVRLY_IN_2 |-----| OVRLY_OUT |-----| Server |
    +-----------+  |  +------------+     +-----------+  |  +--------+
                   |                           |        |
    +-----------+  |  +------------+           |        |
    |  HOST_3   |-----| OVRLY_IN_3 |-----------+        |
    +-----------+  |  +------------+                    |
                   |                                    |
                   +------------------------------------+

            Figure 6: Overlay Network Reference Architecture

  Such overlay networks are used to improve the performance of content
  delivery [IEEE1344002].  Overlay networks are also used for
  peer-to-peer data transport [RFC5694], and they have been suggested
  for use in both improved scalability for the Internet routing
  infrastructure [RFC6179] and provisioning of security services
  (intrusion detection, anti-virus software, etc.) over the public
  Internet [IEEE101109].

  In order for an overlay network to intercept packets and/or
  connections transparently via base Internet connectivity
  infrastructure, the overlay ingress and egress hosts (OVERLAY_IN and
  OVERLAY_OUT) must be reliably in path in both directions between the
  connection-initiating HOST and the SERVER.  When this is not the
  case, packets may be routed around the overlay and sent directly to
  the receiving host, presumably without invoking some of the advanced
  service functions offered by the overlay.

  For public overlay networks, where the ingress and/or egress hosts
  are on the public Internet, packet interception commonly uses network
  address translation for the source (SNAT) or destination (DNAT)
  addresses in such a way that the public IP addresses of the true
  endpoint hosts involved in the data transport are invisible to each
  other (see Figure 7).  For example, the actual sender and receiver
  may use two completely different pairs of source and destination
  addresses to identify the connection on the sending and receiving



Boucadair, et al.             Informational                     [Page 9]

RFC 7620             Host Identification: Scenarios          August 2015


  networks in cases where both the ingress and egress hosts are on the
  public Internet.

            IP hdr contains:               IP hdr contains:
  SENDER -> src = sender   --> OVERLAY --> src = overlay2  --> RECEIVER
            dst = overlay1                 dst = receiver

             Figure 7: NAT Operations in an Overlay Network

  In this scenario, the remote server is not able to distinguish among
  hosts using the overlay for transport.  In addition, the remote
  server is not able to determine the overlay ingress point being used
  by the host, which can be useful for diagnosing host connectivity
  issues.

  In some of the above-referenced scenarios, IP packets traverse the
  overlay network fundamentally unchanged, with the overlay network
  functioning much like a CGN (Section 3).  In other cases, connection-
  oriented data flows (e.g., TCP) are terminated by the overlay in
  order to perform object caching and other such transport and
  application-layer optimizations, similar to the proxy scenario
  (Section 5).  In both cases, address sharing is a requirement for
  packet/connection interception, which means that the requirements for
  this scenario are not satisfied by the eventual completion of the
  transition to IPv6 across the Internet.

  More details about this scenario are provided in [OVERLAYPATH].

  This scenario does not introduce privacy concerns since the
  identification of the host is local to a single administrative domain
  (i.e., Content Delivery Network (CDN) Overlay Network) or passed to a
  remote server to help forwarding back the response to the appropriate
  host.  The host identification information is not publicly available
  nor can be disclosed to other hosts connected to the Internet.

8.  Scenario 6: Policy and Charging Control Architecture (PCC)

  This issue is related to the PCC framework defined by 3GPP in
  [TS23.203] when a NAT is located between the Policy and Charging
  Enforcement Function (PCEF) and the Application Function (AF) as
  shown in Figure 8.

  The main issue is: PCEF, the Policy and Charging Rule Function
  (PCRF), and AF all receive information bound to the same User
  Equipment (UE) but without being able to correlate between the piece
  of data visible for each entity.  Concretely,





Boucadair, et al.             Informational                    [Page 10]

RFC 7620             Host Identification: Scenarios          August 2015


  o  PCEF is aware of the International Mobile Subscriber Identity
     (IMSI) and an internal IP address assigned to the UE.

  o  AF receives an external IP address and port as assigned by the NAT
     function.

  o  PCRF is not able to correlate between the external IP address/port
     assigned by the NAT (received from the AF) and the internal IP
     address and IMSI of the UE (received from the PCEF).

              +------+
              | PCRF |-----------------+
              +------+                 |
                 |                     |
  +----+      +------+   +-----+    +-----+
  | UE |------| PCEF |---| NAT |----|  AF |
  +----+      +------+   +-----+    +-----+

                Figure 8: NAT Located between AF and PCEF

  This scenario can be generalized as follows (Figure 9):

  o  Policy Enforcement Point (PEP) [RFC2753]

  o  Policy Decision Point (PDP) [RFC2753]

              +------+
              | PDP  |-----------------+
              +------+                 |
                 |                     |
  +----+      +------+   +-----+    +------+
  | UE |------| PEP  |---| NAT |----|Server|
  +----+      +------+   +-----+    +------+

            Figure 9: NAT Located between PEP and the Server

  Note that an issue is encountered to enforce per-UE policies when the
  NAT is located before the PEP function (see Figure 10):

                         +------+
                         | PDP  |------+
                         +------+      |
                            |          |
  +----+      +------+   +-----+    +------+
  | UE |------| NAT  |---| PEP |----|Server|
  +----+      +------+   +-----+    +------+

                    Figure 10: NAT Located before PEP



Boucadair, et al.             Informational                    [Page 11]

RFC 7620             Host Identification: Scenarios          August 2015


  This scenario does not introduce privacy concerns since the
  identification of the host is local to a single administrative domain
  and is meant to help identify which policy to select for a UE.

9.  Scenario 7: Emergency Calls

  Voice Service Providers (VSPs) operating under certain jurisdictions
  are required to route emergency calls from their subscribers and have
  to include information about the caller's location in signaling
  messages they send towards Public Safety Answering Points (PSAPs)
  [RFC6443] via an Emergency Service Routing Proxy (ESRP) [RFC6443].
  This information is used both for the determination of the correct
  PSAP and to reveal the caller's location to the selected PSAP.

  In many countries, regulation bodies require that this information be
  provided by the network rather than the user equipment, in which case
  the VSP needs to retrieve this information (by reference or by value)
  from the access network where the caller is attached.

  This requires the VSP call server receiving an emergency call request
  to identify the relevant access network and to query a Location
  Information Server (LIS) in this network using a suitable lookup key.
  In the simplest case, the source IP address of the IP packet carrying
  the call request is used both for identifying the access network
  (thanks to a reverse DNS query) and as a lookup key to query the LIS.
  Obviously, the user-id as known by the VSP (e.g., telephone number or
  email-formatted URI) can't be used as it is not known by the access
  network.

  The above mechanism is broken when there is a NAT between the user
  and the VSP and/or if the emergency call is established over a VPN
  tunnel (e.g., an employee remotely connected to a company Voice over
  IP (VoIP) server through a tunnel wishes to make an emergency call).
  In such cases, the source IP address received by the VSP call server
  will identify the NAT or the address assigned to the caller equipment
  by the VSP (i.e., the address inside the tunnel).  This is similar to
  the CGN case in (Section 3) and overlay network case (Section 7) and
  applies irrespective of the IP versions used on both sides of the NAT
  and/or inside and outside the tunnel.

  Therefore, the VSP needs to receive an additional piece of
  information that can be used to both identify the access network
  where the caller is attached and query the LIS for his/her location.
  This would require the NAT or the tunnel endpoint to insert this
  extra information in the call requests delivered to the VSP call
  servers.  For example, this extra information could be a combination
  of the local IP address assigned by the access network to the




Boucadair, et al.             Informational                    [Page 12]

RFC 7620             Host Identification: Scenarios          August 2015


  caller's equipment with some form of identification of this access
  network.

  However, because it shall be possible to set up an emergency call
  regardless of the actual call control protocol used between the user
  and the VSP (e.g., SIP [RFC3261], Inter-Asterisk eXchange (IAX)
  [RFC5456], tunneled over HTTP, or proprietary protocol, possibly
  encrypted), this extra information has to be conveyed outside the
  call request, in the header of lower-layer protocols.

  Privacy-related considerations discussed in [RFC6967] apply for this
  scenario.

10.  Other Deployment Scenarios

  This section lists deployment scenarios that are variants of
  scenarios described in previous sections.

10.1.  Open WLAN or Provider WLAN

  In the context of Provider WLAN, a dedicated Service Set Identifier
  (SSID) can be configured and advertised by the Residential Gateway
  (RG) for visiting terminals.  These visiting terminals can be mobile
  terminals, PCs, etc.

  Several deployment scenarios are envisaged:

  1.  Deploy a dedicated node in the service provider's network that
      will be responsible for intercepting all the traffic issued from
      visiting terminals (see Figure 11).  This node may be co-located
      with a CGN function if private IPv4 addresses are assigned to
      visiting terminals.  Similar to the CGN case discussed in
      Section 3, remote servers may not be able to distinguish visiting
      hosts sharing the same IP address (see [RFC6269]).

  2.  Unlike the previous deployment scenario, IPv4 addresses are
      managed by the RG without requiring any additional NAT to be
      deployed in the service provider's network for handling traffic
      issued from visiting terminals.  Concretely, a visiting terminal
      is assigned with a private IPv4 address from the IPv4 address
      pool managed by the RG.  Packets issued from a visiting terminal
      are translated using the public IP address assigned to the RG
      (see Figure 12).  This deployment scenario induces the following
      identification concerns:







Boucadair, et al.             Informational                    [Page 13]

RFC 7620             Host Identification: Scenarios          August 2015


      *  The provider is not able to distinguish the traffic belonging
         to the visiting terminal from the traffic of the subscriber
         owning the RG.  This is needed to identify which policies are
         to be enforced such as: accounting, Differentiated Services
         Code Point (DSCP) remarking, black list, etc.

      *  Similar to the CGN case Section 3, a misbehaving visiting
         terminal is likely to have some impact on the experienced
         service by the subscriber owning the RG (e.g., some of the
         issues are discussed in [RFC6269]).

  +-------------+
  |Local_HOST_1 |----+
  +-------------+    |
                     |     |
  +-------------+  +-----+ |  +-----------+
  |Local_HOST_2 |--| RG  |-|--|Border Node|
  +-------------+  +-----+ |  +----NAT----+
                      |    |
  +-------------+     |    |  Service Provider
  |Visiting Host|-----+
  +-------------+

          Figure 11: NAT Enforced in a Service Provider's Node

  +-------------+
  |Local_HOST_1 |----+
  +-------------+    |
                     |     |
  +-------------+  +-----+ |  +-----------+
  |Local_HOST_2 |--| RG  |-|--|Border Node|
  +-------------+  +-NAT-+ |  +-----------+
                      |    |
  +-------------+     |    |  Service Provider
  |Visiting Host|-----+
  +-------------+

                    Figure 12: NAT Located in the RG

  This scenario does not introduce privacy concerns since the
  identification of the host is local to a single administrative domain
  and is meant to help identify which policy to select for a visiting
  UE.








Boucadair, et al.             Informational                    [Page 14]

RFC 7620             Host Identification: Scenarios          August 2015


10.2.  Cellular Networks

  Cellular operators allocate private IPv4 addresses to mobile
  terminals and deploy NAT44 function, generally co-located with
  firewalls, to access public IP services.  The NAT function is located
  at the boundaries of the Public Land Mobile Network (PLMN).
  IPv6-only strategy, consisting in allocating IPv6 prefixes only to
  mobile terminals, is considered by various operators.  A NAT64
  function is also considered in order to preserve IPv4 service
  continuity for these customers.

  These NAT44 and NAT64 functions bring some issues that are very
  similar to those mentioned in Figure 1 and Section 8.  These issues
  are particularly encountered if policies are to be applied on the Gi
  interface.

     Note: 3GPP defines the Gi interface as the reference point between
     the Gateway GPRS Support Node (GGSN) and an external Packet Domain
     Network (PDN).  This interface reference point is called SGi in 4G
     networks (i.e., between the PDN Gateway and an external PDN).

  Because private IP addresses are assigned to the mobile terminals,
  there is no correlation between the internal IP address and the
  external address:port assigned by the NAT function, etc.

  Privacy-related considerations discussed in [RFC6967] apply for this
  scenario.

10.3.  Femtocells

  This scenario can be seen as a combination of the scenarios described
  in Sections 8 and 10.1.

  The reference architecture is shown in Figure 13.

  A Femto Access Point (FAP) is defined as a home base station used to
  graft a local (femto) cell within a user's home to a mobile network.














Boucadair, et al.             Informational                    [Page 15]

RFC 7620             Host Identification: Scenarios          August 2015


  +---------------------------+
  | +----+ +--------+  +----+ |   +-----------+  +-------------------+
  | | UE | | Stand- |<=|====|=|===|===========|==|=>+--+ +--+        |
  | +----+ | Alone  |  | RG | |   |           |  |  |  | |  | Mobile |
  |        |  FAP   |  +----+ |   |           |  |  |S | |F | Network|
  |        +--------+  (NAPT) |   | Broadband |  |  |e | |A |        |
  +---------------------------+   |   Fixed   |  |  |G |-|P | +-----+|
                                  |   (BBF)   |  |  |W | |G |-| Core||
  +---------------------------+   |  Network  |  |  |  | |W | | Ntwk||
  | +----+ +------------+     |   |           |  |  |  | |  | +-----+|
  | | UE | | Integrated |<====|===|===========|==|=>+--+ +--+        |
  | +----+ | FAP (NAPT) |     |   +-----------+  +-------------------+
  |        +------------+     |
  +---------------------------+

      <=====>   IPsec Tunnel
      CoreNtwk  Core Network
      FAPGW     FAP Gateway
      NAPT      Network Address Port Translator
      SeGW      Security Gateway

               Figure 13: Femtocell Reference Architecture

  UE is connected to the FAP at the RG, which is routed back to the
  3GPP Evolved Packet Core (EPC).  It is assumed that each UE is
  assigned an IPv4 address by the mobile network.  A mobile operator's
  FAP leverages the IPsec Internet Key Exchange Protocol Version 2
  (IKEv2) to interconnect FAP with the SeGW over the Broadband Fixed
  (BBF) network.  Both the FAP and the SeGW are managed by the mobile
  operator, which may be a different operator for the BBF network.

  An investigated scenario is when the mobile operator passes on its
  mobile subscriber's policies to the BBF to support traffic policy
  control.  But most of today's broadband fixed networks are relying on
  the private IPv4 addressing plan (+NAPT) to support its attached
  devices, including the mobile operator's FAP.  In this scenario, the
  mobile network needs to:

  o  determine the FAP's public IPv4 address to identify the location
     of the FAP to ensure its legitimacy to operate on the license
     spectrum for a given mobile operator prior to the FAP being ready
     to serve its mobile devices.

  o  determine the FAP's public IPv4 address together with the
     translated port number of the UDP header of the encapsulated IPsec
     tunnel for identifying the UE's traffic at the fixed broadband
     network.




Boucadair, et al.             Informational                    [Page 16]

RFC 7620             Host Identification: Scenarios          August 2015


  o  determine the corresponding FAP's public IPv4 address associated
     with the UE's inner IPv4 address that is assigned by the mobile
     network to identify the mobile UE, which allows the PCRF to
     retrieve the special UE's policy (e.g., QoS) to be passed onto the
     Broadband Policy Control Function (BPCF) at the BBF network.

  SeGW would have the complete knowledge of such mapping, but the
  reasons for being unable to use SeGW for this purpose are explained
  in Section 2 of [IKEv2-CP-EXT].

  This scenario involves PCRF/BPCF, but it is valid in other deployment
  scenarios making use of Authentication, Authorization, and Accounting
  (AAA) servers.

  The issue of correlating the internal IP address and the public IP
  address is valid even if there is no NAT in the path.

  This scenario does not introduce privacy concerns since the
  identification of the host is local to a single administrative domain
  and is meant to help identify which policy to select for a UE.

10.4.  Traffic Detection Function (TDF)

  Operators expect that the traffic subject to the packet inspection is
  routed via the Traffic Detection Function (TDF) as per the
  requirement specified in [TS29.212]; otherwise, the traffic may
  bypass the TDF.  This assumption only holds if it is possible to
  identify individual UEs behind the Basic NAT or NAPT invoked in the
  RG connected to the fixed broadband network, as shown in Figure 14.
  As a result, additional mechanisms are needed to enable this
  requirement.




















Boucadair, et al.             Informational                    [Page 17]

RFC 7620             Host Identification: Scenarios          August 2015


                                                             +--------+
                                                             |        |
                                                     +-------+  PCRF  |
                                                     |       |        |
                                                     |       +--------+
+--------+      +--------+       +--------+     +----+----+
|        |      |        |       |        +-----+         |
|  ------------------------------------------------------------------
|        |      |        |       |        |     |  TDF    |    /      \
|  ****************************************************************** |
+--------+      +--------+       +--------+     +----+----+   |       |
|        |      |        +-------+        |         |         |Service|
|        |      |        |       |        |         |          \      /
|        |      |        |       |        |         |        +--------+
|        |      |        |       |        |         +--------+  PDN   |
|  >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> |
|  UE    |      |   RG   |       | BNG    +------------------+ Gateway|
+--------+      +--------+       +--------+                  +--------+

Legend:
---------   3GPP UE User-Plane Traffic Offloaded subject to packet
            inspection

*********   3GPP UE User-Plane Traffic Offloaded not subject to packet
            inspection

>>>>>>>>>   3GPP UE User-Plane Traffic Home Routed

      BNG   Broadband Network Gateway

                 Figure 14: UE's Traffic Routed with TDF

  This scenario does not introduce privacy concerns since the
  identification of the host is local to a single administrative domain
  and is meant to help identify which policy to select for a UE.

10.5.  Fixed and Mobile Network Convergence

  In the Policy for Convergence of Fixed Mobile Convergence (FMC)
  scenario, the fixed broadband network must partner with the mobile
  network to acquire the policies for the terminals or hosts attaching
  to the fixed broadband network, shown in Figure 15, so that host-
  specific QoS and accounting policies can be applied.

  A UE is connected to the RG, which is routed back to the mobile
  network.  The mobile operator's PCRF needs to maintain the
  interconnect with the BPCF in the BBF network for PCC (Section 8).
  The hosts (i.e., UEs) attaching to a fixed broadband network with a



Boucadair, et al.             Informational                    [Page 18]

RFC 7620             Host Identification: Scenarios          August 2015


  Basic NAT or NAPT deployed should be identified.  Based on the UE
  identification, the BPCF can acquire the associated policy rules of
  the identified UE from the PCRF in the mobile network so that it can
  enforce policy rules in the fixed broadband network.  Note, this
  scenario assumes private IPv4 addresses are assigned in the fixed
  broadband network.  Requirements similar to those in Section 10.3 are
  raised in this scenario.

               +------------------------------+   +-------------+
               |                              |   |             |
               |                   +------+   |   | +------+    |
               |                   | BPCF +---+---+-+ PCRF |    |
               |                   +--+---+   |   | +---+--+    |
    +-------+  |                      |       |   |     |       |
    |HOST_1 | Private IP1          +--+---+   |   | +---+--+    |
    +-------+  | +----+            |      |   |   | |      |    |
               | | RG |            |      |   |   | |      |    |
               | |with+-------------+ BNG  +--------+ PGW  |    |
    +-------+  | | NAT|            |      |   |   | |      |    |
    |HOST_2 |  | +----+            |      |   |   | |      |    |
    +-------+ Private IP2          +------+   |   | +------+    |
               |                              |   |             |
               |                              |   |             |
               |                       Fixed  |   | Mobile      |
               |                   Broadband  |   | Network     |
               |                     Network  |   |             |
               |                              |   |             |
               +------------------------------+   +-------------+

  Figure 15: Reference Architecture for Policy for Convergence in Fixed
                   and Mobile Network Convergence (1)

  In an IPv6 network, similar issues exist when the IPv6 prefix is
  shared between multiple UEs attaching to the RG (see Figure 16).  The
  case applies when RG is assigned a single prefix, the home network
  prefix, e.g., using DHCPv6 Prefix Delegation [RFC3633] with the edge
  router, and BNG acts as the Delegating Router (DR).  RG uses the home
  network prefix in the address configuration using stateful (DHCPv6)
  or stateless address autoconfiguration (SLAAC) techniques.












Boucadair, et al.             Informational                    [Page 19]

RFC 7620             Host Identification: Scenarios          August 2015


               +------------------------------+   +-------------+
               |                              |   |             |
               |                              |   | +------+    |
               |                      +-------------+ PCRF |    |
               |                      |       |   | +---+--+    |
    +-------+  |                      |       |   |     |       |
    |HOST_1 |--+                   +--+---+   |   | +---+--+    |
    +-------+  | +----+            |      |   |   | |      |    |
               | | RG |            |      |   |   | |      |    |
               | |    +------------+ BNG  +---------+ PGW  |    |
    +-------+  | |    |            |      |   |   | |      |    |
    |HOST_2 |--+ +----+            |      |   |   | |      |    |
    +-------+  |                   +------+   |   | +------+    |
               |                              |   |             |
               |                              |   |             |
               |                       Fixed  |   | Mobile      |
               |                   Broadband  |   | Network     |
               |                     Network  |   |             |
               |                              |   |             |
               +------------------------------+   +-------------+

  Figure 16: Reference Architecture for Policy for Convergence in Fixed
                   and Mobile Network Convergence (2)

  BNG acting as PCEF initiates an IP Connectivity Access Network
  (IP-CAN) session with the policy server, a.k.a. Policy and Charging
  Rules Function (PCRF), to receive the Quality of Service (QoS)
  parameters and charging rules.  BNG provides the PCRF with the IPv6
  prefix assigned to the host; in this case, it's the home network
  prefix and an ID that has to be equal to the RG-specific home network
  line ID.

  HOST_1 in Figure 16 creates a 128-bit IPv6 address using this prefix
  and adding its interface ID.  Having completed the address
  configuration, the host can start communication with a remote host
  over the Internet.  However, no specific IP-CAN session can be
  assigned to HOST_1, and consequently the QoS and accounting performed
  will be based on RG subscription.

  Another host, e.g., HOST_2, attaches to the RG and also establishes
  an IPv6 address using the home network prefix.  The edge router, or
  BNG, is not involved with this or any other such address assignments.

  This leads to the case where no specific IP-CAN session/sub-session
  can be assigned to the hosts, HOST_1, HOST_2, etc., and consequently
  the QoS and accounting performed can only be based on RG subscription
  and is not host specific.  Therefore, IPv6 prefix sharing in the
  Policy for Convergence scenario leads to similar issues as the



Boucadair, et al.             Informational                    [Page 20]

RFC 7620             Host Identification: Scenarios          August 2015


  address sharing as explained in the previous scenarios in this
  document.

11.  Synthesis

  The following table shows whether each scenario is valid for IPv4/
  IPv6 and if it is within one single administrative domain or spans
  multiple domains.  The table also identifies the root cause of the
  identification issues.

  The IPv6 column indicates for each scenario whether IPv6 is supported
  at the client's side and/or server's side.

  +-------------------+----+-------------+------+-----------------+
  |                   |    |    IPv6     |Single|    Root Cause   |
  |      Scenario     |    |------+------|Domain+-------+---------+
  |                   |IPv4|Client|Server|      |Address|Tunneling|
  |                   |    |      |      |      |sharing|         |
  +-------------------+----+------+------+------+-------+---------+
  |        CGN        |Yes |Yes(1)|  No  |  No  |  Yes  |   No    |
  |        A+P        |Yes |  No  |  No  |  No  |  Yes  |   No    |
  | Application Proxy |Yes | Yes  | Yes  |  No  |  Yes  |   No    |
  | Distributed Proxy |Yes | Yes  | Yes  |Yes/No|  Yes  |   No    |
  |  Overlay Networks |Yes |Yes(2)|Yes(2)|  No  |  Yes  |   No    |
  |        PCC        |Yes |Yes(1)|  No  | Yes  |  Yes  |   No    |
  |  Emergency Calls  |Yes | Yes  | Yes  |  No  |  Yes  |   No    |
  |   Provider WLAN   |Yes |  No  |  No  | Yes  |  Yes  |   No    |
  | Cellular Networks |Yes |Yes(1)|  No  | Yes  |  Yes  |   No    |
  |     Femtocells    |Yes |  No  |  No  |  No  |  Yes  |  Yes    |
  |        TDF        |Yes | Yes  |  No  | Yes  |  Yes  |   No    |
  |        FMC        |Yes |Yes(1)|  No  |  No  |  Yes  |   No    |
  +-------------------+----+------+------+------+-------+---------+

   Notes:
     (1) For example, NAT64
     (2) This scenario is a combination of CGN and application proxies

                         Table 1: Synthesis

12.  Privacy Considerations

  Privacy-related considerations that apply to means to reveal a host
  identifier are discussed in [RFC6967].  This document does not
  introduce additional privacy issues than those discussed in
  [RFC6967].

  None of the scenarios inventoried in this document aim at revealing a
  customer identifier, account identifier, profile identifier, etc.



Boucadair, et al.             Informational                    [Page 21]

RFC 7620             Host Identification: Scenarios          August 2015


  Particularly, none of these scenarios are endorsing the functionality
  provided by the following proprietary headers (but not limited to)
  that are known to be used to leak subscription-related information:
  HTTP_MSISDN, HTTP_X_MSISDN, HTTP_X_UP_CALLING_LINE_ID,
  HTTP_X_NOKIA_MSISDN, HTTP_X_HTS_CLID, HTTP_X_MSP_CLID,
  HTTP_X_NX_CLID, HTTP__RAPMIN, HTTP_X_WAP_MSISDN, HTTP_COOKIE,
  HTTP_X_UP_LSID, HTTP_X_H3G_MSISDN, HTTP_X_JINNY_CID,
  HTTP_X_NETWORK_INFO, etc.

13.  Security Considerations

  This document does not define an architecture nor a protocol; as such
  it does not raise any security concerns.  Security considerations
  that are related to the host identifier are discussed in [RFC6967].

14.  Informative References

  [BCP160]   Barnes, R., Lepinski, M., Cooper, A., Morris, J.,
             Tschofenig, H., and H. Schulzrinne, "An Architecture for
             Location and Location Privacy in Internet Applications",
             BCP 160, RFC 6280, July 2011.

  [BCP188]   Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
             Attack", BCP 188, RFC 7258, May 2014.

  [EFFOpenWireless]
             EFF, "Open Wireless", 2014, <https://www.eff.org/issues/
             open-wireless>.

  [IEEE101109]
             Salah, K., Calero, J., Zeadally, S., Almulla, S., and M.
             ZAaabi, "Using Cloud Computing to Implement a Security
             Overlay Network", IEEE Computer Society Digital Library,
             IEEE Security & Privacy, Vol. 11, Issue 1, pp. 44-53,
             DOI 10.1109/MSP.2012.88, Jan-Feb 2013.

  [IEEE1344002]
             Byers, J., Considine, J., Mitzenmacher, M., and S. Rost,
             "Informed content delivery across adaptive overlay
             networks", IEEE/ACM Transactions on Networking, Vol. 12,
             Issue 5, pp. 767-780, DOI 10.1109/TNET.2004.836103,
             October 2004.

  [IKEv2-CP-EXT]
             So, T., "IKEv2 Configuration Payload Extension for Private
             IPv4 Support for Fixed Mobile Convergence", Work in
             Progress, draft-so-ipsecme-ikev2-cpext-02, June 2012.




Boucadair, et al.             Informational                    [Page 22]

RFC 7620             Host Identification: Scenarios          August 2015


  [OVERLAYPATH]
             Williams, B., "Overlay Path Option for IP and TCP", Work
             in Progress, draft-williams-overlaypath-ip-tcp-rfc-04,
             June 2013.

  [RFC2753]  Yavatkar, R., Pendarakis, D., and R. Guerin, "A Framework
             for Policy-based Admission Control", RFC 2753,
             DOI 10.17487/RFC2753, January 2000,
             <http://www.rfc-editor.org/info/rfc2753>.

  [RFC3261]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
             A., Peterson, J., Sparks, R., Handley, M., and E.
             Schooler, "SIP: Session Initiation Protocol", RFC 3261,
             DOI 10.17487/RFC3261, June 2002,
             <http://www.rfc-editor.org/info/rfc3261>.

  [RFC3633]  Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic
             Host Configuration Protocol (DHCP) version 6", RFC 3633,
             DOI 10.17487/RFC3633, December 2003,
             <http://www.rfc-editor.org/info/rfc3633>.

  [RFC4984]  Meyer, D., Ed., Zhang, L., Ed., and K. Fall, Ed., "Report
             from the IAB Workshop on Routing and Addressing",
             RFC 4984, DOI 10.17487/RFC4984, September 2007,
             <http://www.rfc-editor.org/info/rfc4984>.

  [RFC5321]  Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
             DOI 10.17487/RFC5321, October 2008,
             <http://www.rfc-editor.org/info/rfc5321>.

  [RFC5456]  Spencer, M., Capouch, B., Guy, E., Ed., Miller, F., and K.
             Shumard, "IAX: Inter-Asterisk eXchange Version 2",
             RFC 5456, DOI 10.17487/RFC5456, February 2010,
             <http://www.rfc-editor.org/info/rfc5456>.

  [RFC5694]  Camarillo, G., Ed. and IAB, "Peer-to-Peer (P2P)
             Architecture: Definition, Taxonomies, Examples, and
             Applicability", RFC 5694, DOI 10.17487/RFC5694, November
             2009, <http://www.rfc-editor.org/info/rfc5694>.

  [RFC6146]  Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
             NAT64: Network Address and Protocol Translation from IPv6
             Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,
             April 2011, <http://www.rfc-editor.org/info/rfc6146>.

  [RFC6179]  Templin, F., Ed., "The Internet Routing Overlay Network
             (IRON)", RFC 6179, DOI 10.17487/RFC6179, March 2011,
             <http://www.rfc-editor.org/info/rfc6179>.



Boucadair, et al.             Informational                    [Page 23]

RFC 7620             Host Identification: Scenarios          August 2015


  [RFC6265]  Barth, A., "HTTP State Management Mechanism", RFC 6265,
             DOI 10.17487/RFC6265, April 2011,
             <http://www.rfc-editor.org/info/rfc6265>.

  [RFC6269]  Ford, M., Ed., Boucadair, M., Durand, A., Levis, P., and
             P. Roberts, "Issues with IP Address Sharing", RFC 6269,
             DOI 10.17487/RFC6269, June 2011,
             <http://www.rfc-editor.org/info/rfc6269>.

  [RFC6296]  Wasserman, M. and F. Baker, "IPv6-to-IPv6 Network Prefix
             Translation", RFC 6296, DOI 10.17487/RFC6296, June 2011,
             <http://www.rfc-editor.org/info/rfc6296>.

  [RFC6333]  Durand, A., Droms, R., Woodyatt, J., and Y. Lee, "Dual-
             Stack Lite Broadband Deployments Following IPv4
             Exhaustion", RFC 6333, DOI 10.17487/RFC6333, August 2011,
             <http://www.rfc-editor.org/info/rfc6333>.

  [RFC6346]  Bush, R., Ed., "The Address plus Port (A+P) Approach to
             the IPv4 Address Shortage", RFC 6346,
             DOI 10.17487/RFC6346, August 2011,
             <http://www.rfc-editor.org/info/rfc6346>.

  [RFC6443]  Rosen, B., Schulzrinne, H., Polk, J., and A. Newton,
             "Framework for Emergency Calling Using Internet
             Multimedia", RFC 6443, DOI 10.17487/RFC6443, December
             2011, <http://www.rfc-editor.org/info/rfc6443>.

  [RFC6888]  Perreault, S., Ed., Yamagata, I., Miyakawa, S., Nakagawa,
             A., and H. Ashida, "Common Requirements for Carrier-Grade
             NATs (CGNs)", BCP 127, RFC 6888, DOI 10.17487/RFC6888,
             April 2013, <http://www.rfc-editor.org/info/rfc6888>.

  [RFC6967]  Boucadair, M., Touch, J., Levis, P., and R. Penno,
             "Analysis of Potential Solutions for Revealing a Host
             Identifier (HOST_ID) in Shared Address Deployments",
             RFC 6967, DOI 10.17487/RFC6967, June 2013,
             <http://www.rfc-editor.org/info/rfc6967>.

  [RFC7239]  Petersson, A. and M. Nilsson, "Forwarded HTTP Extension",
             RFC 7239, DOI 10.17487/RFC7239, June 2014,
             <http://www.rfc-editor.org/info/rfc7239>.

  [RFC7596]  Cui, Y., Sun, Q., Boucadair, M., Tsou, T., Lee, Y., and I.
             Farrer, "Lightweight 4over6: An Extension to the Dual-
             Stack Lite Architecture", RFC 7596, DOI 10.17487/RFC7596,
             July 2015, <http://www.rfc-editor.org/info/rfc7596>.




Boucadair, et al.             Informational                    [Page 24]

RFC 7620             Host Identification: Scenarios          August 2015


  [RFC7597]  Troan, O., Ed., Dec, W., Li, X., Bao, C., Matsushima, S.,
             Murakami, T., and T. Taylor, Ed., "Mapping of Address and
             Port with Encapsulation (MAP-E)", RFC 7597,
             DOI 10.17487/RFC7597, July 2015,
             <http://www.rfc-editor.org/info/rfc7597>.

  [STATELESS-NAT44]
             Tsou, T., Liu, W., Perreault, S., Penno, R., and M. Chen,
             "Stateless IPv4 Network Address Translation", Work in
             Progress, draft-tsou-stateless-nat44-02, October 2012.

  [TS23.203] 3GPP, "Policy and charging control architecture (Release
             11)", 3GPP TS23.203, September 2012.

  [TS29.212] 3GPP, "Policy and Charging Control (PCC); Reference points
             (Release 11)", 3GPP TS29.212, December 2013.

Acknowledgments

  Many thanks to F. Klamm, D. Wing, D. von Hugo, G. Li, D. Liu, and
  Y. Lee for their review.

  J. Touch, S. Farrel, and S. Moonesamy provided useful comments in the
  intarea mailing list.

  Figure 8 and part of the text in Section 10.3 were inspired by
  [IKEv2-CP-EXT].

Contributors

  Many thanks to the following people for contributing text and
  comments to the document:

  o  David Binet
  o  Sophie Durel
  o  Li Xue
  o  Richard Stewart Wheeldon














Boucadair, et al.             Informational                    [Page 25]

RFC 7620             Host Identification: Scenarios          August 2015


Authors' Addresses

  Mohamed Boucadair (editor)
  Orange
  Rennes  35000
  France

  Email: [email protected]


  Bruno Chatras
  Orange
  Paris
  France

  Email: [email protected]


  Tirumaleswar Reddy
  Cisco Systems
  Cessna Business Park, Varthur Hobli
  Sarjapur Marathalli Outer Ring Road
  Bangalore, Karnataka  560103
  India

  Email: [email protected]


  Brandon Williams
  Akamai, Inc.
  Cambridge  MA
  United States

  Email: [email protected]


  Behcet Sarikaya
  Huawei
  5340 Legacy Dr. Building 3,
  Plano, TX  75024
  United States

  Email: [email protected]








Boucadair, et al.             Informational                    [Page 26]