Internet Engineering Task Force (IETF)                     O. Troan, Ed.
Request for Comments: 7597                                        W. Dec
Category: Standards Track                                  Cisco Systems
ISSN: 2070-1721                                                    X. Li
                                                                 C. Bao
                                                    Tsinghua University
                                                          S. Matsushima
                                                       SoftBank Telecom
                                                            T. Murakami
                                                            IP Infusion
                                                         T. Taylor, Ed.
                                                    Huawei Technologies
                                                              July 2015


        Mapping of Address and Port with Encapsulation (MAP-E)

Abstract

  This document describes a mechanism for transporting IPv4 packets
  across an IPv6 network using IP encapsulation.  It also describes a
  generic mechanism for mapping between IPv6 addresses and IPv4
  addresses as well as transport-layer ports.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7597.














Troan, et al.                Standards Track                    [Page 1]

RFC 7597                          MAP-E                        July 2015


Copyright Notice

  Copyright (c) 2015 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.





































Troan, et al.                Standards Track                    [Page 2]

RFC 7597                          MAP-E                        July 2015


Table of Contents

  1. Introduction ....................................................4
  2. Conventions .....................................................5
  3. Terminology .....................................................5
  4. Architecture ....................................................7
  5. Mapping Algorithm ...............................................8
     5.1. Port-Mapping Algorithm ....................................10
     5.2. Basic Mapping Rule (BMR) ..................................11
     5.3. Forwarding Mapping Rule (FMR) .............................14
     5.4. Destinations outside the MAP Domain .......................14
  6. The IPv6 Interface Identifier ..................................15
  7. MAP Configuration ..............................................15
     7.1. MAP CE ....................................................15
     7.2. MAP BR ....................................................16
  8. Forwarding Considerations ......................................17
     8.1. Receiving Rules ...........................................17
     8.2. ICMP ......................................................18
     8.3. Fragmentation and Path MTU Discovery ......................18
          8.3.1. Fragmentation in the MAP Domain ....................18
          8.3.2. Receiving IPv4 Fragments on the MAP Domain
                 Borders ............................................19
          8.3.3. Sending IPv4 Fragments to the Outside ..............19
  9. NAT44 Considerations ...........................................19
  10. Security Considerations .......................................20
  11. References ....................................................21
     11.1. Normative References .....................................21
     11.2. Informative References ...................................21
  Appendix A. Examples ..............................................25
  Appendix B. A More Detailed Description of the Derivation of the
              Port-Mapping Algorithm ................................29
    B.1. Bit Representation of the Algorithm ........................31
    B.2. GMA Examples ...............................................32
  Acknowledgements ..................................................32
  Contributors ......................................................33
  Authors' Addresses ................................................34















Troan, et al.                Standards Track                    [Page 3]

RFC 7597                          MAP-E                        July 2015


1.  Introduction

  Mapping of IPv4 addresses in IPv6 addresses has been described in
  numerous mechanisms dating back to the mid-1990s [RFC1933] [RFC4213].
  The "automatic tunneling" mechanism as first described in [RFC1933]
  assigned a globally unique IPv6 address to a host by combining the
  host's IPv4 address with a well-known IPv6 prefix.  Given an IPv6
  packet with a destination address with an embedded IPv4 address, a
  node could automatically tunnel this packet by extracting the IPv4
  tunnel endpoint address from the IPv6 destination address.

  There are numerous variations of this idea, as described in 6over4
  [RFC2529], 6to4 [RFC3056], the Intra-Site Automatic Tunnel Addressing
  Protocol (ISATAP) [RFC5214], and IPv6 Rapid Deployment on IPv4
  Infrastructures (6rd) [RFC5969].

  The commonalities of all of these IPv6-over-IPv4 mechanisms are as
  follows:

  o  Automatic provisioning of an IPv6 address for a host or an IPv6
     prefix for a site.

  o  Algorithmic or implicit address resolution of tunnel endpoint
     addresses.  Given an IPv6 destination address, an IPv4 tunnel
     endpoint address can be calculated.

  o  Embedding of an IPv4 address or part thereof into an IPv6 address.

  In later phases of IPv4-to-IPv6 migration, it is expected that
  IPv6-only networks will be common, while there will still be a need
  for residual IPv4 deployment.  This document describes a generic
  mapping of IPv4 to IPv6 and a mechanism for encapsulating IPv4
  over IPv6.

  Just as for the IPv6-over-IPv4 mechanisms referred to above, the
  residual IPv4-over-IPv6 mechanism must be capable of:

  o  Provisioning an IPv4 prefix, an IPv4 address, or a shared IPv4
     address.

  o  Algorithmically mapping between an IPv4 prefix, an IPv4 address,
     or a shared IPv4 address and an IPv6 address.

  The mapping scheme described here supports encapsulation of IPv4
  packets in IPv6 in both mesh and hub-and-spoke topologies, including
  address mappings with full independence between IPv6 and IPv4
  addresses.




Troan, et al.                Standards Track                    [Page 4]

RFC 7597                          MAP-E                        July 2015


  This document describes the delivery of IPv4 unicast service across
  an IPv6 infrastructure.  IPv4 multicast is not considered in this
  document.

  The Address plus Port (A+P) architecture of sharing an IPv4 address
  by distributing the port space is described in [RFC6346].
  Specifically, Section 4 of [RFC6346] covers stateless mapping.  The
  corresponding stateful solution, Dual-Stack Lite (DS-Lite), is
  described in [RFC6333].  The motivations for this work are described
  in [Solutions-4v6].

  [RFC7598] defines DHCPv6 options for the provisioning of MAP.  Other
  means of provisioning are possible.  Deployment considerations are
  described in [MAP-Deploy].

  MAP relies on IPv6 and is designed to deliver dual-stack service
  while allowing IPv4 to be phased out within the service provider's
  (SP's) network.  The phasing out of IPv4 within the SP network is
  independent of whether the end user disables IPv4 service or not.
  Further, "greenfield" IPv6-only networks may use MAP in order to
  deliver IPv4 to sites via the IPv6 network.

2.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

3.  Terminology

  MAP domain:             One or more MAP Customer Edge (CE) devices
                          and Border Relays (BRs) connected to the same
                          virtual link.  A service provider may deploy
                          a single MAP domain or may utilize multiple
                          MAP domains.

  MAP Rule:               A set of parameters describing the mapping
                          between an IPv4 prefix, IPv4 address, or
                          shared IPv4 address and an IPv6 prefix or
                          address.  Each domain uses a different
                          mapping rule set.

  MAP node:               A device that implements MAP.








Troan, et al.                Standards Track                    [Page 5]

RFC 7597                          MAP-E                        July 2015


  MAP Border Relay (BR):  A MAP-enabled router managed by the service
                          provider at the edge of a MAP domain.  A BR
                          has at least an IPv6-enabled interface and an
                          IPv4 interface connected to the native IPv4
                          network.  A MAP BR may also be referred to as
                          simply a "BR" within the context of MAP.

  MAP Customer Edge (CE): A device functioning as a Customer Edge
                          router in a MAP deployment.  A typical MAP CE
                          adopting MAP Rules will serve a residential
                          site with one WAN-side interface and one or
                          more LAN-side interfaces.  A MAP CE may also
                          be referred to as simply a "CE" within the
                          context of MAP.

  Port set:               Each node has a separate part of the
                          transport-layer port space; this is denoted
                          as a port set.

  Port Set ID (PSID):     Algorithmically identifies a set of ports
                          exclusively assigned to a CE.

  Shared IPv4 address:    An IPv4 address that is shared among multiple
                          CEs.  Only ports that belong to the assigned
                          port set can be used for communication.  Also
                          known as a port-restricted IPv4 address.

  End-user IPv6 prefix:   The IPv6 prefix assigned to an End-user CE by
                          means other than MAP itself, e.g.,
                          provisioned using DHCPv6 Prefix Delegation
                          (PD) [RFC3633], assigned via Stateless
                          Address Autoconfiguration (SLAAC) [RFC4862],
                          or configured manually.  It is unique for
                          each CE.

  MAP IPv6 address:       The IPv6 address used to reach the MAP
                          function of a CE from other CEs and from BRs.

  Rule IPv6 prefix:       An IPv6 prefix assigned by a service provider
                          for a mapping rule.

  Rule IPv4 prefix:       An IPv4 prefix assigned by a service provider
                          for a mapping rule.








Troan, et al.                Standards Track                    [Page 6]

RFC 7597                          MAP-E                        July 2015


  Embedded Address (EA) bits:
                          The IPv4 EA-bits in the IPv6 address identify
                          an IPv4 prefix/address (or part thereof) or a
                          shared IPv4 address (or part thereof) and a
                          Port Set Identifier.

4.  Architecture

  In accordance with the requirements stated above, the MAP mechanism
  can operate with shared IPv4 addresses, full IPv4 addresses, or IPv4
  prefixes.  Operation with shared IPv4 addresses is described here,
  and the differences for full IPv4 addresses and prefixes are
  described below.

  The MAP mechanism uses existing standard building blocks.  The
  existing Network Address and Port Translator (NAPT) [RFC2663] on the
  CE is used with additional support for restricting transport-protocol
  ports, ICMP identifiers, and fragment identifiers to the configured
  port set.  For packets outbound from the private IPv4 network, the CE
  NAPT MUST translate transport identifiers (e.g., TCP and UDP port
  numbers) so that they fall within the CE's assigned port range.

  The NAPT MUST in turn be connected to a MAP-aware forwarding function
  that does encapsulation/decapsulation of IPv4 packets in IPv6.  MAP
  supports the encapsulation mode specified in [RFC2473].  In addition,
  MAP specifies an algorithm to do "address resolution" from an IPv4
  address and port to an IPv6 address.  This algorithmic mapping is
  specified in Section 5.

  The MAP architecture described here restricts the use of the shared
  IPv4 address to only be used as the global address (outside) of the
  NAPT running on the CE.  A shared IPv4 address MUST NOT be used to
  identify an interface.  While it is theoretically possible to make
  host stacks and applications port-aware, it would be a drastic change
  to the IP model [RFC6250].

  For full IPv4 addresses and IPv4 prefixes, the architecture just
  described applies, with two differences: first, a full IPv4 address
  or IPv4 prefix can be used as it is today, e.g., for identifying an
  interface or as a DHCP pool, respectively.  Second, the NAPT is not
  required to restrict the ports used on outgoing packets.










Troan, et al.                Standards Track                    [Page 7]

RFC 7597                          MAP-E                        July 2015


  This architecture is illustrated in Figure 1.

        User N
      Private IPv4
     |  Network
     |
  O--+---------------O
  |  |  MAP CE       |
  | +-----+--------+ |
  | NAPT44|  MAP   | |
  | +-----+        | |\     ,-------.                      .------.
  |       +--------+ | \ ,-'         `-.                 ,-'       `-.
  O------------------O  /              \   O---------O  /   Public   \
                       /    IPv6-only  \  |  MAP    | /     IPv4      \
                      (    Network      --+  Border +-     Network    )
                       \  (MAP Domain) /  |  Relay  | \               /
  O------------------O  \              /   O---------O  \            /
  |    MAP   CE      |  /".         ,-'                 `-.       ,-'
  | +-----+--------+ | /   `----+--'                       ------'
  | NAPT44|  MAP   | |/
  | +-----+        | |
  |   |   +--------+ |
  O---+--------------O
      |
       User M
     Private IPv4
       Network

                       Figure 1: Network Topology

  The MAP BR connects one or more MAP domains to external IPv4
  networks.

5.  Mapping Algorithm

  A MAP node is provisioned with one or more mapping rules.

  Mapping rules are used differently, depending on their function.
  Every MAP node must be provisioned with a Basic Mapping Rule.  This
  is used by the node to configure its IPv4 address, IPv4 prefix, or
  shared IPv4 address.  This same basic rule can also be used for
  forwarding, where an IPv4 destination address and, optionally, a
  destination port are mapped into an IPv6 address.  Additional mapping
  rules are specified to allow for multiple different IPv4 subnets to
  exist within the domain and optimize forwarding between them.






Troan, et al.                Standards Track                    [Page 8]

RFC 7597                          MAP-E                        July 2015


  Traffic outside of the domain (i.e., when the destination IPv4
  address does not match (using longest matching prefix) any Rule IPv4
  prefix in the Rules database) is forwarded to the BR.

  There are two types of mapping rules:

  1.  Basic Mapping Rule (BMR) - mandatory.  A CE can be provisioned
      with multiple End-user IPv6 prefixes.  There can only be one
      Basic Mapping Rule per End-user IPv6 prefix.  However, all CEs
      having End-user IPv6 prefixes within (aggregated by) the same
      Rule IPv6 prefix may share the same Basic Mapping Rule.  In
      combination with the End-user IPv6 prefix, the Basic Mapping Rule
      is used to derive the IPv4 prefix, address, or shared address and
      the PSID assigned to the CE.

  2.  Forwarding Mapping Rule (FMR) - optional; used for forwarding.
      The Basic Mapping Rule may also be a Forwarding Mapping Rule.
      Each Forwarding Mapping Rule will result in an entry in the rule
      table for the Rule IPv4 prefix.  Given a destination IPv4 address
      and port within the MAP domain, a MAP node can use the matching
      FMR to derive the End-user IPv6 address of the interface through
      which that IPv4 destination address and port combination can be
      reached.  In hub-and-spoke mode, there are no FMRs.

  Both mapping rules share the same parameters:

  o  Rule IPv6 prefix (including prefix length)

  o  Rule IPv4 prefix (including prefix length)

  o  Rule EA-bit length (in bits)

  A MAP node finds its BMR by doing a longest match between the
  End-user IPv6 prefix and the Rule IPv6 prefix in the Mapping Rules
  table.  The rule is then used for IPv4 prefix, address, or shared
  address assignment.

  A MAP IPv6 address is formed from the BMR Rule IPv6 prefix.  This
  address MUST be assigned to an interface of the MAP node and is used
  to terminate all MAP traffic being sent or received to the node.

  Port-restricted IPv4 routes are installed in the rule table for all
  the Forwarding Mapping Rules, and a default route is installed to the
  MAP BR (see Section 5.4).







Troan, et al.                Standards Track                    [Page 9]

RFC 7597                          MAP-E                        July 2015


  Forwarding Mapping Rules are used to allow direct communication
  between MAP CEs; this is known as "Mesh mode".  In hub-and-spoke
  mode, there are no Forwarding Mapping Rules; all traffic MUST be
  forwarded directly to the BR.

  While an FMR is optional in the sense that a MAP CE MAY be configured
  with zero or more FMRs -- depending on the deployment -- all MAP CEs
  MUST implement support for both rule types.

5.1.  Port-Mapping Algorithm

  The port-mapping algorithm is used in domains whose rules allow IPv4
  address sharing.

  The simplest way to represent a port range is using a notation
  similar to Classless Inter-Domain Routing (CIDR) [RFC4632].  For
  example, the first 256 ports are represented as port prefix 0.0/8 and
  the last 256 ports as 255.0/8.  In hexadecimal, these would be
  0x0000/8 (PSID = 0) and 0xFF00/8 (PSID = 0xFF), respectively.  Using
  this technique but wishing to avoid allocating the system ports
  [RFC6335] to the user, one would have to exclude the use of one or
  more PSIDs (e.g., PSIDs 0 to 3 in the example just given).

  When the PSID is embedded in the End-user IPv6 prefix, it is
  desirable to minimize the restrictions of possible PSID values in
  order to minimize dependencies between the End-user IPv6 prefix and
  the assigned port set.  This is achieved by using an infix
  representation of the port value.  Using such a representation, the
  well-known ports are excluded by restrictions on the value of the
  high-order bit field (A) rather than the PSID.

  The infix algorithm allocates ports to a given CE as a series of
  contiguous ranges spaced at regular intervals throughout the complete
  range of possible port-set values.

                             0                   1
                             0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                            +-----------+-----------+-------+
              Ports in      |     A     |    PSID   |   j   |
           the CE port set  |    > 0    |           |       |
                            +-----------+-----------+-------+
                            |  a bits   |  k bits   |m bits |

           Figure 2: Structure of a Port-Restricted Port Field







Troan, et al.                Standards Track                   [Page 10]

RFC 7597                          MAP-E                        July 2015


  a bits:  The number of offset bits -- 6 by default, as this excludes
           the system ports (0-1023).  To guarantee non-overlapping
           port sets, the offset 'a' MUST be the same for every MAP CE
           sharing the same address.

       A:  Selects the range of the port number.  For 'a' > 0, A MUST
           be larger than 0.  This ensures that the algorithm excludes
           the system ports.  For the default value of 'a' (6), the
           system ports are excluded by requiring that A be greater
           than 0.  Smaller values of 'a' exclude a larger initial
           range, e.g., 'a' = 4 will exclude ports 0-4095.  The
           interval between initial port numbers of successive
           contiguous ranges assigned to the same user is 2^(16 - a).

  k bits:  The length in bits of the PSID field.  To guarantee
           non-overlapping port sets, the length 'k' MUST be the same
           for every MAP CE sharing the same address.  The sharing
           ratio is 2^k.  The number of ports assigned to the user is
           2^(16 - k) - 2^m (excluded ports).

    PSID:  The Port Set Identifier (PSID).  Different PSID values
           guarantee non-overlapping port sets, thanks to the
           restrictions on 'a' and 'k' stated above, because the PSID
           always occupies the same bit positions in the port number.

  m bits:  The number of contiguous ports is given by 2^m.

       j:  Selects the specific port within a particular range
           specified by the concatenation of A and the PSID.

5.2.  Basic Mapping Rule (BMR)

  The Basic Mapping Rule is mandatory and is used by the CE to
  provision itself with an IPv4 prefix, IPv4 address, or shared IPv4
  address.  Recall from Section 5 that the BMR consists of the
  following parameters:

  o  Rule IPv6 prefix (including prefix length)

  o  Rule IPv4 prefix (including prefix length)

  o  Rule EA-bit length (in bits)









Troan, et al.                Standards Track                   [Page 11]

RFC 7597                          MAP-E                        July 2015


  Figure 3 shows the structure of the complete MAP IPv6 address as
  specified in this document.

  |     n bits         |  o bits   | s bits  |   128-n-o-s bits      |
  +--------------------+-----------+---------+-----------------------+
  |  Rule IPv6 prefix  |  EA bits  |subnet ID|     interface ID      |
  +--------------------+-----------+---------+-----------------------+
  |<---  End-user IPv6 prefix  --->|

                    Figure 3: MAP IPv6 Address Format

  The Rule IPv6 prefix is common among all CEs using the same Basic
  Mapping Rule within the MAP domain.  The EA bit field encodes the
  CE-specific IPv4 address and port information.  The EA bit field,
  which is unique for a given Rule IPv6 prefix, can contain a full or
  partial IPv4 address and, in the shared IPv4 address case, a PSID.
  An EA bit field length of 0 signifies that all relevant MAP IPv4
  addressing information is passed directly in the BMR and is not
  derived from the EA bit field in the End-user IPv6 prefix.

  The MAP IPv6 address is created by concatenating the End-user IPv6
  prefix with the MAP subnet identifier (if the End-user IPv6 prefix is
  shorter than 64 bits) and the interface identifier as specified in
  Section 6.

  The MAP subnet identifier is defined to be the first subnet (s bits
  set to zero).

  Define:

     r = length of the IPv4 prefix given by the BMR;

     o = length of the EA bit field as given by the BMR;

     p = length of the IPv4 suffix contained in the EA bit field.

  The length r MAY be zero, in which case the complete IPv4 address or
  prefix is encoded in the EA bits.  If only a part of the IPv4
  address / prefix is encoded in the EA bits, the Rule IPv4 prefix is
  provisioned to the CE by other means (e.g., a DHCPv6 option).  To
  create a complete IPv4 address (or prefix), the IPv4 address suffix
  (p) from the EA bits is concatenated with the Rule IPv4 prefix
  (r bits).

  The offset of the EA bit field in the IPv6 address is equal to the
  BMR Rule IPv6 prefix length.  The length of the EA bit field (o) is
  given by the BMR Rule EA-bit length and can be between 0 and 48.  A
  length of 48 means that the complete IPv4 address and port are



Troan, et al.                Standards Track                   [Page 12]

RFC 7597                          MAP-E                        July 2015


  embedded in the End-user IPv6 prefix (a single port is assigned).  A
  length of 0 means that no part of the IPv4 address or port is
  embedded in the address.  The sum of the Rule IPv6 Prefix length and
  the Rule EA-bit length MUST be less than or equal to the End-user
  IPv6 prefix length.

  If o + r < 32 (length of the IPv4 address in bits), then an IPv4
  prefix is assigned.  This case is shown in Figure 4.

                  |   r bits    |  o bits =  p bits   |
                  +-------------+---------------------+
                  |  Rule IPv4  | IPv4 address suffix |
                  +-------------+---------------------+
                  |           < 32 bits               |

                          Figure 4: IPv4 Prefix

  If o + r is equal to 32, then a full IPv4 address is to be assigned.
  The address is created by concatenating the Rule IPv4 prefix and the
  EA-bits.  This case is shown in Figure 5.

                  |   r bits    |  o bits = p bits    |
                  +-------------+---------------------+
                  |  Rule IPv4  | IPv4 address suffix |
                  +-------------+---------------------+
                  |            32 bits                |

                     Figure 5: Complete IPv4 Address

  If o + r is > 32, then a shared IPv4 address is to be assigned.  The
  number of IPv4 address suffix bits (p) in the EA bits is given by
  32 - r bits.  The PSID bits are used to create a port set.  The
  length of the PSID bit field within the EA bits is q = o - p.

      |   r bits    |        p bits       |         |   q bits   |
      +-------------+---------------------+         +------------+
      |  Rule IPv4  | IPv4 address suffix |         |Port Set ID |
      +-------------+---------------------+         +------------+
      |            32 bits                |

                      Figure 6: Shared IPv4 Address

  The length of r MAY be 32, with no part of the IPv4 address embedded
  in the EA bits.  This results in a mapping with no dependence between
  the IPv4 address and the IPv6 address.  In addition, the length of o
  MAY be zero (no EA bits embedded in the End-user IPv6 prefix),
  meaning that the PSID is also provisioned using, for example, DHCP.




Troan, et al.                Standards Track                   [Page 13]

RFC 7597                          MAP-E                        July 2015


  See Appendix A for an example of the Basic Mapping Rule.

5.3.  Forwarding Mapping Rule (FMR)

  The Forwarding Mapping Rule is optional and is used in Mesh mode to
  enable direct CE-to-CE connectivity.

  On adding an FMR rule, an IPv4 route is installed in the rule table
  for the Rule IPv4 prefix (Figures 4, 5, and 6).

  |        32 bits           |         |    16 bits        |
  +--------------------------+         +-------------------+
  | IPv4 destination address |         |  IPv4 dest port   |
  +--------------------------+         +-------------------+
                 :           :           ___/       :
                 |  p bits   |          /  q bits   :
                 +-----------+         +------------+
                 |IPv4 suffix|         |Port Set ID |
                 +-----------+         +------------+
                  \          /    ____/    ________/
                    \       :  __/   _____/
                      \     : /     /
  |     n bits         |  o bits   | s bits  |   128-n-o-s bits      |
  +--------------------+-----------+---------+------------+----------+
  |  Rule IPv6 prefix  |  EA bits  |subnet ID|     interface ID      |
  +--------------------+-----------+---------+-----------------------+
  |<---  End-user IPv6 prefix  --->|

                Figure 7: Derivation of MAP IPv6 Address

  See Appendix A for an example of the Forwarding Mapping Rule.

5.4.  Destinations outside the MAP Domain

  IPv4 traffic between MAP nodes that are all within one MAP domain is
  encapsulated in IPv6, with the sender's MAP IPv6 address as the IPv6
  source address and the receiving MAP node's MAP IPv6 address as the
  IPv6 destination address.  To reach IPv4 destinations outside of the
  MAP domain, traffic is also encapsulated in IPv6, but the destination
  IPv6 address is set to the configured IPv6 address of the MAP BR.

  On the CE, the path to the BR can be represented as a point-to-point
  IPv4-over-IPv6 tunnel [RFC2473] with the source address of the tunnel
  being the CE's MAP IPv6 address and the BR IPv6 address as the remote
  tunnel address.  When MAP is enabled, a typical CE router will
  install a default IPv4 route to the BR.





Troan, et al.                Standards Track                   [Page 14]

RFC 7597                          MAP-E                        July 2015


  The BR forwards traffic received from the outside to CEs using the
  normal MAP forwarding rules.

6.  The IPv6 Interface Identifier

  The interface identifier format of a MAP node is described below.

                  |          128-n-o-s bits          |
                  | 16 bits|    32 bits     | 16 bits|
                  +--------+----------------+--------+
                  |   0    |  IPv4 address  |  PSID  |
                  +--------+----------------+--------+

                   Figure 8: IPv6 Interface Identifier

  In the case of an IPv4 prefix, the IPv4 address field is right-padded
  with zeros up to 32 bits.  The PSID field is left-padded with zeros
  to create a 16-bit field.  For an IPv4 prefix or a complete IPv4
  address, the PSID field is zero.

  If the End-user IPv6 prefix length is larger than 64, the most
  significant parts of the interface identifier are overwritten by the
  prefix.

7.  MAP Configuration

  For a given MAP domain, the BR and CE MUST be configured with the
  following MAP elements.  The configured values for these elements are
  identical for all CEs and BRs within a given MAP domain.

  o  The Basic Mapping Rule and, optionally, the Forwarding Mapping
     Rules, including the Rule IPv6 prefix, Rule IPv4 prefix, and
     Length of EA bits.

  o  Hub-and-spoke mode or Mesh mode (if all traffic should be sent to
     the BR, or if direct CE-to-CE traffic should be supported).

  In addition, the MAP CE MUST be configured with the IPv6 address(es)
  of the MAP BR (Section 5.4).

7.1.  MAP CE

  The MAP elements are set to values that are the same across all CEs
  within a MAP domain.  The values may be configured in a variety of
  ways, including provisioning methods such as the Broadband Forum's
  "TR-69" Residential Gateway management interface [TR069], an
  XML-based object retrieved after IPv6 connectivity is established, or
  manual configuration by an administrator.  IPv6 DHCP options for MAP



Troan, et al.                Standards Track                   [Page 15]

RFC 7597                          MAP-E                        July 2015


  configuration are defined in [RFC7598].  Other configuration and
  management methods may use the formats described by these options for
  consistency and convenience of implementation on CEs that support
  multiple configuration methods.

  The only remaining provisioning information the CE requires in order
  to calculate the MAP IPv4 address and enable IPv4 connectivity is the
  IPv6 prefix for the CE.  The End-user IPv6 prefix is configured as
  part of obtaining IPv6 Internet access.

  The MAP provisioning parameters, and hence the IPv4 service itself,
  are tied to the associated End-user IPv6 prefix lifetime; thus, the
  MAP service is also tied to this in terms of authorization,
  accounting, etc.

  A single MAP CE MAY be connected to more than one MAP domain, just as
  any router may have more than one IPv4-enabled service-provider-
  facing interface and more than one set of associated addresses
  assigned by DHCP.  Each domain within which a given CE operates would
  require its own set of MAP configuration elements and would generate
  its own IPv4 address.  Each MAP domain requires a distinct End-user
  IPv6 prefix.

  MAP DHCP options are specified in [RFC7598].

7.2.  MAP BR

  The MAP BR MUST be configured with corresponding mapping rules for
  each MAP domain for which it is acting as a BR.

  For increased reliability and load balancing, the BR IPv6 address MAY
  be an anycast address shared across a given MAP domain.  As MAP is
  stateless, any BR may be used at any time.  If the BR IPv6 address is
  anycast, the relay MUST use this anycast IPv6 address as the source
  address in packets relayed to CEs.

  Since MAP uses provider address space, no specific routes need to be
  advertised externally for MAP to operate in IPv6 or IPv4 BGP.
  However, if anycast is used for the MAP IPv6 relays, the anycast
  addresses must be advertised in the service provider's IGP.











Troan, et al.                Standards Track                   [Page 16]

RFC 7597                          MAP-E                        July 2015


8.  Forwarding Considerations

  Figure 1 depicts the overall MAP architecture with IPv4 users
  connected to a routed IPv6 network.

  MAP uses encapsulation mode as specified in [RFC2473].

  For a shared IPv4 address, a MAP CE forwarding IPv4 packets from the
  LAN performs NAT44 functions first and creates appropriate NAT44
  bindings.  The resulting IPv4 packets MUST contain the source IPv4
  address and source transport identifiers specified by the MAP
  provisioning parameters.  The IPv4 packet is forwarded using the CE's
  MAP forwarding function.  The IPv6 source and destination addresses
  MUST then be derived as per Section 5 of this document.

8.1.  Receiving Rules

  A MAP CE receiving an IPv6 packet to its MAP IPv6 address sends this
  packet to the CE's MAP function, where it is decapsulated.  The
  resulting IPv4 packet is then forwarded to the CE's NAT44 function,
  where it is handled according to the NAT's translation table.

  A MAP BR receiving IPv6 packets selects a best matching MAP domain
  rule (Rule IPv6 prefix) based on a longest address match of the
  packet's IPv6 source address, as well as a match of the packet
  destination address against the configured BR IPv6 address(es).  The
  selected MAP Rule allows the BR to determine the EA-bits from the
  source IPv6 address.

  To prevent spoofing of IPv4 addresses, any MAP node (CE and BR) MUST
  perform the following validation upon reception of a packet.  First,
  the embedded IPv4 address or prefix, as well as the PSID (if any),
  are extracted from the source IPv6 address using the matching MAP
  Rule.  These represent the range of what is acceptable as source IPv4
  address and port.  Second, the node extracts the source IPv4 address
  and port from the IPv4 packet encapsulated inside the IPv6 packet.
  If they are found to be outside the acceptable range, the packet MUST
  be silently discarded and a counter incremented to indicate that a
  potential spoofing attack may be underway.  The source validation
  checks just described are not done for packets whose source IPv6
  address is that of the BR (BR IPv6 address).

  By default, the CE router MUST drop packets received on the MAP
  virtual interface (i.e., after decapsulation of IPv6) for IPv4
  destinations not for its own IPv4 shared address, full IPv4 address,
  or IPv4 prefix.





Troan, et al.                Standards Track                   [Page 17]

RFC 7597                          MAP-E                        July 2015


8.2.  ICMP

  ICMP messages should be supported in MAP domains.  Hence, the NAT44
  in the MAP CE MUST implement the behavior for ICMP messages
  conforming to the best current practice documented in [RFC5508].

  If a MAP CE receives an ICMP message having the ICMP Identifier field
  in the ICMP header, the NAT44 in the MAP CE MUST rewrite this field
  to a specific value assigned from the port set.  BRs and other CEs
  must handle this field in a way similar to the handling of a port
  number in the TCP/UDP header upon receiving the ICMP message with the
  ICMP Identifier field.

  If a MAP node receives an ICMP error message without the ICMP
  Identifier field for errors that are detected inside an IPv6 tunnel,
  a node should relay the ICMP error message to the original source.
  This behavior SHOULD be implemented in accordance with Section 8 of
  [RFC2473].

8.3.  Fragmentation and Path MTU Discovery

  Due to the different sizes of the IPv4 and IPv6 headers, handling the
  maximum packet size is relevant for the operation of any system
  connecting the two address families.  There are three mechanisms to
  handle this issue: Path MTU Discovery (PMTUD), fragmentation, and
  transport-layer negotiation such as the TCP Maximum Segment Size
  (MSS) option [RFC879].  MAP uses all three mechanisms to deal with
  different cases.

8.3.1.  Fragmentation in the MAP Domain

  Encapsulating an IPv4 packet to carry it across the MAP domain will
  increase its size (typically by 40 bytes).  It is strongly
  recommended that the MTU in the MAP domain be well managed and that
  the IPv6 MTU on the CE WAN-side interface be set so that no
  fragmentation occurs within the boundary of the MAP domain.

  For an IPv4 packet entering a MAP domain, fragmentation is performed
  as described in Section 7.2 of [RFC2473].

  The use of an anycast source address could lead to an ICMP error
  message generated on the path being sent to a different BR.
  Therefore, using a dynamically set tunnel MTU (Section 6.7 of
  [RFC2473]) is subject to IPv6 Path MTU black holes.  A MAP BR using
  an anycast source address SHOULD NOT by default use Path MTU
  Discovery across the MAP domain.





Troan, et al.                Standards Track                   [Page 18]

RFC 7597                          MAP-E                        July 2015


  Multiple BRs using the same anycast source address could send
  fragmented packets to the same CE at the same time.  If the
  fragmented packets from different BRs happen to use the same
  fragment ID, incorrect reassembly might occur.  See [RFC4459] for an
  analysis of the problem; Section 3.4 of [RFC4459] suggests solving
  the problem by fragmenting the inner packet.

8.3.2.  Receiving IPv4 Fragments on the MAP Domain Borders

  The forwarding of an IPv4 packet received from outside of the MAP
  domain requires the IPv4 destination address and the
  transport-protocol destination port.  The transport-protocol
  information is only available in the first fragment received.  As
  described in Section 5.3.3 of [RFC6346], a MAP node receiving an
  IPv4 fragmented packet from outside has to reassemble the packet
  before sending the packet onto the MAP link.  If the first packet
  received contains the transport-protocol information, it is possible
  to optimize this behavior by using a cache and forwarding the
  fragments unchanged.  Implementers of MAP should be aware that there
  are a number of well-known attacks against IP fragmentation; see
  [RFC1858] and [RFC3128].  Implementers should also be aware of
  additional issues with reassembling packets at high rates, as
  described in [RFC4963].

8.3.3.  Sending IPv4 Fragments to the Outside

  If two IPv4 hosts behind two different MAP CEs with the same IPv4
  address send fragments to an IPv4 destination host outside the
  domain, those hosts may use the same IPv4 fragmentation identifier,
  resulting in incorrect reassembly of the fragments at the destination
  host.  Given that the IPv4 fragmentation identifier is a 16-bit
  field, it could be used similarly to port ranges.  A MAP CE could
  rewrite the IPv4 fragmentation identifier to be within its allocated
  port set, if the resulting fragment identifier space was large enough
  related to the rate at which fragments were sent.  However, splitting
  the identifier space in this fashion would increase the probability
  of reassembly collisions for all connections through the Customer
  Premises Equipment (CPE).  See also [RFC6864].

9.  NAT44 Considerations

  The NAT44 implemented in the MAP CE SHOULD conform to the behavior
  and best current practices documented in [RFC4787], [RFC5508], and
  [RFC5382].  In MAP address-sharing mode (determined by the MAP
  domain / rule configuration parameters), the operation of the NAT44
  MUST be restricted to the available port numbers derived via the
  Basic Mapping Rule.




Troan, et al.                Standards Track                   [Page 19]

RFC 7597                          MAP-E                        July 2015


10.  Security Considerations

  Spoofing attacks:  With consistency checks between IPv4 and IPv6
     sources that are performed on IPv4/IPv6 packets received by MAP
     nodes, MAP does not introduce any new opportunity for spoofing
     attacks that would not already exist in IPv6.

  Denial-of-service attacks:  In MAP domains where IPv4 addresses are
     shared, the fact that IPv4 datagram reassembly may be necessary
     introduces an opportunity for DoS attacks.  This is inherent in
     address sharing and is common with other address-sharing
     approaches such as DS-Lite and NAT64/DNS64.  The best protection
     against such attacks is to accelerate IPv6 deployment so that
     address sharing is used less and less where MAP is supported.

  Routing loop attacks:  Routing loop attacks may exist in some
     "automatic tunneling" scenarios and are documented in [RFC6324].
     They cannot exist with MAP because each BR checks that the IPv6
     source address of a received IPv6 packet is a CE address based on
     the Forwarding Mapping Rule.

  Attacks facilitated by restricted port set:  From hosts that are not
     subject to ingress filtering [RFC2827], an attacker can inject
     spoofed packets during ongoing transport connections [RFC4953]
     [RFC5961] [RFC6056].  The attacks depend on guessing which ports
     are currently used by target hosts.  Using an unrestricted port
     set is preferable, i.e., using native IPv6 connections that are
     not subject to MAP port-range restrictions.  To minimize these
     types of attacks when using a restricted port set, the MAP CE's
     NAT44 filtering behavior SHOULD be "Address-Dependent Filtering"
     as described in Section 5 of [RFC4787].  Furthermore, the MAP CEs
     SHOULD use a DNS transport proxy [RFC5625] function to handle DNS
     traffic and source such traffic from IPv6 interfaces not assigned
     to MAP.

  [RFC6269] outlines general issues with IPv4 address sharing.















Troan, et al.                Standards Track                   [Page 20]

RFC 7597                          MAP-E                        July 2015


11.  References

11.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC2473]  Conta, A. and S. Deering, "Generic Packet Tunneling in
             IPv6 Specification", RFC 2473, DOI 10.17487/RFC2473,
             December 1998, <http://www.rfc-editor.org/info/rfc2473>.

  [RFC5625]  Bellis, R., "DNS Proxy Implementation Guidelines",
             BCP 152, RFC 5625, DOI 10.17487/RFC5625, August 2009,
             <http://www.rfc-editor.org/info/rfc5625>.

11.2.  Informative References

  [MAP-Deploy]
             Sun, Q., Chen, M., Chen, G., Tsou, T., and S. Perreault,
             "Mapping of Address and Port (MAP) - Deployment
             Considerations", Work in Progress,
             draft-ietf-softwire-map-deployment-06, June 2015.

  [RFC879]   Postel, J., "The TCP Maximum Segment Size and Related
             Topics", RFC 879, DOI 10.17487/RFC0879, November 1983,
             <http://www.rfc-editor.org/info/rfc879>.

  [RFC1858]  Ziemba, G., Reed, D., and P. Traina, "Security
             Considerations for IP Fragment Filtering", RFC 1858,
             DOI 10.17487/RFC1858, October 1995,
             <http://www.rfc-editor.org/info/rfc1858>.

  [RFC1933]  Gilligan, R. and E. Nordmark, "Transition Mechanisms for
             IPv6 Hosts and Routers", RFC 1933, DOI 10.17487/RFC1933,
             April 1996, <http://www.rfc-editor.org/info/rfc1933>.

  [RFC2529]  Carpenter, B. and C. Jung, "Transmission of IPv6 over IPv4
             Domains without Explicit Tunnels", RFC 2529,
             DOI 10.17487/RFC2529, March 1999,
             <http://www.rfc-editor.org/info/rfc2529>.

  [RFC2663]  Srisuresh, P. and M. Holdrege, "IP Network Address
             Translator (NAT) Terminology and Considerations",
             RFC 2663, DOI 10.17487/RFC2663, August 1999,
             <http://www.rfc-editor.org/info/rfc2663>.




Troan, et al.                Standards Track                   [Page 21]

RFC 7597                          MAP-E                        July 2015


  [RFC2827]  Ferguson, P. and D. Senie, "Network Ingress Filtering:
             Defeating Denial of Service Attacks which employ IP Source
             Address Spoofing", BCP 38, RFC 2827, DOI 10.17487/RFC2827,
             May 2000, <http://www.rfc-editor.org/info/rfc2827>.

  [RFC3056]  Carpenter, B. and K. Moore, "Connection of IPv6 Domains
             via IPv4 Clouds", RFC 3056, DOI 10.17487/RFC3056,
             February 2001, <http://www.rfc-editor.org/info/rfc3056>.

  [RFC3128]  Miller, I., "Protection Against a Variant of the Tiny
             Fragment Attack (RFC 1858)", RFC 3128,
             DOI 10.17487/RFC3128, June 2001,
             <http://www.rfc-editor.org/info/rfc3128>.

  [RFC3633]  Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic
             Host Configuration Protocol (DHCP) version 6", RFC 3633,
             DOI 10.17487/RFC3633, December 2003,
             <http://www.rfc-editor.org/info/rfc3633>.

  [RFC4213]  Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms
             for IPv6 Hosts and Routers", RFC 4213,
             DOI 10.17487/RFC4213, October 2005,
             <http://www.rfc-editor.org/info/rfc4213>.

  [RFC4459]  Savola, P., "MTU and Fragmentation Issues with
             In-the-Network Tunneling", RFC 4459, DOI 10.17487/RFC4459,
             April 2006, <http://www.rfc-editor.org/info/rfc4459>.

  [RFC4632]  Fuller, V. and T. Li, "Classless Inter-domain Routing
             (CIDR): The Internet Address Assignment and Aggregation
             Plan", BCP 122, RFC 4632, DOI 10.17487/RFC4632,
             August 2006, <http://www.rfc-editor.org/info/rfc4632>.

  [RFC4787]  Audet, F., Ed., and C. Jennings, "Network Address
             Translation (NAT) Behavioral Requirements for Unicast
             UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787,
             January 2007, <http://www.rfc-editor.org/info/rfc4787>.

  [RFC4862]  Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
             Address Autoconfiguration", RFC 4862,
             DOI 10.17487/RFC4862, September 2007,
             <http://www.rfc-editor.org/info/rfc4862>.

  [RFC4953]  Touch, J., "Defending TCP Against Spoofing Attacks",
             RFC 4953, DOI 10.17487/RFC4953, July 2007,
             <http://www.rfc-editor.org/info/rfc4953>.





Troan, et al.                Standards Track                   [Page 22]

RFC 7597                          MAP-E                        July 2015


  [RFC4963]  Heffner, J., Mathis, M., and B. Chandler, "IPv4 Reassembly
             Errors at High Data Rates", RFC 4963,
             DOI 10.17487/RFC4963, July 2007,
             <http://www.rfc-editor.org/info/rfc4963>.

  [RFC5214]  Templin, F., Gleeson, T., and D. Thaler, "Intra-Site
             Automatic Tunnel Addressing Protocol (ISATAP)", RFC 5214,
             DOI 10.17487/RFC5214, March 2008,
             <http://www.rfc-editor.org/info/rfc5214>.

  [RFC5382]  Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and P.
             Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142,
             RFC 5382, DOI 10.17487/RFC5382, October 2008,
             <http://www.rfc-editor.org/info/rfc5382>.

  [RFC5508]  Srisuresh, P., Ford, B., Sivakumar, S., and S. Guha, "NAT
             Behavioral Requirements for ICMP", BCP 148, RFC 5508,
             DOI 10.17487/RFC5508, April 2009,
             <http://www.rfc-editor.org/info/rfc5508>.

  [RFC5961]  Ramaiah, A., Stewart, R., and M. Dalal, "Improving TCP's
             Robustness to Blind In-Window Attacks", RFC 5961,
             DOI 10.17487/RFC5961, August 2010,
             <http://www.rfc-editor.org/info/rfc5961>.

  [RFC5969]  Townsley, W. and O. Troan, "IPv6 Rapid Deployment on IPv4
             Infrastructures (6rd) -- Protocol Specification",
             RFC 5969, DOI 10.17487/RFC5969, August 2010,
             <http://www.rfc-editor.org/info/rfc5969>.

  [RFC6056]  Larsen, M. and F. Gont, "Recommendations for
             Transport-Protocol Port Randomization", BCP 156, RFC 6056,
             DOI 10.17487/RFC6056, January 2011,
             <http://www.rfc-editor.org/info/rfc6056>.

  [RFC6250]  Thaler, D., "Evolution of the IP Model", RFC 6250,
             DOI 10.17487/RFC6250, May 2011,
             <http://www.rfc-editor.org/info/rfc6250>.

  [RFC6269]  Ford, M., Ed., Boucadair, M., Durand, A., Levis, P., and
             P. Roberts, "Issues with IP Address Sharing", RFC 6269,
             DOI 10.17487/RFC6269, June 2011,
             <http://www.rfc-editor.org/info/rfc6269>.

  [RFC6324]  Nakibly, G. and F. Templin, "Routing Loop Attack Using
             IPv6 Automatic Tunnels: Problem Statement and Proposed
             Mitigations", RFC 6324, DOI 10.17487/RFC6324, August 2011,
             <http://www.rfc-editor.org/info/rfc6324>.



Troan, et al.                Standards Track                   [Page 23]

RFC 7597                          MAP-E                        July 2015


  [RFC6333]  Durand, A., Droms, R., Woodyatt, J., and Y. Lee,
             "Dual-Stack Lite Broadband Deployments Following IPv4
             Exhaustion", RFC 6333, DOI 10.17487/RFC6333, August 2011,
             <http://www.rfc-editor.org/info/rfc6333>.

  [RFC6335]  Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
             Cheshire, "Internet Assigned Numbers Authority (IANA)
             Procedures for the Management of the Service Name and
             Transport Protocol Port Number Registry", BCP 165,
             RFC 6335, DOI 10.17487/RFC6335, August 2011,
             <http://www.rfc-editor.org/info/rfc6335>.

  [RFC6346]  Bush, R., Ed., "The Address plus Port (A+P) Approach to
             the IPv4 Address Shortage", RFC 6346,
             DOI 10.17487/RFC6346, August 2011,
             <http://www.rfc-editor.org/info/rfc6346>.

  [RFC6864]  Touch, J., "Updated Specification of the IPv4 ID Field",
             RFC 6864, DOI 10.17487/RFC6864, February 2013,
             <http://www.rfc-editor.org/info/rfc6864>.

  [RFC7598]  Mrugalski, T., Troan, O., Farrer, I., Perreault, S., Dec,
             W., Bao, C., Yeh, L., and X. Deng, "DHCPv6 Options for
             Configuration of Softwire Address and Port-Mapped
             Clients", RFC 7598, DOI 10.17487/RFC7598, July 2015,
             <http://www.rfc-editor.org/info/rfc7598>.

  [Solutions-4v6]
             Boucadair, M., Ed., Matsushima, S., Lee, Y., Bonness, O.,
             Borges, I., and G. Chen, "Motivations for Carrier-side
             Stateless IPv4 over IPv6 Migration Solutions", Work in
             Progress, draft-ietf-softwire-stateless-4v6-motivation-05,
             November 2012.

  [TR069]    Broadband Forum TR-069, "CPE WAN Management Protocol",
             Amendment 5, CWMP Version: 1.4, November 2013,
             <https://www.broadband-forum.org>.














Troan, et al.                Standards Track                   [Page 24]

RFC 7597                          MAP-E                        July 2015


Appendix A.  Examples

  Example 1 - Basic Mapping Rule:

  Given the MAP domain information and an IPv6 address of
  an endpoint:

  End-user IPv6 prefix: 2001:db8:0012:3400::/56
  Basic Mapping Rule:   {2001:db8:0000::/40 (Rule IPv6 prefix),
                         192.0.2.0/24 (Rule IPv4 prefix),
                         16 (Rule EA-bit length)}
  PSID length:          (16 - (32 - 24) = 8 (sharing ratio of 256)
  PSID offset:          6 (default)

  A MAP node (CE or BR) can, via the BMR or equivalent FMR,
  determine the IPv4 address and port set as shown below:

  EA bits offset:       40
  IPv4 suffix bits (p)  Length of IPv4 address (32) -
                        IPv4 prefix length (24) = 8
  IPv4 address:         192.0.2.18 (0xc0000212)
  PSID start:           40 + p = 40 + 8 = 48
  PSID length:          o - p = (56 - 40) - 8 = 8
  PSID:                 0x34

  Available ports (63 ranges): 1232-1235, 2256-2259, ...... ,
                               63696-63699, 64720-64723

  The BMR information allows a MAP CE to determine (complete)
  its IPv6 address within the indicated IPv6 prefix.

  IPv6 address of MAP CE:  2001:db8:0012:3400:0000:c000:0212:0034



















Troan, et al.                Standards Track                   [Page 25]

RFC 7597                          MAP-E                        July 2015


  Example 2 - BR:

  Another example is a MAP BR, configured with the following FMR
  when receiving a packet with the following characteristics:

  IPv4 source address:       1.2.3.4 (0x01020304)
  IPv4 source port:          80
  IPv4 destination address:  192.0.2.18 (0xc0000212)
  IPv4 destination port:     1232

  Forwarding Mapping Rule: {2001:db8::/40 (Rule IPv6 prefix),
                            192.0.2.0/24 (Rule IPv4 prefix),
                            16 (Rule EA-bit length)}

  IPv6 address of MAP BR:              2001:db8:ffff::1

  The above information allows the BR to derive the mapped
  destination IPv6 address for the corresponding MAP CE, and also
  the mapped source IPv6 address for the IPv4 source address,
  as follows:

  IPv4 suffix bits (p):  32 - 24 = 8 (18 (0x12))
  PSID length:           8
  PSID:                  0x34 (1232)

  The resulting IPv6 packet will have the following key fields:

  IPv6 source address:       2001:db8:ffff::1
  IPv6 destination address:  2001:db8:0012:3400:0000:c000:0212:0034


  Example 3 - Forwarding Mapping Rule:

  An IPv4 host behind the MAP CE (addressed as per the previous
  examples) corresponding with IPv4 host 1.2.3.4 will have its
  packets encapsulated by IPv6 using the IPv6 address of the BR
  configured on the MAP CE as follows:

  IPv6 address of BR:         2001:db8:ffff::1
  IPv4 source address:        192.0.2.18
  IPv4 destination address:   1.2.3.4
  IPv4 source port:           1232
  IPv4 destination port:      80
  MAP CE IPv6 source address: 2001:db8:0012:3400:0000:c000:0212:0034
  IPv6 destination address:   2001:db8:ffff::1






Troan, et al.                Standards Track                   [Page 26]

RFC 7597                          MAP-E                        July 2015


  Example 4 - Rule with no embedded address bits and no address
  sharing:

  End-user IPv6 prefix: 2001:db8:0012:3400::/56
  Basic Mapping Rule:   {2001:db8:0012:3400::/56 (Rule IPv6 prefix),
                         192.0.2.18/32 (Rule IPv4 prefix),
                         0 (Rule EA-bit length)}
  PSID length:          0 (sharing ratio is 1)
  PSID offset:          n/a

  A MAP node (CE or BR) can, via the BMR or equivalent FMR, determine
  the IPv4 address and port set as shown below:

  EA bits offset:       0
  IPv4 suffix bits (p): Length of IPv4 address (32) -
                        IPv4 prefix length (32) = 0
  IPv4 address:         192.0.2.18 (0xc0000212)
  PSID start:           0
  PSID length:          0
  PSID:                 null

  The BMR information allows a MAP CE to also determine (complete)
  its full IPv6 address by combining the IPv6 prefix with the MAP
  interface identifier (that embeds the IPv4 address).

  IPv6 address of MAP CE:  2001:db8:0012:3400:0000:c000:0212:0000

























Troan, et al.                Standards Track                   [Page 27]

RFC 7597                          MAP-E                        July 2015


  Example 5 - Rule with no embedded address bits and address sharing
  (sharing ratio of 256):

  End-user IPv6 prefix: 2001:db8:0012:3400::/56
  Basic Mapping Rule:   {2001:db8:0012:3400::/56 (Rule IPv6 prefix),
                         192.0.2.18/32 (Rule IPv4 prefix),
                         0 (Rule EA-bit length)}
  PSID length:          8 (from DHCP; sharing ratio of 256)
  PSID offset:          6 (default)
  PSID:                 0x34 (from DHCP)

  A MAP node can, via the Basic Mapping Rule, determine the IPv4
  address and port set as shown below:

  EA bits offset:        0
  IPv4 suffix bits (p):  Length of IPv4 address (32) -
                         IPv4 prefix length (32) = 0
  IPv4 address:          192.0.2.18 (0xc0000212)
  PSID offset:           6
  PSID length:           8
  PSID:                  0x34

  Available ports (63 ranges): 1232-1235, 2256-2259, ...... ,
                               63696-63699, 64720-64723

  The Basic Mapping Rule information allows a MAP CE to also
  determine (complete) its full IPv6 address by combining the IPv6
  prefix with the MAP interface identifier (that embeds the IPv4
  address and PSID).

  IPv6 address of MAP CE: 2001:db8:0012:3400:0000:c000:0212:0034

  Note that the IPv4 address and PSID are not derived from the IPv6
  prefix assigned to the CE but are provisioned separately using,
  for example, DHCP.
















Troan, et al.                Standards Track                   [Page 28]

RFC 7597                          MAP-E                        July 2015


Appendix B.  A More Detailed Description of the Derivation of the
            Port-Mapping Algorithm

  This appendix describes how the port-mapping algorithm described in
  Section 5.1 was derived.  The algorithm is used in domains whose
  rules allow IPv4 address sharing.

  The basic requirement for a port-mapping algorithm is that the port
  sets it assigns to different MAP CEs MUST be non-overlapping.  A
  number of other requirements guided the choice of the algorithm:

  o  In keeping with the general MAP algorithm, the port set MUST be
     derivable from a Port Set identifier (PSID) that can be embedded
     in the End-user IPv6 prefix.

  o  The mapping MUST be reversible such that, given the port number,
     the PSID of the port set to which it belongs can be quickly
     derived.

  o  The algorithm MUST allow a broad range of address-sharing ratios.

  o  It SHOULD be possible to exclude subsets of the complete port
     numbering space from assignment.  Most operators would exclude the
     system ports (0-1023).  A conservative operator might exclude all
     but the transient ports (49152-65535).

  o  The effect of port exclusion on the possible values of the
     End-user IPv6 prefix (i.e., due to restrictions on the PSID value)
     SHOULD be minimized.

  o  For administrative simplicity, the algorithm SHOULD allocate the
     same or almost the same number of ports to each CE sharing a given
     IPv4 address.

  The two extreme cases that an algorithm satisfying those conditions
  might support are when (1) the port numbers are not contiguous for
  each PSID but uniformly distributed across the allowed port range and
  (2) the port numbers are contiguous in a single range for each PSID.
  The port-mapping algorithm proposed here is called the Generalized
  Modulus Algorithm (GMA) and supports both of these cases.











Troan, et al.                Standards Track                   [Page 29]

RFC 7597                          MAP-E                        July 2015


  For a given IPv4 address-sharing ratio (R) and the maximum number of
  contiguous ports (M) in a port set, the GMA is defined as follows:

  a.  The port numbers (P) corresponding to a given PSID are
      generated by:

      (1) ... P = (R * M) * i + M * PSID + j

      where i and j are indices and the ranges of i, j, and the PSID
      are discussed below.

  b.  For any given port number P, the PSID is calculated as:

      (2) ... PSID = trunc((P modulo (R * M)) / M)

      where trunc() is the operation of rounding down to the nearest
      integer.

  Formula (1) can be interpreted as follows.  First, the available port
  space is divided into blocks of size R * M.  Each block is divided
  into R individual ranges of length M.  The index i in formula (1)
  selects a block, PSID selects a range within that block, and the
  index j selects a specific port value within the range.  On the basis
  of this interpretation:

  o  i ranges from ceil(N / (R * M)) to trunc(65536/(R * M)) - 1, where
     ceil is the operation of rounding up to the nearest integer and N
     is the number of ports (e.g., 1024) excluded from the lower end of
     the range.  That is, any block containing excluded values is
     discarded at the lower end, and if the final block has fewer than
     R * M values it is discarded.  This ensures that the same number
     of ports is assigned to every PSID.

  o  PSID ranges from 0 to R - 1.

  o  j ranges from 0 to M - 1.















Troan, et al.                Standards Track                   [Page 30]

RFC 7597                          MAP-E                        July 2015


B.1.  Bit Representation of the Algorithm

  If R and M are powers of 2 (R = 2^k, M = 2^m), formula (1) translates
  to a computationally convenient structure for any port number
  represented as a 16-bit binary number.  This structure is shown in
  Figure 9.

         0                          8                         15
         +---------------+----------+------+-------------------+
         |                     P                               |
         ----------------+-----------------+-------------------+
         |        i      |       PSID      |        j          |
         +---------------+----------+------+-------------------+
         |<----a bits--->|<-----k bits---->|<------m bits----->|

              Figure 9: Bit Representation of a Port Number

  As shown in the figure, the index value i of formula (1) is given by
  the first a = 16 - k - m bits of the port number.  The PSID value is
  given by the next k bits, and the index value j is given by the last
  m bits.

  Because the PSID is always in the same position in the port number
  and always the same length, different PSID values are guaranteed to
  generate different sets of port numbers.  In the reverse direction,
  the generating PSID can be extracted from any port number by a
  bitmask operation.

  Note that when M and R are powers of 2, 65536 divides evenly by
  R * M.  Hence, the final block is complete, and the upper bound on i
  is exactly 65536/(R * M) - 1.  The lower bound on i is still the
  minimum required to ensure that the required set of ports is
  excluded.  No port numbers are wasted through the discarding of
  blocks at the lower end if block size R * M is a factor of N, the
  number of ports to be excluded.

  As a final note, the number of blocks into which the range 0-65535 is
  being divided in the above representation is given by 2^a.  Hence,
  the case where a = 0 can be interpreted as one where the complete
  range has been divided into a single block, and individual port sets
  are contained in contiguous ranges in that block.  We cannot throw
  away the whole block in that case, so port exclusion has to be
  achieved by putting a lower bound equal to ceil(N / M) on the allowed
  set of PSID values instead.







Troan, et al.                Standards Track                   [Page 31]

RFC 7597                          MAP-E                        July 2015


B.2.  GMA Examples

  For example, for R = 256, PSID = 0, offset: a = 6 and PSID length:
  k = 8 bits:

  Available ports (63 ranges): 1024-1027, 2048-2051, ...... ,
                               63488-63491, 64512-64515

                   Example 1: with offset = 6 (a = 6)

  For example, for R = 64, PSID = 0, a = 0 (PSID offset = 0 and PSID
  length = 6 bits), no port exclusion:

  Available ports (1 range): 0-1023

              Example 2: with offset = 0 (a = 0) and N = 0

Acknowledgements

  This document is based on the ideas of many, including Masakazu
  Asama, Mohamed Boucadair, Gang Chen, Maoke Chen, Wojciech Dec,
  Xiaohong Deng, Jouni Korhonen, Tomek Mrugalski, Jacni Qin, Chunfa
  Sun, Qiong Sun, and Leaf Yeh.  The authors want in particular to
  recognize Remi Despres, who has tirelessly worked on generalized
  mechanisms for stateless address mapping.

  The authors would like to thank Lichun Bao, Guillaume Gottard, Dan
  Wing, Jan Zorz, Necj Scoberne, Tina Tsou, Kristian Poscic, and
  especially Tom Taylor and Simon Perreault for the thorough review and
  comments of this document.  Useful IETF Last Call comments were
  received from Brian Weis and Lei Yan.




















Troan, et al.                Standards Track                   [Page 32]

RFC 7597                          MAP-E                        July 2015


Contributors

  This document is the result of the IETF Softwire MAP design team
  effort and numerous previous individual contributions in this area:

  Chongfeng Xie
  China Telecom
  Room 708, No. 118, Xizhimennei Street
  Beijing  100035
  China
  Phone: +86-10-58552116
  Email: [email protected]

  Qiong Sun
  China Telecom
  Room 708, No. 118, Xizhimennei Street
  Beijing  100035
  China
  Phone: +86-10-58552936
  Email: [email protected]

  Gang Chen
  China Mobile
  29, Jinrong Avenue
  Xicheng District, Beijing  100033
  China
  Email: [email protected], [email protected]

  Yu Zhai
  CERNET Center/Tsinghua University
  Room 225, Main Building, Tsinghua University
  Beijing  100084
  China
  Email: [email protected]

  Wentao Shang
  CERNET Center/Tsinghua University
  Room 225, Main Building, Tsinghua University
  Beijing  100084
  China
  Email: [email protected]










Troan, et al.                Standards Track                   [Page 33]

RFC 7597                          MAP-E                        July 2015


  Guoliang Han
  CERNET Center/Tsinghua University
  Room 225, Main Building, Tsinghua University
  Beijing  100084
  China
  Email: [email protected]

  Rajiv Asati
  Cisco Systems
  7025-6 Kit Creek Road
  Research Triangle Park, NC  27709
  United States
  Email: [email protected]

Authors' Addresses

  Ole Troan (editor)
  Cisco Systems
  Philip Pedersens vei 1
  Lysaker  1366
  Norway

  Email: [email protected]


  Wojciech Dec
  Cisco Systems
  Haarlerbergpark Haarlerbergweg 13-19
  Amsterdam, NOORD-HOLLAND  1101 CH
  The Netherlands

  Email: [email protected]


  Xing Li
  CERNET Center/Tsinghua University
  Room 225, Main Building, Tsinghua University
  Beijing  100084
  China

  Email: [email protected]










Troan, et al.                Standards Track                   [Page 34]

RFC 7597                          MAP-E                        July 2015


  Congxiao Bao
  CERNET Center/Tsinghua University
  Room 225, Main Building, Tsinghua University
  Beijing  100084
  China

  Email: [email protected]


  Satoru Matsushima
  SoftBank Telecom
  1-9-1 Higashi-Shinbashi, Munato-ku
  Tokyo
  Japan

  Email: [email protected]


  Tetsuya Murakami
  IP Infusion
  1188 East Arques Avenue
  Sunnyvale, CA  94085
  United States

  Email: [email protected]


  Tom Taylor (editor)
  Huawei Technologies
  Ottawa
  Canada

  Email: [email protected]


















Troan, et al.                Standards Track                   [Page 35]