Internet Engineering Task Force (IETF)                            Y. Cui
Request for Comments: 7596                           Tsinghua University
Category: Standards Track                                         Q. Sun
ISSN: 2070-1721                                            China Telecom
                                                           M. Boucadair
                                                         France Telecom
                                                                T. Tsou
                                                    Huawei Technologies
                                                                 Y. Lee
                                                                Comcast
                                                              I. Farrer
                                                    Deutsche Telekom AG
                                                              July 2015


 Lightweight 4over6: An Extension to the Dual-Stack Lite Architecture

Abstract

  Dual-Stack Lite (DS-Lite) (RFC 6333) describes an architecture for
  transporting IPv4 packets over an IPv6 network.  This document
  specifies an extension to DS-Lite called "Lightweight 4over6", which
  moves the Network Address and Port Translation (NAPT) function from
  the centralized DS-Lite tunnel concentrator to the tunnel client
  located in the Customer Premises Equipment (CPE).  This removes the
  requirement for a Carrier Grade NAT function in the tunnel
  concentrator and reduces the amount of centralized state that must be
  held to a per-subscriber level.  In order to delegate the NAPT
  function and make IPv4 address sharing possible, port-restricted IPv4
  addresses are allocated to the CPEs.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7596.







Cui, et al.                  Standards Track                    [Page 1]

RFC 7596                   Lightweight 4over6                  July 2015


Copyright Notice

  Copyright (c) 2015 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
  2. Conventions .....................................................4
  3. Terminology .....................................................5
  4. Lightweight 4over6 Architecture .................................6
  5. Lightweight B4 Behavior .........................................7
     5.1. Lightweight B4 Provisioning with DHCPv6 ....................7
     5.2. Lightweight B4 Data-Plane Behavior ........................10
          5.2.1. Fragmentation Behavior .............................11
  6. Lightweight AFTR Behavior ......................................12
     6.1. Binding Table Maintenance .................................12
     6.2. lwAFTR Data-Plane Behavior ................................13
  7. Additional IPv4 Address and Port-Set Provisioning Mechanisms ...14
  8. ICMP Processing ................................................14
     8.1. ICMPv4 Processing by the lwAFTR ...........................15
     8.2. ICMPv4 Processing by the lwB4 .............................15
  9. Security Considerations ........................................15
  10. References ....................................................16
     10.1. Normative References .....................................16
     10.2. Informative References ...................................17
  Acknowledgements ..................................................19
  Contributors ......................................................19
  Authors' Addresses ................................................21












Cui, et al.                  Standards Track                    [Page 2]

RFC 7596                   Lightweight 4over6                  July 2015


1.  Introduction

  Dual-Stack Lite (DS-Lite) [RFC6333] defines a model for providing
  IPv4 access over an IPv6 network using two well-known technologies:
  IP in IP [RFC2473] and Network Address Translation (NAT).  The
  DS-Lite architecture defines two major functional elements as
  follows:

  Basic Bridging BroadBand (B4) element:  A function implemented on a
     dual-stack-capable node (either a directly connected device or a
     CPE) that creates an IPv4-in-IPv6 tunnel to an AFTR.

  Address Family Transition Router (AFTR) element:  The combination of
     an IPv4-in-IPv6 tunnel endpoint and an IPv4-IPv4 NAT implemented
     on the same node.

  As the AFTR performs the centralized NAT44 function, it dynamically
  assigns public IPv4 addresses and ports to a requesting host's
  traffic (as described in [RFC3022]).  To achieve this, the AFTR must
  dynamically maintain per-flow state in the form of active NAPT
  sessions.  For service providers with a large number of B4 clients,
  the size and associated costs for scaling the AFTR can quickly become
  prohibitive.  Maintaining per-flow state can also place a large NAPT
  logging overhead on the service provider in countries where logging
  is a legal requirement.

  This document describes a mechanism called "Lightweight 4over6"
  (lw4o6), which provides a solution for these problems.  By relocating
  the NAPT functionality from the centralized AFTR to the distributed
  B4s, a number of benefits can be realized:

  o  NAPT44 functionality is already widely supported and used in
     today's CPE devices.  lw4o6 uses this to provide private<->public
     NAPT44, meaning that the service provider does not need a
     centralized NAT44 function.

  o  The amount of state that must be maintained centrally in the AFTR
     can be reduced from per-flow to per-subscriber.  This reduces
     the amount of resources (memory and processing power) necessary in
     the AFTR.

  o  The reduction of maintained state results in a greatly reduced
     logging overhead on the service provider.

  Operators' IPv6 and IPv4 addressing architectures remain independent
  of each other.  Therefore, flexible IPv4/IPv6 addressing schemes can
  be deployed.




Cui, et al.                  Standards Track                    [Page 3]

RFC 7596                   Lightweight 4over6                  July 2015


  Lightweight 4over6 is a solution designed specifically for complete
  independence between IPv6 subnet prefixes and IPv4 addresses with or
  without IPv4 address sharing.  This is accomplished by maintaining
  state for each softwire (per-subscriber state) in the central lwAFTR
  and a hub-and-spoke forwarding architecture.  "Mapping of Address and
  Port with Encapsulation (MAP-E)" [RFC7597] also offers these
  capabilities or, alternatively, allows for a reduction of the amount
  of centralized state using rules to express IPv4/IPv6 address
  mappings.  This introduces an algorithmic relationship between the
  IPv6 subnet and IPv4 address.  This relationship also allows the
  option of direct, meshed connectivity between users.

  The tunneling mechanism remains the same for DS-Lite and Lightweight
  4over6.  This document describes the changes to DS-Lite that are
  necessary to implement Lightweight 4over6.  These changes mainly
  concern the configuration parameters and provisioning method
  necessary for the functional elements.

  One of the features of Lightweight 4over6 is to keep per-subscriber
  state in the service provider's network.  This technique is
  categorized as a "binding approach" [Unified-v4-in-v6] that defines a
  unified IPv4-in-IPv6 softwire CPE.

  This document extends the mechanism defined in [RFC7040] by allowing
  address sharing.  The solution in this document is also a variant of
  Address plus Port (A+P) called "Binding Table Mode" (see Section 4.4
  of [RFC6346]).

  This document focuses on architectural considerations, particularly
  on the expected behavior of the involved functional elements and
  their interfaces.  Deployment-specific issues such as redundancy and
  provisioning policy are out of scope for this document.

2.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].













Cui, et al.                  Standards Track                    [Page 4]

RFC 7596                   Lightweight 4over6                  July 2015


3.  Terminology

  This document defines the following terms:

  Lightweight 4over6 (lw4o6):   An IPv4-over-IPv6 hub-and-spoke
                                mechanism that extends DS-Lite by
                                moving the IPv4 translation (NAPT44)
                                function from the AFTR to the B4.

  Lightweight B4 (lwB4):        A B4 element [RFC6333] that supports
                                Lightweight 4over6 extensions.  An lwB4
                                is a function implemented on a
                                dual-stack-capable node -- either a
                                directly connected device or a CPE --
                                that supports port-restricted IPv4
                                address allocation, implements NAPT44
                                functionality, and creates a tunnel to
                                an lwAFTR.

  Lightweight AFTR (lwAFTR):    An AFTR element [RFC6333] that supports
                                the Lightweight 4over6 extension.  An
                                lwAFTR is an IPv4-in-IPv6 tunnel
                                endpoint that maintains per-subscriber
                                address binding only and does not
                                perform a NAPT44 function.

  Restricted port set:          A non-overlapping range of allowed
                                external ports allocated to the lwB4 to
                                use for NAPT44.  Source ports of IPv4
                                packets sent by the B4 must belong to
                                the assigned port set.  The port set is
                                used for all port-aware IP protocols
                                (TCP, UDP, the Stream Control
                                Transmission Protocol (SCTP), etc.).

  Port-restricted IPv4 address: A public IPv4 address with a restricted
                                port set.  In Lightweight 4over6,
                                multiple B4s may share the same IPv4
                                address; however, their port sets must
                                be non-overlapping.

  Throughout the remainder of this document, the terms "B4" and "AFTR"
  should be understood to refer specifically to a DS-Lite
  implementation.  The terms "lwB4" and "lwAFTR" refer to a Lightweight
  4over6 implementation.






Cui, et al.                  Standards Track                    [Page 5]

RFC 7596                   Lightweight 4over6                  July 2015


4.  Lightweight 4over6 Architecture

  The Lightweight 4over6 architecture is functionally similar to
  DS-Lite.  lwB4s and an lwAFTR are connected through an IPv6-enabled
  network.  Both approaches use an IPv4-in-IPv6 encapsulation scheme to
  deliver IPv4 connectivity.  The following figure shows the data plane
  with the main functional change between DS-Lite and lw4o6:

  +--------+   +---------+  IPv4-in-IPv6  +---------+   +-------------+
  |IPv4 LAN|---|    B4   |================|AFTR/NAPT|---|IPv4 Internet|
  +--------+   +---------+                +---------+   +-------------+
                 DS-Lite NAPT model: all state in the AFTR


  +--------+   +---------+  IPv4-in-IPv6  +------+   +-------------+
  |IPv4 LAN|---|lwB4/NAPT|================|lwAFTR|---|IPv4 Internet|
  +--------+   +---------+                +------+   +-------------+
                          lw4o6 NAPT model:
          subscriber state in the lwAFTR, NAPT state in the lwB4

    Figure 1: Comparison of DS-Lite and Lightweight 4over6 Data Plane

  There are three main components in the Lightweight 4over6
  architecture:

  o  The lwB4, which performs the NAPT function and IPv4/IPv6
     encapsulation/decapsulation.

  o  The lwAFTR, which performs the IPv4/IPv6 encapsulation/
     decapsulation.

  o  The provisioning system, which tells the lwB4 which IPv4 address
     and port set to use.

  The lwB4 differs from a regular B4 in that it now performs the NAPT
  functionality.  This means that it needs to be provisioned with the
  public IPv4 address and port set it is allowed to use.  This
  information is provided through a provisioning mechanism such as
  DHCP, the Port Control Protocol (PCP) [RFC6887], or the Broadband
  Forum's TR-69 specification [TR069].

  The lwAFTR needs to know the binding between the IPv6 address of
  each subscriber as well as the IPv4 address and port set allocated to
  each subscriber.  This information is used to perform ingress
  filtering upstream and encapsulation downstream.  Note that this is
  per-subscriber state, as opposed to per-flow state in the regular
  AFTR case.




Cui, et al.                  Standards Track                    [Page 6]

RFC 7596                   Lightweight 4over6                  July 2015


  The consequence of this architecture is that the information
  maintained by the provisioning mechanism and the one maintained by
  the lwAFTR MUST be synchronized (see Figure 2).  The precise
  mechanism whereby this synchronization occurs is out of scope for
  this document.

  The solution specified in this document allows the assignment of
  either a full or a shared IPv4 address to requesting CPEs.  [RFC7040]
  provides a mechanism for assigning a full IPv4 address only.

                            +------------+
                    /-------|Provisioning|<-----\
                    |       +------------+      |
                    |                           |
                    V                           V
  +--------+   +---------+    IPv4/IPv6     +------+    +-------------+
  |IPv4 LAN|---|lwB4/NAPT|==================|lwAFTR|----|IPv4 Internet|
  +--------+   +---------+                  +------+    +-------------+

        Figure 2: Lightweight 4over6 Provisioning Synchronization

5.  Lightweight B4 Behavior

5.1.  Lightweight B4 Provisioning with DHCPv6

  With DS-Lite, the B4 element only needs to be configured with a
  single DS-Lite-specific parameter so that it can set up the softwire
  (the IPv6 address of the AFTR).  Its IPv4 address can be taken from
  the well-known range 192.0.0.0/29.

  In lw4o6, a number of lw4o6-specific configuration parameters must be
  provisioned to the lwB4.  These are:

  o  IPv6 address for the lwAFTR

  o  IPv4 external (public) address for NAPT44

  o  Restricted port set to use for NAPT44

  o  IPv6 binding prefix

  The lwB4 MUST implement DHCPv6-based configuration using
  OPTION_S46_CONT_LW as described in Section 5.3 of [RFC7598].  This
  means that the lifetime of the softwire and the derived configuration
  information (e.g., IPv4 shared address, IPv4 address) are bound to
  the lifetime of the DHCPv6 lease.  If stateful IPv4 configuration or
  additional IPv4 configuration information is required, DHCP 4o6
  [RFC7341] MUST be used.



Cui, et al.                  Standards Track                    [Page 7]

RFC 7596                   Lightweight 4over6                  July 2015


  Although it would be possible to extend lw4o6 to have more than one
  active lw4o6 tunnel configured simultaneously, this document is only
  concerned with the use of a single tunnel.

  The IPv6 binding prefix field is provisioned so that the Customer
  Edge (CE) can identify the correct prefix to use as the tunnel
  source.  On receipt of the necessary configuration parameters listed
  above, the lwB4 performs a longest-prefix match between the IPv6
  binding prefix and its currently active IPv6 prefixes.  The result
  forms the subnet to be used for sourcing the lw4o6 tunnel.  The full
  /128 address is then constructed in the same manner as [RFC7597].

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                  Operator Assigned Prefix                     |
  .                        (64 bits)                              .
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Zero Padding          |         IPv4 Address          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       IPv4 Addr cont.         |             PSID              |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

             Figure 3: Construction of the lw4o6 /128 Prefix

  Operator Assigned Prefix:
                IPv6 prefix allocated to the client.  If the prefix
                length is less than 64, it is right-padded with zeros
                to 64 bits.

  Padding:      Padding (all zeros).

  IPv4 Address: Public IPv4 address allocated to the client.

  PSID:         Port Set ID.  Allocated to the client; left-padded with
                zeros to 16 bits.  If no PSID is provisioned, all
                zeros.

  In the event that the lwB4's IPv6 encapsulation source address is
  changed for any reason (such as the DHCPv6 lease expiring), the
  lwB4's dynamic provisioning process MUST be re-initiated.  When the
  lwB4's public IPv4 address or Port Set ID is changed for any reason,
  the lwB4 MUST flush its NAPT table.








Cui, et al.                  Standards Track                    [Page 8]

RFC 7596                   Lightweight 4over6                  July 2015


  An lwB4 MUST support dynamic port-restricted IPv4 address
  provisioning.  The port-set algorithm for provisioning this is
  described in Section 5.1 of [RFC7597].  For lw4o6, the number of
  a-bits SHOULD be 0, thus allocating a single contiguous port set to
  each lwB4.

  Provisioning of the lwB4 using DHCPv6 as described here allocates a
  single PSID to the client.  In the event that the client is
  concurrently using all of the provisioned L4 ports, it may be unable
  to initiate any additional outbound connections.  DHCPv6-based
  provisioning does not provide a mechanism for the client to request
  more L4 port numbers.  Other provisioning mechanisms (e.g., PCP-based
  provisioning [PCP-PORT_SET]) provide this function.  Issues relevant
  to IP address sharing are discussed in more detail in [RFC6269].

  Unless an lwB4 is being allocated a full IPv4 address, it is
  RECOMMENDED that PSIDs containing the system ports (0-1023) not be
  allocated to lwB4s.  The reserved ports are more likely to be
  reserved by middleware, and therefore we recommend that they not be
  issued to clients other than as a deliberate assignment.
  Section 5.2.2 of [RFC6269] provides analysis of allocating system
  ports to clients with IPv4 address sharing.

  In the event that the lwB4 receives an ICMPv6 error message (Type 1,
  Code 5) originating from the lwAFTR, the lwB4 interprets this to mean
  that no matching entry in the lwAFTR's binding table has been found,
  so the IPv4 payload is not being forwarded by the lwAFTR.  The lwB4
  MAY then re-initiate the dynamic port-restricted provisioning
  process.  The lwB4's re-initiation policy SHOULD be configurable.

  On receipt of such an ICMP error message, the lwB4 MUST validate the
  source address to be the same as the lwAFTR address that is
  configured.  In the event that these addresses do not match, the lwB4
  MUST discard the ICMP error message.

  In order to prevent forged ICMP messages (using the spoofed lwAFTR
  address as the source) from being sent to lwB4s, the operator can
  implement network ingress filtering as described in [RFC2827].

  The DNS considerations described in Sections 5.5 and 6.4 of [RFC6333]
  apply to Lightweight 4over6; lw4o6 implementations MUST comply with
  all requirements stated there.









Cui, et al.                  Standards Track                    [Page 9]

RFC 7596                   Lightweight 4over6                  July 2015


5.2.  Lightweight B4 Data-Plane Behavior

  Several sections of [RFC6333] provide background information on the
  B4's data-plane functionality and MUST be implemented by the lwB4, as
  they are common to both solutions.  The relevant sections are:

  5.2 Encapsulation                 Covering encapsulation and
                                    decapsulation of tunneled traffic

  5.3 Fragmentation and Reassembly  Covering MTU and fragmentation
                                    considerations (referencing
                                    [RFC2473])

  7.1 Tunneling                     Covering tunneling and Traffic
                                    Class mapping between IPv4 and IPv6
                                    (referencing [RFC2473]).  Also see
                                    [RFC2983]

  The lwB4 element performs IPv4 address translation (NAPT44) as well
  as encapsulation and decapsulation.  It runs standard NAPT44
  [RFC3022] using the allocated port-restricted address as its external
  IPv4 address and range of source ports.

  The working flow of the lwB4 is illustrated in Figure 4.

                       +-------------+
                       |     lwB4    |
     +--------+  IPv4  |------+------| IPv4-in-IPv6  +----------+
     |IPv4 LAN|------->|      |Encap.|-------------->|Configured|
     |        |<-------| NAPT |  or  |<--------------|  lwAFTR  |
     +--------+        |      |Decap.|               +----------+
                       +------+------+

                   Figure 4: Working Flow of the lwB4

  Hosts connected to the customer's network behind the lwB4 source IPv4
  packets with an [RFC1918] address.  When the lwB4 receives such an
  IPv4 packet, it performs a NAPT44 function on the source address and
  port by using the public IPv4 address and a port number from the
  allocated port set.  Then, it encapsulates the packet with an IPv6
  header.  The destination IPv6 address is the lwAFTR's IPv6 address,
  and the source IPv6 address is the lwB4's IPv6 tunnel endpoint
  address.  Finally, the lwB4 forwards the encapsulated packet to the
  configured lwAFTR.







Cui, et al.                  Standards Track                   [Page 10]

RFC 7596                   Lightweight 4over6                  July 2015


  When the lwB4 receives an IPv4-in-IPv6 packet from the lwAFTR, it
  decapsulates the IPv4 packet from the IPv6 packet.  Then, it performs
  NAPT44 translation on the destination address and port, based on the
  available information in its local NAPT44 table.

  If the IPv6 source address does not match the configured lwAFTR
  address, then the packet MUST be discarded.  If the decapsulated IPv4
  packet does not match the lwB4's configuration (i.e., invalid
  destination IPv4 address or port), then the packet MUST be dropped.
  An ICMPv4 error message (Type 3, Code 13 -- Destination Unreachable,
  Communication Administratively Prohibited) MAY be sent back to the
  lwAFTR.  The ICMP policy SHOULD be configurable.

  The lwB4 is responsible for performing Application Layer Gateway
  (ALG) functions (e.g., SIP, FTP) and other NAPT traversal mechanisms
  (e.g., Universal Plug and Play (UPnP) IGD (Internet Gateway Device),
  the NAT Port Mapping Protocol (NAT-PMP), manual binding
  configuration, PCP) for the internal hosts, if necessary.  This
  requirement is typical for NAPT44 gateways available today.

  It is possible that an lwB4 is co-located in a host.  In this case,
  the functions of NAPT44 and encapsulation/decapsulation are
  implemented inside the host.

5.2.1.  Fragmentation Behavior

  For TCP and UDP traffic, the NAPT44 implemented in the lwB4 MUST
  conform to the behavior and best current practices documented in
  [RFC4787], [RFC5508], and [RFC5382].  If the lwB4 supports the
  Datagram Congestion Control Protocol (DCCP), then the requirements in
  [RFC5597] MUST be implemented.

  The NAPT44 in the lwB4 MUST implement ICMP message handling behavior
  conforming to the best current practice documented in [RFC5508].  If
  the lwB4 receives an ICMP error (for errors detected inside the IPv6
  tunnel), the node relays the ICMP error message to the original
  source (the lwAFTR).  This behavior SHOULD be implemented conforming
  to Section 8 of [RFC2473].

  If IPv4 hosts behind different lwB4s sharing the same IPv4 address
  send fragments to the same IPv4 destination host outside the
  Lightweight 4over6 domain, those hosts may use the same IPv4
  fragmentation identifier, resulting in incorrect reassembly of the
  fragments at the destination host.  Given that the IPv4 fragmentation
  identifier is a 16-bit field, it could be used similarly to port
  ranges: An lwB4 could rewrite the IPv4 fragmentation identifier to be
  within its allocated port set, if the resulting fragment identifier
  space is large enough related to the rate at which fragments are



Cui, et al.                  Standards Track                   [Page 11]

RFC 7596                   Lightweight 4over6                  July 2015


  sent.  However, splitting the identifier space in this fashion would
  increase the probability of reassembly collision for all connections
  through the lwB4.  See also Section 5.3.1 of [RFC6864].

6.  Lightweight AFTR Behavior

6.1.  Binding Table Maintenance

  The lwAFTR maintains an address binding table containing the binding
  between the lwB4's IPv6 address, the allocated IPv4 address, and the
  restricted port set.  Unlike the DS-Lite extended binding table,
  which is a 5-tuple NAPT table and is defined in Section 6.6 of
  [RFC6333], each entry in the Lightweight 4over6 binding table
  contains the following 3-tuples:

  o  IPv6 address for a single lwB4

  o  Public IPv4 address

  o  Restricted port set

  The entry has two functions: the IPv6 encapsulation of inbound
  IPv4 packets destined to the lwB4 and the validation of outbound
  IPv4-in-IPv6 packets received from the lwB4 for decapsulation.

  The lwAFTR does not perform NAPT and so does not need session
  entries.

  The lwAFTR MUST synchronize the binding information with the
  port-restricted address provisioning process.  If the lwAFTR does not
  participate in the port-restricted address provisioning process, the
  binding MUST be synchronized through other methods (e.g., out-of-band
  static update).

  If the lwAFTR participates in the port-restricted provisioning
  process, then its binding table MUST be created as part of this
  process.

  For all provisioning processes, the lifetime of binding table entries
  MUST be synchronized with the lifetime of address allocations.











Cui, et al.                  Standards Track                   [Page 12]

RFC 7596                   Lightweight 4over6                  July 2015


6.2.  lwAFTR Data-Plane Behavior

  Several sections of [RFC6333] provide background information on
  the AFTR's data-plane functionality and MUST be implemented by the
  lwAFTR, as they are common to both solutions.  The relevant
  sections are:

  6.2 Encapsulation                 Covering encapsulation and
                                    decapsulation of tunneled traffic

  6.3 Fragmentation and Reassembly  Fragmentation and reassembly
                                    considerations (referencing
                                    [RFC2473])

  7.1 Tunneling                     Covering tunneling and Traffic
                                    Class mapping between IPv4 and IPv6
                                    (referencing [RFC2473]).  Also see
                                    [RFC2983]

  When the lwAFTR receives an IPv4-in-IPv6 packet from an lwB4, it
  decapsulates the IPv6 header and verifies the source addresses and
  port in the binding table.  If both the source IPv4 and IPv6
  addresses match a single entry in the binding table and the source
  port is in the allowed port set for that entry, the lwAFTR forwards
  the packet to the IPv4 destination.

  If no match is found (e.g., no matching IPv4 address entry, port out
  of range), the lwAFTR MUST discard or implement a policy (such as
  redirection) on the packet.  An ICMPv6 Type 1, Code 5 (Destination
  Unreachable, source address failed ingress/egress policy) error
  message MAY be sent back to the requesting lwB4.  The ICMP policy
  SHOULD be configurable.

  When the lwAFTR receives an inbound IPv4 packet, it uses the IPv4
  destination address and port to look up the destination lwB4's IPv6
  address in its binding table.  If a match is found, the lwAFTR
  encapsulates the IPv4 packet.  The source is the lwAFTR's IPv6
  address, and the destination is the lwB4's IPv6 address from the
  matched entry.  Then, the lwAFTR forwards the packet to the lwB4
  natively over the IPv6 network.

  If no match is found, the lwAFTR MUST discard the packet.  An ICMPv4
  Type 3, Code 1 (Destination Unreachable, Host Unreachable) error
  message MAY be sent back.  The ICMP policy SHOULD be configurable.







Cui, et al.                  Standards Track                   [Page 13]

RFC 7596                   Lightweight 4over6                  July 2015


  The lwAFTR MUST support hairpinning of traffic between two lwB4s, by
  performing decapsulation and re-encapsulation of packets from one
  lwB4 that need to be sent to another lwB4 associated with the same
  AFTR.  The hairpinning policy MUST be configurable.

7.  Additional IPv4 Address and Port-Set Provisioning Mechanisms

  In addition to the DHCPv6-based mechanism described in Section 5.1,
  several other IPv4 provisioning protocols have been suggested.  These
  protocols MAY be implemented.  These alternatives include:

  o  DHCPv4 over DHCPv6: [RFC7341] describes implementing DHCPv4
     messages over an IPv6-only service provider's network.  This
     enables leasing of IPv4 addresses and makes DHCPv4 options
     available to the DHCPv4-over-DHCPv6 client.  An lwB4 MAY implement
     [RFC7341] and [Dyn-Shared-v4Alloc] to retrieve a shared IPv4
     address with a set of ports.

  o  PCP [RFC6887]: an lwB4 MAY use [PCP-PORT_SET] to retrieve a
     restricted IPv4 address and a set of ports.

  In a Lightweight 4over6 domain, the binding information MUST be
  synchronized across the lwB4s, the lwAFTRs, and the provisioning
  server.

  To prevent interworking complexity, it is RECOMMENDED that an
  operator use a single provisioning mechanism / protocol for their
  implementation.  In the event that more than one provisioning
  mechanism / protocol needs to be used (for example, during a
  migration to a new provisioning mechanism), the operator SHOULD
  ensure that each provisioning mechanism has a discrete set of
  resources (e.g., IPv4 address/PSID pools, as well as lwAFTR tunnel
  addresses and binding tables).

8.  ICMP Processing

  For both the lwAFTR and the lwB4, ICMPv6 MUST be handled as described
  in [RFC2473].

  ICMPv4 does not work in an address-sharing environment without
  special handling [RFC6269].  Due to the port-set style of address
  sharing, Lightweight 4over6 requires specific ICMP message handling
  not required by DS-Lite.








Cui, et al.                  Standards Track                   [Page 14]

RFC 7596                   Lightweight 4over6                  July 2015


8.1.  ICMPv4 Processing by the lwAFTR

  For inbound ICMP messages, the following behavior SHOULD be
  implemented by the lwAFTR to provide ICMP error handling and basic
  remote IPv4 service diagnostics for a port-restricted CPE:

  1.  Check the ICMP Type field.

  2.  If the ICMP Type field is set to 0 or 8 (echo reply or request),
      then the lwAFTR MUST take the value of the ICMP Identifier field
      as the source port and use this value to look up the binding
      table for an encapsulation destination.  If a match is found, the
      lwAFTR forwards the ICMP packet to the IPv6 address stored in the
      entry; otherwise, it MUST discard the packet.

  3.  If the ICMP Type field is set to any other value, then the lwAFTR
      MUST use the method described in REQ-3 of [RFC5508] to locate the
      source port within the transport-layer header in the ICMP
      packet's data field.  The destination IPv4 address and source
      port extracted from the ICMP packet are then used to make a
      lookup in the binding table.  If a match is found, it MUST
      forward the ICMP reply packet to the IPv6 address stored in the
      entry; otherwise, it MUST discard the packet.

  Otherwise, the lwAFTR MUST discard all inbound ICMPv4 messages.

  The ICMP policy SHOULD be configurable.

8.2.  ICMPv4 Processing by the lwB4

  The lwB4 MUST implement the requirements defined in [RFC5508] for
  ICMP forwarding.  For ICMP echo request packets originating from the
  private IPv4 network, the lwB4 SHOULD implement the method described
  in [RFC6346] and use an available port from its port set as the ICMP
  identifier.

9.  Security Considerations

  As the port space for a subscriber shrinks due to address sharing,
  the randomness for the port numbers of the subscriber is decreased
  significantly.  This means that it is much easier for an attacker to
  guess the port number used, which could result in attacks ranging
  from throughput reduction to broken connections or data corruption.

  The port set for a subscriber can be a set of contiguous ports or
  non-contiguous ports.  Contiguous port sets do not reduce this
  threat.  However, with non-contiguous port sets (which may be
  generated in a pseudorandom way [RFC6431]), the randomness of the



Cui, et al.                  Standards Track                   [Page 15]

RFC 7596                   Lightweight 4over6                  July 2015


  port number is improved, provided that the attacker is outside the
  Lightweight 4over6 domain and hence does not know the port-set
  generation algorithm.

  The lwAFTR MUST rate-limit ICMPv6 error messages (see Section 5.1) to
  defend against DoS attacks generated by an abuse user.

  More considerations about IP address sharing are discussed in
  Section 13 of [RFC6269], which is applicable to this solution.

  This document describes a number of different protocols that may be
  used for the provisioning of lw4o6.  In each case, the security
  considerations relevant to the provisioning protocol are also
  relevant to the provisioning of lw4o6 using that protocol.  lw4o6
  does not add any other security considerations specific to these
  provisioning protocols.

10.  References

10.1.  Normative References

  [RFC1918]  Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
             and E. Lear, "Address Allocation for Private Internets",
             BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
             <http://www.rfc-editor.org/info/rfc1918>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC2473]  Conta, A. and S. Deering, "Generic Packet Tunneling in
             IPv6 Specification", RFC 2473, DOI 10.17487/RFC2473,
             December 1998, <http://www.rfc-editor.org/info/rfc2473>.

  [RFC4787]  Audet, F., Ed., and C. Jennings, "Network Address
             Translation (NAT) Behavioral Requirements for Unicast
             UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787,
             January 2007, <http://www.rfc-editor.org/info/rfc4787>.

  [RFC5382]  Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and P.
             Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142,
             RFC 5382, DOI 10.17487/RFC5382, October 2008,
             <http://www.rfc-editor.org/info/rfc5382>.







Cui, et al.                  Standards Track                   [Page 16]

RFC 7596                   Lightweight 4over6                  July 2015


  [RFC5508]  Srisuresh, P., Ford, B., Sivakumar, S., and S. Guha, "NAT
             Behavioral Requirements for ICMP", BCP 148, RFC 5508,
             DOI 10.17487/RFC5508, April 2009,
             <http://www.rfc-editor.org/info/rfc5508>.

  [RFC5597]  Denis-Courmont, R., "Network Address Translation (NAT)
             Behavioral Requirements for the Datagram Congestion
             Control Protocol", BCP 150, RFC 5597,
             DOI 10.17487/RFC5597, September 2009,
             <http://www.rfc-editor.org/info/rfc5597>.

  [RFC6333]  Durand, A., Droms, R., Woodyatt, J., and Y. Lee,
             "Dual-Stack Lite Broadband Deployments Following IPv4
             Exhaustion", RFC 6333, DOI 10.17487/RFC6333, August 2011,
             <http://www.rfc-editor.org/info/rfc6333>.

  [RFC7598]  Mrugalski, T., Troan, O., Farrer, I., Perreault, S., Dec,
             W., Bao, C., Yeh, L., and X. Deng, "DHCPv6 Options for
             Configuration of Softwire Address and Port-Mapped
             Clients", RFC 7598, DOI 10.17487/RFC7598, July 2015,
             <http://www.rfc-editor.org/info/rfc7598>.

10.2.  Informative References

  [B4-Trans-DSLite]
             Cui, Y., Sun, Q., Boucadair, M., Tsou, T., Lee, Y., and
             I. Farrer, "Lightweight 4over6: An Extension to the
             DS-Lite Architecture", Work in Progress,
             draft-cui-softwire-b4-translated-ds-lite-11,
             February 2013.

  [DSLite-LW-Ext]
             Deng, X., Boucadair, M., and C. Zhou, "NAT offload
             extension to Dual-Stack lite", Work in Progress,
             draft-zhou-softwire-b4-nat-04, October 2011.

  [Dyn-Shared-v4Alloc]
             Cui, Y., Sun, Q., Farrer, I., Lee, Y., Sun, Q., and
             M. Boucadair, "Dynamic Allocation of Shared IPv4
             Addresses", Work in Progress,
             draft-ietf-dhc-dynamic-shared-v4allocation-09, May 2015.

  [PCP-PORT_SET]
             Sun, Q., Boucadair, M., Sivakumar, S., Zhou, C., Tsou, T.,
             and S. Perreault, "Port Control Protocol (PCP) Extension
             for Port Set Allocation", Work in Progress,
             draft-ietf-pcp-port-set-09, May 2015.




Cui, et al.                  Standards Track                   [Page 17]

RFC 7596                   Lightweight 4over6                  July 2015


  [RFC2827]  Ferguson, P. and D. Senie, "Network Ingress Filtering:
             Defeating Denial of Service Attacks which employ IP Source
             Address Spoofing", BCP 38, RFC 2827, DOI 10.17487/RFC2827,
             May 2000, <http://www.rfc-editor.org/info/rfc2827>.

  [RFC2983]  Black, D., "Differentiated Services and Tunnels",
             RFC 2983, DOI 10.17487/RFC2983, October 2000,
             <http://www.rfc-editor.org/info/rfc2983>.

  [RFC3022]  Srisuresh, P. and K. Egevang, "Traditional IP Network
             Address Translator (Traditional NAT)", RFC 3022,
             DOI 10.17487/RFC3022, January 2001,
             <http://www.rfc-editor.org/info/rfc3022>.

  [RFC6269]  Ford, M., Ed., Boucadair, M., Durand, A., Levis, P., and
             P. Roberts, "Issues with IP Address Sharing", RFC 6269,
             DOI 10.17487/RFC6269, June 2011,
             <http://www.rfc-editor.org/info/rfc6269>.

  [RFC6346]  Bush, R., Ed., "The Address plus Port (A+P) Approach to
             the IPv4 Address Shortage", RFC 6346,
             DOI 10.17487/RFC6346, August 2011,
             <http://www.rfc-editor.org/info/rfc6346>.

  [RFC6431]  Boucadair, M., Levis, P., Bajko, G., Savolainen, T., and
             T. Tsou, "Huawei Port Range Configuration Options for PPP
             IP Control Protocol (IPCP)", RFC 6431,
             DOI 10.17487/RFC6431, November 2011,
             <http://www.rfc-editor.org/info/rfc6431>.

  [RFC6864]  Touch, J., "Updated Specification of the IPv4 ID Field",
             RFC 6864, DOI 10.17487/RFC6864, February 2013,
             <http://www.rfc-editor.org/info/rfc6864>.

  [RFC6887]  Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R., and
             P. Selkirk, "Port Control Protocol (PCP)", RFC 6887,
             DOI 10.17487/RFC6887, April 2013,
             <http://www.rfc-editor.org/info/rfc6887>.

  [RFC7040]  Cui, Y., Wu, J., Wu, P., Vautrin, O., and Y. Lee, "Public
             IPv4-over-IPv6 Access Network", RFC 7040,
             DOI 10.17487/RFC7040, November 2013,
             <http://www.rfc-editor.org/info/rfc7040>.

  [RFC7341]  Sun, Q., Cui, Y., Siodelski, M., Krishnan, S., and I.
             Farrer, "DHCPv4-over-DHCPv6 (DHCP 4o6) Transport",
             RFC 7341, DOI 10.17487/RFC7341, August 2014,
             <http://www.rfc-editor.org/info/rfc7341>.



Cui, et al.                  Standards Track                   [Page 18]

RFC 7596                   Lightweight 4over6                  July 2015


  [RFC7597]  Troan, O., Ed., Dec, W., Li, X., Bao, C., Matsushima, S.,
             Murakami, T., and T. Taylor, Ed., "Mapping of Address and
             Port with Encapsulation (MAP-E)", RFC 7597,
             DOI 10.17487/RFC7597, July 2015,
             <http://www.rfc-editor.org/info/rfc7597>.

  [Stateless-DS-Lite]
             Penno, R., Durand, A., Clauberg, A., and L. Hoffmann,
             "Stateless DS-Lite", Work in Progress,
             draft-penno-softwire-sdnat-02, March 2012.

  [TR069]    Broadband Forum TR-069, "CPE WAN Management Protocol",
             Amendment 5, CWMP Version: 1.4, November 2013,
             <https://www.broadband-forum.org>.

  [Unified-v4-in-v6]
             Boucadair, M., Farrer, I., Perreault, S., Ed., and S.
             Sivakumar, Ed., "Unified IPv4-in-IPv6 Softwire CPE", Work
             in Progress, draft-ietf-softwire-unified-cpe-01, May 2013.

Acknowledgements

  The authors would like to thank Ole Troan, Ralph Droms, and Suresh
  Krishnan for their comments and feedback.

  This document is a merge of three documents: [B4-Trans-DSLite],
  [DSLite-LW-Ext], and [Stateless-DS-Lite].

Contributors

  The following individuals contributed to this effort:

  Jianping Wu
  Tsinghua University
  Department of Computer Science, Tsinghua University
  Beijing  100084
  China
  Phone: +86-10-62785983
  Email: [email protected]

  Peng Wu
  Tsinghua University
  Department of Computer Science, Tsinghua University
  Beijing  100084
  China
  Phone: +86-10-62785822
  Email: [email protected]




Cui, et al.                  Standards Track                   [Page 19]

RFC 7596                   Lightweight 4over6                  July 2015


  Qi Sun
  Tsinghua University
  Beijing  100084
  China
  Phone: +86-10-62785822
  Email: [email protected]

  Chongfeng Xie
  China Telecom
  Room 708, No. 118, Xizhimennei Street
  Beijing  100035
  China
  Phone: +86-10-58552116
  Email: [email protected]

  Xiaohong Deng
  The University of New South Wales
  Sydney  NSW 2052
  Australia
  Email: [email protected]

  Cathy Zhou
  Huawei Technologies
  Section B, Huawei Industrial Base, Bantian Longgang
  Shenzhen  518129
  China
  Email: [email protected]

  Alain Durand
  Juniper Networks
  1194 North Mathilda Avenue
  Sunnyvale, CA  94089-1206
  United States
  Email: [email protected]

  Reinaldo Penno
  Cisco Systems, Inc.
  170 West Tasman Drive
  San Jose, CA  95134
  United States
  Email: [email protected]










Cui, et al.                  Standards Track                   [Page 20]

RFC 7596                   Lightweight 4over6                  July 2015


  Axel Clauberg
  Deutsche Telekom AG
  CTO-ATI
  Landgrabenweg 151
  Bonn  53227
  Germany
  Email: [email protected]

  Lionel Hoffmann
  Bouygues Telecom
  TECHNOPOLE
  13/15 Avenue du Marechal Juin
  Meudon  92360
  France
  Email: [email protected]

  Maoke Chen (a.k.a. Noriyuki Arai)
  BBIX, Inc.
  Tokyo Shiodome Building, Higashi-Shimbashi 1-9-1
  Minato-ku, Tokyo  105-7310
  Japan
  Email: [email protected]

Authors' Addresses

  Yong Cui
  Tsinghua University
  Beijing  100084
  China

  Phone: +86-10-62603059
  Email: [email protected]


  Qiong Sun
  China Telecom
  Room 708, No. 118, Xizhimennei Street
  Beijing  100035
  China

  Phone: +86-10-58552936
  Email: [email protected]









Cui, et al.                  Standards Track                   [Page 21]

RFC 7596                   Lightweight 4over6                  July 2015


  Mohamed Boucadair
  France Telecom
  Rennes  35000
  France

  Email: [email protected]


  Tina Tsou
  Huawei Technologies
  2330 Central Expressway
  Santa Clara, CA  95050
  United States

  Phone: +1-408-330-4424
  Email: [email protected]


  Yiu L. Lee
  Comcast
  One Comcast Center
  Philadelphia, PA  19103
  United States

  Email: [email protected]


  Ian Farrer
  Deutsche Telekom AG
  CTO-ATI, Landgrabenweg 151
  Bonn, NRW  53227
  Germany

  Email: [email protected]

















Cui, et al.                  Standards Track                   [Page 22]