Internet Engineering Task Force (IETF)                         R. Bonica
Request for Comments: 7588                              Juniper Networks
Category: Informational                                     C. Pignataro
ISSN: 2070-1721                                            Cisco Systems
                                                               J. Touch
                                                                USC/ISI
                                                              July 2015


A Widely Deployed Solution to the Generic Routing Encapsulation (GRE)
                        Fragmentation Problem

Abstract

  This memo describes how many vendors have solved the Generic Routing
  Encapsulation (GRE) fragmentation problem.  The solution described
  herein is configurable.  It is widely deployed on the Internet in its
  default configuration.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7588.

















Bonica, et al.                Informational                     [Page 1]

RFC 7588                    GRE Fragmentation                  July 2015


Copyright Notice

  Copyright (c) 2015 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
    1.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   3
    1.2.  Requirements Language . . . . . . . . . . . . . . . . . .   5
  2.  Solutions . . . . . . . . . . . . . . . . . . . . . . . . . .   5
    2.1.  RFC 4459 Solutions  . . . . . . . . . . . . . . . . . . .   5
    2.2.  A Widely Deployed Solution  . . . . . . . . . . . . . . .   5
  3.  Implementation Details  . . . . . . . . . . . . . . . . . . .   6
    3.1.  General . . . . . . . . . . . . . . . . . . . . . . . . .   6
    3.2.  GRE MTU (GMTU) Estimation and Discovery . . . . . . . . .   6
    3.3.  GRE Ingress Node Procedures . . . . . . . . . . . . . . .   7
      3.3.1.  Procedures Affecting the GRE Payload  . . . . . . . .   7
      3.3.2.  Procedures Affecting the GRE Deliver Header . . . . .   8
    3.4.  GRE Egress Node Procedures  . . . . . . . . . . . . . . .   9
  4.  Security Considerations . . . . . . . . . . . . . . . . . . .   9
  5.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  10
    5.1.  Normative References  . . . . . . . . . . . . . . . . . .  10
    5.2.  Informative References  . . . . . . . . . . . . . . . . .  11
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  12
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  12















Bonica, et al.                Informational                     [Page 2]

RFC 7588                    GRE Fragmentation                  July 2015


1.  Introduction

  Generic Routing Encapsulation (GRE) [RFC2784] [RFC2890] can be used
  to carry any network-layer protocol over any network-layer protocol.
  GRE has been implemented by many vendors and is widely deployed in
  the Internet.

  The GRE specification does not describe fragmentation procedures.
  Lacking guidance from the specification, vendors have developed
  implementation-specific fragmentation solutions.  A GRE tunnel will
  operate correctly only if its ingress and egress nodes support
  compatible fragmentation solutions.  [RFC4459] describes several
  fragmentation solutions and evaluates their relative merits.

  This memo reviews the fragmentation solutions presented in [RFC4459].
  It also describes how many vendors have solved the GRE fragmentation
  problem.  The solution described herein is configurable and has been
  widely deployed in its default configuration.

  This memo addresses point-to-point unicast GRE tunnels that carry
  IPv4, IPv6, or MPLS payloads over IPv4 or IPv6.  All other tunnel
  types are beyond the scope of this document.

1.1.  Terminology

  The following terms are specific to GRE:

  o  GRE delivery header - an IPv4 or IPv6 header whose source address
     represents the GRE ingress node and whose destination address
     represents the GRE egress node.  The GRE delivery header
     encapsulates a GRE header.

  o  GRE header - the GRE protocol header.  The GRE header is
     encapsulated in the GRE delivery header and encapsulates the GRE
     payload.

  o  GRE payload - a network-layer packet that is encapsulated by the
     GRE header.  The GRE payload can be IPv4, IPv6, or MPLS.
     Procedures for encapsulating IPv4 in GRE are described in
     [RFC2784] and [RFC2890].  Procedures for encapsulating IPv6 in GRE
     are described in [IPv6-GRE].  Procedures for encapsulating MPLS in
     GRE are described in [RFC4023].  While other protocols may be
     delivered over GRE, they are beyond the scope of this document.

  o  GRE delivery packet - a packet containing a GRE delivery header, a
     GRE header, and the GRE payload.





Bonica, et al.                Informational                     [Page 3]

RFC 7588                    GRE Fragmentation                  July 2015


  o  GRE payload header - the IPv4, IPv6, or MPLS header of the GRE
     payload.

  o  GRE overhead - the combined size of the GRE delivery header and
     the GRE header, measured in octets.

  The following terms are specific to MTU discovery:

  o  Link MTU (LMTU) - the maximum transmission unit, i.e., maximum
     packet size in octets, that can be conveyed over a link.  LMTU is
     a unidirectional metric.  A bidirectional link may be
     characterized by one LMTU in the forward direction and another
     LMTU in the reverse direction.

  o  Path MTU (PMTU) - the minimum LMTU of all the links in a path
     between a source node and a destination node.  If the source and
     destination nodes are connected through an Equal-Cost Multipath
     (ECMP), the PMTU is equal to the minimum LMTU of all links
     contributing to the multipath.

  o  GRE MTU (GMTU) - the maximum transmission unit, i.e., maximum
     packet size in octets, that can be conveyed over a GRE tunnel
     without fragmentation of any kind.  The GMTU is equal to the PMTU
     associated with the path between the GRE ingress and the GRE
     egress nodes minus the GRE overhead.

  o  Path MTU Discovery (PMTUD) - a procedure for dynamically
     discovering the PMTU between two nodes on the Internet.  PMTUD
     procedures for IPv4 are defined in [RFC1191].  PMTUD procedures
     for IPv6 are defined in [RFC1981].

  The following terms are introduced by this memo:

  o  Fragmentable Packet - a packet that can be fragmented by the GRE
     ingress node before being transported over a GRE tunnel.  That is,
     an IPv4 packet with the Don't Fragment (DF) bit equal to 0 and
     whose payload is larger than 64 bytes.  IPv6 packets are not
     fragmentable.

  o  ICMP Packet Too Big (PTB) message - an ICMPv4 [RFC792] Destination
     Unreachable message (Type = 3) with code equal to 4 (fragmentation
     needed and DF set) or an ICMPv6 [RFC4443] Packet Too Big message
     (Type = 2).








Bonica, et al.                Informational                     [Page 4]

RFC 7588                    GRE Fragmentation                  July 2015


1.2.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

2.  Solutions

2.1.  RFC 4459 Solutions

  Section 3 of [RFC4459] identifies several tunnel fragmentation
  solutions.  These solutions define procedures to be invoked when the
  tunnel ingress router receives a packet so large that it cannot be
  forwarded through the tunnel without fragmentation of any kind.  When
  applied to GRE, these procedures are:

  1.  Discard the incoming packet and send an ICMP PTB message to the
      incoming packet's source.

  2.  Fragment the incoming packet and encapsulate each fragment within
      a complete GRE header and GRE delivery header.

  3.  Encapsulate the incoming packet in a single GRE header and GRE
      delivery header.  Perform source fragmentation on the resulting
      GRE delivery packet.

  As per RFC 4459, Strategy 2 is applicable only when the incoming
  packet is fragmentable.  Also as per RFC 4459, each strategy has its
  relative merits and costs.

2.2.  A Widely Deployed Solution

  Many vendors have implemented a configurable GRE fragmentation
  solution.  In its default configuration, the solution behaves as
  follows:

  o  When the GRE ingress node receives a fragmentable packet with
     length greater than the GMTU, it fragments the incoming packet and
     encapsulates each fragment within a complete GRE header and GRE
     delivery header.  Fragmentation logic is as specified by the
     payload protocol.

  o  When the GRE ingress node receives a non-fragmentable packet with
     length greater than the GMTU, it discards the packet and sends an
     ICMP PTB message to the packet's source.






Bonica, et al.                Informational                     [Page 5]

RFC 7588                    GRE Fragmentation                  July 2015


  o  When the GRE egress node receives a GRE delivery packet fragment,
     it silently discards the fragment without attempting to reassemble
     the GRE delivery packet to which the fragment belongs.

  In non-default configurations, the GRE ingress node can execute any
  of the procedures defined in RFC 4459.

  The solution described above is widely deployed on the Internet in
  its default configuration.  However, the default configuration is not
  always appropriate for GRE tunnels that carry IPv6.

  IPv6 requires that every link in the Internet have an MTU of 1280
  octets or greater.  On any link that cannot convey a 1280-octet
  packet in one piece, link-specific fragmentation and reassembly must
  be provided at a layer below IPv6.

  Therefore, the default configuration is appropriate for tunnels that
  carry IPv6 only if the network is engineered so that the GMTU is
  guaranteed to be 1280 bytes or greater.  In all other scenarios, a
  non-default configuration is required.

  In the non-default configuration, when the GRE ingress router
  receives a packet lager than the GMTU, the GRE ingress router
  encapsulates the entire packet in a single GRE and delivery header.
  It then fragments the delivery header and sends the resulting
  fragments to the GRE egress node, where they are reassembled.

3.  Implementation Details

  This section describes how many vendors have implemented the solution
  described in Section 2.2.

3.1.  General

  The GRE ingress nodes satisfy all of the requirements stated in
  [RFC2784].

3.2.  GRE MTU (GMTU) Estimation and Discovery

  GRE ingress nodes support a configuration option that associates a
  GMTU with a GRE tunnel.  By default, GMTU is equal to the MTU
  associated with the next hop toward the GRE egress node minus the GRE
  overhead.

  Typically, GRE ingress nodes further refine their GMTU estimate by
  executing PMTUD procedures.  However, if an implementation supports
  PMTUD for GRE tunnels, it also includes a configuration option that




Bonica, et al.                Informational                     [Page 6]

RFC 7588                    GRE Fragmentation                  July 2015


  disables PMTUD.  This configuration option is required to mitigate
  certain denial-of-service attacks (see Section 4).

  The GRE ingress node's estimate of the GMTU will not always be
  accurate.  It is only an estimate.  When the GMTU changes, the GRE
  ingress node will not discover that change immediately.  Likewise, if
  the GRE ingress node performs PMTUD procedures and interior nodes
  cannot deliver ICMP feedback to the GRE ingress node, GMTU estimates
  may be inaccurate.

3.3.  GRE Ingress Node Procedures

  This section defines procedures that GRE ingress nodes execute when
  they receive a packet whose size is greater than the relevant GMTU.

3.3.1.  Procedures Affecting the GRE Payload

3.3.1.1.  IPv4 Payloads

  By default, if the payload is fragmentable, the GRE ingress node
  fragments the incoming packet and encapsulates each fragment within a
  complete GRE header and GRE delivery header.  Therefore, the GRE
  egress node receives several complete, non-fragmented delivery
  packets.  Each delivery packet contains a fragment of the GRE
  payload.  The GRE egress node forwards the payload fragments to their
  ultimate destination where they are reassembled.

  Also by default, if the payload is not fragmentable, the GRE ingress
  node discards the packet and sends an ICMPv4 Destination Unreachable
  message to the packet's source.  The ICMPv4 Destination Unreachable
  message code equals 4 (fragmentation needed and DF set).  The ICMPv4
  Destination Unreachable message also contains a next-hop MTU (as
  specified by [RFC1191]), and the next-hop MTU is equal to the GMTU
  associated with the tunnel.

  The GRE ingress node supports a non-default configuration option that
  invokes an alternative behavior.  If that option is configured, the
  GRE ingress node fragments the delivery packet.  See Section 3.3.2
  for details.

3.3.1.2.  IPv6 Payloads

  By default, the GRE ingress node discards the packet and sends an
  ICMPv6 [RFC4443] Packet Too Big message to the payload source.  The
  MTU specified in the Packet Too Big message is equal to the GMTU
  associated with the tunnel.





Bonica, et al.                Informational                     [Page 7]

RFC 7588                    GRE Fragmentation                  July 2015


  The GRE ingress node supports a non-default configuration option that
  invokes an alternative behavior.  If that option is configured, the
  GRE ingress node fragments the delivery packet.  See Section 3.3.2
  for details.

3.3.1.3.  MPLS Payloads

  By default, the GRE ingress node discards the packet.  As it is
  impossible to reliably identify the payload source, the GRE ingress
  node does not attempt to send an ICMP PTB message to the payload
  source.

  The GRE ingress node supports a non-default configuration option that
  invokes an alternative behavior.  If that option is configured, the
  GRE ingress node fragments the delivery packet.  See Section 3.3.2
  for details.

3.3.2.  Procedures Affecting the GRE Deliver Header

3.3.2.1.  Tunneling GRE over IPv4

  By default, the GRE ingress node does not fragment delivery packets.
  However, the GRE ingress node includes a configuration option that
  allows delivery packet fragmentation.

  By default, the GRE ingress node sets the DF bit in the delivery
  header to 1 (Don't Fragment).  However, the GRE ingress node also
  supports a configuration option that invokes the following behavior:

  o  When the GRE payload is IPv6, the DF bit on the delivery header is
     set to 0 (Fragments Allowed).

  o  When the GRE payload is IPv4, the DF bit is copied from the
     payload header to the delivery header.

  When the DF bit on an IPv4 delivery header is set to 0, the GRE
  delivery packet can be fragmented by any router between the GRE
  ingress and egress nodes.

  If the GRE egress node is configured to support reassembly, it will
  reassemble fragmented delivery packets.  Otherwise, the GRE egress
  node will discard delivery packet fragments.









Bonica, et al.                Informational                     [Page 8]

RFC 7588                    GRE Fragmentation                  July 2015


3.3.2.2.  Tunneling GRE over IPv6

  By default, the GRE ingress node does not fragment delivery packets.
  However, the GRE ingress node includes a configuration option that
  allows this.

  If the GRE egress node is configured to support reassembly, it will
  reassemble fragmented delivery packets.  Otherwise, the GRE egress
  node will discard delivery packet fragments.

3.4.  GRE Egress Node Procedures

  By default, the GRE egress node silently discards GRE delivery packet
  fragments without attempting to reassemble the GRE delivery packets
  to which the fragments belongs.

  However, the GRE egress node supports a configuration option that
  allows it to reassemble GRE delivery packets.

4.  Security Considerations

  In the GRE fragmentation solution described above, either the GRE
  payload or the GRE delivery packet can be fragmented.  If the GRE
  payload is fragmented, it is typically reassembled at its ultimate
  destination.  If the GRE delivery packet is fragmented, it is
  typically reassembled at the GRE egress node.

  The packet reassembly process is resource intensive and vulnerable to
  several denial-of-service attacks.  In the simplest attack, the
  attacker sends fragmented packets more quickly than the victim can
  reassemble them.  In a variation on that attack, the first fragment
  of each packet is missing so that no packet can ever be reassembled.

  Given that the packet reassembly process is resource intensive and
  vulnerable to denial-of-service attacks, operators should decide
  where the reassembly process is best performed.  Having made that
  decision, they should decide whether to fragment the GRE payload or
  GRE delivery packet accordingly.

  Some IP implementations are vulnerable to the Overlapping Fragment
  Attack [RFC1858].  This vulnerability is not specific to GRE and
  needs to be considered in all environments where IP fragmentation is
  present.  [RFC3128] describes a procedure by which IPv4
  implementations can partially mitigate the vulnerability.  [RFC5722]
  mandates a procedure by which IPv6-compliant implementations are
  required to mitigate the vulnerability.  The procedure described in





Bonica, et al.                Informational                     [Page 9]

RFC 7588                    GRE Fragmentation                  July 2015


  RFC 5722 completely mitigates the vulnerability.  Operators SHOULD
  ensure that the vulnerability is mitigated to their satisfaction on
  equipment that they deploy.

  PMTUD is vulnerable to two denial-of-service attacks (see Section 8
  of [RFC1191] for details).  Both attacks are based upon on a
  malicious party sending forged ICMPv4 Destination Unreachable or
  ICMPv6 Packet Too Big messages to a host.  In the first attack, the
  forged message indicates an inordinately small PMTU.  In the second
  attack, the forged message indicates an inordinately large MTU.  In
  both cases, throughput is adversely affected.  In order to mitigate
  such attacks, GRE implementations include a configuration option to
  disable PMTUD on GRE tunnels.  Also, they can include a configuration
  option that conditions the behavior of PMTUD to establish a minimum
  PMTU.

5.  References

5.1.  Normative References

  [RFC792]   Postel, J., "Internet Control Message Protocol", STD 5,
             RFC 792, DOI 10.17487/RFC0792, September 1981,
             <http://www.rfc-editor.org/info/rfc792>.

  [RFC1191]  Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
             DOI 10.17487/RFC1191, November 1990,
             <http://www.rfc-editor.org/info/rfc1191>.

  [RFC1858]  Ziemba, G., Reed, D., and P. Traina, "Security
             Considerations for IP Fragment Filtering", RFC 1858,
             DOI 10.17487/RFC1858, October 1995,
             <http://www.rfc-editor.org/info/rfc1858>.

  [RFC1981]  McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery
             for IP version 6", RFC 1981, DOI 10.17487/RFC1981, August
             1996, <http://www.rfc-editor.org/info/rfc1981>.

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC2784]  Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
             Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
             DOI 10.17487/RFC2784, March 2000,
             <http://www.rfc-editor.org/info/rfc2784>.





Bonica, et al.                Informational                    [Page 10]

RFC 7588                    GRE Fragmentation                  July 2015


  [RFC2890]  Dommety, G., "Key and Sequence Number Extensions to GRE",
             RFC 2890, DOI 10.17487/RFC2890, September 2000,
             <http://www.rfc-editor.org/info/rfc2890>.

  [RFC3128]  Miller, I., "Protection Against a Variant of the Tiny
             Fragment Attack (RFC 1858)", RFC 3128,
             DOI 10.17487/RFC3128, June 2001,
             <http://www.rfc-editor.org/info/rfc3128>.

  [RFC4023]  Worster, T., Rekhter, Y., and E. Rosen, Ed.,
             "Encapsulating MPLS in IP or Generic Routing Encapsulation
             (GRE)", RFC 4023, DOI 10.17487/RFC4023, March 2005,
             <http://www.rfc-editor.org/info/rfc4023>.

  [RFC4443]  Conta, A., Deering, S., and M. Gupta, Ed., "Internet
             Control Message Protocol (ICMPv6) for the Internet
             Protocol Version 6 (IPv6) Specification", RFC 4443,
             DOI 10.17487/RFC4443, March 2006,
             <http://www.rfc-editor.org/info/rfc4443>.

  [RFC5722]  Krishnan, S., "Handling of Overlapping IPv6 Fragments",
             RFC 5722, DOI 10.17487/RFC5722, December 2009,
             <http://www.rfc-editor.org/info/rfc5722>.

5.2.  Informative References

  [IPv6-GRE] Pignataro, C., Bonica, R., and S. Krishnan, "IPv6 Support
             for Generic Routing Encapsulation (GRE)", Work in
             Progress, draft-ietf-intarea-gre-ipv6-10, June 2015.

  [RFC4459]  Savola, P., "MTU and Fragmentation Issues with In-the-
             Network Tunneling", RFC 4459, DOI 10.17487/RFC4459, April
             2006, <http://www.rfc-editor.org/info/rfc4459>.


















Bonica, et al.                Informational                    [Page 11]

RFC 7588                    GRE Fragmentation                  July 2015


Acknowledgements

  The authors would like to thank Fred Baker, Fred Detienne, Jagadish
  Grandhi, Jeff Haas, Brian Haberman, Vanitha Neelamegam, Masataka
  Ohta, John Scudder, Mike Sullenberger, Tom Taylor, and Wen Zhang for
  their constructive comments.  The authors also express their
  gratitude to Vanessa Ameen, without whom this memo could not have
  been written.

Authors' Addresses

  Ron Bonica
  Juniper Networks
  2251 Corporate Park Drive
  Herndon, Virginia  20170
  United States

  Email: [email protected]


  Carlos Pignataro
  Cisco Systems
  7200-12 Kit Creek Road
  Research Triangle Park, North Carolina  27709
  United States

  Email: [email protected]


  Joe Touch
  USC/ISI
  4676 Admiralty Way
  Marina del Rey, California  90292-6695
  United States

  Phone: +1 (310) 448-9151
  Email: [email protected]
  URI:   http://www.isi.edu/touch













Bonica, et al.                Informational                    [Page 12]