Internet Engineering Task Force (IETF)                        J. Quittek
Request for Comments: 7577                                     R. Winter
Category: Standards Track                                       T. Dietz
ISSN: 2070-1721                                         NEC Europe, Ltd.
                                                              July 2015


         Definition of Managed Objects for Battery Monitoring

Abstract

  This memo defines a portion of the Management Information Base (MIB)
  for use with network management protocols in the Internet community.
  In particular, it defines managed objects that provide information on
  the status of batteries in managed devices.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7577.

Copyright Notice

  Copyright (c) 2015 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.







Quittek, et al.              Standards Track                    [Page 1]

RFC 7577                       Battery MIB                     July 2015


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
  2.  The Internet-Standard Management Framework  . . . . . . . . .   5
  3.  Design of the Battery MIB Module  . . . . . . . . . . . . . .   6
    3.1.  MIB Module Structure  . . . . . . . . . . . . . . . . . .   6
    3.2.  Battery Technologies  . . . . . . . . . . . . . . . . . .   8
      3.2.1.  Guidelines for Adding Battery Technologies  . . . . .   9
    3.3.  Battery Identification  . . . . . . . . . . . . . . . . .   9
    3.4.  Charging Cycles . . . . . . . . . . . . . . . . . . . . .  10
    3.5.  Charge Control  . . . . . . . . . . . . . . . . . . . . .  10
    3.6.  Imported Definitions  . . . . . . . . . . . . . . . . . .  11
  4.  Definitions . . . . . . . . . . . . . . . . . . . . . . . . .  11
  5.  Security Considerations . . . . . . . . . . . . . . . . . . .  33
  6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  36
    6.1.  SMI Object Identifier Registration  . . . . . . . . . . .  36
    6.2.  Battery Technology Registration . . . . . . . . . . . . .  36
  7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  37
    7.1.  Normative References  . . . . . . . . . . . . . . . . . .  37
    7.2.  Informative References  . . . . . . . . . . . . . . . . .  38
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  40
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  40

1.  Introduction

  Today, more and more managed devices contain batteries that supply
  them with power when disconnected from electrical power distribution
  grids.  Common examples are nomadic and mobile devices, such as
  notebook computers, netbooks, and smartphones.  The status of
  batteries in such a device, particularly the charging status, is
  typically controlled by automatic functions that act locally on the
  device and manually by users of the device.

  In addition to this, there is a need to monitor battery status of
  these devices by network management systems.  This document defines a
  portion of the Management Information Base (MIB) that provides a
  means for monitoring batteries in or attached to managed devices.
  The Battery MIB module defined in Section 4 meets the requirements
  for monitoring the status of batteries specified in RFC 6988
  [RFC6988].

  The Battery MIB module provides for monitoring the battery status.
  According to the framework for energy management [RFC7326], it is an
  Energy Managed Object; thus, MIB modules such as the Power and Energy
  Monitoring MIB [RFC7460] could, in principle, be implemented for
  batteries.  The Battery MIB extends the more generic aspects of
  energy management by adding battery-specific information.  Amongst
  other things, the Battery MIB enables the monitoring of:



Quittek, et al.              Standards Track                    [Page 2]

RFC 7577                       Battery MIB                     July 2015


  o  the current charge of a battery,

  o  the age of a battery (charging cycles),

  o  the state of a battery (e.g., being recharged),

  o  last usage of a battery, and

  o  maximum energy provided by a battery (remaining and total
     capacity).

  Further, means are provided for battery-powered devices to send
  notifications to inform the management system of needed replacement
  when the current battery charge has dropped below a certain
  threshold.  The same applies to the age of a battery.

  Many battery-driven devices have existing instrumentation for
  monitoring the battery status because this is already needed for
  local control of the battery by the device.  This reduces the effort
  for implementing the managed objects defined in this document.  For
  many devices, only additional software will be needed; no additional
  hardware instrumentation for battery monitoring is necessary.

  Since there are a lot of devices in use that contain more than one
  battery, means for battery monitoring defined in this document
  support addressing multiple batteries within a single device.  Also,
  batteries today often come in packages that can include
  identification and might contain additional hardware and firmware.
  The former allows tracing a battery and allows continuous monitoring
  even if the battery is installed in another device.  The firmware
  version is useful information as the battery behavior might be
  different for different firmware versions.

  Not explicitly in the scope of definitions in this document are very
  small backup batteries, for example, batteries used on a PC
  motherboard to run the clock circuit and retain configuration memory
  while the system is turned off.  Other means may be required for
  reporting on these batteries.  However, the MIB module defined in
  Section 3.1 can be used for this purpose.

  A traditional type of managed device containing batteries is an
  Uninterruptible Power Supply (UPS) system; these supply other devices
  with electrical energy when the main power supply fails.  There is
  already a MIB module for managing UPS systems defined in RFC 1628
  [RFC1628].  The UPS MIB module includes managed objects for
  monitoring the batteries contained in a UPS system.  However, the
  information provided by the UPS MIB objects is limited and tailored
  to the particular needs of UPS systems.



Quittek, et al.              Standards Track                    [Page 3]

RFC 7577                       Battery MIB                     July 2015


  A huge variety of battery technologies are available, and they are
  evolving over time.  For different applications, different battery
  technologies are preferable, for example, because of different
  weight, cost, robustness, charging time, etc.  Some technologies,
  such as lead-acid batteries, are continuously in use for decades,
  while others, such as nickel-based battery technologies (nickel-
  cadmium and nickel-metal hydride), have, to a wide extent, been
  replaced by lithium-based battery technologies (lithium-ion and
  lithium polymer).

  The Battery MIB module uses a generic abstraction of batteries that
  is independent of particular battery technologies and expected to be
  applicable to future technologies as well.  While identification of a
  particular battery technology is supported by an extensible list of
  battery technology identifiers (see Section 3.2), individual
  properties of the technologies are not modeled by the abstraction.
  In particular, methods for charging a battery, and the parameters of
  those methods, which vary greatly between different technologies are
  not individually modeled.

  Instead, the Battery MIB module uses a simple common charging model
  with batteries being in one of the following states: 'charging',
  'maintaining charge', 'not charging', and 'discharging'.  Control of
  the charging process is limited to requests for transitions between
  these states.  For charging controllers that use charging state
  engines with more states, implementations of the Battery MIB module
  need to map those states to the four listed above.

  For energy management systems that require finer-grained control of
  the battery charging process, additional means need to be developed;
  for example, MIB modules that model richer sets of charging states
  and parameters for charging states.

  All use cases sketched above assume that the batteries are contained
  in a managed entity.  In a typical case, this entity also hosts the
  SNMP applications (command responder and notification generator) and
  the charging controller for contained batteries.  For definitions in
  this document, it is not strictly required that batteries be
  contained in the same managed entity, even though the Battery MIB
  module (defined further below) uses the containment tree of the
  Entity MIB module [RFC6933] for battery indexing.

  External batteries can be supported as long as the charging
  controller for these batteries is connected to the SNMP applications
  that implement the Battery MIB module.  An example with an external
  battery is shown in the figure below.  It illustrates that the
  Battery MIB module is designed as an interface between the management
  system and battery charging controller.  Out of scope of this



Quittek, et al.              Standards Track                    [Page 4]

RFC 7577                       Battery MIB                     July 2015


  document is the interface between the battery charging controller and
  controlled batteries.

                +-----------------------------------+
                |         management system         |
                +-----------------+-----------------+
                                  |
                                  | Battery MIB
                                  |
                +-----------------+-----------------+
                | managed element |                 |
                |                 |                 |
                |  +--------------+--------------+  |
                |  | battery charging controller |  |
                |  +-----+--------------+--------+  |
                |        |              |           |
                |  +-----+-----+        |           |
                |  | internal  |        |           |
                |  | battery   |        |           |
                |  +-----------+        |           |
                +-----------------------+-----------+
                                        |
                                  +-----+-----+
                                  | external  |
                                  | battery   |
                                  +-----------+

    Figure 1: Battery MIB as Interface between Management System and
        Battery-Charging Controller Supporting External Batteries

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in RFC
  2119 [RFC2119].

2.  The Internet-Standard Management Framework

  For a detailed overview of the documents that describe the current
  Internet-Standard Management Framework, please refer to section 7 of
  RFC 3410 [RFC3410].

  Managed objects are accessed via a virtual information store, termed
  the Management Information Base or MIB.  MIB objects are generally
  accessed through the Simple Network Management Protocol (SNMP).
  Objects in the MIB are defined using the mechanisms defined in the
  Structure of Management Information (SMI).  This memo specifies MIB
  modules that are compliant to the SMIv2, which is described in STD




Quittek, et al.              Standards Track                    [Page 5]

RFC 7577                       Battery MIB                     July 2015


  58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58,RFC
  2580 [RFC2580].

3.  Design of the Battery MIB Module

3.1.  MIB Module Structure

  The Battery MIB module defined in this document defines objects for
  reporting information about batteries.  All managed objects providing
  information on the status of a battery are contained in a single
  table called "batteryTable".  The batteryTable contains one
  conceptual row per battery.

  Batteries are indexed by the entPhysicalIndex of the
  entPhysicalTable defined in the Entity MIB module [RFC6933].  An
  implementation of the Entity MIB module complying with the
  entity4CRCompliance MODULE-COMPLIANCE statement is required for
  compliant implementations of the Battery MIB module.

  If a battery is replaced, and the replacing battery uses the same
  physical connector as the replaced battery, then the replacing
  battery MUST be indexed with the same value of object
  entPhysicalIndex as the replaced battery.

  The kind of entity in the entPhysicalTable of the Entity MIB module
  is indicated by the value of enumeration object entPhysicalClass.
  All batteries SHOULD have the value of object entPhysicalClass set to
  battery(14) in their row of the entPhysicalTable.

  The batteryTable contains three groups of objects.  The first group
  (OIDs ending with 1-9) provides information on static properties of
  the battery.  The second group of objects (OIDs ending with 10-18)
  provides information on the current battery state, if it is charging
  or discharging, how much it is charged, its remaining capacity, the
  number of experienced charging cycles, etc.
















Quittek, et al.              Standards Track                    [Page 6]

RFC 7577                       Battery MIB                     July 2015


     batteryTable(1)
     +--batteryEntry(1) [entPhysicalIndex]
        +-- r-n SnmpAdminString batteryIdentifier(1)
        +-- r-n SnmpAdminString batteryFirmwareVersion(2)
        +-- r-n Enumeration     batteryType(3)
        +-- r-n Unsigned32      batteryTechnology(4)
        +-- r-n Unsigned32      batteryDesignVoltage(5)
        +-- r-n Unsigned32      batteryNumberOfCells(6)
        +-- r-n Unsigned32      batteryDesignCapacity(7)
        +-- r-n Unsigned32      batteryMaxChargingCurrent(8)
        +-- r-n Unsigned32      batteryTrickleChargingCurrent(9)
        +-- r-n Unsigned32      batteryActualCapacity(10)
        +-- r-n Unsigned32      batteryChargingCycleCount(11)
        +-- r-n DateAndTime     batteryLastChargingCycleTime(12)
        +-- r-n Enumeration     batteryChargingOperState(13)
        +-- rwn Enumeration     batteryChargingAdminState(14)
        +-- r-n Unsigned32      batteryActualCharge(15)
        +-- r-n Unsigned32      batteryActualVoltage(16)
        +-- r-n Integer32       batteryActualCurrent(17)
        +-- r-n Integer32       batteryTemperature(18)
        +-- rwn Unsigned32      batteryAlarmLowCharge(19)
        +-- rwn Unsigned32      batteryAlarmLowVoltage(20)
        +-- rwn Unsigned32      batteryAlarmLowCapacity(21)
        +-- rwn Unsigned32      batteryAlarmHighCycleCount(22)
        +-- rwn Integer32       batteryAlarmHighTemperature(23)
        +-- rwn Integer32       batteryAlarmLowTemperature(24)
        +-- r-n SnmpAdminString batteryCellIdentifier(25)

  The third group of objects in this table (OIDs ending with 19-25) is
  used for notifications.  Threshold objects (OIDs ending with 19-24)
  indicate thresholds that can be used to raise an alarm if a property
  of the battery exceeds one of them.  Raising an alarm may include
  sending a notification.

  The Battery MIB defines seven notifications for indicating:

  1.  a battery-charging state change that was not triggered by writing
      to object batteryChargingAdminState,

  2.  a low-battery charging state,

  3.  a critical-battery state in which it cannot be used for power
      supply,

  4.  an aged battery that may need to be replaced,

  5.  a battery that has exceeded a temperature threshold,




Quittek, et al.              Standards Track                    [Page 7]

RFC 7577                       Battery MIB                     July 2015


  6.  a battery that has been connected, and

  7.  disconnection of one or more batteries.

  Notifications 2-5 can use object batteryCellIdentifier to indicate a
  specific cell or a set of cells within the battery that have
  triggered the notification.

3.2.  Battery Technologies

  Static information in the batteryTable includes battery type and
  technology.  The battery type distinguishes primary (not
  rechargeable) batteries from rechargeable (secondary) batteries and
  capacitors.  The battery technology describes the actual technology
  of a battery, which typically is a chemical technology.

  Since battery technologies are the subject of intensive research and
  widely used technologies are often replaced by successor technologies
  within a few years, the list of battery technologies was not chosen
  as a fixed list.  Instead, IANA has created a registry for battery
  technologies at <http://www.iana.org/assignments/battery-
  technologies> where numbers are assigned to battery technologies.

  The table below shows battery technologies known today that are in
  commercial use with the numbers assigned to them by IANA.  New
  entries can be added to the IANA registry if new technologies are
  developed or if missing technologies are identified.  Note that there
  exists a huge number of battery types that are not listed in the IANA
  registry.  Many of them are experimental or cannot be used in an
  economically useful way.  New entries should be added to the IANA
  registry only if the respective technologies are in commercial use
  and relevant to standardized battery monitoring over the Internet.



















Quittek, et al.              Standards Track                    [Page 8]

RFC 7577                       Battery MIB                     July 2015


     +--------------------------------+---------------+
     | Battery Technology             |      Value    |
     +--------------------------------+---------------+
     | Reserved                       |             0 |
     | Unknown                        |             1 |
     | Other                          |             2 |
     | Zinc-carbon                    |             3 |
     | Zinc chloride                  |             4 |
     | Nickel oxyhydroxide            |             5 |
     | Lithium-copper oxide           |             6 |
     | Lithium-iron disulfide         |             7 |
     | Lithium-manganese dioxide      |             8 |
     | Zinc-air                       |             9 |
     | Silver oxide                   |            10 |
     | Alkaline                       |            11 |
     | Lead-acid                      |            12 |
     | Valve-Regulated Lead-Acid, Gel |            13 |
     | Valve-Regulated Lead-Acid, AGM |            14 |
     | Nickel-cadmium                 |            15 |
     | Nickel-metal hydride           |            16 |
     | Nickel-zinc                    |            17 |
     | Lithium-ion                    |            18 |
     | Lithium polymer                |            19 |
     | Double layer capacitor         |            20 |
     | Unassigned                     | 21-4294967295 |
     +--------------------------------+---------------+

3.2.1.  Guidelines for Adding Battery Technologies

  New entries can be added to the IANA registry if new technologies are
  developed or if missing technologies are identified.  Note that there
  exists a huge number of battery types that are not listed in the IANA
  registry.  Many of them are experimental or cannot be used in an
  economically useful way.  New entries should be added to the IANA
  registry only if the respective technologies are in commercial use
  and relevant to standardized battery monitoring over the Internet.

3.3.  Battery Identification

  There are two identifiers to be used: the entPhysicalUUID defined in
  the Entity MIB [RFC6933] module and the batteryIdentifier defined in
  this module.  A battery is linked to an entPhysicalUUID through the
  shared entPhysicalIndex.

  The batteryIdentifier uniquely identifies the battery itself while
  the entPhysicalUUID identifies the slot of the device in which the
  battery is (currently) contained.  For a non-replaceable battery,
  both identifiers are always linked to the same physical battery.  But



Quittek, et al.              Standards Track                    [Page 9]

RFC 7577                       Battery MIB                     July 2015


  for batteries that can be replaced, the identifiers have different
  functions.

  The entPhysicalUUID is always the same for a certain battery slot of
  a containing device even if the contained battery is replaced by
  another.  The batteryIdentifier is a representation of the battery
  identifier set by the battery manufacturer.  It is tied to the
  battery and usually cannot be changed.

  Many manufacturers deliver not just plain batteries but battery
  packages including additional hardware and firmware.  Typically,
  these modules include a battery identifier that can by retrieved by a
  device in which a battery has been installed.  The value of the
  object batteryIdentifier is an exact representation of this
  identifier.  The batteryIdentifier is useful when batteries are
  removed and reinstalled in the same device or in other devices.
  Then, the device or the network management system can trace batteries
  and achieve continuity of battery monitoring.

3.4.  Charging Cycles

  The lifetime of a battery can be approximated using the measure of
  charging cycles.  A commonly used definition of a charging cycle is
  the amount of discharge equal to the design (or nominal) capacity of
  the battery [SBS].  This means that a single charging cycle may
  include several steps of partial charging and discharging until the
  amount of discharging has reached the design capacity of the battery.
  After that, the next charging cycle immediately starts.

3.5.  Charge Control

  Managed object batteryChargingOperState indicates the current
  operational charging state of a battery and is a read-only object.
  For controlling the charging state, object batteryChargingAdminState
  can be used.  Writing to this object initiates a request to adapt the
  operational state according to the value that has been written.

  By default, the batteryChargingAdminState object is set to notSet(1).
  In this state, the charging controller is using its predefined
  policies to decide which operational state is suitable in the current
  situation.

  Setting the value of object batteryChargingAdminState may result in
  not changing the state of the battery to this value or even in
  setting the charging state to another value than the requested one.
  Due to operational conditions and limitations of the implementation
  of the Battery MIB module, changing the battery status according to a
  set value of object batteryChargingAdminState might not be possible.



Quittek, et al.              Standards Track                   [Page 10]

RFC 7577                       Battery MIB                     July 2015


  For example, the charging controller might, at any time, decide to
  enter state discharging(5), if there is an operational need to use
  the battery for supplying power.

  The object batteryChargingAdminState will not automatically change
  when the object batteryChargingOperState changes.  If the operational
  state is changed, e.g., to the state discharging(5) due to
  operational conditions, the admin state will remain in its current
  state.  The charging controller SHOULD change the operational state
  to the state indicated by the object batteryChargingAdminState as
  soon as operational conditions allow this change.

  If a state change of the object batteryChargingAdminState is desired
  upon change of the operational state, the object
  batteryChargingOperState must be polled or the notification
  batteryChargingStateNotification must be used to get notified about
  the state change.  This could be used, e.g., if maintaining charge is
  not desired after fully charging a battery even if the charging
  controller and battery support it.  The object
  batteryChargingAdminState can then be set to doNotCharge(3) when the
  object batteryChargingOperState changes from charging(2) to
  maintainingCharge(3).  Another use case would be when performing
  several charge and discharge cycles for battery maintenance.

3.6.  Imported Definitions

  The BATTERY-MIB module defined in this document imports definitions
  from the following MIB modules: SNMPv2-SMI [RFC2578], SNMPv2-TC
  [RFC2579], SNMPv2-CONF [RFC2580], SNMP-FRAMEWORK-MIB [RFC3411], and
  ENTITY-MIB [RFC6933].

4.  Definitions

 BATTERY-MIB DEFINITIONS ::= BEGIN

 IMPORTS
     MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE,
     mib-2, Integer32, Unsigned32
         FROM SNMPv2-SMI                                -- RFC 2578
     DateAndTime
         FROM SNMPv2-TC                                 -- RFC 2579
     MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
         FROM SNMPv2-CONF                               -- RFC 2580
     SnmpAdminString
         FROM SNMP-FRAMEWORK-MIB                        -- RFC 3411
     entPhysicalIndex
         FROM ENTITY-MIB;                               -- RFC 6933




Quittek, et al.              Standards Track                   [Page 11]

RFC 7577                       Battery MIB                     July 2015


 batteryMIB MODULE-IDENTITY
     LAST-UPDATED "201506150000Z"         -- 15 June 2015
     ORGANIZATION "IETF EMAN Working Group"
     CONTACT-INFO
         "General Discussion: [email protected]
         To Subscribe: <http://www.ietf.org/mailman/listinfo/eman>
         Archive: <http://www.ietf.org/mail-archive/web/eman>

         Editor:
           Juergen Quittek
           NEC Europe, Ltd.
           NEC Laboratories Europe
           Kurfuersten-Anlage 36
           69115 Heidelberg
           Germany
           Tel: +49 6221 4342-115
           Email: [email protected]"

     DESCRIPTION
         "This MIB module defines a set of objects for monitoring
         batteries of networked devices and of their components.

         Copyright (c) 2015 IETF Trust and the persons identified as
         authors of the code.  All rights reserved.

         Redistribution and use in source and binary forms, with or
         without modification, is permitted pursuant to, and subject
         to the license terms contained in, the Simplified BSD License
         set forth in Section 4.c of the IETF Trust's Legal Provisions
         Relating to IETF Documents
         (http://trustee.ietf.org/license-info).

         This version of this MIB module is part of RFC 7577; see
         the RFC itself for full legal notices."
 --  Revision history

     REVISION "201506150000Z"         -- 15 June 2015
     DESCRIPTION
         "Initial version published as RFC 7577."

     ::= { mib-2 233 }










Quittek, et al.              Standards Track                   [Page 12]

RFC 7577                       Battery MIB                     July 2015


 --******************************************************************
 -- Top-Level Structure of the MIB Module
 --******************************************************************

 batteryNotifications OBJECT IDENTIFIER ::= { batteryMIB 0 }
 batteryObjects       OBJECT IDENTIFIER ::= { batteryMIB 1 }
 batteryConformance   OBJECT IDENTIFIER ::= { batteryMIB 2 }

 --==================================================================
 -- 1.  Object Definitions
 --==================================================================

 --------------------------------------------------------------------
 -- 1.1.  Battery Table
 --------------------------------------------------------------------
 batteryTable  OBJECT-TYPE
     SYNTAX      SEQUENCE OF BatteryEntry
     MAX-ACCESS  not-accessible
     STATUS      current
     DESCRIPTION
         "This table provides information on batteries.  It contains
         one conceptual row per battery in a managed entity.

         Batteries are indexed by the entPhysicalIndex of the
         entPhysicalTable defined in the ENTITY-MIB (RFC 6933).

         For implementations of the BATTERY-MIB, an implementation of
         the ENTITY-MIB complying with the entity4CRCompliance
         MODULE-COMPLIANCE statement of the ENTITY-MIB is required.

         If batteries are replaced, and the replacing battery uses
         the same physical connector as the replaced battery, then
         the replacing battery SHOULD be indexed with the same value
         of object entPhysicalIndex as the replaced battery."
     ::= { batteryObjects 1 }

 batteryEntry OBJECT-TYPE
     SYNTAX      BatteryEntry
     MAX-ACCESS  not-accessible
     STATUS      current
     DESCRIPTION
         "An entry providing information on a battery."
     INDEX  { entPhysicalIndex }
     ::= { batteryTable 1 }







Quittek, et al.              Standards Track                   [Page 13]

RFC 7577                       Battery MIB                     July 2015


 BatteryEntry ::=
     SEQUENCE {
        batteryIdentifier               SnmpAdminString,
        batteryFirmwareVersion          SnmpAdminString,
        batteryType                     INTEGER,
        batteryTechnology               Unsigned32,
        batteryDesignVoltage            Unsigned32,
        batteryNumberOfCells            Unsigned32,
        batteryDesignCapacity           Unsigned32,
        batteryMaxChargingCurrent       Unsigned32,
        batteryTrickleChargingCurrent   Unsigned32,
        batteryActualCapacity           Unsigned32,
        batteryChargingCycleCount       Unsigned32,
        batteryLastChargingCycleTime    DateAndTime,
        batteryChargingOperState        INTEGER,
        batteryChargingAdminState       INTEGER,
        batteryActualCharge             Unsigned32,
        batteryActualVoltage            Unsigned32,
        batteryActualCurrent            Integer32,
        batteryTemperature              Integer32,
        batteryAlarmLowCharge           Unsigned32,
        batteryAlarmLowVoltage          Unsigned32,
        batteryAlarmLowCapacity         Unsigned32,
        batteryAlarmHighCycleCount      Unsigned32,
        batteryAlarmHighTemperature     Integer32,
        batteryAlarmLowTemperature      Integer32,
        batteryCellIdentifier           SnmpAdminString
     }

 batteryIdentifier OBJECT-TYPE
     SYNTAX      SnmpAdminString
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
         "This object contains an identifier for the battery.

         Many manufacturers deliver not only simple batteries but
         battery packages including additional hardware and firmware.
         Typically, these modules include an identifier that can be
         retrieved by a device in which a battery has been installed.
         The identifier is useful when batteries are removed and
         reinstalled in the same or other devices.  Then, the device
         or the network management system can trace batteries and
         achieve continuity of battery monitoring.

         If the battery is identified by more than one value,
         for example, by a model number and a serial number,
         then the value of this object is a concatenation of these



Quittek, et al.              Standards Track                   [Page 14]

RFC 7577                       Battery MIB                     July 2015


         values, separated by the colon symbol ':'.  The values
         should be ordered so that a more significant value comes
         before a less significant one.  In the example above, the
         (more significant) model number would be first, and the serial
         number would follow: '<model number>:<serial number>'.

         If the battery identifier cannot be represented using the
         ISO/IEC IS 10646-1 character set, then a hexadecimal
         encoding of a binary representation of the entire battery
         identifier must be used.

         The value of this object must be an empty string if there
         is no battery identifier or if the battery identifier is
         unknown."
     ::= { batteryEntry 1 }

 batteryFirmwareVersion OBJECT-TYPE
     SYNTAX      SnmpAdminString
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
         "This object indicates the version number of the firmware
         that is included in a battery module.

         Many manufacturers deliver not pure batteries but battery
         packages including additional hardware and firmware.

         Since the behavior of the battery may change with the
         firmware, it may be useful to retrieve the firmware version
         number.

         The value of this object must be an empty string if there
         is no firmware or if the version number of the firmware is
         unknown."
     ::= { batteryEntry 2 }

 batteryType OBJECT-TYPE
     SYNTAX      INTEGER {
                     unknown(1),
                     other(2),
                     primary(3),
                     rechargeable(4),
                     capacitor(5)
                 }
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
         "This object indicates the type of battery.



Quittek, et al.              Standards Track                   [Page 15]

RFC 7577                       Battery MIB                     July 2015


         It distinguishes between primary (not rechargeable)
         batteries, rechargeable (secondary) batteries, and
         capacitors.  Capacitors are not really batteries but
         are often used in the same way as a battery.

         The value other(2) can be used if the battery type is known
         but is none of the ones above.  Value unknown(1) is to be used
         if the type of battery cannot be determined."

     ::= { batteryEntry 3 }

 batteryTechnology OBJECT-TYPE
     SYNTAX      Unsigned32
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
         "This object indicates the technology used by the battery.
         Numbers identifying battery technologies are registered at
         IANA.  A current list of assignments can be found at
         <http://www.iana.org/assignments/battery-technologies>.

         Value unknown(1) MUST be used if the technology of the
         battery cannot be determined.

         Value other(2) can be used if the battery technology is known
         but is not one of the types already registered at IANA."
     ::= { batteryEntry 4 }

 batteryDesignVoltage OBJECT-TYPE
     SYNTAX      Unsigned32
     UNITS       "millivolt"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
         "This object provides the design (or nominal) voltage of the
         battery in units of millivolt (mV).

         Note that the design voltage is a constant value and
         typically different from the actual voltage of the battery.

         A value of 0 indicates that the design voltage is unknown."
     ::= { batteryEntry 5 }

 batteryNumberOfCells OBJECT-TYPE
     SYNTAX      Unsigned32
     MAX-ACCESS  read-only
     STATUS      current




Quittek, et al.              Standards Track                   [Page 16]

RFC 7577                       Battery MIB                     July 2015


     DESCRIPTION
         "This object indicates the number of cells contained in the
         battery.

         A value of 0 indicates that the number of cells is unknown."
     ::= { batteryEntry 6 }

 batteryDesignCapacity OBJECT-TYPE
     SYNTAX      Unsigned32
     UNITS       "milliampere hours"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
         "This object provides the design (or nominal) capacity of
         the battery in units of milliampere hours (mAh).

         Note that the design capacity is a constant value and
         typically different from the actual capacity of the battery.
         Usually, this is a value provided by the manufacturer of the
         battery.

         A value of 0 indicates that the design capacity is
         unknown."
     ::= { batteryEntry 7 }

 batteryMaxChargingCurrent OBJECT-TYPE
     SYNTAX      Unsigned32
     UNITS       "milliampere"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
         "This object provides the maximum current to be used for
         charging the battery in units of milliampere (mA).

         Note that the maximum charging current may not lead to
         optimal charge of the battery and that some batteries can
         only be charged with the maximum current for a limited
         amount of time.

         A value of 0 indicates that the maximum charging current is
         unknown."
     ::= { batteryEntry 8 }

 batteryTrickleChargingCurrent OBJECT-TYPE
     SYNTAX      Unsigned32
     UNITS       "milliampere"
     MAX-ACCESS  read-only
     STATUS      current



Quittek, et al.              Standards Track                   [Page 17]

RFC 7577                       Battery MIB                     July 2015


     DESCRIPTION
         "This object provides the recommended average current
         to be used for trickle charging the battery in units of
         mA.

         Typically, this is a value recommended by the manufacturer
         of the battery or by the manufacturer of the charging
         circuit.

         A value of 0 indicates that the recommended trickle charging
         current is unknown."
     ::= { batteryEntry 9 }

 batteryActualCapacity OBJECT-TYPE
     SYNTAX      Unsigned32
     UNITS       "milliampere hours"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
         "This object provides the actual capacity of the
         battery in units of mAh.

         Typically, the actual capacity of a battery decreases
         with time and with usage of the battery.  It is usually
         lower than the design capacity.

         Note that the actual capacity needs to be measured and is
         typically an estimate based on observed discharging and
         charging cycles of the battery.

         A value of 'ffffffff'H indicates that the actual capacity
         cannot be determined."
     ::= { batteryEntry 10 }

 batteryChargingCycleCount OBJECT-TYPE
     SYNTAX      Unsigned32
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
         "This object indicates the number of completed charging
         cycles that the battery underwent.  In line with the
         Smart Battery Data Specification Revision 1.1, a charging
         cycle is defined as the process of discharging the battery
         by a total amount equal to the battery design capacity as
         given by object batteryDesignCapacity.  A charging cycle
         may include several steps of charging and discharging the
         battery until the discharging amount given by
         batteryDesignCapacity has been reached.  As soon as a



Quittek, et al.              Standards Track                   [Page 18]

RFC 7577                       Battery MIB                     July 2015


         charging cycle has been completed, the next one starts
         immediately, independent of the battery's current charge at
         the end of the cycle.

         For batteries of type primary(3), the value of this object is
         always 0.

         A value of 'ffffffff'H indicates that the number of charging
         cycles cannot be determined."
     ::= { batteryEntry 11 }

 batteryLastChargingCycleTime OBJECT-TYPE
     SYNTAX      DateAndTime
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
         "The date and time of the last charging cycle.  The value
         '0000000000000000'H is returned if the battery has not been
         charged yet or if the last charging time cannot be
         determined.

         For batteries of type primary(1), the value of this object is
         always '0000000000000000'H."
     ::= { batteryEntry 12 }

 batteryChargingOperState OBJECT-TYPE
     SYNTAX      INTEGER {
                     unknown(1),
                     charging(2),
                     maintainingCharge(3),
                     noCharging(4),
                     discharging(5)
                 }
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
         "This object indicates the current charging state of the
         battery.

         Value unknown(1) indicates that the charging state of the
         battery cannot be determined.

         Value charging(2) indicates that the battery is being
         charged in a way such that the charge of the battery
         increases.

         Value maintainingCharge(3) indicates that the battery is
         being charged with a low-average current that compensates



Quittek, et al.              Standards Track                   [Page 19]

RFC 7577                       Battery MIB                     July 2015


         self-discharging.  This includes trickle charging, float
         charging, and other methods for maintaining the current
         charge of a battery.  In typical implementations of charging
         controllers, state maintainingCharge(3) is only applied
         if the battery is fully charged or almost fully charged.

         Value noCharging(4) indicates that the battery is not being
         charged or discharged by electric current between the
         battery and electric circuits external to the battery.
         Note that the battery may still be subject to
         self-discharging.

         Value discharging(5) indicates that the battery is either
         used as the power source for electric circuits external to
         the battery or discharged intentionally by the
         charging controller, e.g., for the purpose of battery
         maintenance.  In any case, the charge of the battery
         decreases."
     ::= { batteryEntry 13 }

 batteryChargingAdminState OBJECT-TYPE
     SYNTAX      INTEGER {
                     notSet(1),
                     charge(2),
                     doNotCharge(3),
                     discharge(4)
                 }
     MAX-ACCESS  read-write
     STATUS      current
     DESCRIPTION
         "The value of this object indicates the desired
         charging state of the battery.  The real state is
         indicated by object batteryChargingOperState.  See the
         definition of object batteryChargingOperState for a
         description of the values.

         When this object is initialized by an implementation of the
         BATTERY-MIB module, its value is set to notSet(1).  In this
         case, the charging controller is free to choose which
         operational state is suitable.

         When the batteryChargingAdminState object is set, then the
         BATTERY-MIB implementation must try to set the battery
         to the indicated state.  The result will be indicated by
         object batteryChargingOperState.

         Setting object batteryChargingAdminState to value notSet(1)
         is a request to the charging controller to operate



Quittek, et al.              Standards Track                   [Page 20]

RFC 7577                       Battery MIB                     July 2015


         autonomously and choose the operational state that is
         suitable.

         Setting object batteryChargingAdminState to value charge(2)
         is a request to enter the operational state charging(2) until
         the battery is fully charged.  When the battery is fully
         charged, or if the battery was already fully charged or
         almost fully charged at the time of the request, the
         operational state will change to maintainingCharge(3) if the
         charging controller and the battery support the functionality
         of maintaining the charge, or it will change to noCharging(4)
         otherwise.

         Setting object batteryChargingAdminState to value
         doNotCharge(3) is a request for entering operational
         state noCharging(4).

         Setting object batteryChargingAdminState to value
         discharge(4) is a request for entering operational
         state discharging(5).  Discharging can be accomplished
         by ordinary use, applying a dedicated load, or any other
         means.  An example for applying this state is battery
         maintenance.  If the battery is empty or almost empty, the
         operational state will change to noCharging(4).
         The charging controller will decide which charge condition
         will be considered empty dependent on the battery
         technology used.  This is done to avoid damage on the
         battery due to deep discharge.

         Due to operational conditions and limitations of the
         implementation of the BATTERY-MIB module, changing the
         battery status according to a set value of object
         batteryChargingAdminState may not be possible.
         Setting the value of object batteryChargingAdminState
         may result in not changing the state of the battery
         to this value or even in setting the charging state
         to another value than the requested one.  For example,
         the charging controller might at any time decide to
         enter state discharging(5), if there is an operational need
         to use the battery for supplying power."
     ::= { batteryEntry 14 }

 batteryActualCharge OBJECT-TYPE
     SYNTAX      Unsigned32
     UNITS       "milliampere hours"
     MAX-ACCESS  read-only
     STATUS      current




Quittek, et al.              Standards Track                   [Page 21]

RFC 7577                       Battery MIB                     July 2015


     DESCRIPTION
         "This object provides the actual charge of the battery
         in units of mAh.

         Note that the actual charge needs to be measured and is
         typically an estimate based on observed discharging and
         charging cycles of the battery.

         A value of 'ffffffff'H indicates that the actual charge
         cannot be determined."
     ::= { batteryEntry 15 }

 batteryActualVoltage OBJECT-TYPE
     SYNTAX      Unsigned32
     UNITS       "millivolt"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
         "This object provides the actual voltage of the battery
         in units of mV.

         A value of 'ffffffff'H indicates that the actual voltage
         cannot be determined."
     ::= { batteryEntry 16 }

 batteryActualCurrent OBJECT-TYPE
     SYNTAX      Integer32
     UNITS       "milliampere"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
         "This object provides the actual charging or discharging
         current of the battery in units of mA.
         The charging current is represented by positive values,
         and the discharging current is represented by negative values.

         A value of '7fffffff'H indicates that the actual current
         cannot be determined."
     ::= { batteryEntry 17 }

 batteryTemperature OBJECT-TYPE
     SYNTAX      Integer32
     UNITS       "deci-degrees Celsius"
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
         "The ambient temperature at or within close proximity
         of the battery.



Quittek, et al.              Standards Track                   [Page 22]

RFC 7577                       Battery MIB                     July 2015


         A value of '7fffffff'H indicates that the temperature
         cannot be determined."
     ::= { batteryEntry 18 }

 batteryAlarmLowCharge OBJECT-TYPE
     SYNTAX      Unsigned32
     UNITS       "milliampere hours"
     MAX-ACCESS  read-write
     STATUS      current
     DESCRIPTION
         "This object provides the lower-threshold value for object
         batteryActualCharge.  If the value of object
         batteryActualCharge falls below this threshold,
         a low-battery alarm will be raised.  The alarm procedure may
         include generating a batteryLowNotification.

         This object should be set to a value such that when the
         batteryLowNotification is generated, the battery is still
         sufficiently charged to keep the device(s) that it powers
         operational for a time long enough to take actions before
         the powered device(s) enters a 'sleep' or 'off' state.

         A value of 0 indicates that no alarm will be raised for any
         value of object batteryActualVoltage."
     ::= { batteryEntry 19 }

   batteryAlarmLowVoltage OBJECT-TYPE
       SYNTAX      Unsigned32
       UNITS       "millivolt"
       MAX-ACCESS  read-write
       STATUS      current
       DESCRIPTION
           "This object provides the lower-threshold value for object
           batteryActualVoltage.  If the value of object
           batteryActualVoltage falls below this threshold,
           a low-battery alarm will be raised.  The alarm procedure may
           include generating a batteryLowNotification.

           This object should be set to a value such that when the
           batteryLowNotification is generated, the battery is still
           sufficiently charged to keep the device(s) that it powers
           operational for a time long enough to take actions before
           the powered device(s) enters a 'sleep' or 'off' state.

           A value of 0 indicates that no alarm will be raised for any
           value of object batteryActualVoltage."
       ::= { batteryEntry 20 }




Quittek, et al.              Standards Track                   [Page 23]

RFC 7577                       Battery MIB                     July 2015


 batteryAlarmLowCapacity OBJECT-TYPE
     SYNTAX      Unsigned32
     UNITS       "milliampere hours"
     MAX-ACCESS  read-write
     STATUS      current
     DESCRIPTION
         "This object provides the lower-threshold value for object
         batteryActualCapacity.  If the value of object
         batteryActualCapacity falls below this threshold,
         a battery aging alarm will be raised.  The alarm procedure
         may include generating a batteryAgingNotification.

         A value of 0 indicates that no alarm will be raised for any
         value of object batteryActualCapacity."
     ::= { batteryEntry 21 }

 batteryAlarmHighCycleCount OBJECT-TYPE
     SYNTAX      Unsigned32
     MAX-ACCESS  read-write
     STATUS      current
     DESCRIPTION
         "This object provides the upper-threshold value for object
         batteryChargingCycleCount.  If the value of object
         batteryChargingCycleCount rises above this threshold,
         a battery aging alarm will be raised.  The alarm procedure
         may include generating a batteryAgingNotification.

         A value of 0 indicates that no alarm will be raised for any
         value of object batteryChargingCycleCount."
     ::= { batteryEntry 22 }

 batteryAlarmHighTemperature OBJECT-TYPE
     SYNTAX      Integer32
     UNITS       "deci-degrees Celsius"
     MAX-ACCESS  read-write
     STATUS      current
     DESCRIPTION
         "This object provides the upper-threshold value for object
         batteryTemperature.  If the value of object
         batteryTemperature rises above this threshold, a battery
         high temperature alarm will be raised.  The alarm procedure
         may include generating a batteryTemperatureNotification.

         A value of '7fffffff'H indicates that no alarm will be
         raised for any value of object batteryTemperature."
     ::= { batteryEntry 23 }





Quittek, et al.              Standards Track                   [Page 24]

RFC 7577                       Battery MIB                     July 2015


 batteryAlarmLowTemperature OBJECT-TYPE
     SYNTAX      Integer32
     UNITS       "deci-degrees Celsius"
     MAX-ACCESS  read-write
     STATUS      current
     DESCRIPTION
         "This object provides the lower-threshold value for object
         batteryTemperature.  If the value of object
         batteryTemperature falls below this threshold, a battery
         low temperature alarm will be raised.  The alarm procedure
         may include generating a batteryTemperatureNotification.

         A value of '7fffffff'H indicates that no alarm will be
         raised for any value of object batteryTemperature."
     ::= { batteryEntry 24 }

 batteryCellIdentifier OBJECT-TYPE
     SYNTAX      SnmpAdminString
     MAX-ACCESS  read-only
     STATUS      current
     DESCRIPTION
         "The value of this object identifies one or more cells of a
         battery.  The format of the cell identifier may vary between
         different implementations.  It should uniquely identify one
         or more cells of the indexed battery.

         This object can be used for batteries, such as lithium
         polymer batteries for which battery controllers monitor
         cells individually.

         This object is used by notifications of types
         batteryLowNotification, batteryTemperatureNotification,
         batteryCriticalNotification, and batteryAgingNotification.
         These notifications can use the value of this object to
         indicate the event that triggered the generation of the
         notification in more detail by specifying a single cell
         or a set of cells within the battery that is specifically
         addressed by the notification.

         An example use case for this object is a single cell in a
         battery that exceeds the temperature indicated by object
         batteryAlarmHighTemperature.  In such a case, a
         batteryTemperatureNotification can be generated that not
         only indicates the battery for which the temperature limit
         has been exceeded but also the particular cell.

         The initial value of this object is the empty string.  The
         value of this object is set each time a



Quittek, et al.              Standards Track                   [Page 25]

RFC 7577                       Battery MIB                     July 2015


         batteryLowNotification, batteryTemperatureNotification,
         batteryCriticalNotification, or batteryAgingNotification
         is generated.

         When a notification is generated that does not indicate a
         specific cell or set of cells, the value of this object is
         set to the empty string."
     ::= { batteryEntry 25 }

 --==================================================================
 -- 2.  Notifications
 --==================================================================

 batteryChargingStateNotification NOTIFICATION-TYPE
     OBJECTS     {
         batteryChargingOperState
     }
     STATUS      current
     DESCRIPTION
         "This notification can be generated when a charging state
         of the battery (indicated by the value of object
         batteryChargingOperState) is triggered by an event other
         than a write action to object batteryChargingAdminState.
         Such an event may, for example, be triggered by a local
         battery controller."
     ::= { batteryNotifications 1 }

 batteryLowNotification NOTIFICATION-TYPE
     OBJECTS     {
         batteryActualCharge,
         batteryActualVoltage,
         batteryCellIdentifier
     }
     STATUS      current
     DESCRIPTION
         "This notification can be generated when the current charge
         (batteryActualCharge) or the current voltage
         (batteryActualVoltage) of the battery falls below a
         threshold defined by object batteryAlarmLowCharge or object
         batteryAlarmLowVoltage, respectively.

         Note that, typically, this notification is generated in a
         state where the battery is still sufficiently charged to keep
         the device(s) that it powers operational for some time.
         If the charging state of the battery has become critical,
         i.e., the device(s) powered by the battery must go to a
         'sleep' or 'off' state, then the batteryCriticalNotification
         should be used instead.



Quittek, et al.              Standards Track                   [Page 26]

RFC 7577                       Battery MIB                     July 2015


         If the low charge or voltage has been detected for a single
         cell or a set of cells of the battery and not for the entire
         battery, then object batteryCellIdentifier should be set to
         a value that identifies the cell or set of cells.
         Otherwise, the value of object batteryCellIdentifier should
         be set to the empty string when this notification is
         generated.

         The notification should not be sent again for the same
         battery or cell before either (a) the current voltage or
         the current charge, respectively, has become higher than the
         corresponding threshold through charging or (b) an indication
         of a maintenance action has been detected, such as a battery
         disconnection event or a reinitialization of the battery
         monitoring system.

         This notification should not be sent when the battery is in
         a charging mode, i.e., the value of object
         batteryChargingOperState is charging(2)."
     ::= { batteryNotifications 2 }

 batteryCriticalNotification NOTIFICATION-TYPE
     OBJECTS     {
         batteryActualCharge,
         batteryActualVoltage,
         batteryCellIdentifier
     }
     STATUS      current
     DESCRIPTION
         "This notification can be generated when the current charge
         of the battery falls so low that it cannot provide a
         sufficient power supply function for regular operation
         of the powered device(s).  The battery needs to be charged
         before it can be used for regular power supply again.  The
         battery may still provide sufficient power for a 'sleep'
         mode of a powered device(s) or for a transition into an 'off'
         mode.

         If the critical state is caused by a single cell or a set of
         cells of the battery, then object batteryCellIdentifier
         should be set to a value that identifies the cell or set of
         cells.  Otherwise, the value of object batteryCellIdentifier
         should be set to the empty string when this notification is
         generated.

         The notification should not be sent again for the same
         battery before either the battery charge has increased
         through charging to a non-critical value or an indication



Quittek, et al.              Standards Track                   [Page 27]

RFC 7577                       Battery MIB                     July 2015


         of a maintenance action has been detected, such as a battery
         disconnection event or a reinitialization of the battery
         monitoring system.

         This notification should not be sent when the battery is in
         a charging mode, i.e., the value of object
         batteryChargingOperState is charging(2)."
     ::= { batteryNotifications 3 }

 batteryTemperatureNotification NOTIFICATION-TYPE
     OBJECTS     {
         batteryTemperature,
         batteryCellIdentifier
     }
     STATUS      current
     DESCRIPTION
         "This notification can be generated when the measured
         temperature (batteryTemperature) rises above the threshold
         defined by object batteryAlarmHighTemperature or falls
         below the threshold defined by object
         batteryAlarmLowTemperature.

         If the low or high temperature has been detected for a
         single cell or a set of cells of the battery and not for the
         entire battery, then object batteryCellIdentifier should be
         set to a value that identifies the cell or set of cells.
         Otherwise, the value of object batteryCellIdentifier should
         be set to the empty string when this notification is
         generated.

         It may occur that the temperature alternates between values
         slightly below and slightly above a threshold.  For limiting
         the notification rate in such a case, this notification
         should not be sent again for the same battery or cell,
         respectively, within a time interval of 10 minutes.

         An exception to the rate limitations occurs immediately
         after the reinitialization of the battery monitoring system.
         At this point in time, if the battery temperature is above
         the threshold defined by object batteryAlarmHighTemperature
         or below the threshold defined by object
         batteryAlarmLowTemperature, respectively, then this
         notification should be sent, independent of the time at
         which previous notifications for the same battery or cell,
         respectively, had been sent."
     ::= { batteryNotifications 4 }





Quittek, et al.              Standards Track                   [Page 28]

RFC 7577                       Battery MIB                     July 2015


 batteryAgingNotification NOTIFICATION-TYPE
     OBJECTS     {
         batteryActualCapacity,
         batteryChargingCycleCount,
         batteryCellIdentifier
     }
     STATUS      current
     DESCRIPTION
         "This notification can be generated when the actual
         capacity (batteryActualCapacity) falls below a threshold
         defined by object batteryAlarmLowCapacity
         or when the charging cycle count of the battery
         (batteryChargingCycleCount) exceeds the threshold defined
         by object batteryAlarmHighCycleCount.

         If the aging has been detected for a single cell or a set
         of cells of the battery and not for the entire battery, then
         object batteryCellIdentifier should be set to a value that
         identifies the cell or set of cells.  Otherwise, the value
         of object batteryCellIdentifier should be set to the empty
         string when this notification is generated.

         This notification should not be sent again for the same
         battery or cell, respectively, before an indication of a
         maintenance action has been detected, such as a battery
         disconnection event or a reinitialization of the battery
         monitoring system."
     ::= { batteryNotifications 5 }

 batteryConnectedNotification NOTIFICATION-TYPE
     OBJECTS     {
         batteryIdentifier
     }
     STATUS      current
     DESCRIPTION
         "This notification can be generated when it has been
         detected that a battery has been connected.  The battery
         can be identified by the value of object batteryIdentifier
         as well as by the value of index entPhysicalIndex that is
         contained in the OID of object batteryIdentifier."
     ::= { batteryNotifications 6 }

 batteryDisconnectedNotification NOTIFICATION-TYPE
     STATUS      current
     DESCRIPTION
         "This notification can be generated when it has been
         detected that one or more batteries have been disconnected."
     ::= { batteryNotifications 7 }



Quittek, et al.              Standards Track                   [Page 29]

RFC 7577                       Battery MIB                     July 2015


 --==================================================================
 -- 3.  Conformance Information
 --==================================================================

 batteryCompliances OBJECT IDENTIFIER ::= { batteryConformance 1 }
 batteryGroups      OBJECT IDENTIFIER ::= { batteryConformance 2 }

 --------------------------------------------------------------------
 -- 3.1.  Compliance Statements
 --------------------------------------------------------------------

 batteryCompliance MODULE-COMPLIANCE
     STATUS      current
     DESCRIPTION
         "The compliance statement for implementations of the
         BATTERY-MIB module.

         A compliant implementation MUST implement the objects
         defined in the mandatory groups batteryDescriptionGroup
         and batteryStatusGroup.

         Note that this compliance statement requires
         compliance with the entity4CRCompliance
         MODULE-COMPLIANCE statement of the
         ENTITY-MIB (RFC 6933)."
     MODULE  -- this module
         MANDATORY-GROUPS {
             batteryDescriptionGroup,
             batteryStatusGroup
         }

         GROUP   batteryAlarmThresholdsGroup
         DESCRIPTION
            "A compliant implementation does not have to implement
             the batteryAlarmThresholdsGroup."

         GROUP   batteryNotificationsGroup
         DESCRIPTION
            "A compliant implementation does not have to implement
             the batteryNotificationsGroup."

         GROUP   batteryPerCellNotificationsGroup
         DESCRIPTION
            "A compliant implementation does not have to implement
             the batteryPerCellNotificationsGroup."

         GROUP   batteryAdminGroup
         DESCRIPTION



Quittek, et al.              Standards Track                   [Page 30]

RFC 7577                       Battery MIB                     July 2015


            "A compliant implementation does not have to implement
             the batteryAdminGroup."

         OBJECT batteryAlarmLowCharge
         MIN-ACCESS  read-only
         DESCRIPTION
             "A compliant implementation is not required
             to support set operations on this object."

         OBJECT batteryAlarmLowVoltage
         MIN-ACCESS  read-only
         DESCRIPTION
             "A compliant implementation is not required
             to support set operations on this object."

         OBJECT batteryAlarmLowCapacity
         MIN-ACCESS  read-only
         DESCRIPTION
             "A compliant implementation is not required
             to support set operations on this object."

         OBJECT batteryAlarmHighCycleCount
         MIN-ACCESS  read-only
         DESCRIPTION
             "A compliant implementation is not required
             to support set operations on this object."

         OBJECT batteryAlarmHighTemperature
         MIN-ACCESS  read-only
         DESCRIPTION
             "A compliant implementation is not required
             to support set operations on this object."

         OBJECT batteryAlarmLowTemperature
         MIN-ACCESS  read-only
         DESCRIPTION
             "A compliant implementation is not required
             to support set operations on this object."

     ::= { batteryCompliances 1 }

 --------------------------------------------------------------------
 -- 3.2.  MIB Grouping
 --------------------------------------------------------------------

 batteryDescriptionGroup OBJECT-GROUP
     OBJECTS {
        batteryIdentifier,



Quittek, et al.              Standards Track                   [Page 31]

RFC 7577                       Battery MIB                     July 2015


        batteryFirmwareVersion,
        batteryType,
        batteryTechnology,
        batteryDesignVoltage,
        batteryNumberOfCells,
        batteryDesignCapacity,
        batteryMaxChargingCurrent,
        batteryTrickleChargingCurrent
     }
     STATUS      current
     DESCRIPTION
        "A compliant implementation MUST implement the objects
        contained in this group."
     ::= { batteryGroups 1 }

 batteryStatusGroup OBJECT-GROUP
     OBJECTS {
        batteryActualCapacity,
        batteryChargingCycleCount,
        batteryLastChargingCycleTime,
        batteryChargingOperState,
        batteryActualCharge,
        batteryActualVoltage,
        batteryActualCurrent,
        batteryTemperature
     }
     STATUS      current
     DESCRIPTION
        "A compliant implementation MUST implement the objects
        contained in this group."
     ::= { batteryGroups 2 }

 batteryAdminGroup OBJECT-GROUP
     OBJECTS {
        batteryChargingAdminState
     }
     STATUS      current
     DESCRIPTION
        "A compliant implementation does not have to implement the
        object contained in this group."
     ::= { batteryGroups 3 }

 batteryAlarmThresholdsGroup OBJECT-GROUP
     OBJECTS {
        batteryAlarmLowCharge,
        batteryAlarmLowVoltage,
        batteryAlarmLowCapacity,
        batteryAlarmHighCycleCount,



Quittek, et al.              Standards Track                   [Page 32]

RFC 7577                       Battery MIB                     July 2015


        batteryAlarmHighTemperature,
        batteryAlarmLowTemperature
     }
     STATUS      current
     DESCRIPTION
        "A compliant implementation does not have to implement the
        objects contained in this group."
     ::= { batteryGroups 4 }

 batteryNotificationsGroup NOTIFICATION-GROUP
     NOTIFICATIONS {
        batteryChargingStateNotification,
        batteryLowNotification,
        batteryCriticalNotification,
        batteryAgingNotification,
        batteryTemperatureNotification,
        batteryConnectedNotification,
        batteryDisconnectedNotification
     }
     STATUS      current
     DESCRIPTION
         "A compliant implementation does not have to implement the
         notifications contained in this group."
     ::= { batteryGroups 5 }

 batteryPerCellNotificationsGroup OBJECT-GROUP
     OBJECTS {
        batteryCellIdentifier
     }
     STATUS      current
     DESCRIPTION
         "A compliant implementation does not have to implement the
         object contained in this group."
     ::= { batteryGroups 6 }
 END

5.  Security Considerations

  There are a number of management objects defined in this MIB module
  with a MAX-ACCESS clause of read-write.  Such objects may be
  considered sensitive or vulnerable in some network environments.  The
  support for SET operations in a non-secure environment without proper
  protection opens devices to attack.  These are the tables and objects
  and their sensitivity/vulnerability:

  o  batteryChargingAdminState:
     Setting the battery charging state can be beneficial for an
     operator for various reasons such as charging batteries when the



Quittek, et al.              Standards Track                   [Page 33]

RFC 7577                       Battery MIB                     July 2015


     price of electricity is low.  However, setting the charging state
     can be used by an attacker to discharge batteries of devices and
     thereby switching these devices off if they are powered solely by
     batteries.  In particular, if the batteryAlarmLowCharge and
     batteryAlarmLowVoltage can also be set, this attack will go
     unnoticed (i.e., no notifications are sent).

  o  batteryAlarmLowCharge and batteryAlarmLowVoltage:
     These objects set the threshold for an alarm to be raised when the
     battery charge or voltage falls below the corresponding one of
     them.  An attacker setting one of these alarm values can switch
     off the alarm by setting it to the 'off' value 0, or it can modify
     the alarm behavior by setting it to any other value.  The result
     may be loss of data if the battery runs empty without warning to a
     recipient expecting such a notification.

  o  batteryAlarmLowCapacity and batteryAlarmHighCycleCount:
     These objects set the threshold for an alarm to be raised when the
     battery becomes older and less performant than required for stable
     operation.  An attacker setting this alarm value can switch off
     the alarm by setting it to the 'off' value 0 or modify the alarm
     behavior by setting it to any other value.  This may lead to
     either a costly replacement of a working battery or use of
     batteries that are too old or too weak.  The consequence of the
     latter could be that, e.g., a battery cannot provide power long
     enough between two scheduled charging actions causing the powered
     device to shut down and potentially lose data.

  o  batteryAlarmHighTemperature and batteryAlarmLowTemperature:
     These objects set thresholds for an alarm to be raised when the
     battery rises above / falls below them.  An attacker setting one
     of these alarm values can switch off these alarms by setting them
     to the 'off' value '7fffffff'H, or it can modify the alarm
     behavior by setting them to any other value.  The result may be,
     e.g., an unnecessary shutdown of a device if
     batteryAlarmHighTemperature is set too low, there is damage to the
     device by temperatures that are too high if switched off or set to
     values that are too high, or there is damage to the battery when,
     e.g., it is being charged.  Batteries can also be damaged, e.g.,
     in an attempt to charge them at temperatures that are too low.

  Some of the readable objects in this MIB module (i.e., objects with a
  MAX-ACCESS other than not-accessible) may be considered sensitive or
  vulnerable in some network environments.  It is thus important to
  control even GET and/or NOTIFY access to these objects and possibly
  to even encrypt the values of these objects when sending them over
  the network via SNMP.  These are the tables and objects and their
  sensitivity/vulnerability:



Quittek, et al.              Standards Track                   [Page 34]

RFC 7577                       Battery MIB                     July 2015


  All potentially sensible or vulnerable objects of this MIB module are
  in the batteryTable.  In general, there are no serious operational
  vulnerabilities foreseen in case of an unauthorized read access to
  this table.  However, corporate confidentiality issues need to be
  considered.  The following information or parts of it might be a
  trade secret:

  o  the number of batteries installed in a managed node (batteryIndex)

  o  properties of these batteries (batteryActualCapacity and
     batteryChargingCycleCount)

  o  the time at which the next replacement cycle for batteries can be
     expected (batteryAlarmLowCapacity and batteryAlarmHighCycleCount)

  o  the types of batteries in use and their firmware versions
     (batteryIdentifier, batteryFirmwareVersion, batteryType, and
     batteryTechnology)

  For any battery-powered device whose use can be correlated to an
  individual or a small group of individuals, the following objects
  have the potential to reveal information about those individuals'
  activities or habits (e.g., if they are near a power outlet, if they
  have been using their devices heavily, etc.):

  o  batteryChargingCycleCount

  o  batteryLastChargingCycleTime

  o  batteryChargingOperState

  o  batteryActualCharge

  o  batteryActualVoltage

  o  batteryActualCurrent

  o  batteryTemperature

  o  batteryAlarmLowCharge

  o  batteryAlarmLowVoltage

  o  batteryAlarmLowCapacity

  o  batteryAlarmHighCycleCount

  o  batteryAlarmHighTemperature



Quittek, et al.              Standards Track                   [Page 35]

RFC 7577                       Battery MIB                     July 2015


  o  batteryAlarmLowTemperature

  Implementers of this specification should use appropriate privacy
  protections as discussed in Section 9 of "Requirements for Energy
  Management" [RFC6988].  Battery monitoring of devices used by
  individuals or in homes should only occur with proper authorization.

  SNMP versions prior to SNMPv3 did not include adequate security.
  Even if the network itself is secure (for example by using IPsec),
  there is no control as to who on the secure network is allowed to
  access and GET/SET (read/change/create/delete) the objects in this
  MIB module.

  Implementations SHOULD provide the security features described by the
  SNMPv3 framework (see [RFC3410]), and implementations claiming
  compliance to the SNMPv3 standard MUST include full support for
  authentication and privacy via the User-based Security Model (USM)
  [RFC3414] with the AES cipher algorithm [RFC3826].  Implementations
  MAY also provide support for the Transport Security Model (TSM)
  [RFC5591] in combination with a secure transport such as SSH
  [RFC5592] or TLS/DTLS [RFC6353].

  Further, deployment of SNMP versions prior to SNMPv3 is NOT
  RECOMMENDED.  Instead, it is RECOMMENDED to deploy SNMPv3 and to
  enable cryptographic security.  It is then a customer/operator
  responsibility to ensure that the SNMP entity giving access to an
  instance of this MIB module is properly configured to give access to
  the objects only to those principals (users) that have legitimate
  rights to indeed GET or SET (change/create/delete) them.

6.  IANA Considerations

6.1.  SMI Object Identifier Registration

  The Battery MIB module defined in this document uses the following
  IANA-assigned OBJECT IDENTIFIER value recorded in the SMI Numbers
  registry:

            Descriptor        OBJECT IDENTIFIER value
            ----------        -----------------------
            batteryMIB        { mib-2 233 }

6.2.  Battery Technology Registration

  Object batteryTechnology defined in Section 4 reports battery
  technologies.  Eighteen values for battery technologies have
  initially been defined.  They are listed in a table in Section 3.2.




Quittek, et al.              Standards Track                   [Page 36]

RFC 7577                       Battery MIB                     July 2015


  For ensuring extensibility of this list, IANA has created a registry
  for battery technologies at <http://www.iana.org/assignments/battery-
  technologies> and filled it with the initial list given in
  Section 3.2.

  New assignments of numbers for battery technologies will be
  administered by IANA through Expert Review [RFC5226].  Experts must
  check for sufficient relevance of a battery technology to be added
  according to the guidelines in Section 3.2.1.

7.  References

7.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC2578]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
             Schoenwaelder, Ed., "Structure of Management Information
             Version 2 (SMIv2)", STD 58, RFC 2578,
             DOI 10.17487/RFC2578, April 1999,
             <http://www.rfc-editor.org/info/rfc2578>.

  [RFC2579]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
             Schoenwaelder, Ed., "Textual Conventions for SMIv2",
             STD 58, RFC 2579, DOI 10.17487/RFC2579, April 1999,
             <http://www.rfc-editor.org/info/rfc2579>.

  [RFC2580]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
             Schoenwaelder, Ed., "Conformance Statements for SMIv2",
             STD 58, RFC 2580, DOI 10.17487/RFC2580, April 1999,
             <http://www.rfc-editor.org/info/rfc2580>.

  [RFC3411]  Harrington, D., Presuhn, R., and B. Wijnen, "An
             Architecture for Describing Simple Network Management
             Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
             DOI 10.17487/RFC3411, December 2002,
             <http://www.rfc-editor.org/info/rfc3411>.

  [RFC3414]  Blumenthal, U. and B. Wijnen, "User-based Security Model
             (USM) for version 3 of the Simple Network Management
             Protocol (SNMPv3)", STD 62, RFC 3414,
             DOI 10.17487/RFC3414, December 2002,
             <http://www.rfc-editor.org/info/rfc3414>.





Quittek, et al.              Standards Track                   [Page 37]

RFC 7577                       Battery MIB                     July 2015


  [RFC3826]  Blumenthal, U., Maino, F., and K. McCloghrie, "The
             Advanced Encryption Standard (AES) Cipher Algorithm in the
             SNMP User-based Security Model", RFC 3826,
             DOI 10.17487/RFC3826, June 2004,
             <http://www.rfc-editor.org/info/rfc3826>.

  [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 5226,
             DOI 10.17487/RFC5226, May 2008,
             <http://www.rfc-editor.org/info/rfc5226>.

  [RFC5591]  Harrington, D. and W. Hardaker, "Transport Security Model
             for the Simple Network Management Protocol (SNMP)",
             STD 78, RFC 5591, DOI 10.17487/RFC5591, June 2009,
             <http://www.rfc-editor.org/info/rfc5591>.

  [RFC5592]  Harrington, D., Salowey, J., and W. Hardaker, "Secure
             Shell Transport Model for the Simple Network Management
             Protocol (SNMP)", RFC 5592, DOI 10.17487/RFC5592, June
             2009, <http://www.rfc-editor.org/info/rfc5592>.

  [RFC6353]  Hardaker, W., "Transport Layer Security (TLS) Transport
             Model for the Simple Network Management Protocol (SNMP)",
             STD 78, RFC 6353, DOI 10.17487/RFC6353, July 2011,
             <http://www.rfc-editor.org/info/rfc6353>.

  [RFC6933]  Bierman, A., Romascanu, D., Quittek, J., and M.
             Chandramouli, "Entity MIB (Version 4)", RFC 6933,
             DOI 10.17487/RFC6933, May 2013,
             <http://www.rfc-editor.org/info/rfc6933>.

7.2.  Informative References

  [RFC1628]  Case, J., Ed., "UPS Management Information Base",
             RFC 1628, DOI 10.17487/RFC1628, May 1994,
             <http://www.rfc-editor.org/info/rfc1628>.

  [RFC3410]  Case, J., Mundy, R., Partain, D., and B. Stewart,
             "Introduction and Applicability Statements for Internet-
             Standard Management Framework", RFC 3410,
             DOI 10.17487/RFC3410, December 2002,
             <http://www.rfc-editor.org/info/rfc3410>.

  [RFC6988]  Quittek, J., Ed., Chandramouli, M., Winter, R., Dietz, T.,
             and B. Claise, "Requirements for Energy Management",
             RFC 6988, DOI 10.17487/RFC6988, September 2013,
             <http://www.rfc-editor.org/info/rfc6988>.




Quittek, et al.              Standards Track                   [Page 38]

RFC 7577                       Battery MIB                     July 2015


  [RFC7326]  Parello, J., Claise, B., Schoening, B., and J. Quittek,
             "Energy Management Framework", RFC 7326,
             DOI 10.17487/RFC7326, September 2014,
             <http://www.rfc-editor.org/info/rfc7326>.

  [RFC7460]  Chandramouli, M., Claise, B., Schoening, B., Quittek, J.,
             and T. Dietz, "Monitoring and Control MIB for Power and
             Energy", RFC 7460, DOI 10.17487/RFC7460, March 2015,
             <http://www.rfc-editor.org/info/rfc7460>.

  [SBS]      "Smart Battery Data Specification", Revision 1.1, December
             1998.







































Quittek, et al.              Standards Track                   [Page 39]

RFC 7577                       Battery MIB                     July 2015


Acknowledgements

  We would like to thank Steven Chew, Bill Mielke, and Alan Luchuk for
  their valuable input.

Authors' Addresses

  Juergen Quittek
  NEC Europe, Ltd.
  NEC Laboratories Europe
  Network Research Division
  Kurfuersten-Anlage 36
  Heidelberg  69115
  Germany

  Phone: +49 6221 4342-115
  Email: [email protected]


  Rolf Winter
  NEC Europe, Ltd.
  NEC Laboratories Europe
  Network Research Division
  Kurfuersten-Anlage 36
  Heidelberg  69115
  Germany

  Phone: +49 6221 4342-121
  Email: [email protected]


  Thomas Dietz
  NEC Europe, Ltd.
  NEC Laboratories Europe
  Network Research Division
  Kurfuersten-Anlage 36
  Heidelberg  69115
  Germany

  Phone: +49 6221 4342-128
  Email: [email protected]










Quittek, et al.              Standards Track                   [Page 40]