Independent Submission                                        D. Thakore
Request for Comments: 7562                                     CableLabs
Category: Informational                                        July 2015
ISSN: 2070-1721


          Transport Layer Security (TLS) Authorization Using
     Digital Transmission Content Protection (DTCP) Certificates

Abstract

  This document specifies the use of Digital Transmission Content
  Protection (DTCP) certificates as an authorization data type in the
  authorization extension for the Transport Layer Security (TLS)
  protocol.  This is in accordance with the guidelines for
  authorization extensions as specified in RFC 5878.  As with other TLS
  extensions, this authorization data can be included in the client and
  server hello messages to confirm that both parties support the
  desired authorization data types.  If supported by both the client
  and the server, DTCP certificates are exchanged in the supplemental
  data TLS handshake message as specified in RFC 4680.  This
  authorization data type extension is in support of devices containing
  DTCP certificates issued by the Digital Transmission Licensing
  Administrator (DTLA).

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This is a contribution to the RFC Series, independently of any other
  RFC stream.  The RFC Editor has chosen to publish this document at
  its discretion and makes no statement about its value for
  implementation or deployment.  Documents approved for publication by
  the RFC Editor are not a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7562.











Thakore                       Informational                     [Page 1]

RFC 7562                   TLS Auth Using DTCP                 July 2015


Copyright Notice

  Copyright (c) 2015 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.

Table of Contents

  1. Introduction ....................................................3
     1.1. Applicability Statement ....................................3
     1.2. Conventions ................................................4
  2. Overview ........................................................4
     2.1. Overview of DTCP Certificates ..............................4
     2.2. Overview of SupplementalData Handshake .....................5
     2.3. Overview of Authorization Extensions .......................5
     2.4. Overview of SupplementalData Usage for Authorization .......6
  3. DTCP Authorization Data Format ..................................6
     3.1. DTCP Authorization Type ....................................6
     3.2. DTCP Authorization Data ....................................6
     3.3. Usage Rules for Clients to Exchange DTCP
          Authorization Data .........................................7
     3.4. Usage Rules for Servers to Exchange DTCP
          Authorization Data .........................................8
     3.5. TLS Message Exchange with dtcp_authz_data ..................8
     3.6. Alert Messages .............................................9
  4. IANA Considerations ............................................10
  5. Security Considerations ........................................10
  6. References .....................................................11
     6.1. Normative References ......................................11
     6.2. Informative References ....................................12
  Appendix A. Alternate Double Handshake Example ....................13
  Acknowledgements ..................................................15
  Author's Address ..................................................15












Thakore                       Informational                     [Page 2]

RFC 7562                   TLS Auth Using DTCP                 July 2015


1.  Introduction

  The Transport Layer Security (TLS) protocol (see TLS 1.0 [RFC2246],
  TLS 1.1 [RFC4346], and TLS1 .2 [RFC5246]) is being used in an ever
  increasing variety of operational environments, the most common among
  which is its use in securing HTTP traffic [RFC2818].  [RFC5878]
  introduces extensions that enable TLS to operate in environments
  where authorization information needs to be exchanged between the
  client and the server before any protected data is exchanged.  The
  use of these TLS authorization extensions is especially attractive
  since it allows the client and server to determine the type of
  protected data to exchange based on the authorization information
  received in the extensions.

  A substantial number of deployed consumer electronics devices, such
  as televisions, tablets, game consoles, set-top boxes, and other
  multimedia devices, contain Digital Transmission Content Protection
  [DTCP] certificates issued by [DTLA].  These DTCP certificates enable
  secure transmission of premium audiovisual content between devices
  over various types of links (e.g., DTCP over IP [DTCP-IP]).  These
  DTCP certificates can also be used to verify device functionality
  (e.g., supported device features).

  This document describes the format and necessary identifiers to
  exchange DTCP certificates within the supplemental data message (see
  [RFC4680]) while negotiating a TLS session.  The DTCP certificates
  are then used independent of their use for content protection (e.g.,
  to verify supported features) and the corresponding DTCP
  Authentication and Key Exchange (AKE) protocol.  This communication
  allows either the client, the server, or both to perform certain
  actions or provide specific services.  The actual semantics of the
  authorization decision by the client/server are beyond the scope of
  this document.  The DTCP certificate, which is not an X.509
  certificate, can be cryptographically tied to the X.509 certificate
  being used during the TLS tunnel establishment by an Elliptic Curve
  Digital Signature Algorithm (EC-DSA) [DTCP] signature.

1.1.  Applicability Statement

  DTCP-enabled consumer electronics devices (e.g., televisions, game
  consoles) use DTCP certificates for secure transmission of
  audiovisual content.  The AKE protocol defined in [DTCP] is used to
  exchange DTCP certificates and allows a device to be identified and
  authenticated based on the information in the DTCP certificate.
  However, these DTCP-enabled devices offer additional functionality
  (e.g., via HTML5 User Agents or web-enabled applications) that is
  distinct from its capability to transmit and play audiovisual
  content.  The mechanism outlined in this document allows a DTCP-



Thakore                       Informational                     [Page 3]

RFC 7562                   TLS Auth Using DTCP                 July 2015


  enabled consumer electronics device to authenticate and authorize
  using its DTCP certificate when accessing services over the internet;
  for example, web applications on televisions that can enable value-
  added services.  This is anticipated to be very valuable since there
  are a considerable number of such devices.  The reuse of well-known
  web security will also keep such communication consistent with
  existing standards and best practices.

1.2.  Conventions

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in [RFC2119].

2.  Overview

2.1.  Overview of DTCP Certificates

  DTCP certificates issued by [DTLA] to DTLA-compliant devices come in
  three general variations (see Section 4.2.3.1 of [DTCP]):

  o  Restricted Authentication device certificate format (Format 0):
     Typically issued to devices with limited computation resources.

  o  Baseline Full Authentication device certificate format (Format 1):
     This is the most commonly issued certificate format.  Format 1
     certificates include a unique DeviceID and device EC-DSA public/
     private key pair generated by the DTLA.  (See Section 4.3 of
     [DTCP]).

  o  Extended Full Authentication device certificate format (Format 2):
     This is issued to devices that possess additional functions (e.g.,
     additional channel ciphers, specific device properties).  The
     presence of these additional functions is indicated by the device
     capability mask as specified in Section 4.2.3.2 of [DTCP].  Format
     2 certificates also include a unique DeviceID and device EC-DSA
     public/private key pair generated by the DTLA (see Section 4.3 of
     [DTCP]).

  The mechanism specified in this document allows only Formats 1 and 2
  DTCP certificates to be exchanged in the supplemental data message
  since it requires the use of the EC-DSA private key associated with
  the certificate.








Thakore                       Informational                     [Page 4]

RFC 7562                   TLS Auth Using DTCP                 July 2015


2.2.  Overview of SupplementalData Handshake

  Figure 1 illustrates the exchange of the SupplementalData message
  during the TLS handshake as specified in [RFC4680] (repeated here for
  convenience):

       Client                                               Server

       ClientHello (with extensions) -------->

                                      ServerHello(with extensions)
                                                 SupplementalData*
                                                      Certificate*
                                                ServerKeyExchange*
                                               CertificateRequest*
                                    <--------      ServerHelloDone

       SupplementalData*
       Certificate*
       ClientKeyExchange
       CertificateVerify*
       [ChangeCipherSpec]
       Finished                     -------->
                                                [ChangeCipherSpec]
                                    <--------             Finished
       Application Data             <------->     Application Data

       *  Indicates optional or situation-dependent messages that are
          not always sent.

       [] Indicates that ChangeCipherSpec is an independent TLS
          protocol content type; it is not a TLS handshake message.

     Figure 1: TLS Handshake Message Exchange with SupplementalData

2.3.  Overview of Authorization Extensions

  [RFC5878] defines two authorization extension types that are used in
  the ClientHello and ServerHello messages and are repeated below for
  convenience:

        enum {
          client_authz(7), server_authz(8), (65535)
        } ExtensionType;

  A client uses the client_authz and server_authz extensions in the
  ClientHello message to indicate that it will send client
  authorization data and receive server authorization data,



Thakore                       Informational                     [Page 5]

RFC 7562                   TLS Auth Using DTCP                 July 2015


  respectively, in the SupplementalData messages.  A server uses the
  extensions in a similar manner in its ServerHello message.  [RFC5878]
  also establishes a registry that is maintained by IANA to register
  authorization data formats.  This document defines a new
  authorization data type for both the client_authz and server_authz
  extensions and allows the client and server to exchange DTCP
  certificates in the SupplementalData message.

2.4.  Overview of SupplementalData Usage for Authorization

  Section 3 of [RFC5878] specifies the syntax of the supplemental data
  message when carrying the authz_data message that is negotiated in
  the client_authz and/or server_authz types.  This document defines a
  new authorization data format that is used in the authz_data message
  when sending DTCP Authorization Data.

3.  DTCP Authorization Data Format

3.1.  DTCP Authorization Type

  The DTCP Authorization type definition in the TLS Authorization Data
  Formats registry is:

         dtcp_authorization(66);

3.2.  DTCP Authorization Data

  The DTCP Authorization Data is used when the AuthzDataFormat type is
  dtcp_authorization.  The syntax of the authorization data is:

        struct {
            opaque random_bytes[32];
        } RandomNonce;

        struct {
            opaque RandomNonce nonce;
            opaque DTCPCert<0..2^24-1>;
            opaque ASN.1Cert<0..2^24-1>;
            opaque signature<0..2^16-1>;
        } dtcp_authz_data;

  RandomNonce is generated by the server and consists of 32 bytes
  generated by a high-quality, secure random number generator.  The
  client always sends back the server-generated RandomNonce in its
  dtcp_authz_data structure.  The RandomNonce helps the server in
  detecting replay attacks.  A client can detect replay attacks by





Thakore                       Informational                     [Page 6]

RFC 7562                   TLS Auth Using DTCP                 July 2015


  associating the ASN.1 certificate in the dtcp_authz_data structure
  with the certificate received in the Certificate message of the TLS
  handshake, so a separate nonce for the client is not required.

  DTCPCert is the sender's DTCP certificate.  See Section 4.2.3.1 of
  the DTCP Specification [DTCP].

  ASN.1Cert is the sender's certificate used to establish the TLS
  session, i.e., it is sent in the Certificate or ClientCertificate
  message using the Certificate structure defined in Section 7.4.2 of
  [RFC5246].

  The DTCPCert and ASN.1Cert are variable-length vectors as specified
  in Section 4.3 of [RFC5246].  Hence, the actual length precedes the
  vector's contents in the byte stream.  If the ASN.1Cert is not being
  sent, the ASN.1Cert_length MUST be zero.

  dtcp_authz_data contains the RandomNonce, the DTCP certificate, and
  the optional ASN.1 certificate.  This is then followed by the digital
  signature covering the RandomNonce, the DTCP certificate, and the
  ASN.1 certificate (if present).  The signature is generated using the
  private key associated with the DTCP certificate and using the
  Signature Algorithm and Hash Algorithm as specified in Section 4.4 of
  [DTCP].  This signature provides proof of the possession of the
  private key by the sender.  A sender sending its own DTCP certificate
  MUST populate this field.  The length of the signature field is
  determined by the Signature Algorithm and Hash Algorithm as specified
  in Section 4.4 of [DTCP], and so it is not explicitly encoded in the
  dtcp_authz_data structure (e.g., the length will be 40 bytes for a
  SHA1+ECDSA algorithm combination).

3.3.  Usage Rules for Clients to Exchange DTCP Authorization Data

  A client includes both the client_authz and server_authz extensions
  in the extended client hello message when indicating its desire to
  exchange dtcp_authorization data with the server.  Additionally, the
  client includes the AuthzDataFormat type specified in Section 3.1 in
  the extension_data field to specify the format of the authorization
  data.

  A client will receive the server's dtcp_authz_data before it sends
  its own dtcp_authz_data.  When sending its own dtcp_authz_data
  message, the client includes the same RandomNonce that it receives in
  the server's dtcp_authz_data message.  Clients MUST include its DTCP
  certificate in the dtcp_authz_data message.  A client MAY include its
  ASN.1 certificate (certificate in the ClientCertificate message) in





Thakore                       Informational                     [Page 7]

RFC 7562                   TLS Auth Using DTCP                 July 2015


  the ASN.1Cert field of the dtcp_authz_data to cryptographically tie
  the dtcp_authz_data with its ASN.1Cert being used to establish the
  TLS session (i.e., sent in the ClientCertificate message).

3.4.  Usage Rules for Servers to Exchange DTCP Authorization Data

  A server responds with both the client_authz and server_authz
  extensions in the extended server hello message when indicating its
  desire to exchange dtcp_authorization data with the client.

  Additionally, the server includes the AuthzDataFormat type specified
  in Section 3.1 in the extension_data field to specify the format of
  the dtcp_authorization data.  A client may or may not include an
  ASN.1 certificate during the TLS handshake.  However, the server will
  not know that at the time of sending the SupplementalData message.
  Hence, a server MUST generate and populate the RandomNonce in the
  dtcp_authz_data message.  If the client's hello message does not
  contain both the client_authz and server_authz extensions with
  dtcp_authorization type, the server MUST NOT include support for
  dtcp_authorization data in its hello message.  A server MAY include
  its DTCP certificate in the dtcp_authz_data message.  If the server
  does not send a DTCP certificate, it will send only the RandomNonce
  in its dtcp_authz_data message.  If the server includes its DTCP
  certificate, it MUST also include its server certificate (sent in the
  TLS Certificate message) in the certs field to cryptographically tie
  its dtcp_authz_data with the ASN.1 certificate used in the TLS
  session being established.  This also helps the client in detecting
  replay attacks.

3.5.  TLS Message Exchange with dtcp_authz_data

  Based on the usage rules in the sections above, Figure 2 provides one
  possible TLS message exchange where the client sends its DTCP
  certificate to the server within the dtcp_authz_data message.

















Thakore                       Informational                     [Page 8]

RFC 7562                   TLS Auth Using DTCP                 July 2015


       Client                                               Server

       ClientHello (with extensions) -------->

                                      ServerHello(with extensions)
                                   SupplementalData(with Nonce N1)
                                                       Certificate
                                                ServerKeyExchange*
                                                CertificateRequest
                                    <--------      ServerHelloDone

       SupplementalData(with Data D1)
       Certificate
       ClientKeyExchange
       CertificateVerify
       [ChangeCipherSpec]
       Finished                     -------->
                                                [ChangeCipherSpec]
                                    <--------             Finished
       Application Data             <------->     Application Data

     N1 Indicates a Random nonce generated by server

     D1 Contains dtcp_authz_data populated with the following
       {(N1, DTCP Cert, Client X.509 Cert) Signature over all elements}

     *  Indicates optional or situation-dependent messages that are
        not always sent.

     [] Indicates that ChangeCipherSpec is an independent TLS
        protocol content type; it is not a TLS handshake message.

                Figure 2: DTCP SupplementalData Exchange

3.6.  Alert Messages

  This document reuses TLS Alert messages for any errors that arise
  during authorization processing and reuses the AlertLevels as
  specified in [RFC5878].  Additionally, the following AlertDescription
  values are used to report errors in dtcp_authorization processing:

  unsupported_extension:
     During processing of dtcp_authorization, a client uses this when
     it receives a server hello message that includes support for
     dtcp_authorization in only one of client_authz or server_authz but
     not in both the extensions.  This message is always fatal.  Note:





Thakore                       Informational                     [Page 9]

RFC 7562                   TLS Auth Using DTCP                 July 2015


     Completely omitting the dtcp_authorization extension and/or
     omitting the client_authz and server_authz completely is allowed
     and should not constitute the reason that this alert is sent.

  certificate_unknown:
     During processing of dtcp_authorization, a client or server uses
     this when it has received an X.509 certificate in the
     dtcp_authorization data and that X.509 certificate does not match
     the certificate sent in the corresponding ClientCertificate or
     Certificate message.

4.  IANA Considerations

  This document includes an entry registered in the IANA-maintained
  "TLS Authorization Data Formats" registry for dtcp_authorization(66).
  This registry is defined in [RFC5878] and defines two ranges: one is
  IETF Review, and the other is Specification Required.  The value for
  dtcp_authorization should be assigned via [RFC5226] Specification
  Required.  The extension defined in this document is compatible with
  Data Transport Layer Security (DTLS) [RFC6347], and the registry
  assignment has been marked "Y" for DTLS-OK.

5.  Security Considerations

  The dtcp_authorization data, as specified in this document, carries
  the DTCP certificate that identifies the associated device.
  Inclusion of the X.509 certificate being used to establish a TLS
  Session in the dtcp_authorization data allows an application to
  cryptographically tie them.  However, a TLS Client is not required to
  use (and may not possess) an X.509 certificate.  In this case, the
  dtcp_authorization data exchange is prone to a man-in-the-middle
  (MITM) attack.  In such situations, a TLS server MUST deny access to
  the application features dependent on the DTCP certificate or use a
  double handshake.  The double handshake mechanism is also vulnerable
  to the TLS MITM Renegotiation exploit as explained in [RFC5746].  In
  order to address this vulnerability, clients and servers MUST use the
  secure_renegotiation extension as specified in [RFC5746] when
  exchanging dtcp_authorization data.  Additionally, the renegotiation
  is also vulnerable to the Triple Handshake exploit.  To mitigate
  this, servers MUST use the same ASN.1 certificate during
  renegotiation as the one used in the initial handshake.

  It should be noted that for the double handshake to succeed, any
  extension (e.g., TLS Session Ticket [RFC5077]) that results in the
  TLS handshake sequence being modified may result in failure to
  exchange SupplementalData.





Thakore                       Informational                    [Page 10]

RFC 7562                   TLS Auth Using DTCP                 July 2015


  Additionally, the security considerations specified in [RFC5878] and
  [RFC5246] apply to the extension specified in this document.  In
  addition, the dtcp_authorization data may be carried along with other
  supplemental data or some other authorization data and that
  information may require additional protection.  Finally, implementers
  should also reference [DTCP] and [DTCP-IP] for more information
  regarding DTCP certificates, their usage, and associated security
  considerations.

6.  References

6.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC2246]  Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
             RFC 2246, DOI 10.17487/RFC2246, January 1999,
             <http://www.rfc-editor.org/info/rfc2246>.

  [RFC4346]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.1", RFC 4346,
             DOI 10.17487/RFC4346, April 2006,
             <http://www.rfc-editor.org/info/rfc4346>.

  [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
             (TLS) Protocol Version 1.2", RFC 5246,
             DOI 10.17487/RFC5246, August 2008,
             <http://www.rfc-editor.org/info/rfc5246>.

  [RFC5746]  Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
             "Transport Layer Security (TLS) Renegotiation Indication
             Extension", RFC 5746, DOI 10.17487/RFC5746, February 2010,
             <http://www.rfc-editor.org/info/rfc5746>.

  [RFC4680]  Santesson, S., "TLS Handshake Message for Supplemental
             Data", RFC 4680, DOI 10.17487/RFC4680, October 2006,
             <http://www.rfc-editor.org/info/rfc4680>.

  [RFC5878]  Brown, M. and R. Housley, "Transport Layer Security (TLS)
             Authorization Extensions", RFC 5878, DOI 10.17487/RFC5878,
             May 2010, <http://www.rfc-editor.org/info/rfc5878>.

  [RFC6347]  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
             Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
             January 2012, <http://www.rfc-editor.org/info/rfc6347>.



Thakore                       Informational                    [Page 11]

RFC 7562                   TLS Auth Using DTCP                 July 2015


  [DTCP]     Digital Transmission Licensing Administrator, "Digital
             Transmission Content Protection Specification", Volume 1,
             Informational Version,
             <http://www.dtcp.com/documents/dtcp/
             info-20130605-dtcp-v1-rev-1-7-ed2.pdf>.

  [DTCP-IP]  Digital Transmission Licensing Administrator, "Mapping
             DTCP to IP", Volume 1, Supplement E, Informational
             Version, <http://www.dtcp.com/documents/dtcp/
             info-20130605-dtcp-v1se-ip-rev-1-4-ed3.pdf>.

6.2.  Informative References

  [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
             IANA Considerations Section in RFCs", BCP 26, RFC 5226,
             DOI 10.17487/RFC5226, May 2008,
             <http://www.rfc-editor.org/info/rfc5226>.

  [DTLA]     Digital Transmission Licensing Administrator, "DTLA",
             <http://www.dtcp.com>.

  [RFC2818]  Rescorla, E., "HTTP Over TLS", RFC 2818,
             DOI 10.17487/RFC2818, May 2000,
             <http://www.rfc-editor.org/info/rfc2818>.

  [RFC5077]  Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
             "Transport Layer Security (TLS) Session Resumption without
             Server-Side State", RFC 5077, DOI 10.17487/RFC5077,
             January 2008, <http://www.rfc-editor.org/info/rfc5077>.

  [RFC6042]  Keromytis, A., "Transport Layer Security (TLS)
             Authorization Using KeyNote", RFC 6042,
             DOI 10.17487/RFC6042, October 2010,
             <http://www.rfc-editor.org/info/rfc6042>.

















Thakore                       Informational                    [Page 12]

RFC 7562                   TLS Auth Using DTCP                 July 2015


Appendix A.  Alternate Double Handshake Example

  This document specifies a TLS authorization data extension that
  allows TLS clients and servers to exchange DTCP certificates during a
  TLS handshake exchange.  In cases where the supplemental data
  contains sensitive information, the double handshake technique
  described in [RFC4680] can be used to provide protection for the
  supplemental data information.  The double handshake specified in
  [RFC4680] assumes that the client knows the context of the TLS
  session that is being set up and uses the authorization extensions as
  needed.  Figure 3 illustrates a variation of the double handshake
  that addresses the case where the client may not have a priori
  knowledge that it will be communicating with a server capable of
  exchanging dtcp_authz_data (typical for https connections; see
  [RFC2818]).  In Figure 3, the client's hello messages includes the
  client_authz and server_authz extensions.  The server simply
  establishes an encrypted TLS session with the client in the first
  handshake by not indicating support for any authz extensions.  The
  server initiates a second handshake by sending a HelloRequest.  The
  second handshake will include the server's support for authz
  extensions, which will result in SupplementalData being exchanged.

  Alternately, it is also possible to do a double handshake where the
  server sends the authorization extensions during both the first and
  the second handshake.  Depending on the information received in the
  first handshake, the server can decide whether or not a second
  handshake is needed.
























Thakore                       Informational                    [Page 13]

RFC 7562                   TLS Auth Using DTCP                 July 2015


    Client                                                   Server

    ClientHello (w/ extensions) -------->                            |0
                                  ServerHello (no authz extensions)  |0
                                                       Certificate*  |0
                                                 ServerKeyExchange*  |0
                                                CertificateRequest*  |0
                                <--------           ServerHelloDone  |0
    Certificate*                                                     |0
    ClientKeyExchange                                                |0
    CertificateVerify*                                               |0
    [ChangeCipherSpec]                                               |0
    Finished                    -------->                            |1
                                                 [ChangeCipherSpec]  |0
                                <--------                  Finished  |1
                                <--------              HelloRequest  |1
    ClientHello (w/ extensions) -------->                            |1
                                        ServerHello (w/ extensions)  |1
                                                  SupplementalData*  |1
                                                       Certificate*  |1
                                                 ServerKeyExchange*  |1
                                                CertificateRequest*  |1
                                <--------           ServerHelloDone  |1
    SupplementalData*                                                |1
    Certificate*                                                     |1
    ClientKeyExchange                                                |1
    CertificateVerify*                                               |1
    [ChangeCipherSpec]                                               |1
    Finished                    -------->                            |2
                                                 [ChangeCipherSpec]  |1
                                <--------                  Finished  |2
    Application Data            <------->          Application Data  |2

    *  Indicates optional or situation-dependent messages.

         Figure 3: Double Handshake to Protect SupplementalData















Thakore                       Informational                    [Page 14]

RFC 7562                   TLS Auth Using DTCP                 July 2015


Acknowledgements

  The author wishes to thank Mark Brown, Sean Turner, Sumanth
  Channabasappa, and the Chairs (EKR, Joe Saloway) and members of the
  TLS Working Group who provided feedback and comments on one or more
  revisions of this document.

  This document derives its structure and much of its content from
  [RFC4680], [RFC5878], and [RFC6042].

Author's Address

  D. Thakore
  Cable Television Laboratories, Inc.
  858 Coal Creek Circle
  Louisville, CO  80023
  United States

  Email: [email protected]
































Thakore                       Informational                    [Page 15]