Internet Engineering Task Force (IETF)                      M. Boucadair
Request for Comments: 7488                                France Telecom
Updates: 6887                                                   R. Penno
Category: Standards Track                                        D. Wing
ISSN: 2070-1721                                                 P. Patil
                                                               T. Reddy
                                                                  Cisco
                                                             March 2015


             Port Control Protocol (PCP) Server Selection

Abstract

  This document specifies the behavior to be followed by a Port Control
  Protocol (PCP) client to contact its PCP server(s) when one or
  several PCP server IP addresses are configured.

  This document updates RFC 6887.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7488.

Copyright Notice

  Copyright (c) 2015 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.



Boucadair, et al.            Standards Track                    [Page 1]

RFC 7488                  PCP Server Selection                March 2015


Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
  2.  Terminology and Conventions . . . . . . . . . . . . . . . . .   3
    2.1.  Requirements Language . . . . . . . . . . . . . . . . . .   3
    2.2.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   3
  3.  IP Address Selection: PCP Server with Multiple IP Addresses .   3
  4.  IP Address Selection: Multiple PCP Servers  . . . . . . . . .   4
  5.  Example: Multiple PCP Servers on a Single Interface . . . . .   5
  6.  Security Considerations . . . . . . . . . . . . . . . . . . .   7
  7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   7
    7.1.  Normative References  . . . . . . . . . . . . . . . . . .   7
    7.2.  Informative References  . . . . . . . . . . . . . . . . .   8
  Appendix A.  Multihoming  . . . . . . . . . . . . . . . . . . . .   9
    A.1.  IPv6 Multihoming  . . . . . . . . . . . . . . . . . . . .   9
    A.2.  IPv4 Multihoming  . . . . . . . . . . . . . . . . . . . .  10
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  11
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  12

1.  Introduction

  A host may have multiple network interfaces (e.g., 3G, IEEE 802.11,
  etc.), each configured with different PCP servers.  Each PCP server
  learned must be associated with the interface on which it was
  learned.  Generic multi-interface considerations are documented in
  Section 8.4 of [RFC6887].  Multiple PCP server IP addresses may be
  configured on a PCP client in some deployment contexts such as
  multihoming (see Appendix A).  A PCP server may also have multiple IP
  addresses associated with it.  It is out of the scope of this
  document to enumerate all deployment scenarios that require multiple
  PCP server IP addresses to be configured.

  If a PCP client discovers multiple PCP server IP addresses, it needs
  to determine which actions it needs to undertake (e.g., whether PCP
  entries are to be installed in all or a subset of discovered IP
  addresses, whether some PCP entries are to be removed, etc.).  This
  document makes the following assumptions:

  o  There is no requirement that multiple PCP servers configured on
     the same interface have the same capabilities.

  o  PCP requests to different PCP servers are independent, the result
     of a PCP request to one PCP server does not influence another.

  o  The configuration mechanism must distinguish IP addresses that
     belong to the same PCP server.





Boucadair, et al.            Standards Track                    [Page 2]

RFC 7488                  PCP Server Selection                March 2015


  This document specifies the behavior to be followed by a PCP client
  [RFC6887] to contact its PCP server(s) [RFC6887] when it is
  configured with one or several PCP server IP addresses (e.g., using
  DHCP [RFC7291]).  This document does not make any assumption on the
  type of these IP addresses (i.e., unicast/anycast).

2.  Terminology and Conventions

2.1.  Requirements Language

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

2.2.  Terminology

  o  PCP client: denotes a PCP software instance responsible for
     issuing PCP requests to a PCP server.  Refer to [RFC6887].

  o  PCP server: denotes a software instance that receives and
     processes PCP requests from a PCP client.  A PCP server can be co-
     located with or be separated from the function it controls (e.g.,
     Network Address Translation (NAT) or firewall).  Refer to
     [RFC6887].

3.  IP Address Selection: PCP Server with Multiple IP Addresses

  This section describes the behavior a PCP client follows to contact
  its PCP server when the PCP client has multiple IP addresses for a
  single PCP server.

  1.  A PCP client should construct a set of candidate source addresses
      (see Section 4 of [RFC6724]) based on application input and PCP
      [RFC6887] constraints.  For example, when sending a PEER or a MAP
      with a FILTER request for an existing TCP connection, the only
      candidate source address is the source address used for the
      existing TCP connection.  But when sending a MAP request for a
      service that will accept incoming connections, the candidate
      source addresses may be all of the node's IP addresses or some
      subset of IP addresses on which the service is configured to
      listen.

  2.  The PCP client then sorts the PCP server IP addresses as per
      Section 6 of [RFC6724] using the candidate source addresses
      selected in the previous step as input to the destination address
      selection algorithm.





Boucadair, et al.            Standards Track                    [Page 3]

RFC 7488                  PCP Server Selection                March 2015


  3.  The PCP client initializes its Maximum Retransmission Count (MRC)
      to 4.

  4.  The PCP client sends its PCP messages following the
      retransmission procedure specified in Section 8.1.1 of [RFC6887].
      If no response is received after MRC attempts, the PCP client
      retries the procedure with the next IP address in the sorted
      list.

      The PCP client may receive a response from an IP address after
      exhausting MRC attempts for that particular IP address.  The PCP
      client SHOULD ignore such a response because receiving a delayed
      response after exhausting four retransmissions sent with
      exponentially increasing intervals is an indication that problems
      are to be encountered in the corresponding forwarding path and/or
      when processing subsequent requests by that PCP server instance.

      If, when sending PCP requests, the PCP client receives a hard
      ICMP error [RFC1122], it MUST immediately try the next IP address
      from the list of PCP server IP addresses.

  5.  If the PCP client has exhausted all IP addresses configured for a
      given PCP server, the procedure SHOULD be repeated every 15
      minutes until the PCP request is successfully answered.

  6.  Once the PCP client has successfully received a response from a
      PCP server's IP address, all subsequent PCP requests to that PCP
      server are sent on the same IP address until that IP address
      becomes unresponsive.  In case the IP address becomes
      unresponsive, the PCP client clears the cache of sorted
      destination addresses and follows the steps described above to
      contact the PCP server again.

  For efficiency, the PCP client SHOULD use the same Mapping Nonce for
  requests sent to all IP addresses belonging to the same PCP server.
  As a reminder, nonce validation checks are performed when operating
  in the Simple Threat Model (see Section 18.1 of [RFC6887]) to defend
  against some off-path attacks.

4.  IP Address Selection: Multiple PCP Servers

  This section describes the behavior a PCP client follows to contact
  multiple PCP servers, with each PCP server reachable on a list of IP
  addresses.  There is no requirement that these multiple PCP servers
  have the same capabilities.






Boucadair, et al.            Standards Track                    [Page 4]

RFC 7488                  PCP Server Selection                March 2015


     Note that how PCP clients are configured to separate lists of IP
     addresses of each PCP server is implementation specific and
     deployment specific.  For example, a PCP client can be configured
     using DHCP with multiple lists of PCP server IP addresses; each
     list is referring to a distinct PCP server [RFC7291].

  If several PCP servers are configured, each with multiple IP
  addresses, the PCP client contacts all PCP servers using the
  procedure described in Section 3.

  As specified in Sections 11.2 and 12.2 of [RFC6887], the PCP client
  must use a different Mapping Nonce for each PCP server with which it
  communicates.

  If the PCP client is configured, using some means, with the
  capabilities of each PCP server, a PCP client may choose to contact
  all PCP servers simultaneously or iterate through them with a delay.

  This procedure may result in a PCP client instantiating multiple
  mappings maintained by distinct PCP servers.  The decision to use all
  these mappings or delete some of them depends on the purpose of the
  PCP request.  For example, if the PCP servers are configuring
  firewall (not NAT) functionality, then the client would, by default
  (i.e., unless it knows that they all replicate state among them),
  need to use all the PCP servers.

5.  Example: Multiple PCP Servers on a Single Interface

  Figure 1 depicts an example that is used to illustrate the server
  selection procedure specified in Sections 3 and 4.  In this example,
  PCP servers (A and B) are co-located with edge routers (rtr1 and
  rtr2) with each PCP server controlling its own device.



















Boucadair, et al.            Standards Track                    [Page 5]

RFC 7488                  PCP Server Selection                March 2015


                               ISP Network
                             |              |
       .........................................................
                             |              |        Subscriber Network
                  +----------+-----+  +-----+----------+
                  | PCP-Server-A   |  | PCP-Server-B   |
                  |    (rtr1)      |  |   (rtr2)       |
                  +-------+--------+  +--+-------------+
         192.0.2.1        |              |     198.51.100.1
         2001:db8:1111::1 |              |     2001:db8:2222::1
                          |              |
                          |              |
                   -------+-------+------+-----------
                                  |
                                  |    203.0.113.0
                                  |    2001:db8:3333::1
                              +---+---+
                              | Host  |
                              +-------+

Edge Routers (rtr1, rtr2)

              Figure 1: Single Uplink, Multiple PCP Servers

  The example describes behavior when a single IP address for one PCP
  server is not responsive.  The PCP client is configured with two PCP
  servers for the same interface, PCP-Server-A and PCP-Server-B, each
  of which have two IP addresses: an IPv4 address and an IPv6 address.
  The PCP client wants an IPv4 mapping, so it orders the addresses as
  follows:

  o  PCP-Server-A:

     *  192.0.2.1

     *  2001:db8:1111::1

  o  PCP-Server-B:

     *  198.51.100.1

     *  2001:db8:2222::1









Boucadair, et al.            Standards Track                    [Page 6]

RFC 7488                  PCP Server Selection                March 2015


  Suppose that:

  o  The path to reach 192.0.2.1 is broken

  o  The path to reach 2001:db8:1111::1 is working

  o  The path to reach 198.51.100.1 is working

  o  The path to reach 2001:db8:2222::1 is working

  It sends two PCP requests at the same time, the first to 192.0.2.1
  (corresponding to PCP-Server-A) and the second to 198.51.100.1
  (corresponding to PCP-Server-B).  The path to 198.51.100.1 is
  working, so a PCP response is received.  Because the path to
  192.0.2.1 is broken, no PCP response is received.  The PCP client
  retries four times to elicit a response from 192.0.2.1 and finally
  gives up on that address and sends a PCP message to 2001::db8:1111:1.
  That path is working, and a response is received.  Thereafter, the
  PCP client should continue using that responsive IP address for PCP-
  Server-A (2001:db8:1111::1).  In this particular case, it will have
  to use the THIRD_PARTY option for IPv4 mappings.

6.  Security Considerations

  PCP-related security considerations are discussed in [RFC6887].

  This document does not specify how PCP server addresses are
  provisioned on the PCP client.  It is the responsibility of PCP
  server provisioning document(s) to elaborate on security
  considerations to discover legitimate PCP servers.

7.  References

7.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC6724]  Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
             "Default Address Selection for Internet Protocol Version 6
             (IPv6)", RFC 6724, September 2012,
             <http://www.rfc-editor.org/info/rfc6724>.

  [RFC6887]  Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R., and
             P. Selkirk, "Port Control Protocol (PCP)", RFC 6887, April
             2013, <http://www.rfc-editor.org/info/rfc6887>.




Boucadair, et al.            Standards Track                    [Page 7]

RFC 7488                  PCP Server Selection                March 2015


7.2.  Informative References

  [RFC1122]  Braden, R., Ed., "Requirements for Internet Hosts -
             Communication Layers", STD 3, RFC 1122, October 1989,
             <http://www.rfc-editor.org/info/rfc1122>.

  [RFC4116]  Abley, J., Lindqvist, K., Davies, E., Black, B., and V.
             Gill, "IPv4 Multihoming Practices and Limitations", RFC
             4116, July 2005, <http://www.rfc-editor.org/info/rfc4116>.

  [RFC7291]  Boucadair, M., Penno, R., and D. Wing, "DHCP Options for
             the Port Control Protocol (PCP)", RFC 7291, July 2014,
             <http://www.rfc-editor.org/info/rfc7291>.






































Boucadair, et al.            Standards Track                    [Page 8]

RFC 7488                  PCP Server Selection                March 2015


Appendix A.  Multihoming

  The main problem of a PCP multihoming situation can be succinctly
  described as "one PCP client, multiple PCP servers."  As described in
  Section 3, if a PCP client discovers multiple PCP servers, it should
  send requests to all of them with assumptions described in Section 1.

  The following sub-sections describe multihoming examples to
  illustrate the PCP client behavior.

A.1.  IPv6 Multihoming

  In this example of an IPv6 multihomed network, two or more routers
  co-located with firewalls are present on a single link shared with
  the host(s).  Each router is, in turn, connected to a different
  service provider network, and the host in this environment would be
  offered multiple prefixes and advertised multiple DNS servers.
  Consider a scenario in which firewalls within an IPv6 multihoming
  environment also implement a PCP server.  The PCP client learns the
  available PCP servers using DHCP [RFC7291] or any other provisioning
  mechanism.  In reference to Figure 2, a typical model is to embed
  DHCP servers in rtr1 and rtr2.  A host located behind rtr1 and rtr2
  can contact these two DHCP servers and retrieve from each server the
  IP address(es) of the corresponding PCP server.

  The PCP client will send PCP requests in parallel to each of the PCP
  servers.
























Boucadair, et al.            Standards Track                    [Page 9]

RFC 7488                  PCP Server Selection                March 2015


                         ==================
                         |    Internet    |
                         ==================
                            |          |
                            |          |
                       +----+-+      +-+----+
                       | ISP1 |      | ISP2 |
                       +----+-+      +-+----+      ISP Network
                            |          |
      .........................................................
                            |          |
                            |          |        Subscriber Network
                    +-------+---+ +----+------+
                    | rtr1 with | | rtr2 with |
                    |   FW1     | |    FW2    |
                    +-------+---+ +----+------+
                            |          |
                            |          |
                     -------+----------+------
                                 |
                             +---+---+
                             | Host  |
                             +-------+

                       Figure 2: IPv6 Multihoming

A.2.  IPv4 Multihoming

  In this example of an IPv4 multihomed network described in "NAT- or
  RFC2260-based Multihoming" (Section 3.3 of [RFC4116]), the gateway
  router is connected to different service provider networks.  This
  method uses Provider-Aggregatable (PA) addresses assigned by each
  transit provider to which the site is connected.  The site uses NAT
  to translate the various provider addresses into a single set of
  private-use addresses within the site.  In such a case, two PCP
  servers might have to be present to configure NAT to each of the
  transit providers.  The PCP client learns the available PCP servers
  using DHCP [RFC7291] or any other provisioning mechanism.  In
  reference to Figure 3, a typical model is to embed the DHCP server
  and the PCP servers in rtr1.  A host located behind rtr1 can contact
  the DHCP server to obtain IP addresses of the PCP servers.  The PCP
  client will send PCP requests in parallel to each of the PCP servers.









Boucadair, et al.            Standards Track                   [Page 10]

RFC 7488                  PCP Server Selection                March 2015


                       =====================
                       |    Internet       |
                       =====================
                          |              |
                          |              |
                     +----+--------+   +-+------------+
                     | ISP1        |   | ISP2         |
                     |             |   |              |
                     +----+--------+   +-+------------+ ISP Network
                          |              |
                          |              |
        ..............................................................
                          |              |
                          | Port1        | Port2    Subscriber Network
                          |              |
                     +----+--------------+----+
                     |rtr1: NAT & PCP servers |
                     |       GW Router        |
                     +----+-------------------+
                          |
                          |
                          |
                     -----+--------------
                          |
                        +-+-----+
                        | Host  |  (private address space)
                        +-------+

                       Figure 3: IPv4 Multihoming

Acknowledgements

  Many thanks to Dave Thaler, Simon Perreault, Hassnaa Moustafa, Ted
  Lemon, Chris Inacio, and Brian Haberman for their reviews and
  comments.
















Boucadair, et al.            Standards Track                   [Page 11]

RFC 7488                  PCP Server Selection                March 2015


Authors' Addresses

  Mohamed Boucadair
  France Telecom
  Rennes  35000
  France

  EMail: [email protected]


  Reinaldo Penno
  Cisco Systems, Inc.
  United States

  EMail: [email protected]


  Dan Wing
  Cisco Systems, Inc.
  170 West Tasman Drive
  San Jose, California  95134
  United States

  EMail: [email protected]


  Prashanth Patil
  Cisco Systems, Inc.
  Bangalore
  India

  EMail: [email protected]


  Tirumaleswar Reddy
  Cisco Systems, Inc.
  Cessna Business Park, Varthur Hobli
  Sarjapur Marathalli Outer Ring Road
  Bangalore, Karnataka  560103
  India

  EMail: [email protected]









Boucadair, et al.            Standards Track                   [Page 12]