Internet Engineering Task Force (IETF)                      S. Giacalone
Request for Comments: 7471                                  Unaffiliated
Category: Standards Track                                        D. Ward
ISSN: 2070-1721                                            Cisco Systems
                                                               J. Drake
                                                               A. Atlas
                                                       Juniper Networks
                                                             S. Previdi
                                                          Cisco Systems
                                                             March 2015


           OSPF Traffic Engineering (TE) Metric Extensions

Abstract

  In certain networks, such as, but not limited to, financial
  information networks (e.g., stock market data providers), network
  performance information (e.g., link propagation delay) is becoming
  critical to data path selection.

  This document describes common extensions to RFC 3630 "Traffic
  Engineering (TE) Extensions to OSPF Version 2" and RFC 5329 "Traffic
  Engineering Extensions to OSPF Version 3" to enable network
  performance information to be distributed in a scalable fashion.  The
  information distributed using OSPF TE Metric Extensions can then be
  used to make path selection decisions based on network performance.

  Note that this document only covers the mechanisms by which network
  performance information is distributed.  The mechanisms for measuring
  network performance information or using that information, once
  distributed, are outside the scope of this document.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7471.





Giacalone, et al.            Standards Track                    [Page 1]

RFC 7471                OSPF TE Metric Extensions             March 2015


Copyright Notice

  Copyright (c) 2015 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
  2. Conventions Used in This Document ...............................4
  3. TE Metric Extensions to OSPF TE .................................4
  4. Sub-TLV Details .................................................6
     4.1. Unidirectional Link Delay Sub-TLV ..........................6
          4.1.1. Type ................................................6
          4.1.2. Length ..............................................6
          4.1.3. Anomalous (A) Bit ...................................7
          4.1.4. Reserved ............................................7
          4.1.5. Delay Value .........................................7
     4.2. Min/Max Unidirectional Link Delay Sub-TLV ..................7
          4.2.1. Type ................................................7
          4.2.2. Length ..............................................7
          4.2.3. Anomalous (A) Bit ...................................8
          4.2.4. Reserved ............................................8
          4.2.5. Min Delay ...........................................8
          4.2.6. Reserved ............................................8
          4.2.7. Max Delay ...........................................8
     4.3. Unidirectional Delay Variation Sub-TLV .....................9
          4.3.1. Type ................................................9
          4.3.2. Length ..............................................9
          4.3.3. Reserved ............................................9
          4.3.4. Delay Variation .....................................9
     4.4. Unidirectional Link Loss Sub-TLV ...........................9
          4.4.1. Type ...............................................10
          4.4.2. Length .............................................10
          4.4.3. Anomalous (A) Bit ..................................10
          4.4.4. Reserved ...........................................10
          4.4.5. Link Loss ..........................................10





Giacalone, et al.            Standards Track                    [Page 2]

RFC 7471                OSPF TE Metric Extensions             March 2015


     4.5. Unidirectional Residual Bandwidth Sub-TLV .................10
          4.5.1. Type ...............................................11
          4.5.2. Length .............................................11
          4.5.3. Residual Bandwidth .................................11
     4.6. Unidirectional Available Bandwidth Sub-TLV ................11
          4.6.1. Type ...............................................12
          4.6.2. Length .............................................12
          4.6.3. Available Bandwidth ................................12
     4.7. Unidirectional Utilized Bandwidth Sub-TLV .................12
          4.7.1. Type ...............................................12
          4.7.2. Length .............................................13
          4.7.3. Utilized Bandwidth .................................13
  5. Announcement Thresholds and Filters ............................13
  6. Announcement Suppression .......................................14
  7. Network Stability and Announcement Periodicity .................14
  8. Enabling and Disabling Sub-TLVs ................................15
  9. Static Metric Override .........................................15
  10. Compatibility .................................................15
  11. Security Considerations .......................................15
  12. IANA Considerations ...........................................16
  13. References ....................................................16
     13.1. Normative References .....................................16
     13.2. Informative References ...................................17
  Acknowledgments ...................................................18
  Authors' Addresses ................................................19

1.  Introduction

  In certain networks, such as, but not limited to, financial
  information networks (e.g., stock market data providers), network
  performance information (e.g., link propagation delay) is becoming as
  critical to data path selection as other metrics.

  Because of this, using metrics such as hop count or cost as routing
  metrics is becoming only tangentially important.  Rather, it would be
  beneficial to be able to make path selection decisions based on
  network performance information (such as link propagation delay) in a
  cost-effective and scalable way.

  This document describes extensions to OSPFv2 and OSPFv3 TE (hereafter
  called "OSPF TE Metric Extensions"), that can be used to distribute
  network performance information (viz link propagation delay, delay
  variation, link loss, residual bandwidth, available bandwidth, and
  utilized bandwidth).

  The data distributed by OSPF TE Metric Extensions is meant to be used
  as part of the operation of the routing protocol (e.g., by replacing
  cost with link propagation delay or considering bandwidth as well as



Giacalone, et al.            Standards Track                    [Page 3]

RFC 7471                OSPF TE Metric Extensions             March 2015


  cost), by enhancing Constrained Shortest Path First (CSPF), or for
  use by a PCE [RFC4655] or an Application-Layer Traffic Optimization
  (ALTO) server [RFC7285].  With respect to CSPF, the data distributed
  by OSPF TE Metric Extensions can be used to set up, fail over, and
  fail back data paths using protocols such as RSVP-TE [RFC3209].

  Note that the mechanisms described in this document only distribute
  network performance information.  The methods for measuring that
  information or acting on it once it is distributed are outside the
  scope of this document.  A method for measuring loss and delay in an
  MPLS network is described in [RFC6374].

  While this document does not specify the method for measuring network
  performance information, any measurement of link propagation delay
  SHOULD NOT vary significantly based upon the offered traffic load
  and, hence, SHOULD NOT include queuing delays.  For a forwarding
  adjacency (FA) [RFC4206], care must be taken that measurement of the
  link propagation delay avoids significant queuing delay; this can be
  accomplished in a variety of ways, e.g., measuring with a traffic
  class that experiences minimal queuing or summing the measured link
  propagation delay of the links on the FA's path.

2.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
  document are to be interpreted as described in RFC 2119 [RFC2119].

  In this document, these words should convey that interpretation only
  when in ALL CAPS.  Lowercase uses of these words are not to be
  interpreted as carrying this significance.

3.  TE Metric Extensions to OSPF TE

  This document defines new OSPF TE sub-TLVs that are used to
  distribute network performance information.  The extensions in this
  document build on the ones provided in OSPFv2 TE [RFC3630] and OSPFv3
  TE [RFC5329].

  OSPFv2 TE Link State Advertisements (LSAs) [RFC3630] are opaque LSAs
  [RFC5250] with area flooding scope while OSPFv3 Intra-Area-TE-LSAs
  have their own LSA type, also with area flooding scope; both consist
  of a single TLV with one or more nested sub-TLVs.  The Link TLV is
  common to both and describes the characteristics of a link between
  OSPF neighbors.






Giacalone, et al.            Standards Track                    [Page 4]

RFC 7471                OSPF TE Metric Extensions             March 2015


  This document defines several additional sub-TLVs for the Link TLV:

     Type  Length   Value

     27    4        Unidirectional Link Delay

     28    8        Min/Max Unidirectional Link Delay

     29    4        Unidirectional Delay Variation

     30    4        Unidirectional Link Loss

     31    4        Unidirectional Residual Bandwidth

     32    4        Unidirectional Available Bandwidth

     33    4        Unidirectional Utilized Bandwidth

  As can be seen in the list above, the sub-TLVs described in this
  document carry different types of network performance information.
  Many (but not all) of the sub-TLVs include a bit called the Anomalous
  (or A) bit.  When the A bit is clear (or when the sub-TLV does not
  include an A bit), the sub-TLV describes steady state link
  performance.  This information could conceivably be used to construct
  a steady state performance topology for initial tunnel path
  computation, or to verify alternative failover paths.

  When network performance violates configurable link-local thresholds
  a sub-TLV with the A bit set is advertised.  These sub-TLVs could be
  used by the receiving node to determine whether to move traffic to a
  backup path or whether to calculate an entirely new path.  From an
  MPLS perspective, the intent of the A bit is to permit LSP ingress
  nodes to:

  A) Determine whether the link referenced in the sub-TLV affects any
     of the LSPs for which it is ingress.  If there are, then:

  B) The node determines whether those LSPs still meet end-to-end
     performance objectives.  If not, then:

  C) The node could then conceivably move affected traffic to a pre-
     established protection LSP or establish a new LSP and place the
     traffic in it.








Giacalone, et al.            Standards Track                    [Page 5]

RFC 7471                OSPF TE Metric Extensions             March 2015


  If link performance then improves beyond a configurable minimum value
  (reuse threshold), that sub-TLV can be re-advertised with the
  Anomalous bit cleared.  In this case, a receiving node can
  conceivably do whatever re-optimization (or failback) it wishes
  (including nothing).

  The A bit was intentionally omitted from some sub-TLVs to help
  mitigate oscillations.  See Section 7.1 for more information.

  Link delay, delay variation, and link loss MUST be encoded as
  integers.  Consistent with existing OSPF TE specifications [RFC3630],
  residual, available, and utilized bandwidth MUST be encoded in IEEE
  single precision floating point [IEEE754].  Link delay and delay
  variation MUST be in units of microseconds, link loss MUST be a
  percentage, and bandwidth MUST be in units of bytes per second.  All
  values (except residual bandwidth) MUST be calculated as rolling
  averages where the averaging period MUST be a configurable period of
  time.  See Section 5 for more information.

4.  Sub-TLV Details

4.1.  Unidirectional Link Delay Sub-TLV

  This sub-TLV advertises the average link delay between two directly
  connected OSPF neighbors.  The delay advertised by this sub-TLV MUST
  be the delay from the advertising node to its neighbor (i.e., the
  forward path delay).  The format of this sub-TLV is shown in the
  following diagram:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              27               |               4               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |A|  RESERVED   |                     Delay                     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.1.1.  Type

  This sub-TLV has a type of 27.

4.1.2.  Length

  The length is 4.







Giacalone, et al.            Standards Track                    [Page 6]

RFC 7471                OSPF TE Metric Extensions             March 2015


4.1.3.  Anomalous (A) Bit

  This field represents the Anomalous (A) bit.  The A bit is set when
  the measured value of this parameter exceeds its configured maximum
  threshold.  The A bit is cleared when the measured value falls below
  its configured reuse threshold.  If the A bit is clear, the sub-TLV
  represents steady state link performance.

4.1.4.  Reserved

  This field is reserved for future use.  It MUST be set to 0 when sent
  and MUST be ignored when received.

4.1.5.  Delay Value

  This 24-bit field carries the average link delay over a configurable
  interval in microseconds, encoded as an integer value.  When set to
  the maximum value 16,777,215 (16.777215 sec), then the delay is at
  least that value, and it may be larger.

4.2.  Min/Max Unidirectional Link Delay Sub-TLV

  This sub-TLV advertises the minimum and maximum delay values between
  two directly connected OSPF neighbors.  The delay advertised by this
  sub-TLV MUST be the delay from the advertising node to its neighbor
  (i.e., the forward path delay).  The format of this sub-TLV is shown
  in the following diagram:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              28               |               8               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |A|  RESERVED   |                   Min Delay                   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   RESERVED    |                   Max Delay                   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.2.1.  Type

  This sub-TLV has a type of 28.

4.2.2.  Length

  The length is 8.






Giacalone, et al.            Standards Track                    [Page 7]

RFC 7471                OSPF TE Metric Extensions             March 2015


4.2.3.  Anomalous (A) Bit

  This field represents the Anomalous (A) bit.  The A bit is set when
  one or more measured values exceed a configured maximum threshold.
  The A bit is cleared when the measured value falls below its
  configured reuse threshold.  If the A bit is clear, the sub-TLV
  represents steady state link performance.

4.2.4.  Reserved

  This field is reserved for future use.  It MUST be set to 0 when sent
  and MUST be ignored when received.

4.2.5.  Min Delay

  This 24-bit field carries minimum measured link delay value (in
  microseconds) over a configurable interval, encoded as an integer
  value.

  Implementations MAY also permit the configuration of an offset value
  (in microseconds) to be added to the measured delay value to
  advertise operator specific delay constraints.

  When set to the maximum value 16,777,215 (16.777215 sec), then the
  delay is at least that value, and it may be larger.

4.2.6.  Reserved

  This field is reserved for future use.  It MUST be set to 0 when sent
  and MUST be ignored when received.

4.2.7.  Max Delay

  This 24-bit field carries the maximum measured link delay value (in
  microseconds) over a configurable interval, encoded as an integer
  value.

  Implementations may also permit the configuration of an offset value
  (in microseconds) to be added to the measured delay value to
  advertise operator specific delay constraints.

  It is possible for min delay and max delay to be the same value.

  When the delay value is set to the maximum value 16,777,215
  (16.777215 sec), then the delay is at least that value, and it may be
  larger.





Giacalone, et al.            Standards Track                    [Page 8]

RFC 7471                OSPF TE Metric Extensions             March 2015


4.3.  Unidirectional Delay Variation Sub-TLV

  This sub-TLV advertises the average link delay variation between two
  directly connected OSPF neighbors.  The delay variation advertised by
  this sub-TLV MUST be the delay from the advertising node to its
  neighbor (i.e., the forward path delay variation).  The format of
  this sub-TLV is shown in the following diagram:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              29               |               4               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    RESERVED   |              Delay Variation                  |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.3.1.  Type

  This sub-TLV has a type of 29.

4.3.2.  Length

  The length is 4.

4.3.3.  Reserved

  This field is reserved for future use.  It MUST be set to 0 when sent
  and MUST be ignored when received.

4.3.4.  Delay Variation

  This 24-bit field carries the average link delay variation over a
  configurable interval in microseconds, encoded as an integer value.
  When set to 0, it has not been measured.  When set to the maximum
  value 16,777,215 (16.777215 sec), then the delay is at least that
  value, and it may be larger.

4.4.  Unidirectional Link Loss Sub-TLV

  This sub-TLV advertises the loss (as a packet percentage) between two
  directly connected OSPF neighbors.  The link loss advertised by this
  sub-TLV MUST be the packet loss from the advertising node to its
  neighbor (i.e., the forward path loss).  The format of this sub-TLV
  is shown in the following diagram:







Giacalone, et al.            Standards Track                    [Page 9]

RFC 7471                OSPF TE Metric Extensions             March 2015


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              30               |               4               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |A|  RESERVED   |                 Link Loss                     |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.4.1.  Type

  This sub-TLV has a type of 30

4.4.2.  Length

  The length is 4.

4.4.3.  Anomalous (A) Bit

  This field represents the Anomalous (A) bit.  The A bit is set when
  the measured value of this parameter exceeds its configured maximum
  threshold.  The A bit is cleared when the measured value falls below
  its configured reuse threshold.  If the A bit is clear, the sub-TLV
  represents steady state link performance.

4.4.4.  Reserved

  This field is reserved for future use.  It MUST be set to 0 when sent
  and MUST be ignored when received.

4.4.5.  Link Loss

  This 24-bit field carries link packet loss as a percentage of the
  total traffic sent over a configurable interval.  The basic unit is
  0.000003%, where (2^24 - 2) is 50.331642%.  This value is the highest
  packet loss percentage that can be expressed (the assumption being
  that precision is more important on high speed links than the ability
  to advertise loss rates greater than this, and that high speed links
  with over 50% loss are unusable).  Therefore, measured values that
  are larger than the field maximum SHOULD be encoded as the maximum
  value.

4.5.  Unidirectional Residual Bandwidth Sub-TLV

  This sub-TLV advertises the residual bandwidth between two directly
  connected OSPF neighbors.  The residual bandwidth advertised by this
  sub-TLV MUST be the residual bandwidth from the advertising node to
  its neighbor.




Giacalone, et al.            Standards Track                   [Page 10]

RFC 7471                OSPF TE Metric Extensions             March 2015


  The format of this sub-TLV is shown in the following diagram:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              31               |               4               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                       Residual Bandwidth                      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.5.1.  Type

  This sub-TLV has a type of 31.

4.5.2.  Length

  The length is 4.

4.5.3.  Residual Bandwidth

  This field carries the residual bandwidth on a link, forwarding
  adjacency [RFC4206], or bundled link in IEEE floating point format
  with units of bytes per second.  For a link or forwarding adjacency,
  residual bandwidth is defined to be Maximum Bandwidth [RFC3630] minus
  the bandwidth currently allocated to RSVP-TE LSPs.  For a bundled
  link, residual bandwidth is defined to be the sum of the component
  link residual bandwidths.

  The calculation of Residual Bandwidth is different than that of
  Unreserved Bandwidth [RFC3630].  Residual Bandwidth subtracts tunnel
  reservations from Maximum Bandwidth (i.e., the link capacity)
  [RFC3630] and provides an aggregated remainder across priorities.
  Unreserved Bandwidth, on the other hand, is subtracted from the
  Maximum Reservable Bandwidth (the bandwidth that can theoretically be
  reserved) and provides per priority remainders.  Residual Bandwidth
  and Unreserved Bandwidth [RFC3630] can be used concurrently, and each
  has a separate use case (e.g., the former can be used for
  applications like Weighted ECMP while the latter can be used for call
  admission control).

4.6.  Unidirectional Available Bandwidth Sub-TLV

  This sub-TLV advertises the available bandwidth between two directly
  connected OSPF neighbors.  The available bandwidth advertised by this
  sub-TLV MUST be the available bandwidth from the advertising node to
  its neighbor.  The format of this sub-TLV is shown in the following
  diagram:




Giacalone, et al.            Standards Track                   [Page 11]

RFC 7471                OSPF TE Metric Extensions             March 2015


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              32               |               4               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                      Available Bandwidth                      |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.6.1.  Type

  This sub-TLV has a type of 32.

4.6.2.  Length

  The length is 4.

4.6.3.  Available Bandwidth

  This field carries the available bandwidth on a link, forwarding
  adjacency, or bundled link in IEEE floating point format with units
  of bytes per second.  For a link or forwarding adjacency, available
  bandwidth is defined to be residual bandwidth (see Section 4.5) minus
  the measured bandwidth used for the actual forwarding of non-RSVP-TE
  LSP packets.  For a bundled link, available bandwidth is defined to
  be the sum of the component link available bandwidths.

4.7.  Unidirectional Utilized Bandwidth Sub-TLV

  This Sub-TLV advertises the bandwidth utilization between two
  directly connected OSPF neighbors.  The bandwidth utilization
  advertised by this sub-TLV MUST be the bandwidth from the advertising
  node to its neighbor.  The format of this Sub-TLV is shown in the
  following diagram:

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |              33               |               4               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                      Utilized Bandwidth                       |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.7.1.  Type

  This sub-TLV has a type of 33.






Giacalone, et al.            Standards Track                   [Page 12]

RFC 7471                OSPF TE Metric Extensions             March 2015


4.7.2.  Length

  The length is 4.

4.7.3.  Utilized Bandwidth

  This field carries the bandwidth utilization on a link, forwarding
  adjacency, or bundled link in IEEE floating-point format with units
  of bytes per second.  For a link or forwarding adjacency, bandwidth
  utilization represents the actual utilization of the link (i.e., as
  measured by the advertising node).  For a bundled link, bandwidth
  utilization is defined to be the sum of the component link bandwidth
  utilizations.

5.  Announcement Thresholds and Filters

  The values advertised in all sub-TLVs (except min/max delay and
  residual bandwidth) MUST represent an average over a period or be
  obtained by a filter that is reasonably representative of an average.
  For example, a rolling average is one such filter.

  Min and max delay MAY be the lowest and/or highest measured value
  over a measurement interval or MAY make use of a filter, or other
  technique, to obtain a reasonable representation of a min and max
  value representative of the interval with compensation for outliers.

  The measurement interval, any filter coefficients, and any
  advertisement intervals MUST be configurable for each sub-TLV.

  In addition to the measurement intervals governing re-advertisement,
  implementations SHOULD provide for each sub-TLV configurable
  accelerated advertisement thresholds, such that:

  1. If the measured parameter falls outside a configured upper bound
     for all but the min delay metric (or lower bound for min delay
     metric only) and the advertised sub-TLV is not already outside
     that bound, or

  2. If the difference between the last advertised value and current
     measured value exceed a configured threshold, then

  3. The advertisement is made immediately.









Giacalone, et al.            Standards Track                   [Page 13]

RFC 7471                OSPF TE Metric Extensions             March 2015


  4. For sub-TLVs, which include an A bit (except min/max delay), an
     additional threshold SHOULD be included corresponding to the
     threshold for which the performance is considered anomalous (and
     sub-TLVs with the A bit are sent).  The A bit is cleared when the
     sub-TLV's performance has been below (or re-crosses) this
     threshold for an advertisement interval(s) to permit fail back.

  To prevent oscillations, only the high threshold or the low threshold
  (but not both) may be used to trigger any given sub-TLV that supports
  both.

  Additionally, once outside of the bounds of the threshold, any re-
  advertisement of a measurement within the bounds would remain
  governed solely by the measurement interval for that sub-TLV.

6.  Announcement Suppression

  When link performance values change by small amounts that fall under
  thresholds that would cause the announcement of a sub-TLV,
  implementations SHOULD suppress sub-TLV re-advertisement and/or
  lengthen the period within which they are refreshed.

  Only the accelerated advertisement threshold mechanism described in
  Section 5 may shorten the re-advertisement interval.

  All suppression and re-advertisement interval back-off timer features
  SHOULD be configurable.

7.  Network Stability and Announcement Periodicity

  Sections 5 and 6 provide configurable mechanisms to bound the number
  of re-advertisements.  Instability might occur in very large networks
  if measurement intervals are set low enough to overwhelm the
  processing of flooded information at some of the routers in the
  topology.  Therefore, care should be taken in setting these values.

  Additionally, the default measurement interval for all sub-TLVs
  should be 30 seconds.

  Announcements must also be able to be throttled using configurable
  inter-update throttle timers.  The minimum announcement periodicity
  is 1 announcement per second.  The default value should be set to 120
  seconds.

  Implementations should not permit the inter-update timer to be lower
  than the measurement interval.





Giacalone, et al.            Standards Track                   [Page 14]

RFC 7471                OSPF TE Metric Extensions             March 2015


  Furthermore, it is recommended that any underlying performance
  measurement mechanisms not include any significant buffer delay, any
  significant buffer induced delay variation, or any significant loss
  due to buffer overflow or due to active queue management.

8.  Enabling and Disabling Sub-TLVs

  Implementations MUST make it possible to individually enable or
  disable the advertisement of each sub-TLV.

9.  Static Metric Override

  Implementations SHOULD permit the static configuration and/or manual
  override of dynamic measurements for each sub-TLV in order to
  simplify migration and to mitigate scenarios where dynamic
  measurements are not possible.

10.  Compatibility

  As per [RFC3630], an unrecognized TLV should be silently ignored.
  That is, it should not be processed but it should be included in LSAs
  sent to OSPF neighbors.

11.  Security Considerations

  This document does not introduce security issues beyond those
  discussed in [RFC3630].  OSPFv2 HMAC-SHA [RFC5709] provides
  additional protection for OSPFv2.  OSPFv3 IPsec [RFC4552] and OSPFv3
  Authentication Trailer [RFC7166] provide additional protection for
  OSPFv3.

  OSPF Keying and Authentication for Routing Protocols (KARP) [RFC6863]
  provides an analysis of OSPFv2 and OSPFv3 routing security, and
  OSPFv2 Security Extensions [OSPFSEC] provides extensions designed to
  address the identified gaps in OSPFv2.
















Giacalone, et al.            Standards Track                   [Page 15]

RFC 7471                OSPF TE Metric Extensions             March 2015


12.  IANA Considerations

  IANA maintains the registry for the Link TLV sub-TLVs.  For OSPF TE
  Metric Extensions, one new type code for each sub-TLV defined in this
  document has been registered, as follows:

  Value  Sub-TLV

    27   Unidirectional Link Delay

    28   Min/Max Unidirectional Link Delay

    29   Unidirectional Delay Variation

    30   Unidirectional Link Loss

    31   Unidirectional Residual Bandwidth

    32   Unidirectional Available Bandwidth

    33   Unidirectional Utilized Bandwidth

13.  References

13.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997,
             <http://www.rfc-editor.org/info/rfc2119>.

  [RFC3630]  Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
             (TE) Extensions to OSPF Version 2", RFC 3630, September
             2003, <http://www.rfc-editor.org/info/rfc3630>.

  [RFC5329]  Ishiguro, K., Manral, V., Davey, A., and A. Lindem, Ed.,
             "Traffic Engineering Extensions to OSPF Version 3", RFC
             5329, September 2008,
             <http://www.rfc-editor.org/info/rfc5329>.

  [IEEE754]  Institute of Electrical and Electronics Engineers,
             "Standard for Floating-Point Arithmetic", IEEE Standard
             754, August 2008.









Giacalone, et al.            Standards Track                   [Page 16]

RFC 7471                OSPF TE Metric Extensions             March 2015


13.2.  Informative References

  [RFC3209]  Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
             and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
             Tunnels", RFC 3209, December 2001,
             <http://www.rfc-editor.org/info/rfc3209>.

  [RFC4206]  Kompella, K. and Y. Rekhter, "Label Switched Paths (LSP)
             Hierarchy with Generalized Multi-Protocol Label Switching
             (GMPLS) Traffic Engineering (TE)", RFC 4206, October 2005,
             <http://www.rfc-editor.org/info/rfc4206>.

  [RFC4552]  Gupta, M. and N. Melam, "Authentication/Confidentiality
             for OSPFv3", RFC 4552, June 2006,
             <http://www.rfc-editor.org/info/rfc4552>.

  [RFC4655]  Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
             Computation Element (PCE)-Based Architecture", RFC 4655,
             August 2006, <http://www.rfc-editor.org/info/rfc4655>.

  [RFC5250]  Berger, L., Bryskin, I., Zinin, A., and R. Coltun, "The
             OSPF Opaque LSA Option", RFC 5250, July 2008,
             <http://www.rfc-editor.org/info/rfc5250>.

  [RFC5709]  Bhatia, M., Manral, V., Fanto, M., White, R., Barnes, M.,
             Li, T., and R. Atkinson, "OSPFv2 HMAC-SHA Cryptographic
             Authentication", RFC 5709, October 2009,
             <http://www.rfc-editor.org/info/rfc5709>.

  [RFC6374]  Frost, D. and S. Bryant, "Packet Loss and Delay
             Measurement for MPLS Networks", RFC 6374, September 2011,
             <http://www.rfc-editor.org/info/rfc6374>.

  [RFC6863]  Hartman, S. and D. Zhang, "Analysis of OSPF Security
             According to the Keying and Authentication for Routing
             Protocols (KARP) Design Guide", RFC 6863, March 2013,
             <http://www.rfc-editor.org/info/rfc6863>.

  [RFC7166]  Bhatia, M., Manral, V., and A. Lindem, "Supporting
             Authentication Trailer for OSPFv3", RFC 7166, March 2014,
             <http://www.rfc-editor.org/info/rfc7166>.

  [RFC7285]  Alimi, R., Ed., Penno, R., Ed., Yang, Y., Ed., Kiesel, S.,
             Previdi, S., Roome, W., Shalunov, S., and R. Woundy,
             "Application-Layer Traffic Optimization (ALTO) Protocol",
             RFC 7285, September 2014,
             <http://www.rfc-editor.org/info/rfc7285>.




Giacalone, et al.            Standards Track                   [Page 17]

RFC 7471                OSPF TE Metric Extensions             March 2015


  [OSPFSEC]  Bhatia, M., Hartman, S., Zhang, D., and A. Lindem, Ed.,
             "Security Extension for OSPFv2 when Using Manual Key
             Management", Work in Progress, draft-ietf-ospf-security-
             extension-manual-keying, November 2014.

Acknowledgments

  The authors would like to recognize Nabil Bitar, Edward Crabbe, Don
  Fedyk, Acee Lindem, David McDysan, and Ayman Soliman for their
  contributions to this document.

  The authors would also like to acknowledge Curtis Villamizar for his
  significant comments and direct content collaboration.






































Giacalone, et al.            Standards Track                   [Page 18]

RFC 7471                OSPF TE Metric Extensions             March 2015


Authors' Addresses

  Spencer Giacalone
  Unaffiliated

  EMail: [email protected]


  Dave Ward
  Cisco Systems
  170 West Tasman Dr.
  San Jose, CA  95134
  United States

  EMail: [email protected]


  John Drake
  Juniper Networks
  1194 N. Mathilda Ave.
  Sunnyvale, CA  94089
  United States

  EMail: [email protected]


  Alia Atlas
  Juniper Networks
  1194 N. Mathilda Ave.
  Sunnyvale, CA  94089
  United States

  EMail: [email protected]


  Stefano Previdi
  Cisco Systems
  Via Del Serafico 200
  00142 Rome
  Italy

  EMail: [email protected]









Giacalone, et al.            Standards Track                   [Page 19]