Internet Engineering Task Force (IETF)                       Y. Lee, Ed.
Request for Comments: 7446                                        Huawei
Category: Informational                                G. Bernstein, Ed.
ISSN: 2070-1721                                        Grotto Networking
                                                                  D. Li
                                                                 Huawei
                                                             W. Imajuku
                                                                    NTT
                                                          February 2015


         Routing and Wavelength Assignment Information Model
               for Wavelength Switched Optical Networks

Abstract

  This document provides a model of information needed by the Routing
  and Wavelength Assignment (RWA) process in Wavelength Switched
  Optical Networks (WSONs).  The purpose of the information described
  in this model is to facilitate constrained optical path computation
  in WSONs.  This model takes into account compatibility constraints
  between WSON signal attributes and network elements but does not
  include constraints due to optical impairments.  Aspects of this
  information that may be of use to other technologies utilizing a
  GMPLS control plane are discussed.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7446.










Lee, et al.                   Informational                     [Page 1]

RFC 7446                 WSON Information Model            February 2015


Copyright Notice

  Copyright (c) 2015 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1. Introduction ....................................................3
  2. Terminology .....................................................3
  3. Routing and Wavelength Assignment Information Model .............3
     3.1. Dynamic and Relatively Static Information ..................4
  4. Node Information (General) ......................................4
     4.1. Connectivity Matrix ........................................5
  5. Node Information (WSON Specific) ................................5
     5.1. Resource Accessibility/Availability ........................7
     5.2. Resource Signal Constraints and Processing Capabilities ...11
     5.3. Compatibility and Capability Details ......................12
          5.3.1. Shared Input or Output Indication ..................12
          5.3.2. Optical Interface Class List .......................12
          5.3.3. Acceptable Client Signal List ......................13
          5.3.4. Processing Capability List .........................13
  6. Link Information (General) .....................................13
     6.1. Administrative Group ......................................14
     6.2. Interface Switching Capability Descriptor .................14
     6.3. Link Protection Type (for This Link) ......................14
     6.4. Shared Risk Link Group Information ........................14
     6.5. Traffic Engineering Metric ................................15
     6.6. Port Label Restrictions ...................................15
          6.6.1. Port-Wavelength Exclusivity Example ................17
  7. Dynamic Components of the Information Model ....................18
     7.1. Dynamic Link Information (General) ........................19
     7.2. Dynamic Node Information (WSON Specific) ..................19
  8. Security Considerations ........................................19
  9. References .....................................................20
     9.1. Normative References ......................................20
     9.2. Informative References ....................................21
  Contributors ......................................................22
  Authors' Addresses ................................................23



Lee, et al.                   Informational                     [Page 2]

RFC 7446                 WSON Information Model            February 2015


1.  Introduction

  The purpose of the WSON information model described in this document
  is to facilitate constrained optical path computation, and as such it
  is not a general-purpose network management information model.  This
  constraint is frequently referred to as the "wavelength continuity"
  constraint, and the corresponding constrained optical path
  computation is known as the Routing and Wavelength Assignment (RWA)
  problem.  Hence, the information model must provide sufficient
  topology and wavelength restriction and availability information to
  support this computation.  More details on the RWA process and WSON
  subsystems and their properties can be found in [RFC6163].  The model
  defined here includes constraints between WSON signal attributes and
  network elements but does not include optical impairments.

  In addition to presenting an information model suitable for path
  computation in WSON, this document also highlights model aspects that
  may have general applicability to other technologies utilizing a
  GMPLS control plane.  The portion of the information model applicable
  to technologies beyond WSON is referred to as "general" to
  distinguish it from the "WSON-specific" portion that is applicable
  only to WSON technology.

2.  Terminology

  Refer to [RFC6163] for definitions of Reconfigurable Optical Add/Drop
  Multiplexer (ROADM), RWA, Wavelength Conversion, Wavelength Division
  Multiplexing (WDM), WSON, and other related terminology used in this
  document.

3.  Routing and Wavelength Assignment Information Model

  The WSON RWA information model in this document comprises four
  categories of information.  The categories are independent of whether
  the information comes from a switching subsystem or from a line
  subsystem -- a switching subsystem refers to WSON nodes such as a
  ROADM or an Optical Add/Drop Multiplexer (OADM), and a line subsystem
  refers to devices such as WDM or Optical Amplifier.  The categories
  are these:

  o  Node Information

  o  Link Information

  o  Dynamic Node Information

  o  Dynamic Link Information




Lee, et al.                   Informational                     [Page 3]

RFC 7446                 WSON Information Model            February 2015


  Note that this is roughly the categorization used in Section 7 of
  [G.7715].

  In the following, where applicable, the Reduced Backus-Naur Form
  (RBNF) syntax of [RBNF] is used to aid in defining the RWA
  information model.

3.1.  Dynamic and Relatively Static Information

  All the RWA information of concern in a WSON network is subject to
  change over time.  Equipment can be upgraded; links may be placed in
  or out of service and the like.  However, from the point of view of
  RWA computations, there is a difference between information that can
  change with each successive connection establishment in the network
  and information that is relatively static and independent of
  connection establishment.  A key example of the former is link
  wavelength usage since this can change with connection setup/teardown
  and this information is a key input to the RWA process.  Examples of
  relatively static information are the potential port connectivity of
  a WDM ROADM, and the channel spacing on a WDM link.

  This document separates, where possible, dynamic and static
  information so that these can be kept separate in possible encodings.
  This allows for separate updates of these two types of information,
  thereby reducing processing and traffic load caused by the timely
  distribution of the more dynamic RWA WSON information.

4.  Node Information (General)

  The node information described here contains the relatively static
  information related to a WSON node.  This includes connectivity
  constraints amongst ports and wavelengths since WSON switches can
  exhibit asymmetric switching properties.  Additional information
  could include properties of wavelength converters in the node, if any
  are present.  In [Switch] it was shown that the wavelength
  connectivity constraints for a large class of practical WSON devices
  can be modeled via switched and fixed connectivity matrices along
  with corresponding switched and fixed port constraints.  These
  connectivity matrices are included with the node information, while
  the switched and fixed port wavelength constraints are included with
  the link information.

  Formally,

  <Node_Information> ::= <Node_ID> [<ConnectivityMatrix>...]

  Where the Node_ID would be an appropriate identifier for the node
  within the WSON RWA context.



Lee, et al.                   Informational                     [Page 4]

RFC 7446                 WSON Information Model            February 2015


  Note that multiple connectivity matrices are allowed and hence can
  fully support the most-general cases enumerated in [Switch].

4.1.  Connectivity Matrix

  The connectivity matrix (ConnectivityMatrix) represents either the
  potential connectivity matrix for asymmetric switches (e.g., ROADMs
  and such) or fixed connectivity for an asymmetric device such as a
  multiplexer.  Note that this matrix does not represent any particular
  internal blocking behavior but indicates which input ports and
  wavelengths could possibly be connected to a particular output port.
  For a switch or ROADM, representing blocking that is dependent on the
  internal state is beyond the scope of this document.  Due to its
  highly implementation-dependent nature, it would most likely not be
  subject to standardization in the future.  The connectivity matrix is
  a conceptual M by N matrix representing the potential switched or
  fixed connectivity, where M represents the number of input ports and
  N the number of output ports.  This is a "conceptual" matrix since
  the matrix tends to exhibit structure that allows for very compact
  representations that are useful for both transmission and path
  computation.

  Note that the connectivity matrix information element can be useful
  in any technology context where asymmetric switches are utilized.

  <ConnectivityMatrix> ::= <MatrixID>

                           <ConnType>

                           <Matrix>

  Where

  <MatrixID> is a unique identifier for the matrix.

  <ConnType> can be either 0 or 1 depending upon whether the
  connectivity is either fixed or switched.

  <Matrix> represents the fixed or switched connectivity in that
  Matrix(i, j) = 0 or 1 depending on whether input port i can connect
  to output port j for one or more wavelengths.

5.  Node Information (WSON Specific)

  As discussed in [RFC6163], a WSON node may contain electro-optical
  subsystems such as regenerators, wavelength converters or entire
  switching subsystems.  The model present here can be used in
  characterizing the accessibility and availability of limited



Lee, et al.                   Informational                     [Page 5]

RFC 7446                 WSON Information Model            February 2015


  resources such as regenerators or wavelength converters as well as
  WSON signal attribute constraints of electro-optical subsystems.  As
  such, this information element is fairly specific to WSON
  technologies.

  In this document, the term "resource" is used to refer to a physical
  component of a WSON node such as a regenerator or a wavelength
  converter.  Multiple instances of such components are often present
  within a single WSON node.  This term is not to be confused with the
  concept of forwarding or switching resources such as bandwidth or
  lambdas.

  A WSON node may include regenerators or wavelength converters
  arranged in a shared pool.  As discussed in [RFC6163], a WSON node
  can also include WDM switches that use optical-electronic-optical
  (OEO) processing.  There are a number of different approaches used in
  the design of WDM switches containing regenerator or converter pools.
  However, from the point of view of path computation, the following
  need to be known:

  1.  The nodes that support regeneration or wavelength conversion.

  2.  The accessibility and availability of a wavelength converter to
      convert from a given input wavelength on a particular input port
      to a desired output wavelength on a particular output port.

  3.  Limitations on the types of signals that can be converted and the
      conversions that can be performed.

  Since resources tend to be packaged together in blocks of similar
  devices, e.g., on line cards or other types of modules, the
  fundamental unit of identifiable resource in this document is the
  "resource block".

  A resource block is a collection of resources from the same WSON node
  that are grouped together for administrative reasons and for ease of
  encoding in the protocols.  All resources in the same resource block
  behave in the same way and have similar characteristics relevant to
  the optical system, e.g., processing properties, accessibility, etc.

  A resource pool is a collection of resource blocks for the purpose of
  representing throughput or cross-connect capabilities in a WSON node.
  A resource pool associates input ports or links on the node with
  output ports or links and is used to indicate how signals may be
  passed from an input port or link to an output port or link by way of
  a resource block (in other words, by way of a resource).  A resource
  pool may, therefore, be modeled as a matrix.




Lee, et al.                   Informational                     [Page 6]

RFC 7446                 WSON Information Model            February 2015


  A resource block may be present in multiple resource pools.

  This leads to the following formal high-level model:

  <Node_Information> ::= <Node_ID>

                         [<ConnectivityMatrix>...]

                         [<ResourcePool>]

  Where

  <ResourcePool> ::= <ResourceBlockInfo>...

                    [<ResourceAccessibility>...]

                    [<ResourceWaveConstraints>...]

                    [<RBPoolState>]

  First, the accessibility of resource blocks is addressed; then, their
  properties are discussed.

5.1.  Resource Accessibility/Availability

  A similar technique as used to model ROADMs, and optical switches can
  be used to model regenerator/converter accessibility.  This technique
  was generally discussed in [RFC6163] and consisted of a matrix to
  indicate possible connectivity along with wavelength constraints for
  links/ports.  Since regenerators or wavelength converters may be
  considered a scarce resource, it is desirable that the model include,
  if desired, the usage state (availability) of individual regenerators
  or converters in the pool.  Models that incorporate more state to
  further reveal blocking conditions on input or output to particular
  converters are for further study and not included here.

  The three-stage model is shown schematically in Figures 1 and 2.  The
  difference between the two figures is that in Figure 1 it's assumed
  that each signal that can get to a resource block may do so, while in
  Figure 2 the access to sets of resource blocks is via a shared fiber
  that imposes its own wavelength collision constraint.  Figure 1 shows
  that there can be more than one input to each resource block since
  each input represents a single wavelength signal, while Figure 2
  shows a single WDM input or output, e.g., a fiber, to/from each set
  of blocks.






Lee, et al.                   Informational                     [Page 7]

RFC 7446                 WSON Information Model            February 2015


  This model assumes N input ports (fibers), P resource blocks
  containing one or more identical resources (e.g., wavelength
  converters), and M output ports (fibers).  Since not all input ports
  can necessarily reach each resource block, the model starts with a
  resource pool input matrix RI(i,p) = {0,1} depending on whether input
  port i can potentially reach resource block p.

  Since not all wavelengths can necessarily reach all the resources or
  the resources may have limited input wavelength range, the model has
  a set of relatively static input port constraints for each resource.
  In addition, if the access to a set of resource blocks is via a
  shared fiber (Figure 2), this would impose a dynamic wavelength
  availability constraint on that shared fiber.  The resource block
  input port constraint is modeled via a static wavelength set
  mechanism, and the case of shared access to a set of blocks is
  modeled via a dynamic wavelength set mechanism.

  Next, a state vector RA(j) = {0,...,k} is used to track the number of
  resources in resource block j in use.  This is the only state kept in
  the resource pool model.  This state is not necessary for modeling
  "fixed" transponder system or full OEO switches with WDM interfaces,
  i.e., systems where there is no sharing.

  After that, a set of static resource output wavelength constraints
  and possibly dynamic shared output fiber constraints maybe used.  The
  static constraints indicate what wavelengths a particular resource
  block can generate or is restricted to generating, e.g., a fixed
  regenerator would be limited to a single lambda.  The dynamic
  constraints would be used in the case where a single shared fiber is
  used to output the resource block (Figure 2).

  Finally, to complete the model, a resource pool output matrix RE(p,k)
  = {0,1} depending on whether the output from resource block p can
  reach output port k, may be used.

















Lee, et al.                   Informational                     [Page 8]

RFC 7446                 WSON Information Model            February 2015


     I1   +-------------+                       +-------------+ O1
    ----->|             |      +--------+       |             |----->
     I2   |             +------+ Rb #1  +-------+             | O2
    ----->|             |      +--------+       |             |----->
          |             |                       |             |
          | Resource    |      +--------+       |  Resource   |
          | Pool        +------+        +-------+  Pool       |
          |             |      + Rb #2  +       |             |
          | Input       +------+        +-------|  Output     |
          | Connection  |      +--------+       |  Connection |
          | Matrix      |           .           |  Matrix     |
          |             |           .           |             |
          |             |           .           |             |
     IN   |             |      +--------+       |             | OM
    ----->|             +------+ Rb #P  +-------+             |----->
          |             |      +--------+       |             |
          +-------------+   ^               ^   +-------------+
                            |               |
                            |               |
                            |               |
                            |               |

                   Input wavelength      Output wavelength
                   constraints for       constraints for
                   each resource         each resource

  Note: Rb is a resource block.

          Figure 1: Schematic Diagram of the Resource Pool Model






















Lee, et al.                   Informational                     [Page 9]

RFC 7446                 WSON Information Model            February 2015


   I1   +-------------+                       +-------------+ O1
  ----->|             |      +--------+       |             |----->
   I2   |             +======+ Rb #1  +-+     |             | O2
  ----->|             |      +--------+ |     |             |----->
        |             |                 |=====|             |
        | Resource    |      +--------+ |     |  Resource   |
        | Pool        |    +-+ Rb #2  +-+     |  Pool       |
        |             |    | +--------+       |             |
        | Input       |====|                  |  Output     |
        | Connection  |    | +--------+       |  Connection |
        | Matrix      |    +-| Rb #3  |=======|  Matrix     |
        |             |      +--------+       |             |
        |             |           .           |             |
        |             |           .           |             |
        |             |           .           |             |
   IN   |             |      +--------+       |             | OM
  ----->|             +======+ Rb #P  +=======+             |----->
        |             |      +--------+       |             |
        +-------------+   ^               ^   +-------------+
                          |               |
                          |               |
                          |               |
              Single (shared) fibers for block input and output

               Input wavelength          Output wavelength
               availability for          availability for
               each block input fiber    each block output fiber

  Note: Rb is a resource block.

   Figure 2: Schematic Diagram of the Resource Pool Model with
                   Shared Block Accessibility

  Formally, the model can be specified as:

  <ResourceAccessibility> ::= <PoolInputMatrix>

                              <PoolOutputMatrix>


  <ResourceWaveConstraints> ::= <InputWaveConstraints>

                                <OutputWaveConstraints>


  <RBSharedAccessWaveAvailability> ::= [<InAvailableWavelengths>]

                                       [<OutAvailableWavelengths>]



Lee, et al.                   Informational                    [Page 10]

RFC 7446                 WSON Information Model            February 2015


  <RBPoolState> ::=    <ResourceBlockID>

                       <NumResourcesInUse>

                       [<RBSharedAccessWaveAvailability>]

                       [<RBPoolState>]

  Note that, except for <RBPoolState>, all the components of
  <ResourcePool> are relatively static.  Also, the
  <InAvailableWavelengths> and <OutAvailableWavelengths> are only used
  in the cases of shared input or output access to the particular
  block.  See the resource block information in the next section for
  how this is specified.

5.2.  Resource Signal Constraints and Processing Capabilities

  The wavelength conversion abilities of a resource (e.g., regenerator,
  wavelength converter) were modeled in the <OutputWaveConstraints>
  previously discussed.  As discussed in [RFC6163], the constraints on
  an electro-optical resource can be modeled in terms of input
  constraints, processing capabilities, and output constraints:

  <ResourceBlockInfo> ::= <ResourceBlockSet>

                          [<InputConstraints>]

                          [<ProcessingCapabilities>]

                          [<OutputConstraints>]

  Where  <ResourceBlockSet> is a list of resource block identifiers
  with the same characteristics.  If this set is missing, the
  constraints are applied to the entire network element.

  The <InputConstraints> are constraints are based on signal
  compatibility and/or shared access constraint indication.  The
  details of these constraints are defined in Section 5.3.

  <InputConstraints> ::= <SharedInput>

                         [<OpticalInterfaceClassList>]

                         [<ClientSignalList>]

  The <ProcessingCapabilities> are important operations that the
  resource (or network element) can perform on the signal.  The details
  of these capabilities are defined in Section 5.3.



Lee, et al.                   Informational                    [Page 11]

RFC 7446                 WSON Information Model            February 2015


  <ProcessingCapabilities> ::= [<NumResources>]

                               [<RegenerationCapabilities>]

                               [<FaultPerfMon>]

                               [<VendorSpecific>]

  The <OutputConstraints> are either restrictions on the properties of
  the signal leaving the block, options concerning the signal
  properties when leaving the resource, or shared fiber output
  constraint indication.

  <OutputConstraints> := <SharedOutput>

                         [<OpticalInterfaceClassList>]

                         [<ClientSignalList>]

5.3.  Compatibility and Capability Details

5.3.1.  Shared Input or Output Indication

  As discussed in Section 5.2 and shown in Figure 2, the input or
  output access to a resource block may be via a shared fiber.  The
  <SharedInput> and <SharedOutput> elements are indicators for this
  condition with respect to the block being described.

5.3.2.  Optical Interface Class List

     <OpticalInterfaceClassList> ::= <OpticalInterfaceClass> ...

  The Optical Interface Class is a unique number that identifies all
  information related to optical characteristics of a physical
  interface.  The class may include other optical parameters related to
  other interface properties.  A class always includes signal
  compatibility information.

  The content of each class is out of the scope of this document and
  can be defined by other entities (e.g., the ITU, optical equipment
  vendors, etc.).

  Since even current implementation of physical interfaces may support
  different optical characteristics, a single interface may support
  multiple interface classes.  Which optical interface class is used
  among all the ones available for an interface is out of the scope of
  this document but is an output of the RWA process.




Lee, et al.                   Informational                    [Page 12]

RFC 7446                 WSON Information Model            February 2015


5.3.3.  Acceptable Client Signal List

  The list is simply:

  <ClientSignalList>::=[<G-PID>]...

  Where the Generalized Protocol Identifiers (G-PID) object represents
  one of the IETF-standardized G-PID values as defined in [RFC3471] and
  [RFC4328].

5.3.4.  Processing Capability List

  The ProcessingCapabilities are defined in Section 5.2.

  The processing capability list sub-TLV is a list of processing
  functions that the WSON network element (NE) can perform on the
  signal including:

     1.  number of resources within the block

     2.  regeneration capability

     3.  fault and performance monitoring

     4.  vendor-specific capability

  Note that the code points for fault and performance monitoring and
  vendor-specific capability are subject to further study.

6.  Link Information (General)

  MPLS-TE routing protocol extensions for OSPF [RFC3630] and IS-IS
  [RFC5305], along with GMPLS routing protocol extensions for OSPF
  [RFC4203] and IS-IS [RFC5307] provide the bulk of the relatively
  static link information needed by the RWA process.  However, WSONs
  bring in additional link-related constraints.  These stem from
  characterizing WDM line systems, restricting laser transmitter
  tuning, and switching subsystem port wavelength constraints, e.g.,
  "colored" ROADM drop ports.

  The following syntax summarizes both information from existing GMPLS
  routing protocols and new information that may be needed by the RWA
  process.








Lee, et al.                   Informational                    [Page 13]

RFC 7446                 WSON Information Model            February 2015


  <LinkInfo> ::=  <LinkID>

                  [<AdministrativeGroup>]

                  [<InterfaceCapDesc>]

                  [<Protection>]

                  [<SRLG>...]

                  [<TrafficEngineeringMetric>]

                  [<PortLabelRestriction>...]

  Note that these additional link characteristics only apply to line-
  side ports of a WDM system or add/drop ports pertaining to the
  resource pool (e.g., regenerator or wavelength converter pool).  The
  advertisement of input/output tributary ports is not intended here.

6.1.  Administrative Group

  Administrative Group: Defined in [RFC3630] and extended for MPLS-TE
  [RFC7308].  Each set bit corresponds to one administrative group
  assigned to the interface.  A link may belong to multiple groups.
  This is a configured quantity and can be used to influence routing
  decisions.

6.2.  Interface Switching Capability Descriptor

  InterfaceSwCapDesc: Defined in [RFC4202]; lets us know the different
  switching capabilities on this GMPLS interface.  In both [RFC4203]
  and [RFC5307], this information gets combined with the maximum Link
  State Protocol Data Unit (LSP) bandwidth that can be used on this
  link at eight different priority levels.

6.3.  Link Protection Type (for This Link)

  Protection: Defined in [RFC4202] and implemented in [RFC4203] and
  [RFC5307].  Used to indicate what protection, if any, is guarding
  this link.

6.4.  Shared Risk Link Group Information

  SRLG: Defined in [RFC4202] and implemented in [RFC4203] and
  [RFC5307].  This allows for the grouping of links into shared risk
  groups, i.e., those links that are likely, for some reason, to fail
  at the same time.




Lee, et al.                   Informational                    [Page 14]

RFC 7446                 WSON Information Model            February 2015


6.5.  Traffic Engineering Metric

  TrafficEngineeringMetric: Defined in [RFC3630] and [RFC5305].  This
  allows for the identification of a data-channel link metric value for
  traffic engineering that is separate from the metric used for path
  cost computation of the control plane.

  Note that multiple "link metric values" could find use in optical
  networks; however, it would be more useful to the RWA process to
  assign these specific meanings such as "link mile" metric,
  "probability of failure" metric, etc.

6.6. Port Label Restrictions

  Port label restrictions could be applied generally to any label types
  in GMPLS by adding new kinds of restrictions.  Wavelength is a type
  of label.

  Port label (wavelength) restrictions (PortLabelRestriction) model the
  label (wavelength) restrictions that the link and various optical
  devices, such as Optical Cross-Connects (OXCs), ROADMs, and waveband
  multiplexers, may impose on a port.  These restrictions tell us what
  wavelength may or may not be used on a link and are relatively
  static.  This plays an important role in fully characterizing a WSON
  switching device [Switch].  Port wavelength restrictions are
  specified relative to the port in general or to a specific
  connectivity matrix (Section 4.1).  [Switch] gives an example where
  both switch and fixed connectivity matrices are used and both types
  of constraints occur on the same port.

  <PortLabelRestriction> ::= <MatrixID>

                             <RestrictionType>

                             <Restriction parameters list>


  <Restriction parameters list> ::=

                       <Simple label restriction parameters> |

                       <Channel count restriction parameters> |

                       <Label range restriction parameters> |

                       <Simple+channel restriction parameters> |

                       <Exclusive label restriction parameters>



Lee, et al.                   Informational                    [Page 15]

RFC 7446                 WSON Information Model            February 2015


  <Simple label restriction parameters> ::= <LabelSet> ...


  <Channel count restriction parameters> ::= <MaxNumChannels>


  <Label range restriction parameters> ::= <MaxLabelRange>

                                           (<LabelSet> ...)


  <Simple+channel restriction parameters> ::= <MaxNumChannels>

                                              (<LabelSet> ...)


  <Exclusive label restriction parameters> ::= <LabelSet> ...

  Where

  MatrixID is the ID of the corresponding connectivity matrix (Section
  4.1).

  The RestrictionType parameter is used to specify general port
  restrictions and matrix-specific restrictions.  It can take the
  following values and meanings:

     SIMPLE_LABEL:   Simple label (wavelength) set restriction; the
        LabelSet parameter is required.

     CHANNEL_COUNT: The number of channels is restricted to be less
        than or equal to the MaxNumChannels parameter (which is
        required).

     LABEL_RANGE:  Used to indicate a restriction on a range of labels
        that can be switched.  For example, a waveband device with a
        tunable center frequency and passband.  This constraint is
        characterized by the MaxLabelRange parameter, which indicates
        the maximum range of the labels, e.g., which may represent a
        waveband in terms of channels.  Note that an additional
        parameter can be used to indicate the overall tuning range.
        Specific center frequency tuning information can be obtained
        from information about the dynamic channel in use.  It is
        assumed that both center frequency and bandwidth (Q) tuning can
        be done without causing faults in existing signals.






Lee, et al.                   Informational                    [Page 16]

RFC 7446                 WSON Information Model            February 2015


     SIMPLE LABEL and CHANNEL COUNT: In this case, the accompanying
        label set and MaxNumChannels indicate labels permitted on the
        port and the maximum number of labels that can be
        simultaneously used on the port.

     LINK LABEL_EXCLUSIVITY: A label (wavelength) can be used at most
        once among a given set of ports.  The set of ports is specified
        as a parameter to this constraint.

  Restriction-specific parameters are used with one or more of the
  previously listed restriction types.  The currently defined
  parameters are:

     LabelSet is a conceptual set of labels (wavelengths).

     MaxNumChannels is the maximum number of channels that can be
        simultaneously used (relative to either a port or a matrix).

     LinkSet is a conceptual set of ports.

  MaxLabelRange indicates the maximum range of the labels.  For
  example, if the port is a "colored" drop port of a ROADM, then there
  are two restrictions: (a) CHANNEL_COUNT, with MaxNumChannels = 1, and
  (b) SIMPLE_WAVELENGTH, with the wavelength set consisting of a single
  member corresponding to the frequency of the permitted wavelength.
  See [Switch] for a complete waveband example.

  This information model for port wavelength (label) restrictions is
  fairly general in that it can be applied to ports that have label
  restrictions only or to ports that are part of an asymmetric switch
  and have label restrictions.  In addition, the types of label
  restrictions that can be supported are extensible.

6.6.1.  Port-Wavelength Exclusivity Example

  Although there can be many different ROADM or switch architectures
  that can lead to the constraint where a lambda (label) maybe used at
  most once on a set of ports, Figure 3 shows a ROADM architecture
  based on components known as Wavelength Selective Switches (WSSes)
  [OFC08].  This ROADM is composed of splitters, combiners, and WSSes.
  This ROADM has 11 output ports, which are numbered in the diagram.
  Output ports 1-8 are known as drop ports and are intended to support
  a single wavelength.  Drop ports 1-4 output from WSS 2, which is fed
  from WSS 1 via a single fiber.  Due to this internal structure, a
  constraint is placed on the output ports 1-4 that a lambda can be
  used only once over the group of ports (assuming unicast and not
  multicast operation).  The output ports 5-8 have a similar constraint
  due to the internal structure.



Lee, et al.                   Informational                    [Page 17]

RFC 7446                 WSON Information Model            February 2015


                           |               A
                           v            10 |
                       +-------+        +-------+
                       | Split |        |WSS  6 |
                       +-------+        +-------+
    +----+              | | | |          | | | |
    | W  |              | | | |          | | | +-------+   +----+
    | S  |--------------+ | | |    +-----+ | +----+    |   | S  |
  9 | S  |----------------|---|----|-------|------|----|---| p  |
  --|    |----------------|---|----|-------|----+ |    +---| l  |<
    | 5  |--------------+ |   |    | +-----+    | |     +--| i  |
    +----+              | |   |    | |   +------|-|-----|--| t  |
               +--------|-+   +----|-|---|------|----+  |  +----+
    +----+     |        |          | |   |      | |  |  |
    | S  |-----|--------|----------+ |   |      | |  |  |  +----+
    | p  |-----|--------|------------|---|------|----|--|--| W  |
  ->| l  |-----|-----+  | +----------+   |      | |  +--|--| S  |11
    | i  |---+ |     |  | | +------------|------|-------|--| S  |->
    | t  |   | |     |  | | |            |      | | +---|--|    |
    +----+   | | +---|--|-|-|------------|------|-|-|---+  | 7  |
             | | |   +--|-|-|--------+ | |      | | |      +----+
             | | |      | | |        | | |      | | |
            +------+   +------+     +------+   +------+
            | WSS 1|   | Split|     | WSS 3|   | Split|
            +--+---+   +--+---+     +--+---+   +--+---+
               |          A            |          A
               v          |            v          |
            +-------+  +--+----+    +-------+  +--+----+
            | WSS 2 |  | Comb. |    | WSS 4 |  | Comb. |
            +-------+  +-------+    +-------+  +-------+
            1|2|3|4|    A A A A     5|6|7|8|    A A A A
             v v v v    | | | |      v v v v    | | | |

  Figure 3: A ROADM Composed from Splitter, Combiners, and WSSes

7.  Dynamic Components of the Information Model

  In the previously presented information model, there are a limited
  number of information elements that are dynamic, i.e., subject to
  change with subsequent establishment and teardown of connections.
  Depending on the protocol used to convey this overall information
  model, it may be possible to send this dynamic information separately
  from the relatively larger amount of static information needed to
  characterize WSONs and their network elements.







Lee, et al.                   Informational                    [Page 18]

RFC 7446                 WSON Information Model            February 2015


7.1.  Dynamic Link Information (General)

  For WSON links, the wavelength availability and which wavelengths are
  in use for shared backup purposes can be considered dynamic
  information and hence are grouped with the dynamic information in the
  following set:

  <DynamicLinkInfo> ::=  <LinkID>

                         <AvailableLabels>

                         [<SharedBackupLabels>]

  AvailableLabels is a set of labels (wavelengths) currently available
  on the link.  Given this information and the port wavelength
  restrictions, one can also determine which wavelengths are currently
  in use.  This parameter could potentially be used with other
  technologies that GMPLS currently covers or may cover in the future.

  SharedBackupLabels is a set of labels (wavelengths) currently used
  for shared backup protection on the link.  An example usage of this
  information in a WSON setting is given in [Shared].  This parameter
  could potentially be used with other technologies that GMPLS
  currently covers or may cover in the future.

  Note that the above does not dictate a particular encoding or
  placement for available label information.  In some routing
  protocols, it may be advantageous or required to place this
  information within another information element such as the Interface
  Switching Capability Descriptor (ISCD).  Consult the extensions that
  are specific to each routing protocol for details of placement of
  information elements.

7.2.  Dynamic Node Information (WSON Specific)

  Currently the only node information that can be considered dynamic is
  the resource pool state, and it can be isolated into a dynamic node
  information element as follows:

  <DynamicNodeInfo> ::=  <NodeID> [<ResourcePool>]

8.  Security Considerations

  This document discusses an information model for RWA computation in
  WSONs.  From a security standpoint, such a model is very similar to
  the information that can be currently conveyed via GMPLS routing
  protocols.  Such information includes network topology, link state
  and current utilization, as well as the capabilities of switches and



Lee, et al.                   Informational                    [Page 19]

RFC 7446                 WSON Information Model            February 2015


  routers within the network.  As such, this information should be
  protected from disclosure to unintended recipients.  In addition, the
  intentional modification of this information can significantly affect
  network operations, particularly due to the large capacity of the
  optical infrastructure to be controlled.  A general discussion on
  security in GMPLS networks can be found in [RFC5920].

9.  References

9.1.  Normative References

  [G.7715]  ITU-T, "Architecture and requirements for routing in the
            automatically switched optical networks", ITU-T
            Recommendation G.7715, June 2002.

  [RBNF]    Farrel, A., "Routing Backus-Naur Form (RBNF): A Syntax Used
            to Form Encoding Rules in Various Routing Protocol
            Specifications", RFC 5511, April 2009,
            <http://www.rfc-editor.org/info/rfc5511>.

  [RFC3471] Berger, L., Ed., "Generalized Multi-Protocol Label
            Switching (GMPLS) Signaling Functional Description", RFC
            3471, January 2003,
            <http://www.rfc-editor.org/info/rfc3471>.

  [RFC3630] van der Meer, J., Mackie, D., Swaminathan, V., Singer, D.,
            and P. Gentric, "RTP Payload Format for Transport of MPEG-4
            Elementary Streams", RFC 3640, November 2003,
            <http://www.rfc-editor.org/info/rfc3640>.

  [RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions
            in Support of Generalized Multi-Protocol Label Switching
            (GMPLS)", RFC 4202, October 2005,
            <http://www.rfc-editor.org/info/rfc4202>.

  [RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in
            Support of Generalized Multi-Protocol Label Switching
            (GMPLS)", RFC 4203, October 2005,
            <http://www.rfc-editor.org/info/rfc4203>.

  [RFC4328] Papadimitriou, D., Ed., "Generalized Multi-Protocol Label
            Switching (GMPLS) Signaling Extensions for G.709 Optical
            Transport Networks Control", RFC 4328, January 2006,
            <http://www.rfc-editor.org/info/rfc4328>.

  [RFC5305] Li, T. and H. Smit, "IS-IS Extensions for Traffic
            Engineering", RFC 5305, October 2008,
            <http://www.rfc-editor.org/info/rfc5305>.



Lee, et al.                   Informational                    [Page 20]

RFC 7446                 WSON Information Model            February 2015


  [RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions
            in Support of Generalized Multi-Protocol Label Switching
            (GMPLS)", RFC 5307, October 2008,
            <http://www.rfc-editor.org/info/rfc5307>.

  [RFC6163] Lee, Y., Ed., Bernstein, G., Ed., and W. Imajuku,
            "Framework for GMPLS and Path Computation Element (PCE)
            Control of Wavelength Switched Optical Networks (WSONs)",
            RFC 6163, April 2011,
            <http://www.rfc-editor.org/info/rfc6163>.

  [RFC7308] Osborne, E., "Extended Administrative Groups in MPLS
            Traffic Engineering (MPLS-TE)", RFC 7308, July 2014,
            <http://www.rfc-editor.org/info/rfc7308>.

9.2.  Informative References

  [OFC08]   Roorda, P., and B. Collings, "Evolution to Colorless and
            Directionless ROADM Architectures", Optical Fiber
            Communication / National Fiber Optic Engineers Conference
            (OFC/NFOEC), 2008, pp. 1-3.

  [RFC5920] Fang, L., Ed., "Security Framework for MPLS and GMPLS
            Networks", RFC 5920, July 2010,
            <http://www.rfc-editor.org/info/rfc5920>.

  [Shared]  Bernstein, G., and Y. Lee, "Shared Backup Mesh Protection
            in PCE-based WSON Networks", iPOP 2008.

  [Switch]  Bernstein, G., Lee, Y., Gavler, A., and J. Martensson,
            "Modeling WDM Wavelength Switching Systems for Use in GMPLS
            and Automated Path Computation", Journal of Optical
            Communications and Networking, vol. 1, June 2009, pp.
            187-195.

















Lee, et al.                   Informational                    [Page 21]

RFC 7446                 WSON Information Model            February 2015


Contributors

  Diego Caviglia
  Ericsson
  Via A. Negrone 1/A 16153
  Genoa, Italy

  Phone: +39 010 600 3736
  EMail: diego.caviglia@(marconi.com, ericsson.com)


  Anders Gavler
  Acreo AB
  Electrum 236
  SE - 164 40 Kista
  Sweden

  EMail: [email protected]


  Jonas Martensson
  Acreo AB
  Electrum 236
  SE - 164 40 Kista
  Sweden

  EMail: [email protected]


  Itaru Nishioka
  NEC Corp.
  1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666
  Japan

  Phone: +81 44 396 3287
  EMail: [email protected]


  Lyndon Ong
  Ciena
  EMail: [email protected]


  Cyril Margaria
  EMail: [email protected]






Lee, et al.                   Informational                    [Page 22]

RFC 7446                 WSON Information Model            February 2015


Authors' Addresses

  Young Lee (editor)
  Huawei Technologies
  5369 Legacy Drive, Building 3
  Plano, TX  75023
  United States

  Phone: (469) 277-5838
  EMail: [email protected]


  Greg M. Bernstein (editor)
  Grotto Networking
  Fremont, CA
  United States

  Phone: (510) 573-2237
  EMail: [email protected]


  Dan Li
  Huawei Technologies Co., Ltd.
  F3-5-B R&D Center, Huawei Base,
  Bantian, Longgang District
  Shenzhen 518129
  China

  Phone: +86-755-28973237
  EMail: [email protected]


  Wataru Imajuku
  NTT Network Innovation Labs
  1-1 Hikari-no-oka, Yokosuka, Kanagawa
  Japan

  Phone: +81-(46) 859-4315
  EMail: [email protected]












Lee, et al.                   Informational                    [Page 23]