Internet Engineering Task Force (IETF)                           G. Chen
Request for Comments: 7445                                       H. Deng
Category: Informational                                     China Mobile
ISSN: 2070-1721                                               D. Michaud
                                                  Rogers Communications
                                                            J. Korhonen
                                                   Broadcom Corporation
                                                           M. Boucadair
                                                         France Telecom
                                                             March 2015


         Analysis of Failure Cases in IPv6 Roaming Scenarios

Abstract

  This document identifies a set of failure cases that may be
  encountered by IPv6-enabled mobile customers in roaming scenarios.
  The analysis reveals that the failure causes include improper
  configurations, incomplete functionality support in equipment, and
  inconsistent IPv6 deployment strategies between the home and the
  visited networks.

Status of This Memo

  This document is not an Internet Standards Track specification; it is
  published for informational purposes.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Not all documents
  approved by the IESG are a candidate for any level of Internet
  Standard; see Section 2 of RFC 5741.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  http://www.rfc-editor.org/info/rfc7445.













Chen, et al.                  Informational                     [Page 1]

RFC 7445                  IPv6 Roaming Analysis               March 2015


Copyright Notice

  Copyright (c) 2015 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (http://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
    1.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   3
  2.  Background  . . . . . . . . . . . . . . . . . . . . . . . . .   4
    2.1.  Roaming Architecture: An Overview . . . . . . . . . . . .   4
      2.1.1.  Home Routed Mode  . . . . . . . . . . . . . . . . . .   4
      2.1.2.  Local Breakout Mode . . . . . . . . . . . . . . . . .   5
    2.2.  Typical Roaming Scenarios . . . . . . . . . . . . . . . .   6
  3.  Failure Case in the Network Attachment  . . . . . . . . . . .   7
  4.  Failure Cases in the PDP/PDN Creation . . . . . . . . . . . .   9
    4.1.  Case 1: Splitting Dual-Stack Bearer . . . . . . . . . . .   9
    4.2.  Case 2: IPv6 PDP/PDN Unsupported  . . . . . . . . . . . .  11
    4.3.  Case 3: Inappropriate Roaming APN Set . . . . . . . . . .  11
    4.4.  Case 4: Fallback Failure  . . . . . . . . . . . . . . . .  11
  5.  Failure Cases in the Service Requests . . . . . . . . . . . .  12
    5.1.  Lack of IPv6 Support in Applications  . . . . . . . . . .  12
    5.2.  464XLAT Support . . . . . . . . . . . . . . . . . . . . .  12
  6.  HLR/HSS User Profile Setting  . . . . . . . . . . . . . . . .  13
  7.  Discussion  . . . . . . . . . . . . . . . . . . . . . . . . .  14
  8.  Security Considerations . . . . . . . . . . . . . . . . . . .  15
  9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  16
    9.1.  Normative References  . . . . . . . . . . . . . . . . . .  16
    9.2.  Informative References  . . . . . . . . . . . . . . . . .  16
  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  18
  Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .  18
  Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  19









Chen, et al.                  Informational                     [Page 2]

RFC 7445                  IPv6 Roaming Analysis               March 2015


1.  Introduction

  Many mobile operators have deployed IPv6, or are about to, in their
  operational networks.  A customer in such a network can be provided
  IPv6 connectivity if their User Equipment (UE) is IPv6 compliant.
  Operators may adopt various approaches to deploy IPv6 in mobile
  networks, such as the solutions described in [TR23.975].  Depending
  on network conditions, either dual-stack or IPv6-only deployment
  schemes can be enabled.

  A detailed overview of IPv6 support in 3GPP architectures is provided
  in [RFC6459].

  It has been observed and reported that a mobile subscriber roaming
  around a different operator's areas may experience service disruption
  due to inconsistent configurations and incomplete functionality of
  equipment in the network.  This document focuses on these issues.

1.1.  Terminology

  This document makes use of these terms:

  o  Mobile networks refer to 3GPP mobile networks.

  o  Mobile UE denotes a 3GPP device that can be connected to 3GPP
     mobile networks.

  o  The Public Land Mobile Network (PLMN) is a network that is
     operated by a single administrative entity.  A PLMN (and therefore
     also an operator) is identified by the Mobile Country Code (MCC)
     and the Mobile Network Code (MNC).  Each (telecommunications)
     operator providing mobile services has its own PLMN [RFC6459].

  o  The Home Location Register (HLR) is a pre-Release 5 database (but
     is also used in real deployments of Release 5 and later) that
     contains subscriber data and information related to call routing.
     All subscribers of an operator and the subscribers' enabled
     services are provisioned in the HLR [RFC6459].

  o  The Home Subscriber Server (HSS) is a database for a given
     subscriber and was introduced in 3GPP Release 5.  It is the entity
     containing the subscription-related information to support the
     network entities actually handling calls/sessions [RFC6459].

  o  "HLR/HSS" is used collectively for the subscriber database unless
     referring to the failure case related to General Packet Radio
     Service (GPRS) Subscriber data from the HLR.




Chen, et al.                  Informational                     [Page 3]

RFC 7445                  IPv6 Roaming Analysis               March 2015


  An overview of key 3GPP functional elements is documented in
  [RFC6459].

  "Mobile device" and "mobile UE" are used interchangeably.

2.  Background

2.1.  Roaming Architecture: An Overview

  Roaming occurs in two scenarios:

  o  International roaming: a mobile UE enters a visited network
     operated by a different operator, where a different PLMN code is
     used.  The UEs could, either in an automatic mode or in a manual
     mode, attach to the visited PLMN.

  o  Intra-PLMN mobility: an operator may have one or multiple PLMN
     codes.  A mobile UE could pre-configure the codes to identify the
     Home PLMN (HPLMN) or Equivalent HPLMN (EHPLMN).  Intra-PLMN
     mobility allows the UE to move to a different area of HPLMN and
     EHPLMN.  When the subscriber profile is not stored in the visited
     area, HLR/HSS in the Home area will transmit the profile to the
     Serving GPRS Support Node (SGSN) / Mobility Management Entity
     (MME) in the visited area so as to complete network attachment.

  When a UE is turned on or is transferred via a handover to a visited
  network, the mobile device will scan all radio channels and find
  available PLMNs to attach to.  The SGSN or the MME in the visited
  networks must contact the HLR or HSS to retrieve the subscriber
  profile.

  Steering of roaming may also be used by the HPLMN to further restrict
  which of the available networks the UE may be attached to.  Once the
  authentication and registration stage is completed, the Packet Data
  Protocol (PDP) or Packet Data Networks (PDN) activation and traffic
  flows may be operated differently according to the subscriber profile
  stored in the HLR or the HSS.

  The following subsections describe two roaming modes: Home-routed
  traffic (Section 2.1.1) and Local breakout (Section 2.1.2).

2.1.1.  Home Routed Mode

  In this mode, the subscriber's UE gets IP addresses from the home
  network.  All traffic belonging to that UE is therefore routed to the
  home network (Figure 1).





Chen, et al.                  Informational                     [Page 4]

RFC 7445                  IPv6 Roaming Analysis               March 2015


  GPRS roaming exchange (GRX) or Internetwork Packet Exchange (IPX)
  networks [IR.34] are likely to be invoked as the transit network to
  deliver the traffic.  This is the main mode for international roaming
  of Internet data services to facilitate the charging process between
  the two involved operators.

+-----------------------------+            +------------------------+
|Visited Network              |            |Home Network            |
|  +----+        +----+---+   | (GRX/IPX)  |    +--------+ Traffic Flow
|  | UE |=======>|SGSN/SGW|====================>|GGSN/PGW|============>
|  +----+        +----+---+   |            |    +--------+          |
|                |MME |       |            |                        |
|                +----+       | Signaling  |    +--------+          |
|                   |-------------------------->|HLR/HSS |          |
|                             |            |    +--------+          |
+-----------------------------+            +------------------------+

                      Figure 1: Home Routed Traffic

2.1.2.  Local Breakout Mode

  In the local breakout mode, IP addresses are assigned by the visited
  network to a roaming mobile UE.  Unlike the home routed mode, the
  traffic doesn't have to traverse GRX/IPX; it is offloaded locally at
  a network node close to that device's point of attachment in the
  visited network.  This mode ensures a more optimized forwarding path
  for the delivery of packets belonging to a visiting UE (Figure 2).

    +----------------------------+            +----------------+
    |Visited Network             |            |Home Network    |
    |  +----+        +--------+  | Signaling  |    +--------+  |
    |  | UE |=======>|SGSN/MME|------------------->|HLR/HSS |  |
    |  +----+        +---+----+  | (GRX/IPX)  |    +--------+  |
    |                |SGW|       |            |                |
    |                +---+       |            |                |
    |                  ||        |            |                |
    |              +--------+    |            |                |
    |              |GGSN/PGW|    |            |                |
    |              +--------+    |            |                |
    |    Traffic Flow  ||        |            |                |
    +------------------||--------+            +----------------+
                       \/

                        Figure 2: Local Breakout

  The international roaming of services based on the IP Multimedia
  Subsystem (IMS), e.g., Voice over LTE (VoLTE)[IR.92], is claimed to
  select the local breakout mode in [IR.65].  Data service roaming



Chen, et al.                  Informational                     [Page 5]

RFC 7445                  IPv6 Roaming Analysis               March 2015


  across different areas within an operator network might use local
  breakout mode in order to get more efficient traffic forwarding and
  also ease emergency services.  The local breakout mode could also be
  applied to an operator's alliance for international roaming of data
  service.

  EU Roaming Regulation III [EU-Roaming-III] involves local breakout
  mode allowing European subscribers roaming in European 2G/3G networks
  to have their Internet data routed directly to the Internet from
  their current Visited Public Land Mobile Network (VPLMN).

  Specific local breakout-related configuration considerations are
  listed below:

  o  Operators may add the APN-OI-Replacement flag defined in 3GPP
     [TS29.272] into the user's subscription data.  The visited network
     indicates a local domain name to replace the user requested Access
     Point Name (APN).  Consequently, the traffic would be steered to
     the visited network.  Those functions are normally deployed for
     the intra-PLMN mobility cases.

  o  Operators may also configure the VPLMN-Dynamic-Address-Allowed
     flag [TS29.272] in the user's profile to enable local breakout
     mode in VPLMNs.

  o  3GPP specified the Selected IP Traffic Offload (SIPTO) function
     [TS23.401] since Release 10 in order to get efficient route paths.
     It enables an operator to offload a portion of the traffic at a
     network node close to the UE's point of attachment to the network.

  o  The Global System for Mobile Communications Association (GSMA) has
     defined Roaming Architecture for Voice over LTE with Local
     Breakout (RAVEL) [IR.65] as the IMS international roaming
     architecture.  Local breakout mode has been adopted for the IMS
     roaming architecture.

2.2.  Typical Roaming Scenarios

  Three stages occur when a subscriber roams to a visited network and
  intends to invoke services:

  o  Network attachment: this occurs when the UE enters a visited
     network.  During the attachment phase, the visited network should
     authenticate the subscriber and make a location update to the
     HSS/HLR in the home network of the subscriber.  Accordingly, the
     subscriber profile is offered from the HSS/HLR.  The subscriber
     profile contains the allowed APNs, the allowed PDP/PDN Types, and
     rules regarding the routing of data sessions (i.e., home routed or



Chen, et al.                  Informational                     [Page 6]

RFC 7445                  IPv6 Roaming Analysis               March 2015


     local breakout mode) [TS29.272].  The SGSN/MME in the visited
     network can use this information to facilitate the subsequent
     PDP/PDN session creation.

  o  PDP/PDN context creation: this occurs after the subscriber's UE
     has been successfully attached to the network.  This stage is
     integrated with the attachment stage in the case of 4G, but is a
     separate process in 2G/3G. 3GPP specifies three types of PDP/PDN
     to describe connections: PDP/PDN Type IPv4, PDP/PDN Type IPv6, and
     PDP/PDN Type IPv4v6.  When a subscriber creates a data session,
     their device requests a particular PDP/PDN Type.  The allowed
     PDP/PDN Types for that subscriber are learned in the attachment
     stage.  Hence, the SGSN and MME via the Serving Gateway (SGW)
     could initiate a PDP/PDN request to Gateway GSN (GGSN) / Packet
     Data Network Gateway (PGW) modulo subscription grants.

  o  Service requests: when the PDP/PDN context is created
     successfully, UEs may launch applications and request services
     based on the allocated IP addresses.  The service traffic will be
     transmitted via the visited network.

  Failures that occur at the attachment stage (Section 3) are
  independent of home routed and the local breakout modes.  Most
  failure cases in the PDP/PDN context creation (Section 4) and in
  service requests (Section 5) occur in the local breakout mode.

3.  Failure Case in the Network Attachment

  3GPP specified PDP/PDN Type IPv4v6 in order to allow a UE to get both
  an IPv4 address and an IPv6 prefix within a single PDP/PDN bearer.
  This option is stored as a part of subscription data for a subscriber
  in the HLR/HSS.  PDP/PDN Type IPv4v6 has been introduced at the
  inception of the Evolved Packet System (EPS) in 4G networks.

  The nodes in 4G networks should present no issues with the handling
  of this PDN Type.  However, the level of support varies in 2G/3G
  networks depending on the SGSN software version.  In theory, S4-SGSN
  (i.e., an SGSN with S4 interface) has supported the PDP/PDN Type
  IPv4v6 since Release 8, and Gn-SGSN (i.e., the SGSN with Gn
  interface) has supported it since Release 9.  In most cases,
  operators normally use Gn-SGSN to connect either GGSN in 3G or Packet
  Data Network Gateway (PGW) in 4G.

  The MAP (Mobile Application Part) protocol, as defined in 3GPP
  [TS29.002], is used over the Gr interface between SGSN and HLR.  The
  MAP Information Element (IE) "ext-pdp-Type" contains the IPv4v6 PDP
  Type that is conveyed to SGSN from the HLR within the Insert
  Subscriber Data (ISD) MAP operation.  If the SGSN does not support



Chen, et al.                  Informational                     [Page 7]

RFC 7445                  IPv6 Roaming Analysis               March 2015


  the IPv4v6 PDP Type, it will not support the "ext-pdp-Type" IE;
  consequently, it must silently discard that IE and continue
  processing the rest of the ISD MAP message.  An issue that has been
  observed is that multiple SGSNs are unable to correctly process a
  subscriber's data received in the Insert Subscriber Data Procedure
  [TS23.060].  As a consequence, it will likely discard the subscriber
  attach request.  This is erroneous behavior due to the equipment not
  being compliant with 3GPP Release 9.

  In order to avoid encountering this attach problem at a visited SGSN,
  both operators should make a comprehensive roaming agreement to
  support IPv6 and ensure that it aligns with the GSMA documents, e.g.,
  [IR.33], [IR.88], and [IR.21].  Such an agreement requires the
  visited operator to get the necessary patch on all its SGSN nodes to
  support the "ext-pdp-Type" MAP IE sent by the HLR.  To ensure data-
  session continuity in Radio Access Technology (RAT) handovers, the
  PDN Type sent by the HSS to the MME should be consistent with the PDP
  Type sent by the HLR to the Gn-SGSN.  Where roaming agreements and
  visited SGSN nodes have not been updated, the HPLMN also has to make
  use of specific implementations (not standardized by 3GPP, discussed
  further in Section 6) in the HLR/HSS of the home network.  That is,
  when the HLR/HSS receives an Update Location message from a visited
  SGSN not known to support dual-stack in a single bearer, subscription
  data allowing only PDP/PDN Type IPv4 or IPv6 will be sent to that
  SGSN in the Insert Subscriber Data procedure.  This guarantees that
  the user profile is compatible with the visited SGSN/MME capability.
  In addition, HSS may not have to change if the PGW is aware of the
  subscriber's roaming status and only restricts the accepted PDN Type
  consistent with PDP Type sent by the HLR.  For example, a AAA server
  may coordinate with the PGW to decide the allowed PDN Type.

  Alternatively, HPLMNs without the non-standardized capability to
  suppress the sending of "ext-pdp-Type" by the HLR may have to remove
  this attribute from APNs with roaming service.  PDN Type IPv4v6 must
  also be removed from the corresponding profile for the APN in the
  HSS.  This will restrict their roaming UEs to only IPv4 or IPv6
  PDP/PDN activation.  This alternative has problems:

  o  The HPLMN cannot support dual-stack in a single bearer at home
     where the APN profile in the HLR/HSS is also used for roaming.

  o  The UE may set up separate parallel bearers for IPv4 and IPv6,
     where only single-stack IPv4 or IPv6 service is preferred by the
     operator.







Chen, et al.                  Informational                     [Page 8]

RFC 7445                  IPv6 Roaming Analysis               March 2015


4.  Failure Cases in the PDP/PDN Creation

  When a subscriber's UE succeeds in the attach stage, the IP
  allocation process takes place to retrieve IP addresses.  In general,
  a PDP/PDN Type IPv4v6 request implicitly allows the network side to
  make several IP assignment options, including IPv4-only, IPv6-only,
  IPv4 and IPv6 in single PDP/PDN bearer, and IPv4 and IPv6 in
  separated PDP/PDN bearers.

  A PDP/PDN Type IPv4 or IPv6 restricts the network side to only
  allocate the requested IP address family.

  This section summarizes several failures in the Home Routed (HR) and
  Local Breakout (LBO) mode as shown in Table 1.

       +-------+-------------+------------------------+---------+
       | Case# | UE request  |  PDP/PDN IP Type       |  Mode   |
       |       |             |  permitted on GGSN/PGW |         |
       +-------+-------------+------------------------+---------+
       |       |    IPv4v6   |      IPv4v6            |  HR     |
       |  #1   |-------------+------------------------+---------+
       |       |    IPv4v6   |      IPv4 or IPv6      |  LBO    |
       +-------+-------------+------------------------+---------+
       |  #2   |     IPv6    |      IPv6              |  HR     |
       +-------+-------------+------------------------+---------+
       |  #3   |     IPv4    |      IPv6              |  HR     |
       +-------+-------------+------------------------+---------+
       |  #4   |     IPv6    |      IPv4              |  LBO    |
       +-------+-------------+------------------------+---------+

             Table 1: Failure Cases in the PDP/PDN Creation

4.1.  Case 1: Splitting Dual-Stack Bearer

  Dual-stack capability is provided using separate PDP/PDN activation
  in the visited network that doesn't support PDP/PDN Type IPv4v6.
  That means only separate, parallel, single-stack IPv4 and IPv6
  PDP/PDN connections are allowed to be initiated to separately
  allocate an IPv4 address and an IPv6 prefix.  The SGSN does not
  support the Dual Address Bearer Flag (DAF) or does not set the DAF
  because the operator uses single addressing per bearer to support
  interworking with nodes of earlier releases.  Regardless of home
  routed or local breakout mode, GGSN/PGW will change PDN/PDP Type to a
  single address PDP/PDN Type and return the Session Management (SM)
  Cause #52 "single address bearers only allowed" or SM Cause #28
  "unknown PDP address or PDP type" as per [TS24.008] and [TS24.301] to





Chen, et al.                  Informational                     [Page 9]

RFC 7445                  IPv6 Roaming Analysis               March 2015


  the UE.  In this case, the UE may make another PDP/PDN request with a
  single address PDP Type (IPv4 or IPv6) other than the one already
  activated.

  This approach suffers from the following drawbacks:

  o  The parallel PDP/PDN activation would likely double PDP/PDN bearer
     resource on the network side and Radio Access Bearer (RAB)
     resource on the Radio Access Network (RAN) side.  It also impacts
     the capacity of the GGSN/PGW, since only a certain amount of
     PDP/PDN activation is allowed on those nodes.

  o  Some networks may allow only one PDP/PDN to be alive for each
     subscriber.  For example, an IPv6 PDP/PDN will be rejected if the
     subscriber has an active IPv4 PDP/PDN.  Therefore, the subscriber
     would not be able to obtain the IPv6 connection in the visited
     network.  It is even worse, as they may have a risk of losing all
     data connectivity if the IPv6 PDP gets rejected with a permanent
     error at the APN level and not an error specific to the PDP-Type
     IPv6 requested.

  o  Additional correlations between those two PDP/PDN contexts are
     required on the charging system.

  o  Policy and Charging Rules Function (PCRF) [TS29.212] / Policy and
     Charging Enforcement Function (PCEF) treats the IPv4 and IPv6
     sessions as independent and performs different quality-of-service
     (QoS) policies.  The subscriber may have an unstable experience
     due to different behaviors on each IP version connection.

  o  Mobile devices may have a limitation on the number of allowed
     simultaneous PDP/PDN contexts.  Excessive PDP/PDN activations may
     result in service disruption.

  In order to avoid the issue, the roaming agreement in the home routed
  mode should make sure the visited SGSN supports and sets the DAF.
  Since the PDP/PDN Type IPv4v6 is supported in the GGSN/PGW of the
  home network, it's expected that the visited SGSN/MME could create a
  dual-stack bearer as the UE requested.

  In the local breakout mode, the visited SGSN may only allow single IP
  version addressing.  In this case, the DAF on the visited SGSN/MME
  has to be unset.  One approach is to set a dedicated APN [TS23.003]
  profile to only request PDP/PDN Type IPv4 in the roaming network.
  Some operators may also consider not adopting the local breakout mode
  to avoid the risks.





Chen, et al.                  Informational                    [Page 10]

RFC 7445                  IPv6 Roaming Analysis               March 2015


4.2.  Case 2: IPv6 PDP/PDN Unsupported

  PDP/PDN Type IPv6 has good compatibility to visited networks during
  the network attachment.  In order to support the IPv6-only visitors,
  SGSN/MME in the visited network is required to accept IPv6-only
  PDP/PDN activation requests and enable IPv6 on the user plane in the
  direction of the home network.

  In some cases, IPv6-only visitors may still be subject to the SGSN
  capability in visited networks.  This becomes especially risky if the
  home operator performs roaming steering targeted to an operator that
  doesn't allow IPv6.  The visited SGSN may just directly reject the
  PDP context activation.  Therefore, it's expected that the visited
  network is IPv6 roaming-friendly to enable the functions on SGSN/MME
  by default.  Otherwise, operators may consider steering the roaming
  traffic to the IPv6-enabled visited network that has an IPv6 roaming
  agreement.

4.3.  Case 3: Inappropriate Roaming APN Set

  If IPv6 single stack with the home routed mode is deployed, the
  requested PDP/PDN Type should also be IPv6.  Some implementations
  that support the roaming APN profile may set IPv4 as the default
  PDP/PDN Type, since the visited network is incapable of supporting
  PDP/PDN Types IPv4v6 (Section 4.1) and IPv6 (Section 4.2).  The
  PDP/PDN request will fail because the APN in the home network only
  allows IPv6.  Therefore, the roaming APNs have to be compliant with
  the home network configuration when home routed mode is adopted.

4.4.  Case 4: Fallback Failure

  In the local breakout mode, PDP/PDN Type IPv6 should have no issues
  to pass through the network attachment process, since 3GPP specified
  the PDP/PDN Type IPv6 as early as PDP/PDN Type IPv4.  When a visitor
  requests PDP/PDN Type IPv6, the network should only return the
  expected IPv6 prefix.  The UE may fail to get an IPv6 prefix if the
  visited network only allocates an IPv4 address.  In this case, the
  visited network will reject the request and send the cause code to
  the UE.

  A proper fallback scheme for PDP/PDN Type IPv6 is desirable; however,
  there is no standard way to specify this behavior.  The roaming APN
  profile could help to address the issue by setting the PDP/PDN Type
  to IPv4.  For instance, the Android system solves the issue by
  configuring the roaming protocol to IPv4 for the APN.  It guarantees
  that UE will always initiate a PDP/PDN Type IPv4 in the roaming area.





Chen, et al.                  Informational                    [Page 11]

RFC 7445                  IPv6 Roaming Analysis               March 2015


5.  Failure Cases in the Service Requests

  After the successful network attachment and IP address allocation,
  applications could start to request service based on the activated
  PDP/PDN context.  The service request may depend on specific IP
  family or network collaboration.  If traffic is offloaded locally
  (Section 2.1.2), the visited network may not be able to accommodate
  the UE's service requests.  This section describes the failures.

5.1.  Lack of IPv6 Support in Applications

  Operators may only allow IPv6 in the IMS APN.  VoLTE [IR.92] and Rich
  Communication Suite (RCS) [RCC.07] use the APN to offer voice service
  for visitors.  The IMS roaming in RAVEL architecture [IR.65] offloads
  voice and video traffic in the visited network; therefore, a dual-
  stack visitor can only be assigned with an IPv6 prefix but no IPv4
  address.  If the applications can't support IPv6, the service is
  likely to fail.

  Translation-based methods, for example, 464XLAT [RFC6877] or Bump-in-
  the-Host (BIH) [RFC6535], may help to address the issue if there are
  IPv6 compatibility problems.  The translation function could be
  enabled in an IPv6-only network and disabled in a dual-stack or IPv4
  network; therefore, the IPv4 applications only get the translation in
  the IPv6 network and they perform normally in an IPv4 or dual-stack
  network.

5.2.  464XLAT Support

  464XLAT [RFC6877] is proposed to address the IPv4 compatibility issue
  in an IPv6-only connectivity environment.  The customer-side
  translator (CLAT) function on a mobile device is likely used in
  conjunction with a PDP/PDN IPv6 Type request and cooperates with a
  remote NAT64 [RFC6146] device.

  464XLAT may use the mechanism defined in [RFC7050] or [RFC7225] to
  detect the presence of NAT64 devices and to learn the IPv6 prefix
  used for protocol translation [RFC6052].

  In the local breakout approach, a UE with the 464XLAT function
  roaming on an IPv6 visited network may encounter various situations.
  For example, the visited network may not have deployed DNS64
  [RFC6147] but only NAT64, or CLAT may not be able to discover the
  provider-side translator (PLAT) translation IPv6 prefix used as a
  destination of the PLAT.  If the visited network doesn't have a NAT64
  and DNS64 deployed, 464XLAT can't perform successfully due to the





Chen, et al.                  Informational                    [Page 12]

RFC 7445                  IPv6 Roaming Analysis               March 2015


  lack of PLAT collaboration.  Even in the case of the presence of
  NAT64 and DNS64, a pre-configured PLAT IPv6 prefix in the CLAT may
  cause failure because it can't match the PLAT translation.

  Considering the various network configurations, operators may turn
  off local breakout and use the home routed mode to perform 464XLAT.
  Alternatively, UE may support the different roaming profile
  configuration to adopt 464XLAT in the home network and use IPv4-only
  in the visited networks.

6.  HLR/HSS User Profile Setting

  A proper user profile configuration would provide a deterministic
  outcome to the PDP/PDN creation stage where dual-stack, IPv4-only,
  and IPv6-only connectivity requests may come from devices.  The
  HLR/HSS may have to apply extra logic (not standardized by 3GPP) to
  achieve this.  It is also desirable that the network be able to set
  up connectivity of any requested PDP/PDN context type.

  The following are examples to illustrate the settings for the
  scenarios and the decision criteria to be applied when returning user
  profile information from the HLR to the visited SGSN.

                      user profile #1:

                      PDP-Context ::= SEQUENCE {
                      pdp-ContextId ContextId,
                      pdp-Type  PDP-Type-IPv4
                        ....
                      ext-pdp-Type PDP-Type-IPv4v6
                        ...
                      }


                      user profile #2:

                      PDP-Context ::= SEQUENCE {
                      pdp-ContextId ContextId,
                      pdp-Type  PDP-Type-IPv6
                        ....
                      }

   Scenario 1: Support of IPv6-Only, IPv4-Only, and Dual-Stack Devices








Chen, et al.                  Informational                    [Page 13]

RFC 7445                  IPv6 Roaming Analysis               March 2015


  The full PDP-context parameters are referred to Section 17.7.1
  ("Mobile Service data types") of [TS29.002].  User profiles #1 and #2
  share the same "ContextId".  The setting of user profile #1 enables
  IPv4-only and dual-stack devices to work.  User profile #2 fulfills
  the request if the device asks for IPv6-only PDP context.

                      user profile #1:

                      PDP-Context ::= SEQUENCE {
                      pdp-ContextId ContextId,
                      pdp-Type  PDP-Type-IPv4
                        ....
                      ext-pdp-Type PDP-Type-IPv4v6
                        ...
                      }


                      user profile #2:

                      PDP-Context ::= SEQUENCE {
                      pdp-ContextId ContextId,
                      pdp-Type  PDP-Type-IPv4
                        ....
                      }

  Scenario 2: Support of Dual-Stack Devices with Pre-Release 9 Visited
                           SGSN (vSGSN) Access

  User profiles #1 and #2 share the same "ContextId".  If a visited
  SGSN is identified as early as pre-Release 9, the HLR/HSS should only
  send user profile #2 to the visited SGSN.

7.  Discussion

  Several failure cases have been discussed in this document.  It has
  been illustrated that the major problems happen at three stages: the
  initial network attachment, the PDP/PDN creation, and service
  requests.

  In the network attachment stage, PDP/PDN Type IPv4v6 is the major
  concern to the visited pre-Release 9 SGSN.  3GPP didn't specify
  PDP/PDN Type IPv4v6 in the earlier releases.  That PDP/PDN Type is
  supported in the newly built EPS network, but it isn't supported well
  in the third-generation network.  Visited SGSNs may discard the
  subscriber's attach requests because the SGSN is unable to correctly
  process PDP/PDN Type IPv4v6.  Operators may have to adopt temporary





Chen, et al.                  Informational                    [Page 14]

RFC 7445                  IPv6 Roaming Analysis               March 2015


  solutions unless all the interworking nodes (i.e., the SGSN) in the
  visited network have been upgraded to support the ext-PDP-Type
  feature.

  In the PDP/PDN creation stage, support of PDP/PDN Types IPv4v6 and
  IPv6 on the visited SGSN is the major concern.  It has been observed
  that single-stack IPv6 in the home routed mode is a viable approach
  to deploy IPv6.  It is desirable that the visited SGSN have the
  ability to enable IPv6 on the user plane by default.  For support of
  the PDP/PDN Type IPv4v6, it is suggested to set the DAF.  As a
  complementary function, the implementation of a roaming APN
  configuration is useful to accommodate the visited network.  However,
  it should consider roaming architecture and the permitted PDP/PDN
  Type to properly set the UE.  Roaming APN in the home routed mode is
  recommended to align with home network profile setting.  In the local
  breakout case, PDP/PDN Type IPv4 could be selected as a safe way to
  initiate PDP/PDN activation.

  In the service requests stage, the failure cases mostly occur in the
  local breakout case.  The visited network may not be able to satisfy
  the requested capability from applications or UEs.  Operators may
  consider using home routed mode to avoid these problems.  Several
  solutions, in either the network side or mobile device side, can also
  help to address the issue.  For example,

  o  464XLAT could help IPv4 applications access IPv6 visited networks.

  o  Networks can deploy a AAA server to coordinate the mobile device
     capability.  Once the GGSN/PGW receives the session creation
     request, it will initiate a request to a AAA server in the home
     network via the RADIUS or Diameter protocol [TS29.061].  The
     request contains subscriber and visited network information, e.g.,
     PDP/PDN Type, International Mobile Equipment Identity (IMEI),
     Software Version (SV) and visited SGSN/MME location code, etc.
     The AAA server could take mobile device capability and combine it
     with the visited network information to ultimately determine the
     type of session to be created, i.e., IPv4, IPv6, or IPv4v6.

8.  Security Considerations

  Although this document defines neither a new architecture nor a new
  protocol, the reader is encouraged to refer to [RFC6459] for a
  generic discussion on IPv6-related security considerations.








Chen, et al.                  Informational                    [Page 15]

RFC 7445                  IPv6 Roaming Analysis               March 2015


9.  References

9.1.  Normative References

  [IR.21]    Global System for Mobile Communications Association
             (GSMA), "Roaming Database, Structure and Updating
             Procedures", IR.21, Version 7.4, November 2013.

  [IR.65]    Global System for Mobile Communications Association
             (GSMA), "IMS Roaming and Interworking Guidelines", IR.65,
             Version 15.0, January 2015.

  [RFC6146]  Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
             NAT64: Network Address and Protocol Translation from IPv6
             Clients to IPv4 Servers", RFC 6146, April 2011,
             <http://www.rfc-editor.org/info/rfc6146>.

  [RFC6147]  Bagnulo, M., Sullivan, A., Matthews, P., and I. van
             Beijnum, "DNS64: DNS Extensions for Network Address
             Translation from IPv6 Clients to IPv4 Servers", RFC 6147,
             April 2011, <http://www.rfc-editor.org/info/rfc6147>.

  [RFC6877]  Mawatari, M., Kawashima, M., and C. Byrne, "464XLAT:
             Combination of Stateful and Stateless Translation", RFC
             6877, April 2013,
             <http://www.rfc-editor.org/info/rfc6877>.

  [TS23.060] 3GPP, "General Packet Radio Service (GPRS); Service
             description; Stage 2 v9.00", TS 23.060, March 2009.

  [TS23.401] 3GPP, "General Packet Radio Service (GPRS) enhancements
             for Evolved Universal Terrestrial Radio Access Network
             (E-UTRAN) access v9.00", TS 23.401, March 2009.

  [TS29.002] 3GPP, "Mobile Application Part (MAP) specification
             v9.12.0", TS 29.002, December 2009.

  [TS29.272] 3GPP, "Mobility Management Entity (MME) and Serving GPRS
  Support Node (SGSN) related interfaces based on Diameter protocol
  v9.00", TS 29.272, September 2009.

9.2.  Informative References

  [EU-Roaming-III]
             Amdocs Inc., "Amdocs 2014 EU Roaming Regulation III
             Solution", July 2013, <http://www.amdocs.com/Products/
             Revenue-Management/Documents/
             amdocs-eu-roaming-regulation-III-solution.pdf>.



Chen, et al.                  Informational                    [Page 16]

RFC 7445                  IPv6 Roaming Analysis               March 2015


  [IR.33]    Global System for Mobile Communications Association
             (GSMA), "GPRS Roaming Guidelines", IR.33, Version 7.0,
             June 2014.

  [IR.34]    Global System for Mobile Communications Association
             (GSMA), "Guidelines for IPX Provider networks", IR.34
             Version 11.0, January 2015.

  [IR.88]    Global System for Mobile Communications Association
             (GSMA), "LTE Roaming Guidelines", IR.88, Version 12.0,
             January 2015.

  [IR.92]    Global System for Mobile Communications Association
             (GSMA), "IMS Profile for Voice and SMS", IR.92, Version
             7.1, January 2015.

  [RCC.07]   Global System for Mobile Communications Association
             (GSMA), "Rich Communication Suite 5.2 Advanced
             Communications Services and Client Specification", RCC.07,
             Version 5.0, May 2014.

  [RFC6052]  Bao, C., Huitema, C., Bagnulo, M., Boucadair, M., and X.
             Li, "IPv6 Addressing of IPv4/IPv6 Translators", RFC 6052,
             October 2010, <http://www.rfc-editor.org/info/rfc6052>.

  [RFC6459]  Korhonen, J., Ed., Soininen, J., Patil, B., Savolainen,
             T., Bajko, G., and K. Iisakkila, "IPv6 in 3rd Generation
             Partnership Project (3GPP) Evolved Packet System (EPS)",
             RFC 6459, January 2012,
             <http://www.rfc-editor.org/info/rfc6459>.

  [RFC6535]  Huang, B., Deng, H., and T. Savolainen, "Dual-Stack Hosts
             Using "Bump-in-the-Host" (BIH)", RFC 6535, February 2012,
             <http://www.rfc-editor.org/info/rfc6535>.

  [RFC7050]  Savolainen, T., Korhonen, J., and D. Wing, "Discovery of
             the IPv6 Prefix Used for IPv6 Address Synthesis", RFC
             7050, November 2013,
             <http://www.rfc-editor.org/info/rfc7050>.

  [RFC7225]  Boucadair, M., "Discovering NAT64 IPv6 Prefixes Using the
             Port Control Protocol (PCP)", RFC 7225, May 2014,
             <http://www.rfc-editor.org/info/rfc7225>.

  [TR23.975] 3GPP, "IPv6 migration guidelines", TR 23.975, June 2011.

  [TS23.003] 3GPP, "Numbering, addressing and identification v9.0.0",
             TS 23.003, September 2009.



Chen, et al.                  Informational                    [Page 17]

RFC 7445                  IPv6 Roaming Analysis               March 2015


  [TS24.008] 3GPP, "Mobile radio interface Layer 3 specification; Core
             network protocols; Stage 3 v9.00", TS 24.008, September
             2009.

  [TS24.301] 3GPP, "Non-Access-Stratum (NAS) protocol for Evolved
             Packet System (EPS) ; Stage 3 v9.00", TS 24.301, September
             2009.

  [TS29.061] 3GPP, "Interworking between the Public Land Mobile Network
             (PLMN) supporting packet based services and Packet Data
             Networks (PDN) v9.14.0", TS 29.061, January 2015.

  [TS29.212] 3GPP, "Policy and Charging Control (PCC); Reference points
             v9.0.0", TS 29.212, September 2009.

Acknowledgements

  Many thanks to F. Baker and J. Brzozowski for their support.

  This document is the result of the IETF v6ops IPv6-Roaming design
  team effort.

  The authors would like to thank Mikael Abrahamsson, Victor Kuarsingh,
  Nick Heatley, Alexandru Petrescu, Tore Anderson, Cameron Byrne,
  Holger Metschulat, and Geir Egeland for their helpful discussions and
  comments.

  The authors especially thank Fred Baker and Ross Chandler for their
  efforts and contributions that substantially improved the readability
  of the document.

Contributors

  The following individual contributed to this document.

     Vizdal Ales
     Deutsche Telekom AG
     Tomickova 2144/1
     Prague 4,  149 00
     Czech Republic

     EMail: [email protected]









Chen, et al.                  Informational                    [Page 18]

RFC 7445                  IPv6 Roaming Analysis               March 2015


Authors' Addresses

  Gang Chen
  China Mobile
  53A,Xibianmennei Ave.,
  Xicheng District,
  Beijing  100053
  China

  EMail: [email protected], [email protected]


  Hui Deng
  China Mobile
  53A,Xibianmennei Ave.,
  Xuanwu District,
  Beijing  100053
  China

  EMail: [email protected]


  Dave Michaud
  Rogers Communications
  8200 Dixie Rd.
  Brampton, ON L6T 0C1
  Canada

  EMail: [email protected]


  Jouni Korhonen
  Broadcom Corporation
  3151 Zanker Rd.
  San Jose, CA  95134
  United States

  EMail: [email protected]


  Mohamed Boucadair
  France Telecom
  Rennes,
  35000
  France

  EMail: [email protected]




Chen, et al.                  Informational                    [Page 19]